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Abstract. Recursion schemes over datatypes constitute a powerful tool
to structure functional programs. Standard schemes, like map and fold,
have traditionally been studied in the context of purely-functional pro-
grams. In this paper we propose the generalization of well-known recur-
sion schemes with the aim to obtain structuring mechanisms for programs
with effects, assuming that effects are modelled by monads. We analyze
the definition as well as the algebraic laws associated with the new recur-
sion schemes. The way monads encapsulate effects plays an important
role in the definition of the monadic recursion schemes, as it permits to
focus on the structure of the recursive programs with effects disregard-
ing the specific details of the effects involved. We illustrate the use of
the recursion schemes and their laws with some traversal algorithms on
graphs.

1 Introduction

In functional programming, it is common to find programs written using a com-
positional design, where a program is constructed as a collection of simple and
easy to write functions which communicate through function composition. Pro-
grams so defined are modular and have many benefits, such as clarity and main-
tainability, but unfortunately they are inefficient. Each function composition
f ◦ g implies passing information from one function to the other through an in-
termediate data structure which is produced by g and consumed by f . This has
associated a computational cost, since the nodes of the intermediate data struc-
ture need to be allocated, filled, inspected and finally discarded from memory.

Intermediate data structures can be removed by the application of a pro-
gram transformation technique known as deforestation [30]. Diverse approaches
to deforestation can be found in the literature [30, 11, 10, 27, 23]. In this paper
we follow an approach based on recursive program schemes over data types [18,
6, 4, 8]. By program schemes we mean higher-order functions that capture com-
mon patterns of computation over data types and help in structuring programs.
Typical examples are functions like map and fold [3], but there are many others.
Recursion schemes have associated algebraic laws, which are useful for formal
reasoning about programs as well as for program transformation purposes. In
connection with deforestation, there is a particularly relevant subset of these



laws, the so-called fusion laws, which involve the elimination of intermediate
data structures.

The purpose of this paper is to study recursion schemes for programs with
effects, assuming that effects are modelled by monads [2]. Most of the standard
recursion schemes can only deal with purely-functional programs (i.e. effect-free
programs). This means that they fail when we try to use them to represent
programs with effects. Basically, the problem is with the shape of recursion that
such programs possess, which is different from that of purely-functional ones.
This raises the necessity of generalizing the existing recursion schemes to cope
with the patterns of computations of programs with effects.

The compositional style of programming still holds in the context of programs
with effects. This means that we will be interested in eliminating intermediate
data structures generated by the composition of monadic programs, but now
produced as the result of monadic computations. Our strategy will be therefore
the derivation of fusion laws associated with the program schemes for programs
with effects in order to restore deforestation in the presence of effects.

The paper is built on previous work on recursion schemes for programs with
effects [20, 25, 24]. In contrast to [25, 24], where a more abstract style of pre-
sentation based on category theory was followed, in this paper concepts and
definitions are described in a functional programming style, using a Haskell-like
notation.

The paper is organized as follows. In Section 2 we review some standard re-
cursion schemes and their associated fusion laws. Section 3 presents background
material on monads. Section 4 is devoted to the analysis of recursion schemes
for programs with effects. We also present examples which illustrate the use of
the program schemes and their laws. In Section 5, we conclude the paper with
a brief description of a program fusion tool which integrates many of the ideas
discussed in the paper.

2 Recursive program schemes

The program schemes described in the paper encapsulate common patterns of
computation of recursive functions and have a strong connection with datatypes.
Before presenting well-known recursion schemes for purely-functional programs,
we will show a general construction used to capture datatype declarations. Based
on that construction, we will be able to give a generic definition of the recursion
schemes, parameterised by the structure of some of the datatypes involved.

Throughout we shall assume we are working in the context of a lazy functional
language with a cpo semantics, in which types are interpreted as pointed cpos
(complete partial orders with a least element ⊥) and functions are interpreted
as continuous functions between pointed cpos. As usual, a function f is said to
be strict if it preserves the least element, i.e. f ⊥ = ⊥.



2.1 Data types

The general construction relies on the concept of a functor. A functor consists
of two components, both denoted by F : a type constructor F , and a function
F :: (a → b)→ (F a → F b), which preserves identities and compositions:

F id = id F (f ◦ g) = F f ◦ F g

A standard example of a functor is that formed by the List type constructor and
the well-known map function, which applies a function to the elements of a list,
building a new list with the results.

map :: (a → b)→ (List a → List b)
map f Nil = Nil
map f (Cons a as) = Cons (f a) (map f as)

We will use functors to capture the structure (or signature) of datatypes. In
this paper we will only consider a restricted class of datatypes, called regular
datatypes. These are datatypes whose declarations contain no function spaces
and have recursive occurrences with the same arguments from left-hand sides.
The functors corresponding to regular datatypes’ signatures will be characterised
by an inductive definition, composed by the following basic functors.

Identity functor. The identity functor is defined as the identity type construc-
tor and the identity function (on functions):

type I a = a

I :: (a → b)→ (I a → I b)
I f = f

Constant functor. For any type t , we can construct a constant functor de-
fined as the constant type constructor and the constant function that maps any
function to the identity on t :

type t a = t

t :: (a → b)→ (t a → t b)
t f = id

Product functor. The product functor is an example of a bifunctor (a functor
on two arguments). The product type constructor gives the type of pairs as
result. The mapping function takes two functions which are applied to each
component of the input pair.

data a × b = (a, b)

(×) :: (a → c)→ (b → d)→ (a × b → c × d)
(f × g) (a, b) = (f a, g b)

The elements of a product can be inspected using the projection functions.

π1 :: a × b → a



π1 (a, b) = a

π2 :: a × b → b
π2 (a, b) = b

The split operation allows us to construct a product from a given object.

(M) :: (c → a)→ (c → b)→ (c → a × b)
(f M g) x = (f x , g x )

Among others, the following laws hold:

(f M g) ◦ h = (f ◦ h) M (g ◦ h)

(f × g) ◦ (h M k) = (f ◦ h) M (g ◦ k)

Sum functor. The sum functor builds the disjoint sum of two types, which are
unions of tagged elements.

data a + b = Left a | Right b

(+) :: (a → c)→ (b → d)→ (a + b → c + d)
(f + g) (Left a) = Left (f a)
(f + g) (Right b) = Right (g b)

Associated with sums we can define a case analysis operator:

(O) :: (a → c)→ (b → c)→ (a + b → c)
(f O g) (Left a) = f a
(f O g) (Right b) = g b

which satisfies the following properties:

f strict ⇒ f ◦ (g O h) = f ◦ g O f ◦ h

(f O g) ◦ (h + k) = f ◦ h O g ◦ k

Functor composition. The composition of two functors F and G is denoted
by F G . In particular, we can define the composition of the bifunctors × and +
with functors F and G , written F × G and F + G , as follows:

type (F × G) a = F a × G a
(F × G) f = F f × G f

type (F + G) a = F a + G a
(F + G) f = F f + G f

Regular functors. Regular functors are functors built from identities, con-
stants, products, sums, compositions and type functors.

F ::= I | t | F × F | F + F | F F | D

D stands for type functors, which are functors corresponding to polymorphic
recursive datatypes (the List functor is an example). Their definition is given in
Section 2.3.



The general construction. The idea is to describe the top level structure of
a datatype by means of a functor. Consider a regular datatype declaration,

data τ = C1 τ1,1 · · · τ1,k1 | · · · | Cn τn,1 · · · τn,kn

The assumption that τ is regular implies that each τi,j is restricted to the fol-
lowing forms: some constant type t (like Int , Char , or even a type variable); a
type constructor D (e.g. List) applied to a type τ ′i,j ; or τ itself.

The derivation of a functor from a datatype declaration then proceeds as
follows:

– pack the arguments of the constructors in tuples; for constant constructors
(i.e. those with no arguments) we place the empty tuple ();

– regard alternatives as sums, replacing | by +; and
– substitute the occurrences of τ by a type variable a in every τi,j .

As a result, we obtain the following type constructor:

F a = σ1,1 × · · · × σ1,k1 + · · ·+ σn,1 × · · · × σn,kn

where σi,j = τi,j [τ := a]1. The body of the mapping function F :: (a → b) →
(F a → F b) is similar to that of F a, with the difference that now we substitute
the occurrences of the type variable a by a function f ::a → b, and write identities
in the other positions:

Ff = σ1,1 × · · · × σ1,k1 + · · ·+ σn,1 × · · · × σn,kn

with

σi,j =


f if σi,j = a

id if σi,j = t, for some type t

D σ′i,j if σi,j = D σ′i,j

Example 1.

– For the datatype of natural numbers,

data Nat = Zero | Succ Nat

we can derive a functor N given by

type N a = () + a

N :: (a → b)→ (N a → N b)
N f = id + f

As a functorial expression, N = () + I .

1 By s[t := a] we denote the replacement of every occurrence of t by a in s.



– For a datatype of arithmetic expressions:

data Exp = Num Int | Add Exp Exp

we can derive a functor E given by

type E a = Int + Exp × Exp

E :: (a → b)→ (E a → E b)
E f = id + f × f

As a functorial expression, E = Int + I × I .
– For the datatype of lists,

List a = Nil | Cons a (List a)

we can derive a functor La given by

type La b = () + a × b

La :: (b → c)→ (La b → La c)
La f = id + id × f

As a functorial expression, La = () + a × I . Notice that in this case the
functor is parameterised. This happens with the signature of every poly-
morphic datatype, since it is necessary to reflect in the functor the presence
of the type parameter. A parameterised functor Fa is actually the partial
application of a bifunctor F : type Fa b = F a b and Fa f = F id f . 2

Every (recursive) regular datatype is then understood as a solution of an
equation Fx ∼= x, being F the functor that captures its signature. A solution to
this equation corresponds to a fixed point of the functor F , given by a type t
and an isomorphism between F t and t . The underlying semantics in terms of
cpos ensures the existence of a unique (up to isomorphism) fixed point to every
regular functor F whose type is denoted by µF . The isomorphism is provided
by the strict functions,

FµF
inF -

�
outF

µF

each the inverse of the other, such that inF (outF ) packs the constructors (de-
structors) of the datatype. The type µF contains partial, finite as well as infinite
values. Further details can be found in [1, 8].

Example 2.

– In the case of the datatype of natural numbers, the corresponding isomor-
phism is given by the type µN = Nat and the functions inN and outN :

inN :: N Nat → Nat
inN = const Zero O Succ



outN :: Nat → N Nat
outN Zero = Left ()
outN (Succ n) = Right n

const :: a → b → a
const a b = a

– In the case of the datatype of lists, the corresponding isomorphism is given
by the type µLa = List a and the functions inLa and outLa :

inLa
:: La (List a)→ List a

inLa = const Nil O uncurry Cons

outLa
:: List a → La (List a)

outLa
Nil = Left ()

outLa
(Cons a as) = Right (a, as)

uncurry :: (a → b → c)→ (a × b → c)
uncurry f (a, b) = f a b

2

2.2 Fold

Fold is a pattern of recursion that captures funcion definitions by structural
recursion. The best known example of fold is the definition for lists,

foldL :: (b, a → b → b)→ List a → b
foldL (h1, h2) = fL

where
fL Nil = h1

fL (Cons a as) = h2 a (fL as)

which corresponds to the foldr operator [3], but the same construction can be
generalized to any regular datatype.

The general definition of fold can be represented by the following diagram:

µF
fold h - a

FµF

inF

6

F (fold h)
- F a

h

6

Since outF is the inverse of the isomorphism inF , we can write:

fold :: (F a → a)→ µF → a
fold h = h ◦ F (fold h) ◦ outF

A function h :: F a → a is called an F-algebra. The functor F plays the role of
signature of the algebra, as it encodes the information about the operations of



the algebra. The type a is called the carrier of the algebra. An F-homomorphism
between two algebras h :: F a → a and k :: F b → b is a function f :: a → b
between the carriers that commutes with the operations. This is specified by the
condition f ◦ h = k ◦ F f . Notice that fold is a homomorphism from inF to h.

Remark 1. When writing the instances of the program schemes, we will adopt
the following notational convention for algebras: We will write (h′1, . . . , h

′
n) in-

stead of h1O · · ·Ohn :: F a → a, such that, h′i = v when hi = const v :: () → a,
or h′i :: τ1 → · · · → τk → a is the curried version of hi :: τ1×· · ·×τk → a. For ex-
ample, given an algebra const v Of ::La b → b we will write (e, curry f )::(b, a →
b → b). 2

Example 3. The following are instances of fold for different datatypes.

Natural numbers

foldN :: (a, a → a)→ Nat → a
foldN (h1, h2) = fN

where
fN Zero = h1

fN (Succ n) = h2 (fN n)

For instance, addition can be defined as:

add :: Nat → Nat → Nat
add m = foldN (m,Succ)

Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

type Ba b = a + b × b

Ba :: (b → c)→ (Ba b → Ba c)
Ba f = id + f × f

foldB :: (a → b, b → b → b)→ Btree a → b
foldB (h1, h2) = fB

where
fB (Leaf a) = h1 a
fB (Join t t ′) = h2 (fB t) (fB t ′)

For instance,

mirror :: Btree a → Btree a
mirror (Leaf a) = Leaf a
mirror (Join t t ′) = Join (mirror t ′) (mirror t)

can be defined as:

mirror = foldB (Leaf , λt t ′ → Join t ′ t)

2



Fold enjoys some algebraic laws that are useful for program transformation.
A law that plays an important role is fold fusion. It states that the composition
of a fold with a homomorphism is again a fold.

f strict ∧ f ◦ h = k ◦ F f ⇒ f ◦ fold h = fold k

The next law is known as acid rain or fold-fold fusion. The goal of acid rain
is to combine functions that produce and consume elements of an intermediate
data structure. The intermediate datatype is required to be generated by a fold
whose algebra is given in terms of a polymorphic function.

τ :: ∀ a . (F a → a)→ (G a → a)
⇒

fold h ◦ fold (τ inF ) = fold (τ h)

Remark 2. We will adopt a samilar notational convention as for algebras for
writing functions τ as part of the instances of programs schemes. Concretely, in
the instances we will regard a function τ as a function between tuples. That is,
if h1O · · ·Ohm = τ(k1O · · ·Okn), then we will understand this transformation
between algebras as (h′1, . . . , h

′
m) = τ(k′1, . . . , k

′
n), where each h′i and k′j is ob-

tained from hi and kj , respectively, by the convention for algebras. The following
example uses this convention. 2

Example 4. We use acid-rain to show that

sizeB ◦mirror = sizeB

where

sizeB :: Btree a → Int
sizeB = foldB (const 1, (+))

counts the number of leaves of a binary tree. The proof proceeds as follows:

sizeB ◦mirror
= { definition of sizeB and mirror }

foldB (const 1, (+)) ◦ foldB (Leaf , λt t ′ → Join t ′ t)
= { define τ (h1, h2) = (h1, λx x ′ → h2 x ′ x ) }

foldB (const 1, (+)) ◦ foldB (τ inBa
)

= { acid rain }
foldB (τ (const 1, (+)))

= { definition of τ }
foldB (const 1, λx x ′ → x ′ + x )

= { commutativity of +, section (+) }
foldB (const 1, (+))

= { definition of sizeB }
sizeB

2



2.3 Type functors

Every polymorphic regular datatype gives rise to a polymorphic type constructor
D a = µFa, which can be made into a functor (called a type functor) by defining
its mapping function:

D :: (a → b)→ (D a → D b)
D f = fold (inFb

◦ F f id)

Example 5.

Lists The list type functor corresponds to the standard map function [3]:

List :: (a → b)→ (List a → List b)
List f = foldL (Nil , λa bs → Cons (f a) bs)

that is,

List f Nil = Nil
List f (Cons a as) = Cons (f a) (List f as)

Leaf-labelled binary trees

Btree :: (a → b)→ (Btree a → Btree b)
Btree f = foldB (Leaf ◦ f , Join)

that is,

Btree f (Leaf a) = Leaf (f a)
Btree f (Join t t ′) = Join (Btree f t) (Btree f t ′)

2

Example 6. Rose trees are multiway branching structures:

data Rose a = Fork a (List (Rose a))

The signature of rose trees is captured by a functor Ra given by

type Ra b = a × List b

Ra :: (b → c)→ (Ra b → Ra c)
Ra f = id × List f

As a functorial expression, Ra = a × List . The fold operator is defined by,

foldR :: (Ra b → b)→ Rose a → b
foldR h = fR

where
fR (Fork a rs) = h a (List fR rs)

2

A standard property of type functors is map-fold fusion. This law states that a
map followed by a fold is a fold.

fold h ◦D f = fold (h ◦ F f id)



2.4 Unfold

Let us now analyze the dual case. The corresponding pattern of recursion, called
unfold [9, 12], captures function definitions by structural corecursion. By corecur-
sion we understand functions whose structure is dictated by that of the values
produced as result. Unfold has a pattern of recursion given by the following
scheme:

a
unfold g - µF

F a

g

?

F (unfold g)
- F µF

outF

?

Proceeding as with fold, since inF is the inverse of outF , we can write:

unfold :: (a → F a)→ a → µF

unfold g = inF ◦ F (unfold g) ◦ g

Example 7. The following are instances of unfold for different datatypes.

Natural numbers

unfoldN :: (a → N a)→ a → Nat
unfoldN g a = case (g a) of

Left () → Zero
Right a ′ → Succ (unfoldN g a ′)

Lists

unfoldL :: (b → La b)→ b → List a
unfoldL g b = case (g b) of

Left () → Nil
Right (a, b′)→ Cons a (unfoldL g b′)

Leaf-labelled binary trees

unfoldB :: (b → Ba b)→ b → Btree a
unfoldB g b = case (g b) of

Left a → Leaf a
Right (b1 , b2 )→ Join (unfoldB g b1 ) (unfoldB g b2 )

Rose trees

unfoldR :: (b → Ra b)→ b → Rose a
unfoldR g b = let (a, bs) = g b

in Fork a (List (unfoldR g) bs)

2



A function g ::a → F a is called an F-coalgebra. A F-homomorphism between
two coalgebras g :: a → F a and g ′ :: b → F b is a function f :: a → b such that
g ′ ◦ f = F f ◦ g .

There is a corresponding fusion law for unfold, which states that the compo-
sition of a homomorphism with an unfold is again an unfold.

g ′ ◦ f = F f ◦ g ⇒ unfold g ′ ◦ f = unfold g

There is also an acid rain law, called unfold-unfold fusion.

σ :: ∀ a . (a → F a)→ (a → G a)
⇒

unfold (σ outF ) ◦ unfold g = unfold (σ g)

2.5 Hylomorphism

Now we look at functions given by the composition of a fold with an unfold.
They capture the idea of general recursive functions whose structure is dictated
by that of a virtual data structure.

Given an algebra h :: F b → b and a coalgebra g :: a → F a, a hylomorphism
[18, 19, 27, 23] is a function hylo h g :: a → b defined by

hylo h g = a
unfold g - µF

fold h - b (1)

An alternative definition of hylomorphism shows that it is not necessary to
construct the intermediate data structure:

hylo :: (F b → b)→ (a → F a)→ a → b
hylo h g = h ◦ F (hylo h g) ◦ g

that is,

a
hylo h g - b

F a

g

?

F (hylo h g)
- F b

h

6

From this definition it is easy to see that fold and unfold are special cases of
hylomorphism.

fold h = hylo h outF unfold g = hylo inF g

Example 8. We show the definition of hylomorphism for different datatypes.

Lists

hyloL :: (c, a → c → c)→ (b → La b)→ b → c
hyloL (h1, h2) g b = hylo



where
hylo b = case (g b) of

Left () → h1

Right (a, b′)→ h2 a (hylo b′)

For example, the function that computes the factorial of a number

fact :: Int → Int
fact n | n < 1 = 1

| otherwise = n ∗ fact (n − 1)

can be written as:

fact = hyloL (1, (∗)) g
where

g n | n < 1 = Left ()
| otherwise = Right (n,n − 1)

The reason of presenting fact as a hylomorphism associated with lists is because
there is a virtual list that can be seen reflected in the form of the call-tree. Such
a list can be made explicit by using (1):

fact = prod ◦ upto

prod :: List Int → Int
prod = foldL (1, (∗))

upto :: Int → List Int
upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))

Internally-labelled binary trees

data Tree a = Empty | Node (Tree a) a (Tree a)

type Ta b = () + b × a × b

Ta :: (b → c)→ (Ta b → Ta c)
Ta f = id + f × id × f

hyloT :: (c, c → a → c → c)→ (b → Ta b)→ b → c
hyloT (h1, h2) g = hylo

where
hylo b = case (g b) of

Left () → h1

Right (b1 , a, b2 )→ h2 (hylo b1 ) a (hylo b2 )

For example, the usual definition of quicksort

qsort :: Ord a ⇒ List a → List a
qsort Nil = Nil



qsort (Cons a as) = qsort [x | x ← as; x 6 a ]
++ wrap a ++
qsort [x | x ← as; x > a ]

wrap :: a → List a
wrap a = Cons a Nil

can be written as a hylomorphism as follows:

qsort = hyloT (Nil , h) g
where

h ys a zs = ys ++ wrap a ++ zs
g Nil = Left ()
g (Cons a as) = Right ([x | x ← as; x 6 a ], a, [x | x ← as; x > a ])

2

The following fusion laws are a direct consequence of (1).

Hylo Fusion

f strict ∧ f ◦ h = k ◦ F f ⇒ f ◦ hylo h g = hylo k g

g ′ ◦ f = F f ◦ g ⇒ hylo h g ′ ◦ f = hylo h g

Hylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G a → a)
⇒

fold h ◦ hylo (τ inF ) g = hylo (τ h) g

Unfold-Hylo Fusion

σ :: ∀ a . (a → F a)→ (a → G a)
⇒

hylo h (σ outF ) ◦ unfold g = hylo h (σ g)

3 Monads

It is well-known that computational effects, such as exceptions, side-effects, or
input/output, can be uniformly modelled in terms of algebraic structures called
monads [21, 2]. In functional programming, monads are a powerful mechanism
to structure functional programs that produce effects [31].

A monad is usually presented as a Kleisli triple (m, return, >>=) composed by
a type constructor m, a polymorphic function return and a polymorphic operator
(>>=) often pronounced bind. The natural way to define a monad in Haskell is
by means of a class.



class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Computations delivering values of type a are regarded as objects of type m a,
and can be understood as terms with remaining computation steps. The bind
operator describes how computations are combined. An expression of the form
m >>= λx → m ′ is read as follows: evaluate computation m, bind the variable
x to the resulting value of this computation, and then continue with the evalu-
ation of computation m ′. How the effect is passed around is a matter for each
monad. In some cases, we may not be interested in binding the result of the first
computation to be used in the second. This can be performed by an operator
pronounced then,

(>>) :: Monad m ⇒ m a → m b → m b
m >> m ′ = m >>= λ → m ′

Formally, to be a monad, the components of the triple must satisfy the following
equations:

m >>= return = m (2)

return a >>= λx → m = m [x := a ] (3)

(m >>= λx → m ′) >>= λy → m ′′ = m >>= λx → (m ′ >>= λy → m ′′) (4)

In (4) x cannot appear free in m′′. The expression m [x := a ] means the substi-
tution of all free occurrences of x by a in m.

With the introduction of monads the focus of attention is now on functions
of type a → m b, often referred to as monadic functions, which produce an effect
when applied to an argument. Given a monadic function f :: a → m b, we define
f? :: m a → m b as f? m = m >>= f . Using the same idea it is possible to define
the Kleisli composition of two monadic functions,

(•) :: Monad m ⇒ (b → m c)→ (a → m b)→ (a → m c)
(f • g) a = g a >>= f

Now we can assign a meaning to the laws of Kleisli triples. The first two laws
amount to say that return is a left and right identity with respect to Kleisli
composition, whereas the last one expresses that composition is associative. Note
that f • g = f? ◦ g.

Associated with every monad we can define also a map function, which applies
a function to the result yielded by a computation, and a lifting operator, which
turns an arbitrary function into a monadic function.

mmap :: Monad m ⇒ (a → b)→ (m a → m b)
mmap f m = m >>= λa → return (f a)

(̂) :: (a → b)→ (a → m b)

f̂ = return ◦ f



Using the Kleisli triple’s laws it can be easily verified that both mmap and (̂)
happen to be functorial on functions:

mmap id = id îd = return

mmap (f ◦ g) = mmap f ◦mmap g f̂ ◦ g = f̂ • ĝ

Example 9. The exception monad models the occurrence of exceptions in a pro-
gram.

data Exc a = Ok a | Fail Exception
type Exception = String

instance Monad Exc where
return a = Ok a
(Ok a) >>= f = f a
(Fail e) >>= f = Fail e

This monad captures computations which either succeed returning a value, or
fail raising a specific exception signaled by a value of type Exception. The return
operation takes a value and returns a computation that always succeeds, whereas
bind may be thought of as a kind of strict function application that propagates
an exception if one occurs.

When there is a unique exception value, the exception monad is often referred
to as the maybe monad.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return a = Just a
(Just a) >>= f = f a
Nothing >>= f = Nothing

2

Example 10. State-based computations are modelled by the state monad. These
are computations that take an initial state and return a value and a possibly
modified state.

newtype State s a = State (s → (a, s))

instance Monad (State s) where
return x = State (λs → (x , s))
State c >>= f = State (λs → let (a, s ′) = c s

State c′ = f a
in c′ s ′)

The bind operator combines two computations in sequence so that the state and
value resulting from the first computation are supplied to the second one.

The state monad has been used as an effective tool for encapsulating actual
imperative features, such as, mutable variables, destructive data structures, and



input/output, while retaining fundamental properties of the language (see [26,
14, 13]). The idea is to hide the real state in an abstract data type (based on the
monad) which is equipped with primitive operations that internally access the
real state [31, 5, 13]. 2

Example 11. The list monad enables us to describe computations that produce
a list of results, which can be used to model a form of nondeterminism.

instance Monad List where
return = wrap
Nil >>= f = Nil
(Cons a as) >>= f = f a ++ (as >>= f )

This monad can be seen as a generalization of the maybe monad: a computation
of type List a may succeed with several outcomes, or fail by returning no result
at all. 2

With the aim at improving readability of monadic programs, Haskell provides
a special syntax called the do notation. It is defined by the following translation
rules:

do {x ← m;m ′} = m >>= λx → do {m ′}
do {m;m ′} = m >> do {m ′}

do {m } = m

4 Recursion with monadic effects

Recursion and monads turn out to be two important structuring devices in
functional programming. In this section we combine them with the aim to obtain
structuring mechanisms for recursive programs with effects. A natural result of
this combination will be the generalization of the existing recursion schemes
to work with programs with effects. The way monads encapsulate effects turns
out to be essential for this integration, since it permits to focus on the relevant
structure of recursive programs disregarding the specific details of the effects
they produce.

The fusion laws associated with the monadic program schemes are particu-
larly interesting because they encapsulate new cases of deforestation. However,
as we will see later, some of the fusion laws require very strong conditions for
their application, reducing dramatically their possibilities to be considered in
practice. To overcome this problem we will introduce alternative fusion laws,
which, though not so powerful, turn out to be useful in practice.

Two alternative approaches can be adopted to the definition of monadic
program schemes. One of them, to be presented first, is a strictly structural
approach based on a lifting construction. This means to translate to the monadic
universe the constructions that characterize the recursion schemes, as well as
the concepts that take part in them. The other approach, to be presented in
Subsection 4.8, is more pragmatical and turns out to be more useful in practice.



4.1 Lifting

Let us start explaining the notion of lifting. Our goal is to define program schemes
that capture the recursion structure of functions with effects. Consider the pat-
tern of recursion captured by hylomorphism:

a
hylo - b

F a

g

?

F hylo
- F b

h

6

By lifting we mean that we view each arrow of this diagram as an effect-
producing function (a somehow imperative view). By thinking functionally, we
make the effects explicit, giving rise to the following recursion scheme:

a
mhylo - m b

m (F a)

g

?

(F̂ mhylo)?
- m (F b)

h?

6

(5)

where h ::F b → m b, g :: a → m (F a) and F̂ :: (a → m b)→ (F a → m (F b)),
for an arbitrary monad m. These ingredients are monadic versions of the notions
of algebra, coalgebra and functor, respectively. Before introducing the monadic
versions of fold, unfold and hylomorphism, we analyze first the F̂ construction,
since it plays an essential role in the strictly structural approach to the definition
of the monadic recursive program schemes.

4.2 Monadic extension of a functor

The monadic extension of a functor F [7, 28, 24] is a function

F̂ :: (a → m b)→ (F a → m (F b))

whose action embodies that of F . Monadic extensions are used to express the
structure of the recursive calls in monadic functions. Every monadic extension
F̂ is in one-to-one correspondence with a distributive law

distF :: F (m a)→ m (F a)

a polymorphic function that performs the distribution of a functor over a monad.
In fact, for each distributive law distF , the action of F̂ on a function f ::a → m b
can be defined by

F̂ f = F a
F f- F (m b)

distF- m (F b) (6)



Hence, F̂ f first applies f to each argument position of type a within a compound
value of type F a, and then joins the monadic effects produced in each function
application into a computation that delivers a compound value of type F b.
Conversely, given a monadic extension F̂ , the corresponding distributive law is
given by distF = F̂ id .

A definition of the distributive law distF :: F (m a) → m (F a) for each
regular functor F can be given by induction on the structure of F :

distI = id distF×G = dist× ◦ (distF × distG)

dist t = return distF+G = dist+ ◦ (distF + distG)

distFG = distF ◦ F distG distD = fold (mmap inFa ◦ distF )

where

dist+ :: m a + m b → m (a + b)
dist+ = λs → case s of

Left ma → do a ← ma
return (Left a)

Right mb → do b ← mb
return (Right b)

In the case of distD , with D a = µFa, distF :: F (m a) (m b) → m (F a b)
represents a distributive law for the bifunctor F . Distributive laws for regular
bifunctors can be defined analogously by induction.

The inductive definition of distF given above is parametric in the distributive
law for the product functor

dist× :: (m a,m b)→ m (a, b)

Here we have two equally valid alternatives to choose. One is to define dist× as
a left-to-right product distribution,

dist× (m,m ′) = do {a ← m; b ← m ′; return (a, b)}
combining a pair of computations by first evaluating the first one and then the
second. The other alternative is to evaluate the computations from right-to-left,

dist× (m,m ′) = do {b ← m ′; a ← m; return (a, b)}
A monad is said to be commutative if both alternatives produce the same result
on the same input. Monads like identity or state reader [31] are commutative.
Examples of noncommutative monads are state and list.

Example 12. Assuming that dist× proceeds from left-to-right, the following are
examples of distributive laws:

distN :: Monad m ⇒ N (m a)→ m (N a)
distN = λx → case x of

Left () → return (Left ())
Right ma → do a ← ma

return (Right a)



distLa
:: Monad m ⇒ L a (m b)→ m (L a b)

distLa = λx → case x of
Left () → return (Left ())
Right (a,mb)→ do b ← mb

return (Right (a, b))

distBa
:: Monad m ⇒ B a (m b)→ m (B a b)

distBa = λx → case x of
Left a → return (Left a)
Right (mb,mb′)→ do b ← mb

b′ ← mb′

return (Right (b, b′))

distRa
:: Monad m ⇒ R a (m b)→ m (R a b)

distRa
= λ(a,mbs)→ do bs ← sequence mbs

return (a, bs)

where sequence is a distributive law corresponding to the list type functor:

sequence :: Monad m ⇒ List (m a)→ m (List a)
sequence Nil = return Nil
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)

2

An inductive definition of F̂ can be derived from the definition of distF :

Î f = f ̂(F + G) f = dist+ ◦ (F̂ f + Ĝ f )

t̂ f = return ̂(F ×G) f = dist× ◦ (F̂ f × Ĝ f )

F̂G f = F̂ Ĝ f D̂ f = fold (mmap inFa ◦ F̂ (f , id))

In the case of D̂ , F̂ is the monadic extension of the bifunctor F , where µFa = Da.

Example 13. Assuming that dist× proceeds from left to right, the following are
examples of monadic extensions:

N̂ :: Monad m ⇒ (a → m b)→ (N a → m (N b))

N̂ f = λx → case x of
Left ()→ return (Left ())
Right a → do b ← f a

return (Right b)

L̂a :: Monad m ⇒ (b → m c)→ (L a b → m (L a c))

L̂a f = λx → case x of
Left ()→ return (Left ())



Right (a, b)→ do c ← f b
return (Right (a, c))

B̂a :: Monad m ⇒ (b → m c)→ (B a b → m (B a c))

B̂a f = λx → case x of
Left a → return (Left a)
Right (b, b′)→ do c ← f b

c′ ← f b′

return (Right (c, c′))

R̂a :: Monad m ⇒ (b → m c)→ (R a b → m (R a c))

R̂a f = λ(a, bs)→ do cs ← mapM f bs
return (a, cs)

where mapM is a monadic extension L̂ist of the list type functor:

mapM :: Monad m ⇒ (a → m b)→ (List a → m (List b))
mapM f Nil = return Nil
mapM f (Cons a as) = do b ← f a

bs ← mapM f as
return (Cons b bs)

2

A monadic extension is said to be a lifting whenever it behaves like a functor
with respect to monadic functions. That is, when it preserves identities (returns)
and Kleisli composition.

F̂ return = return F̂ (f • g) = F̂ f • F̂ g

As established by Mulry [22], a monadic extension is a lifting iff its associated
distributive law satisfies the following conditions:

distF ◦ F return = return (7)

distF ◦ F join = distF • distF (8)

where

join :: Monad m ⇒ m (m a)→ m a
join m = do {m ′ ← m;m ′}

Equation (7) ensures the preservation of identities, while (8) makes F̂ distribute
over Kleisli composition.

An interesting case to analyze is that of the product functor.2 It is easy to
verify that (7) is valid for every monad:

dist× ◦ (return × return) = return

2 A detailed analysis for all regular functors can be found in [25, 24].



For example, assuming that dist× proceeds from left to right, we have that:

(dist× ◦ (return × return)) (a, b)
= { definition dist× }

do {x ← return a; y ← return b; return (x , y)}
= { (3) }

do {y ← return b; return (a, y)}
= { (3) }

return (a, b)

The same holds if dist× is right to left. However, equation (8),

(m2 a,m2 b)
join × join- (m a,m b)

m (m a,m b)

dist×
?

dist?
×

- m (a, b)

dist×
?

does not always hold, since it requires the monad to be commutative. To see
the problem, let us calculate the expressions corresponding to each side of the
equation. Again, assume that dist× is left to right. We start with the left-hand
side:

(dist× ◦ (join × join)) (m2 ,m2 ′)
= { definition of dist× }

do {a ← join m2 ; b ← join m2 ′; return (a, b)}
= { definition of join }

do {a ← do {m ← m2 ;m }; b ← do {m ′ ← m2 ′;m ′}; return (a, b)}
= { (4) }

do {m ← m2 ; a ← m;m ′ ← m2 ′; b ← m ′; return (a, b)}

Now, the right-hand side:

(dist× • dist×) (m2 ,m2 ′)
= { definition of dist× and Kleisli composition }

do {(n,n ′)← do {m ← m2 ;m ′ ← m2 ′; return (m,m ′)};
a ← n; b ← n ′; return (a, b)}

= { (3) and (4) }
do {m ← m2 ;m ′ ← m2 ′; a ← m; b ← m ′; return (a, b)}

Both expressions involve exactly the same computations, but they are executed
in different order. If we were working with the state monad, for example, the
order in which computations are performed is completely relevant both for the
side-effects produced and for the values delivered by the computations.



The failure of (8) for functors containing products makes it necessary to
add the hypothesis of preservation of Kleisli composition in those fusion laws
in which that condition is required. There are some functors involving products
for which (8) holds. These are functors containing product expressions of the
form F = t × I (or symmetric). For example, for that F , the distributive law
distF :: (t ,m a)→ m (t , a), given by,

distF (t ,m)
= { inductive definition }

(dist× ◦ (return × id)) (t ,m)
= { dist× left-to-right }

do {x ← return t ; a ← m; return (x , a)}
= { (3) }

do {a ← m; return (t , a)}

satisfies (8) for every monad, as can be verified:

(distF ◦ (id × join)) (t ,m2 )
= { definition of distF }

do {a ← join m2 ; return (t , a)}
= { definition of join }

do {a ← do {m ← m2 ;m }; return (t , a)}
= { (4) }

do {m ← m2 ; a ← m; return (t , a)}
= { (3) }

do {(x ,n)← do {m ← m2 ; return (t ,m)}; a ← n; return (x , a)}
= { definition of distF and Kleisli composition }

(distF • distF ) (t ,m2 )

4.3 Monadic Fold

Monadic fold [7] is a pattern of recursion that captures structural recursive func-
tions with monadic effects. A definition of monadic fold is obtained by instanti-
ating (5) with g = ôutF :

µF
mfold h - m a

m (F µF )

ôutF

?

(F̂ (mfold h))?
- m (F a)

h?

6



By (3) this can be simplified to:

µF
mfold h - m a

F µF

outF

?

F̂ (mfold h))
- m (F a)

h?

6

Therefore,

mfold :: Monad m ⇒ (F a → m a)→ µF → m a

mfold h = h • F̂ (mfold h) ◦ outF

Example 14. The following are instances of monadic fold for different datatypes.
We assume a left-to-right product distribution dist×.

Lists

mfoldL :: Monad m ⇒ (m b, a → b → m b)→ List a → m b
mfoldL (h1, h2) = mf L

where
mf L Nil = h1

mf L (Cons a as) = do y ← mf L as
h2 a y

For instance, the function that sums the numbers produced by a list of compu-
tations (performed from right to left),

msumL :: Monad m ⇒ List (m Int)→ m Int
msumL Nil = return 0
msumL (Cons m ms) = do {y ← msumL ms; x ← m; return (x + y)}

can be defined as:

msumL = mfoldL (return 0, λm y → do {x ← m; return (x + y)})
Leaf-labelled binary trees

mfoldB :: Monad m ⇒ (a → m b, b → b → m b)→ Btree a → m b
mfoldB (h1, h2) = mf B

where
mf B (Leaf a) = h1 a
mf B (Join t t ′) = do y ← mf B t

y ′ ← mf B t ′

h2 y y ′

For instance, the function that sums the numbers produced by a tree of compu-
tations (performed from left to right),

msumB :: Monad m ⇒ Btree (m Int)→ m Int



msumB (Leaf m) = m
msumB (Join t t ′) = do {y ← msumB t ; y ′ ← msumB t ′; return (y + y ′)}

can be defined as:

msumB = mfoldB (id , λy y ′ → return (y + y ′))

Rose trees

mfoldR :: Monad m ⇒ (a → List b → m b)→ Rose a → m b
mfoldR h = mf R

where
mf R (Fork a rs) = do ys ← mapM mf R rs

h a ys

In this case, the function that sums the numbers produced by a tree of compu-
tations,

msumR :: Monad m ⇒ Rose (m Int)→ m Int
msumR (Fork m rs) = do ys ← mapM msumR rs

x ← m
return (x + sumL ys)

sumL :: List Int → Int
sumL = foldL (0, (+))

can be defined as:

msumR = mfoldR (λm ys → do {x ← m; return (x + sumL ys)})

2

Functions of type F a → m a are called monadic F-algebras; the type a
is called the carrier of the algebra. Like purely-functional algebras, monadic
algebras may be thought of as structures. The difference is that they return a
computation instead of simply a value. As could be seen in Example 14, we
adopt a similar notational convention as for algebras to write monadic algebras
in instances of the schemes.

A structure-preserving mapping between two monadic algebras is a function
between their carriers that preserves their structures, and is compatible with
their monadic effects. We identify two forms of structure-preserving mappings.

A F -homomorphism between two monadic algebras h :: F a → m a and
k :: F b → m b is a monadic function f :: a → m b such that f • h = k • F̂ f .
The use of F̂ in the definition of homomorphism is essential, since it is neces-
sary to join the effects produced by the occurrences of f within the expression
Ff . Homomorphisms are closed under composition provided F̂ preserves Kleisli
compositions.

A weaker notion of mapping between two monadic algebras h :: F a → m a
and k :: F b → m b is what we call a pure homomorphism: a function f :: a → b
such that mmap f ◦ h = k ◦F f . A pure homomorphism may be thought of as a



means of changing the ‘representation’ of a monadic algebra while maintaining
the effects that it produces.

The following are fusion laws for monadic fold. In all of them it is necessary to
assume that function mmap :: (a → b)→ (m a → m b) is strictness-preserving,
in the sense that it maps strict functions to strict functions.

MFold Fusion If F̂ preserves Kleisli compositions,

f strict ∧ f • h = k • F̂ f ⇒ f • mfold h = mfold k

MFold Pure Fusion

f strict ∧ mmap f ◦ h = k ◦ F f ⇒ mmap f ◦mfold h = mfold k

MFold-Fold Fusion

τ :: ∀ a . (F a → a)→ (G a → m a)
⇒

mmap (fold h) ◦mfold (τ inF ) = mfold (τ h)

We will adopt a similar notational convention as for the case of algebras to
write this kind of functions τ in instances of the program schemes.

Example 15. In Example 14, we showed that msumL can be defined as a monadic
fold. Assuming that mmap is strictness-preserving, we use fusion to show that:

msumL = mmap sumL ◦ lsequence

being lsequence the function that performs a list of computations from right to
left:

lsequence :: Monad m ⇒ List (m a)→ m (List a)
lsequence Nil = return Nil
lsequence (Cons m ms) = do as ← lsequence ms

a ← m
return (Cons a as)

We can express lsequence as a monadic fold,

lsequence = mfoldL (return Nil ,
λm as → do {a ← m; return (Cons a as)})

such that it is possible to write its monadic algebra as τ (Nil ,Cons), where

τ :: (b, a → b → b)→ (b,m a → b → m b)
τ (h1, h2) = (return h1,

λm b → do {a ← m; return (h2 a b)})

Finally, we calculate



mmap sumL ◦ lsequence

= { definition of sumL and lsequence }
mmap (foldL (0, (+))) ◦mfoldL (τ (Nil ,Cons))

= { mfold-fold fusion }
mfoldL (τ (0, (+)))

= { definition of τ and msumL }
msumL

2

4.4 Monadic Unfold

Now we turn to the analysis of corecursive functions with monadic effects. Like
monadic fold, the definition of monadic unfold can be obtained from (5), now
taking h = înF .

a
munfold g - m µF

m (F a)

g
?

(F̂ (munfold g))?
- m (F µF )

înF

?
6

that is,

munfold :: Monad m ⇒ (a → m (F a))→ (a → m µF )

munfold g a = (return ◦ inF ) • F̂ (unfold g) • g

Example 16. We show the definition of monadic unfold for different datatypes.
Again, we assume a left to right product distribution dist×.

Lists

munfoldL :: Monad m ⇒ (b → m (L a b))→ (b → m (List a))
munfoldL g b = do x ← g b

case x of
Left () → return Nil
Right (a, b′)→ do as ← munfoldL g b′

return (Cons a as)

Leaf-labelled binary trees

munfoldB :: Monad m ⇒ (b → m (B a b))→ (b → m (Btree a))
munfoldB g b = do x ← g b

case x of
Left a → return (Leaf a)
Right (b1 , b2 )→ do t1 ← munfoldB g b1



t2 ← munfoldB g b2
return (Join t1 t2 )

Rose trees

munfoldR :: Monad m ⇒ (b → m (R a b))→ (b → m (Rose a))
munfoldR g b = do (a, bs)← g b

rs ← mapM (munfoldR g) bs
return (Fork a rs)

2

A function g :: a → m (F a) is called a monadic F-coalgebra. Structure-
preserving mappings between monadic coalgebras play an important role in the
fusion laws for monadic unfold. A F-homomorphism between two monadic coal-
gebras g :: a → m (F a) and g ′ :: b → m (F b) is a function f :: a → m b such
that g ′ • f = F̂ f • g . Homomorphisms between monadic coalgebras are closed
under composition provided F̂ preserves Kleisli compositions.

Like with monadic algebras, we can define a weaker notion of structure-
preserving mapping. A pure homomorphism between two coalgebras g :: a →
m (F a) and g ′ ::b → m (F b) is a function f ::a → b between their carriers such
that g ′ ◦ f = mmap (F f ) ◦ g . Again, a pure homomorphism may be regarded as
a representation changer.

The following are fusion laws for monadic unfold.

MUnfold Fusion If F̂ preserves Kleisli compositions,

g ′ • f = F̂ f • g ⇒ munfold g ′ • f = munfold g

MUnfold Pure Fusion

g ′ ◦ f = mmap (F f ) ◦ g ⇒ munfold g ′ ◦ f = munfold g

Unfold-MUnfold Fusion

σ :: ∀ a . (a → F a)→ (a → m (G a))
⇒

munfold (σ outF ) ◦ unfold g = munfold (σ g)

4.5 Graph traversals

A graph traversal is a function that takes a list of roots (entry points to a graph)
and returns a list containing the vertices met along the way. In this subsection
we show that classical graph traversals, such as DFS or BFS, can be formulated
as a monadic unfold.

We assume a representation of graphs that provides a function adj which
returns the adjacency list for each vertex.

type Graph v = ...



adj :: Eq v ⇒ Graph v → v → List v

In a graph traversal vertices are visited at most once. Hence, it is necessary to
maintain a set where to keep track of vertices already visited in order to avoid
repeats. Let us assume an abstract data type of finite sets over a, with operations

emptyS :: Set a
insS :: Eq a ⇒ a → Set a → Set a
memS :: Eq a ⇒ a → Set a → Bool

where emptyS denotes the empty set, insS is set insertion and memS is a mem-
bership predicate.

We handle the set of visited nodes in a state monad. A standard technique
to do so is to encapsulate the set operations in an abstract data type based on
the monad [31]:

type M a b = State (Set a) b

runMS :: M a b → b
runMS (State f ) = π1 (f emptyS )

insMS :: Eq a ⇒ a → M a ()
insMS a = State (λs → ((), insS a s))

memMS :: Eq a ⇒ a → M a Bool
memMS a = State (λs → (memS a s, s))

Such a technique makes it possible to consider, if desired, an imperative repre-
sentation of sets, like e.g. a characteristic vector of boolean values, which allows
O(1) time insertions and lookups when implemented by a mutable array. In that
case the monadic abstract data type has to be implemented in terms of the ST
monad [14].

Now, we define graph traversal:

type Policy v = Graph v → v → List v → List v

graphtrav :: Eq v ⇒ Policy v → Graph v → List v → List v
graphtrav pol g = runMS ◦ gtrav pol g

gtrav :: Eq v ⇒ Policy v → Graph v → List v → M v (List v)
gtrav pol g vs = do xs ← mdropS vs

case xs of
Nil → return Nil
Cons v vs → do insMS v

zs ← gtrav pol g (pol g v vs)
return (Cons v zs)

mdropS :: Eq v ⇒ List v → M v (List v)
mdropS Nil = return Nil
mdropS (Cons v vs) = do b ← memMS a



if b then mdropS vs
else return (Cons v vs)

Given an initial list of roots, graphtrav first creates an empty set, then executes
gtrav , obtaining a list of vertices and a set, and finally discards the set and
returns the resulting list. In each iteration, the function gtrav starts with an
exploration of the current list of roots in order to find a vertex that has not been
visited yet. To this end, it removes from the front of that list every vertex u that
is marked as visited until, either an unvisited vertex is met, or the end of the
list is reached. This task is performed by the function mdropS .

After the application of mdropS , we visit the vertex at the head of the input
list, if still there is any, and mark it (by inserting it in the set). A new ‘state’ of the
list of roots is also computed. This is performed by an auxiliary function, called
pol , which encapsulates the administration policy used for the list of pending
roots. That way, we obtain a formulation of graph traversal parameterized by a
strategy.

Function gtrav can be expressed as a monadic unfold:

gtrav pol g = munfoldL k
where

k :: List v → M v (L v (List v))
k vs = do xs ← mdropS vs

case xs of
Nil → return (Left ())
Cons v ys → do insMS v

return (Right (v , pol g v ys))

Particular traversal strategies are obtained by providing specific policies:

Depth-first traversal. This is achieved by managing the list of pending roots as
a stack.

dfsTrav :: Eq v ⇒ Graph v → List v → List v
dfsTrav g = graphtrav dfsPol g

dfsPol g v vs = adj g v ++ vs

Breath-first traversal. This is achieved by managing the list of pending roots as
a queue.

bfsTrav :: Eq v ⇒ Graph v → List v → List v
bfsTrav g = graphtrav bfsPol g

bfsPol g v vs = vs ++ adj g v

4.6 Monadic Hylomorphism

Monadic hylomorphism is a pattern of recursion that represents general recursive
monadic functions.



mhylo :: Monad m ⇒ (F b → m b)→ (a → m (F a))→ (a → b)

mhylo h g = h • F̂ (mhylo h g) • g

Example 17. The following are instances of monadic hylomorphism for specific
datatypes. Again, we assume a left to right product distribution dist×.

Lists

mhyloL :: Monad m ⇒
(m c, a → c → m c)→ (b → m (L a b))→ (b → m c)

mhyloL (h1, h2) g = mhL

where
mhL b = do x ← g b

case x of
Left () → h1

Right (a, b′)→ do c ← mhL b′

h2 a c

Leaf-labelled binary trees

mhyloB :: Monad m ⇒
(a → m c, c → c → m c)→ (b → m (B a b))→ (b → c)

mhyloB (h1, h2) g = mhB

where
mhB b = do x ← g b

case x of
Left a → h1 a
Right (b1 , b2 )→ do c1 ← mhB b1

c2 ← mhB b2
h2 c1 c2

Rose trees

mhyloR :: Monad m ⇒
(a → [c ]→ m c)→ (b → m (R a b))→ (b → m c)

mhyloh h g b = do (a, bs)← g b
cs ← mapM (mhyloR h g) bs
h a cs

2

The fusion laws for monadic hylomorphism are a consequence of those for
monadic fold and monadic unfold.

MHylo Fusion If F̂ preserves Kleisli compositions,

f strict ∧ f • h = k • F̂ f ⇒ f • mhylo h g = mhylo k g

g ′ • f = F̂ f • g ⇒ mhylo h g ′ • f = mhylo h g



In the first law mmap needs to be strictness-preserving.

MHylo Pure Fusion

f strict ∧ mmap f ◦ h = k ◦ F f ⇒ mmap f ◦mhylo h g = mhylo k g

g ′ ◦ f = mmap (F f ) ◦ g ⇒ mhylo h g ′ ◦ f = mhylo h g

In the first law mmap needs to be strictness-preserving.

MHylo-Fold Fusion If mmap is strictness-preserving,

τ :: ∀ a . (F a → a)→ (G a → m a)
⇒

mmap (fold h) ◦mhylo (τ inF ) g = mhylo (τ h) g

Unfold-MHylo Fusion

σ :: ∀ a . (a → F a)→ (a → m (G a))
⇒

mhylo h (σ outF ) ◦ unfold g = mhylo h (σ g)

4.7 Depth-first search algorithms

The references [16, 17, 15] show the advantages of explicitly maintaining the
depth-first spanning forest of a graph when implementing DFS algorithms in
a lazy functional language. The construction of the depth-first forest is per-
formed in two stages. In the first phase a forest of (possibly infinite) trees is
generated. Each tree is rooted with a vertex from a given list of entry points
to the graph and contains all vertices in the graph reachable from that root.
The second phase runs a prune process, which traverses the forest in depth-
first order, discarding all subtrees whose roots have occurred previously. This
generate-then-prune strategy turns out to be the natural solution in the context
of a lazy functional language. Indeed, because of lazy evaluation, deeper levels
of the trees are generated only if and when demanded by the prune process.

In this subsection, we show that the depth-first forest construction can be
structured using monadic recursion schemes.

Generation Like in Subsection 4.5, we assume a graph representation that
supports a function adj :: Eq v ⇒ Graph v → v → List v which returns the
adjacency list of each node of a graph.

The generation of a (rose) tree containing all vertices in the graph reachable
from a vertex v is defined by,

gen :: Eq v ⇒ Graph v → v → Rose v
gen g v = Fork v (List (gen g) (adj g v))



This function is naturally an unfold

gen g = unfoldR (id M adj g)

The generation of a forest from a given list of vertices is then obtained by map-
ping each vertex of the list with function gen.

fgen :: Eq v ⇒ Graph v → List v → List (Rose a)
fgen g = List (gen g)

Pruning Pruning traverses the forest in depth-first order, discarding all subtrees
whose roots have occurred previously. Analogous to graph traversals, pruning
needs to maintain a set (of marks) to keep track of the already visited nodes.
This suggest the use of the same monadic abstract data type.

In the pruning process we will use a datatype of rose trees extended with an
empty tree constructor.

data ERose a = ENull | EFork a (List (ERose a))

type ERa b = () + a × List b

ERa :: (b → c)→ (ERa b → ERa c)
ERa f = id + id × List f

When we find a root that has occurred previously, we prune the whole subtree.
The function that prunes an individual rose tree is defined by

pruneR :: Eq v ⇒ Rose v → M v (ERose v)
pruneR (Fork v rs) = do b ← memMS v

if b
then return ENull
else do insMS v

rs ′ ← mapM pruneR rs
return (EFork v rs ′)

This function can be written as a monadic unfold:

pruneR = munfoldER g
where

g (Fork v rs) = prStep (v , rs)
prStep (v , rs) = do b ← memMS v

if b
then return (Left ())
else do insMS v

return (Right (v , rs))

such that its coalgebra can be written as g = prStep ◦ outRv .
Pruning a forest just consists of pruning the trees in sequence:

fpruneR :: Eq v ⇒ List (Rose a)→ M a (List (ERose v))



fpruneR = mapM pruneR

A drawback of this solution is that the resulting forest contains many unneces-
sary empty trees, which could be dropped if we convert the resulting extended
rose trees into rose trees again. The conversion is performed by simply traversing
the forest of extended rose tress, cleaning all occurrences of the empty tree:

fclean :: List (ERose a)→ List (Rose a)
fclean = collect ◦ List clean

clean :: ERose a → Maybe (Rose a)
clean ENull = Nothing
clean (EFork a rs) = Just (Fork a (fclean rs))

collect :: List (Maybe a)→ List a
collect Nil = Nil
collect (Cons m ms) = case m of

Nothing → collect ms
Just a → Cons a (collect ms)

Clearly, both clean and collect are folds, clean = foldER cl and collect =
foldL coll , for suitable algebras cl and coll = (coll1 , coll2 ), respectively.

Finally, we define the function that prunes a forest of rose trees, returning
the rose trees that remain:

prune :: Eq v ⇒ List (Rose a)→ M a (List (Rose a))
prune = mmap fclean ◦ fpruneR

Computing the depth-first forest Now we define a function dfs that com-
putes the depth-first spanning forest of a graph reachable from a given list of
vertices.

dfs :: Eq v ⇒ Graph v → List v → List (Rose v)
dfs g = runMS ◦ prune ◦ fgen g

We use function runMS to hide the monadic state from the outside world. That
way, dfs is externally regarded as a purely functional. The internal components
of dfs can be fused as the following calculation shows.

prune ◦ fgen g
= { function definitions }

mmap (collect ◦ List clean) ◦mapM (pruneR) ◦ List (gen g)

= { mapM = L̂ist and property: F̂ f ◦ F g = F̂ (f ◦ g) }
mmap (collect ◦ List clean) ◦mapM (pruneR ◦ gen g)

= { functor mmap }
mmap collect ◦mmap (List clean) ◦mapM (pruneR ◦ gen g)



= { property: mmap (F f ) ◦ F̂ g = F̂ (mmap f ◦ g) }
mmap collect ◦mapM (mmap clean ◦ pruneR ◦ gen g)

= { define: gpc g = mmap clean ◦ pruneR ◦ gen g }
mmap collect ◦mapM (gpc g)

= { property: mmap (fold h) ◦ D̂ f = fold (mmap h ◦ F̂ f id) }
foldL (mmap coll ◦ L̂ (gpc g) id)

We call gp (for generate then prune) the resulting fold. Inlining, we get the
following recursive definition:

gp :: Eq v ⇒ Graph v → List v → M v (List (Rose v))
gp g Nil = return Nil
gp g (Cons v vs) = do x ← gpc g v

rs ← gp g vs
return (case x of

Left () → rs
Right r → Cons r rs)

Now, let us analyze function gpc, which expresses how individual trees are gen-
erated, pruned and cleaned in a shot.

gpc :: Eq v ⇒ Graph g → v → M v (Maybe (Rose a))
gpc g = mmap clean ◦ pruneR ◦ gen g

This definition can also be simplified:

mmap clean ◦ pruneR ◦ gen g
= { function definitions }

mmap (foldER cl) ◦munfoldER (prStep ◦ outRv
) ◦ unfoldR (id M adj g)

= { define: σ j = prStep ◦ j }
mmap (foldER cl) ◦munfoldER (σ outRv

) ◦ unfoldR (id M adj g)
= { unfold-munfold fusion }

mmap (foldER cl) ◦munfoldER (σ (id M adj g))

= { factorization prop.: mmap (fold h) ◦munfold g = mhylo ĥ g }
mhyloER ĉl (prStep ◦ (id M adj g))

Inlining, we obtain:

gpc g v = do b ← memMS v
if b
then return Nothing
else do insMS v

ms ← mapM (gpc g) (adj g v)
return (Just (Fork v (collect ms)))



Depth-first traversal To illustrate the use of the depth-first forest, we compute
the depth-first traversal of a graph by traversing the forest in preorder. Other
DFS algorithms under the same approach can be found in [16, 17, 15, 24].

The preorder of a forest can be defined by

fpreorder :: List (Rose v)→ List v
fpreoredr = concat ◦ List preorder

preorder :: Rose v → List v
preorder = foldR (Cons ◦ (id × concat))

We compute the depth-first traversal of a graph by listing the depth-first forest
in preorder:

dfsTrav :: Eq v ⇒ Graph g → List v → List v
dfsTrav g = fpreorder ◦ dfs g

We show now how the generation of the intermediate depth-first forest can be
eliminated using fusion.

fpreorder ◦ dfs g
= { function definitions }

concat ◦ List preorder ◦ runMS ◦mmap collect ◦mapM (gpc g)
= { parametricity property: f ◦ runMS = runMS ◦mmap f }

runMS ◦mmap (concat ◦ List preorder) ◦mmap collect ◦mapM (gpc g)
= { functor mmap }

runMS ◦mmap (concat ◦ List preorder ◦ collect) ◦mapM (gpc g)
= { map-fold fusion, define pjoin = uncurry (++) ◦ (preorder × id) }

runMS ◦mmap (foldL (Nil , pjoin) ◦ collect) ◦mapM (gpc g)
= { define: τ (see below) }

runMS ◦mmap (foldL (Nil , pjoin) ◦ foldL (τ (Nil ,Cons))) ◦mapM (gpc g)
= { fold-fold fusion }

runMS ◦mmap (foldL (τ (Nil , pjoin))) ◦mapM (gpc g)

= { property: mmap (fold h) ◦ D̂ f = fold (M h ◦ F̂ f id) }
runMS ◦ foldL (mmap (τ (Nil , pjoin)) ◦ L̂ (gpc g) id)

Function τ is given by:

τ :: (b, a → b → b)→ (b,Maybe a → b → b)
τ (h1, h2) = (h1,

λm b → case m of
Nothing → b
Just a → h2 a b)



The property f ◦ runMS = runMS ◦ mmap f is an example of a parametricity
property or free theorem [29], which are properties that can be directly derived
from the type of polymorphic functions.

Calling mtrav the foldL obtained in the derivation and inlining, we obtain
this program:

mtrav :: Eq v ⇒ Graph g → List v → M v (List v)
mtrav g Nil = return Nil
mtrav g (Cons v vs) = do x ← gpc g v

as ← mtrav g vs
return (case x of

Nothing → as
Just r → preorder r ++ as)

4.8 A more practical approach

The monadic program schemes shown so far were all derived from the lifting
construction presented in Subsection 4.1.

a
mhylo - m b

m (F a)

g

?

(F̂ mhylo)?
- m (F b)

h?
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However, despite its theoretical elegance, this construction suffers from an im-
portant drawback that hinders the practical use of the program schemes derived
from it. The origin of the problem is the compulsory use of the distributive
law distF associated with F̂ as unique way of joining the effects produced by
the recursive calls. It is not hard to see that this structural requirement intro-
duces a restriction in the kind of functions that can be formulated in terms of
the monadic program schemes. To see a simple example, consider the following
function that prints the values contained in a leaf-labelled binary tree, with a
’+’ symbol in between.

printTree :: Show a ⇒ Btree a → IO ()
printTree (Leaf a) = putStr (show a)
printTree (Join t t ′) = do {printTree t ; putStr "+"; printTree t ′}

For instance, when applied to the tree Join (Join (Leaf 1) (Leaf 2)) (Leaf 3),
printTree returns an I/O action that, when performed, prints the string "1+2+3"
on the standard output. Since it is a monadic function defined by structural
recursion on the input tree, one could expect that it can be written as a monadic
fold. However, this is impossible. To see why, recall that the definition of monadic
fold for binary trees follows a pattern of recursion of this form:



mf B (Leaf a) = h1 a
mf B (Join t t ′) = do {y ← mf B t ; y ′ ← mf B t ′;h2 y y ′}

when a left to right product distribution dist× is assumed. According to this
pattern, in every recursive step the computations returned by the recursive calls
must be performed in sequence, one immediately after the other. This means
that there is no way of interleaving additional computations between the re-
cursive calls, precisely the contrary of what printTree does. This limitation is
a consequence of having fixed the use of a monadic extension F̂ as unique al-
ternative to structure the recursive calls in monadic program schemes. In other
words, the fault is in the lifting construction itself.

This problem can be overcome by introducing a more flexible construction
for the definition of monadic hylomorphism:

a
mhylo h g - m b

m (F a)

g

?

mmap (F (mhylo h g))
- m (F (m b))

h?
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There are two differences between this definition and the one shown previously.
First, this definition avoids the use of a monadic extension F̂ , and second, the
type of h has changed with respect to the type it had previously. Now, its type is
F (m b)→ m b. Therefore, strictly speaking, h is not more a monadic F -algebra,
but an F -algebra with monadic carrier. As a consequence of these modifications,
in the new scheme the computations returned by the recursive calls are not
performed apart in a separate unit any more. Instead, they are provided to the
algebra h, which will specify the order in that these computations are performed,
as well as their possible interleaving with other computations.

It is easy to see that this new version of monadic hylomorphism subsumes
the previous one. In fact, a previous version of monadic hylomorphism (with
monadic algebra h :: F b → m b) can be represented in terms of the new one by
taking h • distF as algebra, that is, mhyloold h g = mhylo (h • distF ) g . This
means that the definitions, examples and laws based on the lifting construction
can all be regarded as special cases of the new construction.

Of course, we can derive new definitions of monadic fold and unfold from the
new construction. For monadic unfold, the algebra of the monadic hylomorphism
should only join the effects of the computations returned by the recursive calls,
and build the values of the data structure using the constructors. Therefore,

munfold :: Monad m ⇒ (a → m (F a))→ a → m µF

munfold g = mhylo (înF • distF ) g

Interestingly, this definition turns out to be equivalent to the one presented in
Subsection 4.4. A definition of monadic fold is obained by taking g = ôutF . By
applying simplifications concerning the monad operations, we obtain:



mfold :: Monad m ⇒ (F (m a)→ m a)→ µF → m a
mfold h = h ◦ F (mfold h) ◦ outF

Observe that this is nothing but the definition of fold (see Subsection 2.2) with
the additional restriction that the algebra must be of monadic carrier. For in-
stance, for leaf-labelled binary trees, h :: (a → m b,m b → m b → mb). Now, we
can write printTree as a monadic fold:

printTree = mfoldB (putStr ◦ show , λm m ′ → do {m; putStr "+";m ′})

Finally, we present a pair of fusion laws for the new version of monadic
hylomorphism.

MHylo-Fold Fusion If mmap is strictness-preserving,

τ :: ∀ a . (F a → a)→ (G (m a)→ m a)
⇒

mmap (fold h) ◦mhylo (τ inF ) g = mhylo (τ h) g

Unfold-MHylo Fusion

σ :: ∀ a . (a → F a)→ (a → m (G a))
⇒

mhylo h (σ outF ) ◦ unfold g = mhylo h (σ g)

5 A Program Fusion Tool

The research presented in this paper motivated the development of an interac-
tive program fusion tool that performs the automatic elimination of intermediate
data structures from both purely-functional programas and programs with ef-
fects. The system accepts as input standard functional programs written in a
subset of Haskell and translates them into an internal representation in terms of
(monadic) hylomorphism. The tool is based on ideas and algorithms used in the
design of the HYLO system [23]. In addition to the manipulation of programs
with effects, our system extends HYLO with the treatment of some other shapes
of recursion for purely-functional programs.

The following web page contains documentation and versions of the tool:

http://www.fing.edu.uy/inco/proyectos/fusion
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