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Abstract
Circular programs are a powerful technique to express multiple
traversal algorithms as a single traversal function in a lazy setting.
In this paper, we present a shortcut deforestation technique to calcu-
late circular programs. The technique we propose takes as input the
composition of two functions, such that the first builds an interme-
diate structure and some additional context information which are
then processed by the second one, to produce the final result. Our
transformation into circular programs achieves intermediate struc-
ture deforestation and multiple traversal elimination. Furthermore,
the calculated programs preserve the termination properties of the
original ones.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors - Compilers, Optimization; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming; D.3.3
[Programming Languages]: Language Constructs and Features;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructors - Program and Recursion Schemes

General Terms Languages, Theory, Algorithms

Keywords Circular Programming, Program Calculation, Shortcut
Fusion, Deforestation

1. Introduction
Circular programs, as introduced by Bird (1984), are a famous ex-
ample that demonstrates the power of lazy evaluation. Bird’s work
showed that any algorithm that performs multiple traversals over
the same data structure can be expressed in a lazy language as a
single traversalcircular function, the repmin program being the
reference example in this case. Such a (virtually) circular function
may contain acircular definition, that is, an argument of a func-
tion call that is also a result of that same call. Although circular
definitions always induce non-termination under a strict evaluation
mechanism, they can sometimes be computed using a lazy evalua-
tion strategy. The lazy engine is able to compute the right evaluation
order, if that order exists.

Using the style of circular programming, the programmer does
not have to concern him/herself with the definition and the schedul-
ing of the different traversal functions. Moreover, because there is
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a single traversal function, the programmer does not have to define
intermediate gluing data structures to convey information between
traversals, either.

Bird’s work showed the power of circular programming, not
only as an optimization technique to eliminate multiple traversal
of data, but also as a powerful, elegant and concise technique to
express multiple traversal algorithms. For example, circular pro-
grams are used to express pretty-printing algorithms (Swierstra
et al. 1999), breadth-first traversal strategies (Okasaki 2000), type
systems (Dijkstra and Swierstra 2004), aspect-oriented compil-
ers (de Moor et al. 2000), and, as Johnsson (1987) and Kuiper and
Swierstra (1987) originally showed, circular programs are the nat-
ural representation of attribute grammars in a lazy setting (de Moor
et al. 2000; Dijkstra 2005; Saraiva 1999; Swierstra and Azero
1998). Circular programs have also been studied in the context
of partial evaluation (Lawall 2001) and continuations (Danvy and
Goldberg 2002).

However, circular programs are also known to be difficult to
write and to understand. Besides, even for advanced functional
programmers, it is easy to define a real circular program, that is,
a program that does not terminate. Bird proposes to derive such
programs from their correct and natural strict solution. Bird’s ap-
proach is an elegant application of the fold-unfold transformation
method coupled with tupling and circular programming. His ap-
proach, however, has a severe drawback since it preserves partial
correctness only. The derived circular programs are not guaran-
teed to terminate. Furthermore, as an optimization technique, Bird’s
method focuses on eliminating multiple traversals over the same
input data structure. Nevertheless, one often encounters, instead of
programs that traverse the same data structure twice, programs that
consist in the composition of two functions, the first of which tra-
verses the input data and produces an intermediate structure, which
is traversed by the second function, which produces the final re-
sults.

Several attempts have successfully been made to combine such
compositions of two functions into a single function, eliminating
the use of the intermediate structures (Gill et al. 1993; Ohori and
Sasano 2007; Onoue et al. 1997; Wadler 1990). In those situations,
circular programs have also been advocated suitable for deforest-
ing intermediate structures in compositions of two functions with
accumulating parameters (Voigtländer 2004).

On the other hand, when the second traversal requires addi-
tional information, besides the intermediate structure computed in
the first traversal, in order to be able to produce its outcome, no such
method produces satisfactory results. In fact, as a side-effect of de-
forestation, they introduce multiple traversals of the input structure.
This is due to the fact that deforestation methods focus on elimi-
nating the intermediate structure, without taking into account the
computation of the additional information necessary for the second
traversal.

Our motivation for the present work is then to transform pro-
grams of this kind into programs that construct no intermediate



data-structure and that traverse the input structure only once. That
is to say, we want to perform deforestation on those programs and,
subsequently, to eliminate the multiple traversals that deforestation
introduces. These goals are achieved by transforming the original
programs into circular ones. We allow the first traversal to produce
a completely general intermediate structure together with some ad-
ditional context information. The second traversal then uses such
context information so that, consuming the intermediate structure
produced in the first traversal, it is able to compute the desired re-
sults.

The method we propose is based on a variant of the well-known
fold/build rule (Gill et al. 1993; Launchbury and Sheard 1995). The
standardfold/build rule does not apply to the kind of programs
we wish to calculate as they need to convey context information
computed in one traversal into the following one. The new rule we
introduce, calledpfold/buildp, was designed to support contextual
information to be passed between the first and the second traversals
and also the use of completely general intermediate structures. Like
fold/build, our rule is also cheap and practical to implement in a
compiler.

The pfold/buildp rule states that the composition of such two
traversals naturally induces a circular program. That is, we calcu-
late circular programs from programs that consist of function com-
positions of the formf ◦ g , whereg , the producer, builds an inter-
mediate structuret and some additional informationi , and where
f , the consumer, defined by structural recursion overt , traversest
and, usingi , produces the desired results. The circular programs we
derive compute the same results as the two original functions com-
posed together, but they do this by performing a single traversal
over the input structure. Furthermore, and since that a single traver-
sal is performed, the intermediate structures lose their purpose. In
fact, they are deforested by our rule.

In this paper, we not only introduce a new calculation rule,
but we also present the formal proof that such rule is correct.
We also present formal evidence that this rule introduces noreal
circularity, i.e., that the circular programs it derives preserve the
same termination properties as the original programs. Recall that
Bird’s approach to circular program derivation preserves partial
correctness only: the circular programs it derives are not guaranteed
to terminate, even that the original programs do.

The relevance of the rule we introduce in this paper may also
be appreciated when observed in combination with other program
transformation techniques. With our rule, we derive circular pro-
grams which most programmers would find difficult to write di-
rectly. Those programs can then be further transformed by apply-
ing manipulation techniques like, for example, the one presented
by Fernandes and Saraiva (2007). This technique attempts to elim-
inate the performance overhead potentially introduced by circular
definitions (the evaluation of such definitions requires the execution
of a complexlazy engine) by transforming circular programs into
programs that do not make essential use of lazyness. Furthermore,
the programs obtained are completely data-structure free. So, they
do not traverse, nor construct, any data structure.

This paper is organized as follows. In Section 2, we review
Bird’s method for deriving circular programs in the case of the
repminproblem, and we contrast it with the (informal) derivation
of the circular solution for the same problem following the method
we propose. Likefold/build, our technique will be characterized
by certain program schemes, which will be presented in Section 3
together with the algebraic laws necessary for the proof of the
new rule. In Section 4 we formulate and prove thepfold/buildp
rule; we also review the calculation of the circular program for the
repminproblem, now in terms of the rule. Sections 5 and 6 illustrate
the application of our method to other programming problems:
Section 5 presents, in detail, the main steps of our transformation

applied to a simple example and Section 6 presents the application
of our method to a real example. Section 7 concludes the paper.

2. Circular Programs
Circular programs were first proposed by Bird (1984) as an ele-
gant and efficient technique to eliminate multiple traversals of data
structures. As the name suggests, circular programs are character-
ized by having what appears to be a circular definition: arguments
in a function call depend on results of that same call. That is, they
contain definitions of the form:

(..., x , ...) = f (..., x , ...)

In order to motivate the use of circular programs, Bird intro-
duces the following programming problem: consider the problem
of transforming a binary leaf tree into a second tree, identical in
shape to the original one, but with all the leaf values replaced by
the minimum leaf value. This problem is widely known asrepmin.

In a strict and purely functional setting, solving this problem
would require a two traversal strategy: the first traversal to com-
pute the original tree’s minimum value, and the second traversal to
replace all the leaf values by the minimum value, therefore produc-
ing the desired tree. This straightforward solution is as follows.

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

transform :: LeafTree → LeafTree

transform t = replace (t , tmin t)

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

replace :: (LeafTree, Int) → LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m),

replace (r ,m))

However, a two traversal strategy is not essential to solve the
repminproblem. An alternative solution can, on a single traversal,
compute the minimum value and, at the same time, replace all leaf
values by that minimum value.

2.1 Bird’s method

Bird (1984) proposed a method for deriving single traversal pro-
grams from straightforward solutions, using tupling, folding-
unfolding and circular programming. For example, using Bird’s
method, the derivation of a single traversal solution forrepmin
proceeds as follows.

Since functionsreplace andtmin traverse the same data struc-
ture (a leaf tree) and given their common recursive pattern, we tuple
them into one functionrepmin, which computes the same results
as the previous two functions combined. Note that, in order to be
able to apply such tupling step, it is essential that the two functions
traverse the same data structure.

repmin (t ,m) = (replace (t ,m), tmin t)

We may now synthesize a recursive definition forrepmin using
the standard application of the fold-unfold method. Two cases have
to be considered:

repmin (Leaf n,m)

= (replace (Leaf n,m), tmin (Leaf n))

= (Leaf m ,n)



repmin (Fork (l , r),m)

= (replace (Fork (l , r),m), tmin (Fork (l , r)))

= (Fork (replace (l ,m)

, replace (r ,m)) ,min (tmin l) (tmin r))

= (Fork (l ′, r ′) ,min n1 n2)

where (l ′, n1) = repmin (l ,m)

(r ′, n2) = repmin (r ,m)

Finally, circular programming is used to couple the two compo-
nents of the result value ofrepmin to each other. Consequently,
we obtain the following circular definition oftransform.

transform :: LeafTree → LeafTree

transform t = nt

where (nt ,m) = repmin (t ,m)

A single traversal is obtained because the function applied to the
argumentt of transform, the repmin function, traversest only
once; this single traversal solution is possible due to the circular
call of repmin: m is both an argument and a result of that call.
This circularity ensures that the information on the minimum value
is being used at the same time it is being computed.

Although the circular definitions seem to induce both cycles and
non-termination of those programs, the fact is that using alazy
language, thelazy evaluation machinery is able to determine, at
runtime, the right order to evaluate such circular definitions.

After the seminal paper by Bird, the style of circular program-
ming became widely known. However, the approach followed by
Bird does not guarantee termination of the resulting lazy program.
In fact, Bird (1984) discusses this problem and presents an example
of a non-terminating circular program obtained using his transfor-
mational technique.

2.2 Our method

The calculational method that we propose in this paper is, in par-
ticular, suitable for calculating a circular program that solves the
repmin problem. In this section, we calculate such a program.

Our calculational method is used to calculate circular programs
from programs that consist in the compositionf ◦ g of a producer
g and a consumerf , whereg :: a → (b, z ) andf :: (b, z ) → c.

In order to be able to apply our method torepmin, we then need
to slightly change the straightforward solution presented earlier.
In that solution, the consumer (functionreplace) fits the desired
structure; however, no explicit producer occurs, since the input tree
is copied as an argument to functionreplace.

We then define the following solution torepmin:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

tmint :: LeafTree → (LeafTree, Int)

tmint (Leaf n) = (Leaf n ,n)

tmint (Fork (l , r)) = (Fork (l ′, r ′),min n1 n2)

where (l ′, n1) = tmint l

(r ′, n2) = tmint r

replace :: (LeafTree, Int) → LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m),

replace (r ,m))

A leaf tree (that is equal to the input one) is now the intermediate
data structure that acts with the purpose of gluing the two functions.

Although the original solution needs to be slightly modified, so
that it is possible to apply our method torepmin, we present such

a modified version, and the circular program we calculate from it,
sincerepmin is very intuitive, and, by far, the most well-known
motivational example for circular programming. In the remaining
of this paper we will present more realistic examples (in Sections
5 and 6), where the gluing trees need to grow from traversal to
traversal. This fact forces the definition of new data-structures in
order to glue the different traversals together. Therefore, our rule
directly applies to them.

Now we want to obtain a new version oftransform that avoids
the generation of the intermediate tree produced in the composition
of replace and tmint . The method we propose proceeds in two
steps.

First we observe that we can rewrite the original definition of
transform as follows:

transform t

= replace (tmint t)

= replace (π1 (tmint t), π2 (tmint t))

= replace ′ ◦ π1 ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

= π1 ◦ (replace ′ × id) ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

whereπ1 andπ2 are the projection functions and(f × g) (x , y) =
(f x , g y). Therefore, we can redefinetransform as:

transform t = nt

where

(nt , ) = repm t

repm t = (replace ′ × id) ◦ tmint $ t

replace ′ x = replace (x ,m)

m = π2 (tmint t)

We can now synthesize a recursive definition forrepm using, for
example, the fold-unfold method, obtaining:

transform t = nt

where

(nt , ) = repm t

m = π2 (tmint t)

repm (Leaf n) = (Leaf m,n)

repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r

in (Fork (l ′, r ′),min n1 n2)

In our method this synthesis will be obtained by the application
of a particular short-cut fusion law. The resulting program avoids
the generation of the intermediate tree, but maintains the residual
computation of the minimum of the input tree, as that value is
strictly necessary for computing the final tree. Therefore, this step
eliminated the intermediate tree but introduced multiple traversals
overt .

The second step of our method is then the elimination of the
multiple traversals. Similar to Bird, we will try to obtain a single
traversal function by introducing a circular definition. In order to
do so, we first observe that the computation of the minimum is the
same intmint andrepm, in other words,

π2 ◦ tmint = π2 ◦ repm (1)

This may seem a particular observation for this specific case but
it is a property that holds in general for all transformed programs
of this kind. In fact, later on we will see thattmint andrepm are
both instances of a same polymorphic function and actually this



equality is a consequence of a free theorem (Wadler 1989) about
that function. Using this equality we may substitutetmint by repm
in the new version oftransform, finally obtaining:

transform t = nt

where

(nt ,m) = repm t

repm (Leaf n) = (Leaf m,n)

repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r

in (Fork (l ′, r ′),min n1 n2)

This new definition not only unifies the computation of the final
tree and the minimum inrepm, but it also introduces a circularity
on m. The introduction of the circularity is a direct consequence
of this unification. As expected, the resulting circular program tra-
verses the input tree only once. Furthermore, it does not construct
the intermediate leaf-tree, which has been eliminated during the
transformation process.

The introduction of the circularity is safe in our context. Unlike
Bird, our introduction of the circularity is made in such a way that
it is possible to safely schedule the computations. For instance, in
our example, the essential property that makes this possible is the
equality (1), which is a consequence of the fact that both intmint
andrepm the computation of the minimum does not depend on the
computation of the corresponding tree. The fact that this property
is not specific of this particular example, but it is an instance of a
general one, is what makes it possible to generalize the application
of our method to a wide class of programs.

In this section, we have shown an instance of our method for ob-
taining a circular lazy program from an initial solution that makes
no essential use of lazyness. In the next sections we formalize our
method using a calculational approach. Furthermore, we present
the formal proof that guarantees its correctness.

3. Program schemes
Our method will be applied to a class of expressions that will be
characterized in terms of program schemes. This will allow us to
give a generic formulation of the transformation rule in the sense
that it will be parametric in the structure of the intermediate data
type involved in the function composition to be transformed.

In this section we describe two program schemes which capture
structurally recursive functions and are relevant constructions in
our transformation. Throughout we shall assume we are working in
the context of a lazy functional language with acposemantics, in
which types are interpreted as pointed cpos (complete partial orders
with a least element⊥) and functions are interpreted as continuous
functions between pointed cpos. However, our semantics differs
from that of Haskell in that we do not consider lifted cpos. That is,
unlike the semantics of Haskell, we do not consider lifted products
and function spaces. As usual, a functionf is said to bestrict if it
preserves the least element, i.e.f ⊥ = ⊥.

3.1 Data types

The structure of datatypes can be captured using the concept of a
functor. A functor consists of two components, both denoted byF :
a type constructorF , and a functionF :: (a → b) → (F a →
F b), which preserves identities and compositions:

F id = id F (f ◦ g) = F f ◦ F g

A standard example of a functor is that formed by the list type
constructor and the well-knownmap function, which applies a
function to the elements of a list, building a new list with the results.

map :: (a → b) → [a ] → [b ]

map f [ ] = [ ]

map f (a : as) = f a : map f as

Another example of a functor is the product functor, which is a
case of a bifunctor, a functor on two arguments. On types its action
is given by the type constructor for pairs. On functions its action is
defined by:

(×) :: (a → c) → (b → d) → (a, b) → (c, d)

(f × g) (a, b) = (f a, g b)

Semantically, we assume that pairs are interpreted as the cartesian
product of the corresponding cpos. Associated with the product we
can define the following functions, corresponding to the projections
and the split function:

π1 :: (a, b) → a

π1 (a, b) = a

π2 :: (a, b) → b

π2 (a, b) = b

(M) :: (c → a) → (c → b) → c → (a, b)

(f M g) c = (f c, g c)

Among others properties, it holds that

f ◦ π1 = π1 ◦ (f × g) (2)

g ◦ π2 = π2 ◦ (f × g) (3)

f = ((π1 ◦ f ) M (π2 ◦ f )) (4)

Another case of bifunctor is the sum functor, which corresponds to
the disjoint union of types. Semantically, we assume that sums are
interpreted as the separated sum of the corresponding cpos.

data a + b = Left a | Right b

(+) :: (a → c) → (b → d) → (a + b) → (c + d)

(f + g) (Left a) = Left (f a)

(f + g) (Right b) = Right (g b)

Associated with the sum we can define the case analysis function,
which has the property of being strict in its argument of typea +b:

(O) :: (a → c) → (b → c) → (a + b) → c

(f O g) (Left a) = f a

(f O g) (Right b) = g b

Product and sum can be generalized ton components in the obvious
way.

We consider declarations of datatypes of the form:1

data τ = C1 (τ1,1, · · · , τ1,k1) | · · · | Cn (τn,1, · · · , τn,kn)

where eachτi,j is restricted to be a constant type (likeInt or
Char ), a type variable, a type constructorD applied to a typeτ ′i,j
or τ itself. Datatypes of this form are usually called regular. The
derivation of a functor that captures the structure of the datatype
essentially proceeds as follows: alternatives are regarded as sums
(| is replaced by+) and occurrences ofτ are substituted by a type
variablea in everyτi,j . In addition, the unit type() is placed in
the positions corresponding to constant constructors (like e.g. the
empty list constructor). As a result, we obtain the following type
constructorF :

F a = (σ1,1, · · · , σ1,k1) + · · ·+ (σn,1, · · · , σn,kn)

1 For simplicity we shall assume that constructors in a datatype declaration
are declared uncurried.



where σi,j = τi,j [τ := a]2. The body of the corresponding
mapping functionF :: (a → b) → (F a → F b) is similar to
that of F a, with the difference that the occurrences of the type
variablea are replaced by a functionf :: a → b, and identities are
placed in the other positions:

Ff = g1,1 × · · · × g1,k1 + · · ·+ gn,1 × · · · × gn,kn

with

gi,j =

8><>:
f if σi,j = a

id if σi,j = t, for some type t

D g′i,j if σi,j = D σ′
i,j

where theD in the expressionD g′i,j represents themap function
D :: (a → b) → (D a → D b) corresponding to the type
constructorD .

For example, for the type of leaf trees

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

we can derive a functorT given by

T a = Int + (a, a)

T :: (a → b) → (T a → T b)

T f = id + f × f

The functor that captures the structure of the list datatype needs to
reflect the presence of the type parameter:

La b = () + (a, b)

La :: (b → c) → (La b → La c)

La f = id + id × f

This functor reflects the fact that lists have two constructors: one is
a constant and the other is a binary operation.

Every recursive datatype is then understood as the least fixed
point of the functorF that captures its structure, i.e. as the least so-
lution to the equationτ ∼= Fτ . We will denote the type correspond-
ing to the least solution asµF . The isomorphism betweenµF and
F µF is provided by the strict functionsinF :: F µF → µF and
outF :: µF → F µF , each other inverse. FunctioninF packs the
constructors of the datatype while functionoutF packs its destruc-
tors. Further details can be found in (Abramsky and Jung 1994;
Gibbons 2002).

For instance, in the case of leaf trees we have thatµT =
LeafTree and

inT :: T LeafTree → LeafTree

inT = Leaf O Fork

outT :: LeafTree → T LeafTree

outT (Leaf n) = Left n

outT (Fork (l , r)) = Right (l , r)

3.2 Fold

Fold (Bird and de Moor 1997; Gibbons 2002) is a pattern of recur-
sion that captures function definitions by structural recursion. The
best known example of fold is its definition for lists, which corre-
sponds to thefoldr operator (Bird 1998).

Given a functorF and a functionh :: F a → a, fold (or
catamorphism), denoted byfold h :: µF → a, is defined as the
least functionf that satisfies the following equation:

2 By s[t := a] we denote the replacement of every occurrence oft by a in
s.

f ◦ inF = h ◦ F f

BecauseoutF is the inverse ofinF , this is the same as:

fold :: (F a → a) → µF → a

fold h = h ◦ F (fold h) ◦ outF

A function h :: F a → a is called anF -algebra.3 The functor
F plays the role of signature of the algebra, as it encodes the
information about the operations of the algebra. The typea is
called the carrier of the algebra. AnF -homomorphismbetween two
algebrash :: F a → a andk :: F b → b is a functionf :: a → b
between the carriers that commutes with the operations. This is
specified by the conditionf ◦ h = k ◦ F f . Notice thatfold h
is a homomorphism between the algebrasinF andh.

For example, for leaf trees fold is given by:

foldT :: (Int → a, (a, a) → a) → LeafTree → a

foldT (h1, h2) = fT
where

fT (Leaf n) = h1 n

fT (Fork (l , r)) = h2 (fT l , fT r)

For instance,

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

can be defined as:

tmin = foldT (id , uncurry min)

Fold enjoys many algebraic laws that are useful for program trans-
formation. A well-known example isshortcut fusion(Gill 1996;
Gill et al. 1993; Takano and Meijer 1995) (also known as the
fold/build rule), which is an instance of a free theorem (Wadler
1989).

LAW 3.1 (FOLD/BUILD RULE). For h strict,

g :: ∀ a . (F a → a) → c → a
⇒

fold h ◦ build g = g h

where

build :: (∀ a . (F a → a) → c → a) → c → µF

build g = g inF

The instance of this law for leaf trees is the following:

foldT (h1, h2) ◦ buildT g = g (h1, h2) (5)

where

buildT :: (∀ a . (Int → a, (a, a) → a) → c → a)

→ c → LeafTree

buildT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears be-
cause every algebrah1 O h2 is strict as so is every case analysis.

As an example, we can use this law to fuse:

tmm = tmin ◦mirror

mirror :: LeafTree → LeafTree

mirror (Leaf n) = Leaf n

mirror (Fork (l , r)) = Fork (mirror r ,mirror l)

3 When showing specific instances of fold for concrete datatypes, we will
write the operations in an algebrah1O · · ·Ohn in a tuple(h1, . . . , hn).



To do so, first we have to expressmirror in terms ofbuildT :

mirror = buildT g

where

g (leaf , fork) (Leaf n)

= leaf n

g (leaf , fork) (Fork (l , r))

= fork (g (leaf , fork) r , g (leaf , fork) l)

Finally, by (5) we have that

tmm = g (id , uncurry min)

Inlining,

tmm (Leaf n) = n

tmm (Fork (l , r)) = min (tmm r) (tmm l)

In the same line of reasoning, we can state another fusion law
for a slightly different producer function:

LAW 3.2 (FOLD/BUILDP RULE). For h strict,

g :: ∀ a . (F a → a) → c → (a, z )

⇒
(fold h × id) ◦ buildp g = g h

where

buildp :: (∀ a . (F a → a) → c → (a, z )) → c → (µF, z )

buildp g = g inF

Proof From the polymorphic type of $ g $

we can deduce the following free theorem: forf strict,

f ◦ φ = ψ ◦ F f ⇒ (f × id) ◦ g φ = g ψ

By taking f = fold h, φ = inF , ψ = h we obtain that
(fold h × id)◦g inF = g h. The equation on the left-hand side of
the implication becomes true by definition of fold. The requirement
that f is strict is satisfied by the fact that every fold with a strict
algebra is strict, and by hypothesish is strict. Finally, by definition
of buildp the desired result follows. 2

For example, the instance of this law for leaf trees is the following:

(foldT (h1, h2) × id) ◦ buildpT g = g (h1, h2) (6)

where

buildpT :: (∀ a . (Int → a, (a, a) → a) → c → (a, z ))

→ c → (LeafTree, z )

buildpT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears by
the same reason as for (5).

To see an example of the application of this law, consider the
functionssqm:

ssqm :: LeafTree → (Int , Int)

ssqm = (sumt × id) ◦ gentsqmin

sumt :: LeafTree → Int

sumt (Leaf n) = n

sumt (Fork (l , r)) = sumt l + sumt r

gentsqmin :: LeafTree → (LeafTree, Int)

gentsqmin (Leaf n) = (Leaf (n ∗ n),n)

gentsqmin (Fork (l , r)) = let (l ′, n1) = gentsqmin l

(r ′, n2) = gentsqmin r

in (Fork (l ′, r ′),min n1 n2)

To apply Law (6) we have to expresssumt as a fold andgentsqmin
in terms ofbuildpT :

sumt = foldT (id , uncurry (+))

gentsqmin = buildpT g

where

g (leaf , fork) (Leaf n)

= (leaf (n ∗ n),n)

g (leaf , fork) (Fork (l , r))

= let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Hence, by (6),

ssqm = g (id , uncurry (+))

Inlining,

ssqm (Leaf n) = (n ∗ n,n)

ssqm (Fork (l , r)) = let (s1, n1) = ssqm l

(s2, n2) = ssqm r

in (s1 + s2,min n1 n2)

Finally, the following property is an immediate consequence of
Law 3.2.

LAW 3.3. For any stricth,

g :: ∀ a . (F a → a) → c → (a, z )

⇒
π2 ◦ g inF = π2 ◦ g h

Proof

π2 ◦ g inF

= { (3) }
π2 ◦ (fold h × id) ◦ g inF

= { Law 3.2 }
π2 ◦ g h 2

This property states that the construction of the second com-
ponent of the pair returned byg is independent of the particular
algebra thatg carries; it only depends on the input value of typec.
This is a consequence of the polymorphic type ofg and the fact that
the second component of its result is of a fixed typez .

3.3 Fold with parameters

Some recursive functions use context information in the form of
constant parameters for their computation. The aim of this section
is to analyze the definition of structurally recursive functions of the
form f :: (µF, z ) → a, where the typez represents the context
information. Our interest in these functions is because our method
will assume that consumers are functions of this kind.

Functions of this form can be defined in different ways. One al-
ternative consists of fixing the value of the parameter and perform-
ing recursion on the other. Definitions of this kind can be given in
terms of a fold:

f :: (µF, z ) → a

f (t , z ) = fold h t

such that the context information contained inz may eventually be
used in the algebrah. This is the case of, for example, function:

replace :: (LeafTree, Int) → LeafTree



replace (Leaf n,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m),

replace (r ,m))

which can be defined as:

replace (t ,m) = foldT (λn → Leaf m,Fork) t

Another alternative is the use of currying, which gives a function
of typeµF → (z → a). The curried version can then be defined
as a higher-order fold. For instance, in the case ofreplace it holds
that

curry replace = foldT (Leaf , λ(f , f ′) → Fork ◦ ((f M f ′)))

This is an alternative we won’t pursue in this paper.
A third alternative is to define the functionf :: (µF, z ) → a in

terms of a program scheme, calledpfold(Pardo 2002, 2001), which,
unlike fold, is able to manipulate constant and recursive arguments
simultaneously. The definition of pfold relies on the concept of
strengthof a functorF , which is a polymorphic function:

τF :: (F a, z ) → F (a, z )

that satisfies certain coherence axioms (see (Cockett and Fukushima
1992; Cockett and Spencer 1991; Pardo 2002) for details). The
strength distributes the value of typez to the variable positions
(positions of typea) of the functor. For instance, the strength cor-
responding to functorT is given by:

τT :: (T a, z ) → T (a, z )

τT (Left n, z ) = Left n

τT (Right (a, a ′), z ) = Right ((a, z ), (a ′, z ))

In the definition of pfold the strength of the underlying functor
plays an important role as it represents the distribution of the
context information contained in the constant parameters to the
recursive calls.

Given a functorF and a functionh :: (F a, z ) → a, pfold,
denoted bypfold h :: (µF, z ) → a, is defined as the least function
f that satisfies the following equation:

f ◦ (inF × id) = h ◦ (((F f ◦ τF ) M π2))

Observe that now functionh also accepts the value of the param-
eters. It is a function of the form(h1 O . . . O hn) ◦ d where
eachhi :: (Fi a, z ) → a if F a = F1 a + · · · + Fn a, and
d :: (x1 + · · ·+ xn , z ) → (x1, z ) + · · ·+ (xn , z ) is the distribution
of product over sum. When showing specific instances of pfold we
will simply write the tuple of functions(h1, . . . , hn) instead ofh.

For example, in the case of leaf trees the definition of pfold is
as follows:

pfoldT :: ((Int , z ) → a, ((a, a), z ) → a) → (LeafTree, z ) → a

pfoldT (h1, h2) = pT

where

pT (Leaf n, z ) = h1 (n, z )

pT (Fork (l , r), z ) = h2 ((pT (l , z ), pT (r , z )), z )

We can then writereplace in terms of a pfold:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

The following equation shows one of the possible relationships
between pfold and fold.

pfold h (t , z ) = fold k t where ki x = hi (x , z ) (7)

Like fold, pfold satisfies a set of algebraic laws. We don’t show any
of them here as they are not necessary for this paper. The interested
reader may consult (Pardo 2002, 2001).

4. The pfold/buildp rule
In this section we present a generic formulation and proof of cor-
rectness of the transformation rule we propose. The rule takes a
composition of the formcons ◦ prod , composed by a producer
prod :: a → (t , z ) followed by a consumercons :: (t , z ) → b, and
returns an equivalent deforested circular program that performs a
single traversal over the input value. The reduction of this expres-
sion into an equivalent one without intermediate data structures is
performed in two steps. Firstly, we apply standard deforestation
techniques in order to eliminate the intermediate data structure of
typet . The program obtained is deforested, but in general contains
multiple traversals over the input as a consequence of residual com-
putations of the other intermediate values (e.g. the computation of
the minimum in the case ofrepmin). Therefore, as a second step,
we perform the elimination of the multiple traversals by the intro-
duction of a circular definition.

The rule makes some natural assumptions aboutcons andprod :
t is a recursive data typeµF , the consumercons is defined by
structural recursion ont , and the intermediate value of typez is
taken as a constant parameter bycons. In addition, it is required
that prod is a “good producer”, in the sense that it is possible to
express it as the instance of a polymorphic function by abstracting
out the constructors of the typet from the body ofprod . In other
words,prod should be expressed in terms of thebuildp function
corresponding to the typet . The fact that the consumercons is
assumed to be structurally recursive leads us to consider that it is
given by a pfold. In summary, the rule is applied to compositions
of the form:pfold h ◦ buildp g .

LAW 4.1 (PFOLD/BUILDP RULE). For anyh = (h1 O . . . O hn)◦
d ,

g :: ∀ a . (F a → a) → c → (a, z )
⇒

pfold h ◦ buildp g $ c
= v
where (v , z ) = g k c

k = k1 O . . . O kn

ki x = hi (x , z )

Proof The proof will show in detail the two steps of our method.
The first step corresponds to the application of deforestation, which
is represented by Law 3.2. For that reason we need first to express
the pfold as a fold.

pfold h ◦ buildp g $ c

= { definition ofbuildp }
pfold h ◦ g inF $ c

= { (4) }
pfold h ◦ (((π1 ◦ g inF ) M (π2 ◦ g inF ))) $ c

= { (7) }
fold k ◦ π1 ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { (2) }
π1 ◦ (fold k × id) ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { Law 3.2 }
π1 ◦ g k $ c

where z = π2 ◦ g inF $ c



ki x = hi (x , z )

Law 3.2 was applicable because by construction the algebrak is
strict.

Once we have reached this point we observe that the resulting
program is deforested, but it contains two traversals onc. The elim-
ination of the multiple traversals is then performed by introducing
a circular definition. The essential property that makes it possible
the safe introduction of a circularity is Law 3.3, which states that
the computation of the second component of typez is independent
of the particular algebra that is passed tog . This is a consequence
of the polymorphic type ofg . Therefore, we can replaceinF by
another algebra and we will continue producing the same valuez .
In particular, we can takek as this other algebra, and in that way we
are introducing the circularity. It is this property that ensures that
no terminating program is turned into a nonterminating one.

π1 ◦ g k $ c

where z = π2 ◦ g inF $ c

ki x = hi (x , z )

= { Law 3.3 }
π1 ◦ g k $ c

where z = π2 ◦ g k $ c

ki x = hi (x , z )

= { (4) }
v

where (v , z ) = g k c

ki x = hi (x , z ) 2

Now, let us see the application of the pfold/buildp rule in the
case of therepmin problem. Recall the definition we want to
transform:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

To apply the rule, first we have to expressreplace and tmint in
terms of pfold and buildp for leaf trees, respectively:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

tmint = buildpT g

where g (leaf , fork) (Leaf n)

= (leaf n,n)

g (leaf , fork) (Fork (l , r))

= let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Therefore, by applying Law 4.1 we get:

transform t = nt

where (nt ,m) = g (k1, k2) t

k1 = Leaf m

k2 (l , r) = Fork (l , r)

Inlining, we obtain the definition we showed previously in Sec-
tion 2.2:

transform t = nt

where

(nt ,m) = repm t

repm (Leaf n) = (Leaf m,n)

repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r

in (Fork (l ′, r ′),min n1 n2)

5. The Increase Average Merge-Sort Problem
In this section, we show the application of our method to another
programming problem.

Consider the following problem over lists of numbers:

(i) We want to increase the elements of a list by the list’s average
value. For example, for the list[8, 4, 6] we would produce the
list [14, 10, 12], as the average value is 6.

(ii) We want the output list to be returned in ascending order.
Therefore, from the list[8, 4, 6], we would have to produce the
list [10, 12, 14].

This problem may be understood as a variation of a sorting
algorithm on lists that increases all elements in a list by the list’s
average. We call the problemIncrease Average Merge-Sort(or
incavgMS, for short) because of the use of merge-sort as sorting
algorithm.

A straightforward solution to this problem would rely on the
following strategy:

1. traverse the input list in order to compute its sum and length
(these values are needed to compute the list’s average);

2. following (Augusteijn 1998), implement merge-sort using a leaf
tree that contains the numbers in the input list;

3. traverse the leaf tree, increasing all its elements by the input
list’s average (calculated using the sum and length already com-
puted) while sorting the increased values.

In summary, this solution can be implemented in this form:

incavgMS :: (Ord b,Fractional b) ⇒ [Int ] → [b ]

incavgMS [ ] = [ ]

incavgMS xs = incsort ◦ ltreesumlen $ xs

According to the strategy, the functionltreesumlen must com-
pute a leaf tree containing the elements of the input list. It is clear
that the input list could also be used as the intermediate data struc-
ture that glues the two functions together. The reason for introduc-
ing a leaf tree is to obtain aO(n logn) sorting algorithm, instead
of a quadratic solution one would obtain by using a list as the in-
termediate structure. However, to achieve the desiredO(n logn)
behavior, the elements occurring in the constructed leaf tree must
beevenly distributed, i.e., the computed leaf tree must be balanced,
under certain criteria.

In addition to computing such a leaf tree,ltreesumlen must also
compute the sum and length values of the input list.

ltreesumlen :: [Int ] → (LeafTree, (Int , Int))

ltreesumlen [x ]

= (Leaf x , (x , 1))

ltreesumlen xs

= let (xs1, xs2) = splitl xs

(t1, (s1, l1)) = ltreesumlen xs1

(t2, (s2, l2)) = ltreesumlen xs2

in (Fork (t1, t2), (s1 + s2, l1 + l2))

splitl :: [a ] → ([a ], [a ])

splitl [ ] = ([ ], [ ])

splitl (a : as) = (zs, a : ys)

where (ys, zs) = splitl as



The auxiliary functionsplitl splits a listxs into two sublistsxs1

andxs2 such that:

xs1 ++ xs2 ‘isPermutation‘ xs

length xs1 6 length xs2 6 length xs1 + 1

The last property guarantees that the tree generated byltreesumlen
is balanced.

Once we have computed the intermediate (balanced) leaf tree
and the input list’s sum and length, we traverse the leaf tree, in-
creasing all its elements by the average value while sorting the list
that is being produced as output. These actions are performed by
functionincsort .

incsort :: (Ord b,Fractional b)

⇒ (LeafTree, (Int , Int)) → [b ]

incsort (Leaf n, (s, l)) = [n + s / l ]

incsort (Fork t1 t2, p) = merge (incsort (t1, p))

(incsort (t2, p))

merge :: (Ord a) ⇒ [a ] → [a ] → [a ]

merge [ ] m = m

merge l [ ] = l

merge (x : xs) (y : ys) | x < y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys

To apply our method we first have to writeincsort as apfoldT

andltreesumlen in terms ofbuildpT :

incsort = pfoldT (h1, h2)

where h1 (n, (s, l)) = [n + s / l ]

h2 ((ys, zs), ) = merge ys zs

ltreesumlen

= buildpT g

where g (leaf , fork) [x ]

= (leaf x , (x , 1))

g (leaf , fork) xs

= let (xs1, xs2) = splitl xs

(t1, (s1, l1)) = g (leaf , fork) xs1

(t2, (s2, l2)) = g (leaf , fork) xs2

in (fork (t1, t2), (s1 + s2, l1 + l2))

By direct application of Law 4.1 to theincavgMS xs, for
x 6= [ ], we obtain the following program:

incavgMS xs = ys

where

(ys, (s, l)) = gk xs

gk [x ] = ([x + s / l ], (x , 1))

gk xs = let (xs1, xs2) = splitl xs

(ys1 , (s1, l1)) = gk xs1

(ys2 , (s2, l2)) = gk xs2

in (merge ys1 ys2 , (s1 + s2, l1 + l2))

We may observe that the leaf tree that was previously used to
glue the functionsincsort and ltreesumlen has been deforested.
Furthermore, we observe that such deforestation did not introduce
multiple traversals over the input list: it is traversed only once.

6. Algol 68 scope rules
In this section, we consider the application of our rule to a real
example: the Algol 68 scope rules (de Moor et al. 2000; Saraiva

1999). These rules are used, for example, in the Eli system4 (Kas-
tens et al. 2007) to define a generic component for the name analy-
sis task of a compiler.

We wish to construct a program to deal with the scope rules of a
block structured language, the Algol 68. In this language a defini-
tion of an identifierx is visible in the smallest enclosing block, with
the exception of local blocks that also contain a definition ofx . In
the latter case, the definition ofx in the local scope hides the defi-
nition in the global one. In a block an identifier may be declared at
most once. We shall analyze these scope rules via our favorite (toy)
language: the Block language, which consists of programs of the
following form:

[use y;decl x ;

[decl y;use y;use w ; ]

decl x ;decl y; ]

Such programs describe the basic block-structure found in many
languages, with the peculiarity however that declarations of iden-
tifiers may also occur after their first use. According to these rules
the above program contains two errors: at the outer level, the vari-
ablex has been declared twice and the use of the variablew , at the
inner level, has no binding occurrence at all.

We aim to develop a program that analyses Block programs
and computes a list containing the identifiers which do not obey
to the rules of the language. In order to make the problem more
interesting, and also to make it easier to detect which identifiers are
being incorrectly used in a Block program, we require that the list
of invalid identifiers follows the sequential structure of the input
program. Thus, the semantic meaning of processing the example
sentence is[w , x ].

Because we allow anuse-before-declarediscipline, a conven-
tional implementation of the required analysis naturally leads to a
program which traverses the abstract syntax tree twice: once for ac-
cumulating the declarations of identifiers and constructing the en-
vironment, and once for checking the uses of identifiers, according
to the computed environment. The uniqueness of names is detected
in the first traversal: for each newly encountered declaration it is
checked whether that identifier has already been declared at the
current level. In this case an error message is computed. Of course
the identifier might have been declared at a global level. Thus we
need to distinguish between identifiers declared at different levels.
We use the level of a block to achieve this. The environment is a
partial function mapping an identifier to its level of declaration.

As a consequence, semantic errors resulting from duplicate def-
initions are computed during the first traversal of a block and errors
resulting from missing declarations in the second one. In a straight-
forward implementation of this program, this strategy has two im-
portant effects: the first is that a“gluing” data structure has to be
defined and constructed to pass explicitly the detected errors from
the first to the second traversal, in order to compute the final list of
errors in the desired order; the second is that, in order to be able
to compute the missing declarations of a block, the implementation
has to explicitly pass (using, again, an intermediate structure), from
the first traversal of a block to its second traversal, the names of the
variables that are used in it.

Observe also that the environment computed for a block and
used for processing the use-occurrences is the global environment
for its nested blocks. Thus, only during the second traversal of a
block (i.e., after collecting all its declarations) the program actu-
ally begins the traversals of its nested blocks; as a consequence the
computations related to first and second traversals are intermingled.
Furthermore, the information on its nested blocks (the instructions
they define and the blocks’ level) has to be explicitly passed from

4 A well known compiler generator toolbox.



the first to the second traversal of a block. This is also achieved by
defining and constructing an intermediate data structure.

The abstract language may be described by the following recur-
sive data type definitions:

data Its = NilIts ()

| Use (Var , Its)

| Decl (Var , Its)

| Block (Its , Its)

type Var = String

In order to pass the necessary information from the first to the
second traversal of a block, we define the following intermediate
data structure:

data Its2 = NilIts2 ()

| Use2 (Var , Its2)

| Decl2 ([Var ] , Its2)

| Block2 ((Int , Its), Its2)

Errors resulting from duplicate declarations, computed in the
first traversal, are passed to the second, using constructorDecl2’s
list of variables. The level of a nested block, as well as the instruc-
tions it defines, are passed to the second traversal using constructor
Block2’s pairs containing an integer and a sequence of instructions.

According to the strategy defined earlier, computing the seman-
tic errors that occur in a block sentence would resume to:

semantics :: Its → [Var ]

semantics = missingdecls ◦ (duplicatedecls (0, [ ]))

The functionduplicatedecls detects duplicate variable declarations
by collecting all the declarations occurring in a block. It is defined
as follows5:

duplicatedecls :: (Int , [(Var , Int)])

→ Its → (Its2, [(Var , Int)])

duplicatedecls (lev , dcli) (Use (var , its))

= (Use2 (var , its2), dclo)

where (its2, dclo) = duplicatedecls (lev , dcli) its

duplicatedecls (lev , dcli) (Decl (var , its))

= (Decl2 (errs1, its2), dclo)

where errs1 = mNBIn (var , lev , dcli)

(its2, dclo) = duplicatedecls (lev , (var , lev) : dcli) its

duplicatedecls (lev , dcli) (Block (nested , its))

= (Block2 ((lev + 1,nested), its2), dclo)

where (its2, dclo) = duplicatedecls (lev , dcli) its

duplicatedecls (lev , dcli) (NilIts ())

= (NilIts2 (), dcli)

Besides detecting the invalid declarations, theduplicatedecls func-
tion also computes a data structure, of typeIts2, that is later tra-
versed in order to detect variables that are used without being de-
clared. This detection is performed by functionmissingdecls, that
is defined such as6:

missingdecls :: (Its2, [(Var , Int)]) → [Var ]

missingdecls (Use2 (var , its2), env)

5 The auxiliary functionmNBIn checks that an identifiermust not be ina
particular level, in the environment.
6 The auxiliary functionmBIn checks that an identifiermust be inthe
environment, at any level.

= errs1 ++ errs2

where errs1 = mBIn (var , env)

errs2 = missingdecls (its2, env)

missingdecls (Decl2 (errs1, its2), env)

= errs1 ++ errs2

where errs2 = missingdecls (its2, env)

missingdecls (Block2 ((lev , its), its2), env)

= errs1 ++ errs2

where

errs1 = missingdecls ◦ (duplicatedecls (lev , env)) $ its

errs2 = missingdecls (its2, env)

missingdecls (NilIts2 (), ) = [ ]

This solution uses anIts2 data structure as gluing data struc-
ture. So, to apply our rule, we first have to express the functions
duplicatedecls andmissingdecls in terms of pfold and buildp for
Its2 structures, respectively. The functor that captures the structure
of Its2 trees is:

I a = () + (Var , a) + ([Var ], a) + ((Int , Its), a)

I :: (a → b) → (I a → I b)

I f = id + id × f + id × f + id × f

Pfold and buildp forIts2 trees are then given by:

pfoldI :: (((), z ) → a, ((Var , a), z ) → a, (([Var ], a), z ) → a,

(((Int , Its), a), z ) → a) → (Its2, z ) → a

pfoldI (h1, h2, h3, h4) = pI

where pI (NilIts2 (), env)

= h1 ((), env)

pI (Use2 (var , its2), env)

= h2 ((var , pI (its2, env)), env)

pI (Decl2 (errs1, its2), env)

= h3 ((errs1, pI (its2, env)), env)

pI (Block2 ((lev , its), its2), env)

= h4 (((lev , its), pI (its2, env)), env)

buildpI :: (∀ a . (() → a, (Var , a) → a, ([Var ], a) → a,

((Int , Its), a) → a) → c → (a, z )) → c → (Its2, z )

buildpI g = g (NilIts2,Use2,Decl2,Block2)

We may now writemissingdecls andduplicatedecls in terms of
them:

missingdecls = pfoldI (h1, h2, h3, h4)

where

h1 ((), ) = [ ]

h2 ((var , errs2), env) = mBIn (var , env) ++ errs2

h3 ((errs1, errs2), env) = errs1 ++ errs2

h4 (((lev , its), errs2), env)

= let errs1

= missingdecls ◦ (duplicatedecls (lev , env)) $ its

in errs1 ++ errs2

duplicatedecls :: (Int , [(Var , Int)])

→ Its → (Its2, [(Var , Int)])

duplicatedecls (lev , dcli) = buildpI (g (lev , dcli))

g (lev , dcli) (nil2, use2, decl2, block2) (Use (var , its))

= (use2 (var , its2), dclo)



where (its2, dclo) = g (lev , dcli)

(nil2, use2, decl2, block2) its

g (lev , dcli) (nil2, use2, decl2, block2) (Decl (var , its))

= (decl2 (errs1, its2), dclo)

where errs1 = mNBIn (var , lev , dcli)

(its2, dclo) = g (lev , (var , lev) : dcli)

(nil2, use2, decl2, block2) its

g (lev , dcli) (nil2, use2, decl2, block2) (Block (nested , its))

= (block2 ((lev + 1,nested), its2), dclo)

where (its2, dclo) = g (lev , dcli)

(nil2, use2, decl2, block2) its

g (lev , dcli) (nil2, use2, decl2, block2) (NilIts ())

= (nil2 (), dcli)

Recall the definition we want to transform:

semantics :: Its → [Var ]

semantics = missingdecls ◦ (duplicatedecls (0, [ ]))

and notice that we have just given this composition an explicit
pfold ◦ buildp form. By application of Law 4.1 to the above
definition, we obtain the circular program:

semantics its = errors

where (errors, env) = g (0, [ ]) k its

ki x = hi (x , env)

The circularity that has been introduced by our law eliminates the
construction of the intermediate data structure that was used to
glue the two traversals toghether. In fact, it guarantees (except for
its nested blocks) that the input sentence is traversed only once.
However, we may still notice, from the definition ofh4,

h4 (((lev , its), errs2), env)

= let errs1

= missingdecls ◦ (duplicatedecls (lev , env)) $ its

in errs1 ++ errs2

that multiple traversals still occur in the calculated program, as well
as the production of intermediate structures. So, there is still an op-
portunity to introduce a circularity in the program. In fact, func-
tions missingdecls andduplicatedecls have already been written
in terms of pfold and buildp. We may, then, directly apply Law 4.1
to such composition. We get a circular definition forh4:

h4 (((lev , its), errs2), env)

= let (errs1, env ′) = g (lev , env) k its

ki x = hi (x , env ′)

in errs1 ++ errs2

The introduction of this circularity eliminates the construction of
the intermediate structure that was produced when a nested block
was assigned the desired semantics. It guarantees that nested blocks
are traversed only once, too.

As a consequence, the calculated circular program performs a
single traversal and no gluing data structure is constructed.

We may now say that, in the circular version of the program that
assigns semantics to block sentences (calculated using our rule),
each sentence is traversed only once and no gluing intermediate
data structure is constructed.

7. Conclusions
In this paper we have presented a new program transformation tech-
nique for intermediate structure elimination. The programs we are

able of dealing with consist in the composition of a producer and a
consumer functions. The producer constructs an intermediate struc-
ture that is later traversed by the consumer. Furthermore, we allow
the producer to compute additional values that may be needed by
the consumer. This kind of compositions is general enough to deal
with a wide number of practical examples. Our approach is calcula-
tional, and proceeds in two steps: we apply standard deforestation
methods to obtain intermediate structure-free programs and we in-
troduce circular definitions to avoid multiple traversals that are in-
troduced by deforestation. Since that, in the first step, we apply
standard fusion techniques, the expressive power of our rule is then
bound by deforestation.

We introduce a new calculational rule conceived using a simi-
lar approach to the one used in thefold/build rule: our rule is also
based on parametricity properties of the functions involved. There-
fore, it has the same benefits and drawbacks offold/buildsince it as-
sumes that the functions involved are instances of specific program
schemes. Therefore, it could be used, likefold/build, in the con-
text of a compiler. In fact, we have used the rewrite rules (RULES
pragma) of the Glasgow Haskell Compiler (GHC) in order to obtain
a prototype implementation of our fusion rule.

According to Danielsson et al. (2006), the calculation rule we
present in this paper is morally correctonly, in Haskell. In fact,
in the formal proof of our rule, surjective pairing (Law (4)) is
applied twice to the result of functiong . However, (4) is not valid in
Haskell: though it holds for defined values, it fails when the result
of functiong is undefined, because⊥ is different from(⊥,⊥) as a
consequence of lifted products. Therefore, (4) is morally correct
only and, in the same sense, so is our rule. We may, however,
argue that, for all cases with practical interest (the ones for which
function g produces defined results), our rule directly applies in
Haskell. Furthermore, due to the presence ofseq in Haskell, further
strictness pre-conditions may need to be defined in our rule in order
to guarantee its correctness in Haskell (Johann and Voigtländer
2004).

The rule that we propose is easy to apply: in this paper, we have
presented three examples that show that our rule is effective in its
aim. The calculation of circular programs may be understood as
an intermediate stage: the circular programs we calculate may be
further transformed into very efficient, completely data structure
free programs.
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Henriques, and José Oliveira, editors,Third Summer School
on Advanced Functional Programming, volume 1608 ofLNCS,
pages 1–27, September 1998.

R. Bird. Introduction to Functional Programming using Haskell,
2nd edition. Prentice-Hall, UK, 1998.

Richard S. Bird. Using circular programs to eliminate multiple
traversals of data.Acta Inf, 21:239–250, 1984.

R.S. Bird and O. de Moor.Algebra of Programming. Prentice Hall,
UK, 1997.

R. Cockett and T. Fukushima. About Charity. Technical Report
92/480/18, University of Calgary, June 1992.

R. Cockett and D. Spencer. Strong Categorical Datatypes I. In
R.A.C. Seely, editor,International Meeting on Category Theory
1991,volume 13 ofCanadian Mathematical Society Conference



Proceedings, pages 141–169, 1991.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. Fast and loose reasoning is morally correct. In
POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 206–217, New York, NY, USA, 2006. ACM Press.

Olivier Danvy and Mayer Goldberg. There and back again. InICFP
’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 230–234, New
York, NY, USA, 2002. ACM Press.

Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-
class attribute grammars.Informatica (Slovenia), 24(3), 2000.

Oege de Moor, Simon Peyton-Jones, and Eric Van Wyk. Aspect-
oriented compilers.Lecture Notes in Computer Science, 1799,
2000.

Atze Dijkstra. Stepping through Haskell. PhD thesis, Depart-
ment of Computer Science, Utrecht University, The Netherlands,
November 2005.

Atze Dijkstra and Doaitse Swierstra. Typing haskell with an at-
tribute grammar (part i). Technical Report UU-CS-2004-037,
Institute of Information and Computing Sciences, Utrecht Uni-
versity, 2004.
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