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1. INTRODUCTION

We start working in this field, simulating the behavior of ncural networks at Perkell’s laboratory at Stanford,
where we developed a model of a sct of four inhibitory neurons from the stomatogastric ganglion of the spiny
Iobster [1]. This model takes into account the established propertics of cach ncuron and ils synapscs.
Working in this project, we realized that many sensible networks reproduced the experimental results.
Furthermore, this four neurons fired in bursts that phasc-lock with difforent phascs relationships, for
parameters varying in a wide range. This result suggests us that a given gencral network may produce only a
limited set of patterns of firing. If that is the case, a theorctical approach may produce general results

At that time, there were not attempts to study theorctically the dynamics of realistic neural networks.
Nevertheless, there were some preliminary results in a close related system: the cardiac pacemaker [2]. The
behavior of both, the sinusal node and a network of identical excitatory neurons, coupled to cach other, is
xactly the same. Ho conjectures that, after a transient, all the cells of such a system firc synchronously. He
also proved this conjecture, for a network of two cells.

Later, a serics of papers contribute to give a general description of the behavior of networks composed by
two simple ncuron modls [3, 4, S, 6, 7. In this paper, we summarize our main results (including some
unpublished oncs), doscribing the behavior of networks composed by two pacemaker neurons (either
excitatory or inhibitory) and three or morg inhibitory neurons.

2. PROCESSING METHODS

Two functions wore introduced to describe the effect on pacemaker neurons of input perturbations (psps,
short stimuli, etc.) preciscly located in tim: the delay function (DF) [8] and the Phase Transition Curve
(PTC) [9]. If the psp modifies only the post-synaptic interval in which it oceurs and not the following oncs,
both functions completely describe the dynamical behavior of the ncuron. Conscquently, they ar: cquivalent

cach one can be calculated from the other [10, 11]. The DF represents the delay (the difference between the
intorval where the input occurs and the spontancous, not perturbed. cycle duration, d~ I-N), as a function of
the phas (the interval between the input and the previous spike, ). The PTC is the relationship between the
phase () and the differcnce betweon the spontancous inter-spike interval and the cophase (the time from the
psp to the following spike, v). In this paper, we use the DF to defin our modls

Authors benefit from the caloulation of the Poincaré map 12] to understand the behavior of neural systems,

To define a Poincaré map we have to defing first a manifold transversal to the interesting trajectories. The
function relating a given picrcing of such a section with the next onc is called Poincaré map. The usc of
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figure 1. Processing of the dala. The timing of discharge of a newon is pltied. A vertcal arrow indicates the tine ut which
PSP oceurs. The spontancous (N) and perturbed (1) intervals as well us the phase (4) and cophase () re indicuted

Poincaré maps can be casily extonded o the general case of two neurons networks. Tn this case. the
successive intervals from the discharge of a given neuron and the previous spike of the other one are the
values to be plotted. For the study of three neurons networks, the Poincaré section in this case will be &
surface, as we wil sce latcr. Poincaré maps inform about trajcctory tcndencies, revealing system propetics,
as for example, attractor ypc, dimensionality, periodicity and chaos. Furthermore, in our cas it clarificd
puzzling featurcs of periodically forced non lincar oscillators [9]. For n neurons, the system evolyes in a n-
dymensional manifold. In this case, the Poincaré scction is a (n-1)-dimension manifold, transversal to the
trajectorics

3. THE MODELS

I this paper we will consider two typos of neural models, classically called integrate and fire and leaky
integrator [13). Both arc relaxation oscillators: in the first, the internal variable (potcnial) cvolves lincarly
with time, and in the sccond, the slope of the polential s a decrcasing function (usually linear) of the
potential. When the potential reaches a given threshold value (thereafter equal o onc, by convenience) the
neuron produces an action potential. Leaky integrator models can be considercd a realistic. (although
simplificd ) model of actual ncurans and a particular case of the spike response model [14],

NETWORK COMPOSED BY TWO INTEGRATE AND FIRE MODELS OF NEURON. Allen [3] studied the behavior
of a network of two excitatory neurons, modclcd by integrate and fire oscillators and with the cpsp consisting
in a short pulsc. Allen’s paper extends Peskin's results to networks of two neuron with difforent parameters
and basal ficquency. He proved that this systom always phase locks.. Allen also proved that the phase locking
regions in the space of parameters arc ordored according to the Farey's scrics. But, these results are restricted
to excilatory interactions: obviously, a hyperpolarizing pulse will have non effect in the system just presented
‘We [4] extend this results, considering psps consisting in steps (sudden changes in the potcntial). In this way,
we may introduce also inhibition, depending on the sign of the step. The Poincaré map of a network
composed by two inhibitory neurons will correspond also to a rotation, and conscquently it presents quasi-
periodicity. When at lcast onc of the neurons 15 excitatory, using the same general argumcnt Lo b presented
in the next section, we conclude that the network will phasc-lock for almost all set of paramctcrs. Contrasting
with Allen’s [3] results, phase-locking relationships, where onc of the numbers is multiple of the other,
appear (e 42),
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the simplest neuronal madel. but they are not quite realistic: they do not phasc-lock with a periodic mput [15,
Budclli and Pérez, in preparation] and their behavior is unstable when small changos ar introduced [16].
Therfore, we decided to study a more realistic situation: the behavior of two pacemakers, simulated by leaky
integrators [13), reciprocally connected by synapses The offect of cach synapse is a sudden chang in the
potential of the post-synaptic neuron. In this casc, we make an approach from two fronts. From one side, we
simulate, by computation, the behavior of a system composed by leaky integrator [7]. From the other. we
develop a theoretical study of a network composed by more general models of relaxation oscillators [6], In
this model: 1) the ratc of variation of the potential is a decreasing function of the potential (not necessarily
lincar, as in the classical leaky integrator), and 2) the absolute value of the sudden change, corresponding to
the psp, is a ot increasing function of the voltage.

For the casc of a network composed by an inhibitory and an excitatory ncuron, trajectorics in the space of the
phascs (v = (V; V) are plotted in the unitary (0, 1)- (0, 1)) squarc from Fig. 2. We may transform this
square in a torus, but then, trajectorics result discontinuous, since when they reach the upper (right) border
(@ Va=dor V; = b), they continuc from the lower (left) border (at Vi = ¢ of Vi, = c), with a different valuc
of Va (Vy). We were ablc to dofine a dynamical system with the same behavior with trajectorics cvolving in
the larger square in Fig. 2. This system has the same trajoctorics of the other inside the unitary squarc and are
prolonged in the added region so they reach the borders at the same level they emerge from the opposite side:
Several technical lemmas [6). necessary to prove this result, arc not prosented here. If the trajectory reaches
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Fig. 2 Tajectories of a two neutons networks. Neuron A is excitulory und 4 is ihibitory
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of the ncuron B and the trajectory continues from the origin. Any trajcctory will evolve continuously in the
torus until, cventually, it intersects this segment. Continuos trajectorics in the

torus ither tend Lo a limit cycle or present quasi-periodicily. I the limit cycle does not iniersect the
synchronization segment, phase locking without synchronic firing of the neurons appears. If the trajectory
starting in the origin interscets the synchronization scgment, phase locking with simultancous firing appears
If the continuos system presents quasiperiodicity the last behavior necessary occurs. When one of the
synapses is excitatory and (h other inhibitory both behaviors (phase locking with and without sintancous
firing) may occur, as shown by simulation [7). When both synapscs are excitatory, the previous argument
holds, but phasc locking without simultancous firing does not occur. When both synapscs arc inhibitory, we
prove that the systom phase-locks without simultancous firing. We also proved that a non trivial compact st
attracting all the orbits may cxist for some parameters. Nevertheless, based in Keener's [17] results, we
conclude that for leaky integrators phasc-locking occurs for almost all sot of parameters. The proof of this
result, in a more gencral cas, is prosented in the next section

NETWORKS COMPOSED BY MOKE THAN TWO INHIRITORY NEukoxs. The behavior of a given model
depends only in the DFs of the different synapses: diffrent models have the same behavior if they have the
same structurc (ncurons and synapses) and the DF produccd by every synapse is the same. Therefors, for any
network we may definc an cquivalent one composed by intcgratc and fire neurons wherc all the complexitics
of the DF are goncrated by the synapse. The rule to defing the characteristics of the synapsc (a sudden change
in potential) s very casy: being p the slope of the intcgrate and fire system, the amplitudc of the change of
‘potential (s) as a funtion of the phase is given by s — p - DF().

Then, o study the behavior of a network composcd by thre, or more, ihibitory ncurons, we simulate their
behavior by integrate and fire oscilators whore the post synaptic potential (s) is an increasing function of the
phase. In this model the trajoctorics in the space of the phascs (v ~ (V, Va, ... , Vi) are paraliel straight
lines in an hiperoube. When some voltage reaches the threshold (Vy = 1), this value resets to zcro and all the.
voltages of the other neurons are suddenly modified in an amount s (depending on the particular synapse and
the phase of the post-synaptic neuron, ). An example of trajectory is shown in Fig 3 top-lefl, for 4 three
neurons network. Although, all the arguments are valid for any number of neurons, from now on, we will
fefer to three ncurons nctworks, since this is the more gencral case we are able to present in a figur. Tnstea
of looking the trajectorics from a arbitrary point of view, we look them from the direction of the trajectori
Then, the trajectorics projoct to points and the uniquc visible movement is that produced by the firing of
neuron and its synaptic offect on the others (Fig 3. top-canter). Then we may define a Poincaré map as the
relationship between onc of these constant points, reprosenting a picce of trajectory between firings, and the
next one. We definc the distance between trajectorics as the distances between these constant points

Consider now the: bunch of all the trajectories, starting from the hidden faces of the cube (V; — 0, for some T)

After a first discharge of any of the neurons the trajectorics separate in three bunches, duc to the synaptic
effect (Fig, 3, top-right). In cach of them, since s is an incrcasing function of f, the distances between
trajectorics diminish. Each one of these bunches move from the fice (Vi = 1) to the opposite onc (V, ~ 0, Fig,

3. bottom-left and bottom conter). From there, it continucs s trajectory and eventually it intcrscets some
adge of the cube: Vi =1 and Vy = 1 (1% J). When this occurs this set of trajectorics split again. But, we prove
that, sinee the total size of these parts decreases afler cach firing, the number of intersctions with the cdges
i5 finite for almost any set of parameters (Budelli and Rovella, in preparation). Conscquently, the trajectories
split out in a finite number of bunches. Fig. 3, bottom-right. represents the original position of cach one of
themn Trajuctorios starting in some of thesc regions (for example 1 in the figure) must go to some of th other
tegions (for example 2) and so on. Sinc the mumber of regions is finite in some iteration the bunch must fall





[image: image6.jpg]Fig. 3. Trajoctories for a three inhibitory neurons netwarks. Top-lefl: trjectories seen from u geneic point of view. Small
nunbers identifics points in not. seen faces and large one in secn fisces. Top center trajectories seen from the dircction of e
irajectorics, so. inside Ihe cube Uhey ure e s points. Top-ight. the Uree bundles in which trajectorics separate afer the first
discharge, die o the post-synaptic effcet: Bottom-lel: e movement dus (o the reset of the firing neuron and the new starting
position of a given bundie. oftom-center: the starting. position of the three bundics. Boltom-right. the stuting ¢gions of each
bundle: nunbers identified suceessive projection regions for the bundle starting in region |

in an already visited region: in the cxample of the figure in the fifth itcration the trajectones g0 again ©
rogion 2. Then, irajectorics visit the region 1 at most once and regions 2, 3, 4, and 5 after every fourth
iteration of the Poincaré map, Since this map is a contraction the mp going from region 2 to region 2 is also
a contraction and then it has an unique fixed point. Consequently, all the trajestorics tend to a limit eycle: the
network phase lock for almost all set of parameters,

4 DISCUSSION
Peskin [2] starts the theoretical study of nctworks of pacemaker calls (miocytes in this case) proving that a
two identical excitatory calls nctwork phase locks with simultancous firing. Morcover, he conjectures that
networks of more than two cells also phasc lock with simultancous firing of all the pacemakers. Mirollo and
Strogatz (1990) proved Peskin's conjecturc: afler a short transicnt all the oscillators fire synchronically. They
also showed, by simulation, that the transicnt is quite short, cven for weakly coupled oscillators.

Allen [3] extends the theoretical study to networks of neurons. He proves that a nctwork, compased by
integrate and fire models of neurons, coupled by very short EPSPs, also phase locks. In this casc the neurons
can b quite different and the limit cyele includes simultancous firing of the neurons. We [4. 6. 7] extend this
study 1o two neurons network when the PSPs are very long (simulatcd by steps) and the neuron model 15
cither an iniegrate and firc oscillator or a leaky intcgrator. In this case we may consider also mhibitory





[image: image7.jpg]syniapses. We proved tha, except for inhibitory neurons simulated by integrate and fire oscillators (where
quasi-periodicity occurs) the network phasc locks for almost all set of parameters

The papers just reviewed [2. 3, 4, 5, 6, 7] provide a gencral landscape of the behavior of networks composed
by (w0 neurons simulatcd by relaxation oscillators, with simple synaptic interactions. In these cases, there is
nol chaos. But, actual synaplic actions are not so sumple and the possibility of oceurrence of chaos can not be
discarded. DFs and, consequantly, Poincaré maps are morc complox. than in the presented models. In the
case of a long PSP, with large risc time, chaos appears [Bove, Budelli and Saa, in preparation]. Later, we
[Rovella and Budelli, in preparation] proved that inhibitory networks phasc lock for almost any sct of
parameters. On the other hand. the behavior of networks containing excitatory neurons is still an open
problem
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