Deducción Natural en los Lenguajes de Primer Orden

Deducción Natural

- Definimos inductivamente el conjunto DER_P de las derivaciones de la lógica de predicados.
- Caso base: derivación trivial (idem PROP)
- Para los conectivos: las mismas reglas de introducción y eliminación que en PROP
- Para los cuantificadores (∀ y ∃) se agregan reglas de introducción y eliminación

Predicados - Deducción Natural

Cómo probar un para todo?

$$H)\;\delta_1\;...\delta_n$$

T) Para todo x vale α

Dem

•Sea x arbitrario (no se puede suponer nada sobre x)

Probamos α

(usamos...
$$\delta_1 \dots \delta_n \dots$$
)

Luego, α se cumple para todo x

$$\begin{array}{ccc}
\delta_{1.} \dots \delta_{n} \\
\dots \\
\alpha \\
\hline
(\forall x) \alpha
\end{array}$$
(**)

(**) La noción de x arbitrario se expresa sintácticamente por: x no ocurre libre en las hipótesis no canceladas de δ_1 ... δ_n

α

Predicados - Deducción Natural

3

Cómo utilizar un para todo?

H)
$$\delta_1 ... \delta_n$$

T) t tiene la propiedad α

<u>Dem</u>

•Probamos que para todo x vale α .

Luego, en particular, α vale para t.

$$\frac{\delta_{1} \dots \delta_{n}}{(\forall x) \alpha}$$

$$\frac{(\forall x) \alpha}{\alpha [t/x]} (E_{\forall}) (*)$$

(*) Para poder realizar la sustitución: t debe estar libre para x en α

Predicados - Deducción Natural

Cómo probar un existe?

- $H)\;\delta_1\;...\delta_n$
- T) Existe un x para el cual se cumple α

Dem

- Probamos que α vale para t

 $(usamos...\ \delta_1\ ...\ \delta_n\ ...\)$

Luego, existe un x para el cual vale α .

$$\delta_{1.} \dots \delta_{n}$$

$$\dots$$

$$\alpha[t/x]$$

$$\alpha[t/x]$$

$$\alpha[t/x]$$

(*) Para poder realizar la sustitución: t debe estar libre para x en α

Predicados - Deducción Natural

5

Cómo utilizar un existe?

- H) δ_1 δ_n , $(\exists x)\alpha$
- T) β

<u>Dem</u>

•Probamos β . (usamos.. δ_1 .. δ_n .. y α para un x arbitrario)

Luego B

- $\begin{array}{ccc} & \delta_1 \dots \delta_n \alpha(x) \\ & \dots \\ (\exists x) \alpha & \beta \\ \hline & \beta & {}^{(E_{\exists})(**)} \end{array}$
- (**) el único supuesto que se asume sobre x en la prueba es que se cumple $\alpha(x)$.

Esto se expresa como: x no ocurre libre ni en δ_1 δ_n ni en β

Predicados - Deducción Natural

Derivaciones - DER_P

Def [DER_P]

El conjunto DER_P de las derivaciones de la lógica de predicados se define inductivamente como sigue:

HIP) Si $\phi \in FORM$ entonces $\phi \in DER_P$

$$A_{I}$$
) Si $\phi \in DER_{P}$ y $\psi \in DER_{P}$ entonces $\phi \psi \in DER_{P}$

 (\land_{E1}) (\land_{E2}) (\lor_{I1}) (\lor_{I2}) (\lor_{E}) (\to_{I}) (\to_{E}) (\to_{I}) (\to_{I}) (\leftrightarrow_{E1}) (\leftrightarrow_{E2}) (\to_{E1}) (RAA) se definen de la misma forma que para DER en lógica proposicional.

Predicados - Deducción Natural

7

$Der_p: \forall$

$$\forall_{\mathbf{l}}$$
) Si $\overset{D}{\downarrow_{\phi}} \in \mathsf{DER}_{\mathsf{P}} \ \mathsf{y} \ \mathsf{x} \notin \mathsf{FV}(\mathsf{H}(\mathsf{D})), \ \mathsf{entonces} \ \frac{\overset{D}{\downarrow_{\phi}}}{(\forall \mathsf{x})_{\phi}} \in \mathsf{DER}_{\mathsf{P}}$

$$\forall_{E}$$
) Si $(\forall x)\phi$ \in DER_P y t está libre para x en ϕ , entonces

$$\frac{D}{(\forall x)\phi} \in \mathsf{DER}_{\mathsf{F}}$$

Predicados - Deducción Natural

$$\exists_i$$
) Si $\phi = DER_P y t \text{ está libre para } x \text{ en } \phi$, entonces

$$\frac{D}{\phi[t/x]} \in \mathsf{DER}_{\mathsf{P}}$$

$$\exists_{E}$$
) Si $D \in DER_{P}$ y $D \in DER_{P}$ tales que:

$$x \notin FV(H(D')-\{\phi\}) \cup FV(\Psi)$$
, entonces _(3

D $\exists x)\phi$ Ψ $\in DER$

Predicados - Deducción Natural

9

Consecuencia Sintáctica

Def [consecuencia sintáctica]

Sea $\Gamma \subseteq FORM$ y $\varphi \in FORM$. Decimos que φ es consecuencia sintáctica de Γ o que φ se deriva de Γ ssi existe $D \in DER_P$ tal que :

$$C(D) = \phi y$$

 $H(D) \subseteq \Gamma$

Notación:

 Γ |- ϕ se lee " ϕ se deriva de Γ "

 \emptyset |- ϕ se lee " ϕ es teorema"; se escribe |- ϕ

Predicados - Deducción Natural

Ejemplos

$$|-(\forall x_1)(\forall x_2) \alpha \rightarrow (\forall x_2)(\forall x_1) \alpha$$

$$|-(\exists x_1)(\exists x_2) \alpha \rightarrow (\exists x_2)(\exists x_1) \alpha$$

$$|-(\forall x_1)(\alpha \land \beta) \rightarrow (\forall x_1)\alpha \land (\forall x_1)\beta$$

$$|-(\exists x_1)(\alpha \lor \beta) \rightarrow (\exists x_1)\alpha \lor (\exists x_1)\beta$$

$$|-(\forall x)(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow (\exists x)\beta)$$

$$|-(\forall x)(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow (\forall x)\beta), \text{ si } x \notin FV(\alpha)$$

Predicados - Deducción Natural

11

Restricciones sobre las variables

Porqué las restricciones en las reglas de \forall y \exists ?

- Sin las restricciones, las reglas permiten construir derivaciones que corresponden a razonamientos incorrectos.
- Ejemplos:

$$|-\underline{c}_1 = '\underline{c}_1 \rightarrow (\forall x) x = '\underline{c}_1$$
$$|-(\forall x) \neg (\forall y) x = 'y \rightarrow \neg (\forall y) y = 'y$$

Predicados - Deducción Natural

Propiedades de los cuantificadores

Lema [propiedades de derivabilidad del \forall]

- Si $\Gamma \mid -\phi$ y $x \notin FV(\Gamma)$ entonces $\Gamma \mid -(\forall x) \phi$
- Si $\Gamma | (\forall x) \varphi y$ t libre para x en φ , entonces $\Gamma | \varphi [t/x]$

<u>Lema</u> [propiedades de derivabilidad del ∃]

- Si t es libre para x en φ entonces $\varphi[t/x] | (\exists x)\varphi$
- Si $x \notin FV(\psi) \cup FV(\Gamma)$ entonces, si Γ , $\varphi \models \psi$ luego Γ , $(\exists x)\varphi \models \psi$

Predicados - Deducción Natural

13

$\varphi(\tilde{a}), \Gamma(\tilde{a})$

Para poder probar consistencia, debemos extender la definición de |= a todo FORM:

 \underline{Def} [ã, $\Gamma(\tilde{a})$]

Sean
$$\Gamma \subseteq FORM$$
, $\varphi \in FORM$ $y \{x_{i1}, x_{i2},\} = \bigcup_{\alpha \in \Gamma \cup \{\varphi\}} FV(\alpha)$

Sea M una estructura.

Si \tilde{a} es una secuencia $(a_1, a_2, ...)$ de elementos de $|\mathbf{M}|$ (eventualmente repetidos), entonces $\Gamma(\tilde{a})$ y $\varphi(\tilde{a})$ se obtienen de Γ y φ sustituyendo simultáneamente en todas las fórmulas de Γ y en φ los x_{ij} por los a_i $(j \ge 1)$

(→ observar que pueden ser infinitos)

Predicados - Deducción Natural

$$M \models \Gamma(\tilde{a}) - \Gamma \models \varphi$$

Intuitivamente, $\Gamma \models \varphi$ vale sólo si, para todas las estructuras M y todas las posibles asignaciones \tilde{a} (en |M|) de valores a las variables libres de Γ y de φ , se verifica que: si las hipótesis en $\Gamma(\tilde{a})$ son ciertas, entonces también es cierta $\varphi(\tilde{a})$

<u>Def</u> 2.8.1 [M |= $\Gamma(\tilde{a})$ y Γ |= φ]

- i) $M = \Gamma(\tilde{a})$ si para todo $\alpha \in \Gamma(\tilde{a})$ se cumple $M = \alpha$
- ii) $\Gamma = \varphi$ ssi

para toda estructura M y para toda secuencia \tilde{a} en |M|, si $M = \Gamma(\tilde{a})$ entonces $M = \varphi(\tilde{a})$

Obs: Esta definición generaliza la definición 2.2.4. Que se aplica sólo si $\Gamma \subseteq SENT$ y $\phi \in SENT$.

Predicados - Deducción Natural

15

Corrección de DER_P

Lema 2.8.2 [corrección de DER_P]

Si
$$\Gamma$$
 |- ϕ entonces Γ |= ϕ

Aplicaciones

Demostrar que:

$$\not\leftarrow (\forall x) (\exists y) \phi \rightarrow (\exists y) (\forall x) \phi$$

$$(\forall x) P(x,x), (\forall yx) (P(x,y) \to P(y,x))$$

$$\swarrow (\forall xyz) (P(x,y) \land P(y,z) \to P(x,z))$$

Predicados - Deducción Natural