Completitud en Lógica de Predicados

Lógica

Predicados - Completitud

Corrección

- $\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$
- Significa que las derivaciones expresan una consecuencia lógica.
- Establece una correspondencia tal que partiendo de nociones sintácticas (derivaciones) se llega a nociones semánticas (los modelos de Γ son modelos de ϕ)
- Se demuestra por inducción sobre Der.

Lógica

Predicados - Completitud

Corolario de Corrección: Condición Suficiente de Consistencia.

H) Γ tiene modelo ($\bar{\exists}M:M\models \Gamma$)

T) Γ es consistente.

Dem.

- Si en el teorema de corrección se considera $\varphi \equiv \bot$ obtenemos:
- $\Gamma \vdash \bot \Rightarrow \Gamma \models \varphi$
- Lo que se puede leer como: Si Γ es inconsistente, entonces Γ no tiene modelo.
- El contrarecíproco de esto es lo que se quería demostrar.

LQQD

Lógica Predicados - Completitud

Completitud

- $\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$
- Significa que si una fórmula es consecuencia lógica de un conjunto de fórmulas, entonces hay una derivación con hipótesis en el conjunto y cuya conclusión es la fórmula.
- Establece una correspondencia que partiendo de nociones semánticas permite llegar a nociones sintácticas.

Lógica

Predicados - Completitud

Completitud para PROP

1. Γ consistente \Rightarrow existe Γ^* consistente maximal tal que Γ $\subseteq \Gamma^*$

Resultados Auxilares:

- $\Gamma CM \Rightarrow \text{para toda } \phi \in PROP: \phi \in \Gamma \text{ o bien } \neg \phi \in \Gamma$
- Γ CM \Rightarrow para toda φ , $\psi \in PROP$: $\varphi \rightarrow \psi \in \Gamma$ ssi (si $\varphi \in \Gamma$ entonces $\psi \in \Gamma$)
- 2. Γ consistente \Rightarrow existe v tal que $v(\Gamma) = 1$
- 3. Corolario: $\Gamma \mid \phi \Rightarrow \Gamma \mid = \phi$
- 4. Teorema de Completitud: $\Gamma \models \phi \Rightarrow \Gamma \mid \phi$

Lógica

Predicados - Completitu

5

Prueba para PROP

• Γ consistente \Rightarrow existe Γ * consistente maximal tal que

$$\Gamma \subseteq \Gamma^*$$

$$\begin{split} &\text{Enumeramos PROP: } \phi_1, ... \ \phi_n, ... \\ &\Gamma_0 = \Gamma \\ &\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\phi_n\} & \text{si } \Gamma_n \cup \{\phi_n\} \text{ consistente} \\ \Gamma_n & \text{si no} \end{cases} \\ &\Gamma^* = \bigcup \Gamma_n \end{split}$$

- Γ consistente \Rightarrow existe v tal que $v(\Gamma) = 1$
 - Tomamos Γ^* CM tal que $\Gamma \subseteq \Gamma$
 - Definimos $v(p_i) = \begin{cases} 1 & \text{si } p_i \in \Gamma \\ 0 & \text{si no} \end{cases}$
 - Probamos $v(\Gamma^*) = 1$
 - Como $\Gamma \subseteq \Gamma^*$ luego $v(\Gamma) = 1$

Lógica

Predicados - Completitud

Completitud para Predicados

- $\Gamma \mid = \phi \Rightarrow \Gamma \mid \phi$
 - $\ \Gamma \mid = \phi \Leftrightarrow (\underline{\forall} M : M | = \Gamma : M | = \phi)$
 - $\ \Gamma \mid \phi \Leftrightarrow (\underline{\exists} \ D : D {\in} \operatorname{Der}_{_{D}} : H(D) \underline{\subset} \Gamma \ y \ C(D) {=} \phi)$
- El lema básico en esto es:
 - $-\Gamma$ consistente \Rightarrow existe **M** tal que **M** \models Γ
 - Para demostrarlo se construye un modelo.
 - Para construir el modelo se necesita trabajar sobre una teoría Consistente Maximal que incluya a Γ

Lógica Predicados - Completitud

Pero antes, deducción natural

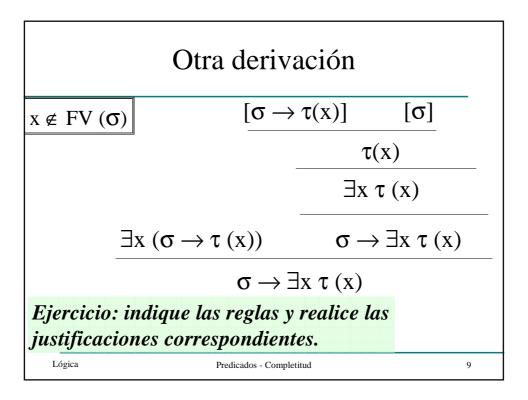
$$\frac{\forall x \ (\sigma \ (x) \to \tau)}{\sigma \ (x) \to \tau} \xrightarrow{(E \forall *) \\ (E \to)}$$

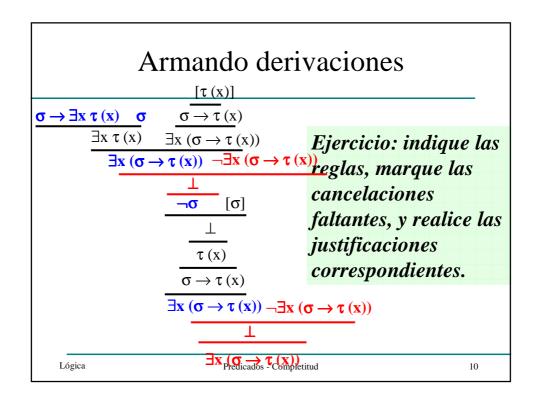
$$\frac{[\exists x \ \sigma \ (x)]^1}{\tau} \qquad \tau \qquad (E \to)^2$$

$$\frac{\tau}{\exists x \ \sigma \ (x) \to \tau} \qquad (I \to 1)$$

* Correcta, porque x está libre para x en $\sigma(x) \rightarrow \tau$

** Correcta, porque $x \notin FV (\forall x (\sigma(x) \rightarrow \tau)) \ y \ x \notin FV (\tau)$





Armando derivaciones $y \notin FV(\tau)$

$$\frac{[\tau(x)]}{\exists x \, \tau(x) \to \tau(x)}$$

$$\frac{\exists x \, \tau(x) \to \tau(x)}{\exists y \, (\exists x \, \tau(x) \to \tau(y))}$$

$$\frac{\exists y \, (\exists x \, \tau(x) \to \tau(y))}{\exists x \, \tau(x)}$$

$$\frac{\bot}{\tau(y)}$$

$$\frac{\exists x \, \tau(x) \to \tau(y)}{\exists x \, \tau(x) \to \tau(y)}$$

$$\frac{\exists y \, (\exists x \, \tau(x) \to \tau(y))}{\exists y \, (\exists x \, \tau(x) \to \tau(y))}$$

Ejercicio: indique las reglas, marque las cancelaciones faltantes, realice las justificaciones correspondientes, y complete la prueba con las reglas que faltan.

Lógica Predicados - Completitud

Lemas sobre derivaciones (1)

- <u>Lema</u> 2.8.4 [variables libres y constantes]
- Sea y una variable que no ocurre en Γ ni en φ .
 - Si Γ |- $\,\phi\,$ entonces $\Gamma[y/c]$ |- $\,\phi[y/c]$
 - ¡Cuidado! [y/c] no es la función de sustitución que conocemos.
 - El lema se demuestra mediante induccion en las derivaciones

Lemas sobre derivaciones (2)

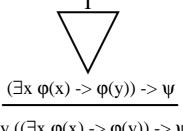
- Lema
- Sea c una constante que no aparece en Γ ni en ψ ni en φ .
 - Si Γ , $\exists x \phi(x) \rightarrow \phi(c) \mid \psi$ entonces $\Gamma \mid \psi$
- Dem.
 - 1. $\Gamma \mid -(\exists x \ \varphi(x) \rightarrow \varphi(c)) \rightarrow \psi$
 - 2. $\Gamma \mid -(\exists x \ \phi(x) \rightarrow \phi(y)) \rightarrow \psi$, con y que no aparece en Γ ni en ψ ni en ϕ (Lema 2.8.4)
 - 3. ...

Lógica Predicados - Completitud

Lemas sobre derivaciones (2)

 $\exists x \ \phi(x) \rightarrow \exists y \ \phi(y)$

- 1. pruebe que es una derivación correcta
- 2. pruebe que es teorema
- 3. verifique que ya vimos esto



$$\frac{\forall y ((\exists x \phi(x) -> \phi(y)) -> \psi)}{\exists y (\exists x \phi(x) -> \phi(y)) -> \psi}$$

 $(\exists x \ \phi(x) \rightarrow \exists y \ \phi(y)) \rightarrow \exists y \ (\exists x \ \phi(x) \rightarrow \phi(y))$ 4. arme todo

Lógica

Predicados - Completitud

Lemas sobre derivaciones (2) Version 1.2b

1. pruebe que es una derivación correcta

2. verifique que ya vimos esto

$$\exists y \ (\exists x \ \phi(x) \rightarrow \phi(y))$$

 $(\exists x \ \phi(x) \rightarrow \phi(y)) \rightarrow \psi$

$$\frac{\forall y ((\exists x \ \phi(x) \rightarrow \phi(y)) \rightarrow \psi)}{\exists y (\exists x \ \phi(x) \rightarrow \phi(y)) \rightarrow \psi}$$

3. arme todo

Lógica Predicados - Completitud 15

Completitud para PROP

- 1. Γ consistente \Rightarrow existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$
- 2. Γ consistente \Rightarrow existe v tal que $v(\Gamma) = 1$
- 3. Corolario: $\Gamma \not\models \phi \Rightarrow \Gamma \not\models \phi$
- 4. Teorema de Completitud: $\Gamma \models \phi \Rightarrow \Gamma \vdash \phi$

Lógica

Predicados - Completitud

Completitud para Predicados

- T teoria consistente ⇒ existe Tm consistente maximal tal que T ⊆ Tm (extension conservativa)
- 2.) Γ consistente \Rightarrow existe M tal que M $\models \Gamma$
- 3. Corolario: $\Gamma \not\vdash \varphi \Rightarrow \Gamma \not\models \varphi$
- 4. Teorema de Completitud: $\Gamma \models \phi \Rightarrow \Gamma \mid \phi$

Lógica Predicados - Completitud 1

Teorías

Notación: Cons(Γ) = { $\varphi \mid \Gamma \mid -\varphi$ }

<u>Def</u> 3.1.2 [teoria, conjunto de axiomas]

- Un conjunto T ⊆ SENT es una teoría si es cerrado bajo derivación (es decir, T |- φ ⇒ φ ∈ T)
- Dada una teoría T, decimos que Γ es un conjunto de axiomas para T si T= Cons(Γ)

Def 3.1.3 [extensión, extensión conservativa] Sean T una teoría en el lenguaje L y T' una teoría en L'. T' es una extensión de T si $T \subseteq T'$

T' es una extensión conservativa de T si T'∩L=T

Teorías de Henkin

<u>Def</u> 3.1.2 (iii) [teoría de Henkin]

• Una teoría T es de Henkin si para toda sentencia $\exists x \phi \in SENT$ existe un símbolo de constante c tal que $\exists x \phi \rightarrow \phi[c/x] \in T$. c se llama testigo de $\exists x \phi$.

<u>Lema</u> 3.1.8 [ser de Henkin se preserva en extensiones]

- Si T es una teoría de Henkin y T' es una extensión de T, en el mismo lenguaje, entonces T' es de Henkin.
 - Como no se cambia el lenguaje, no aparecen nuevos existenciales, y no preciso incorporar nuevos testigos

Lógica Predicados - Completitud 19

Operador *

Def 3.1.4 [L*, T*]

- Sea T una teoría con lenguaje L.
- L* es la extensión de L que se obtiene agregando un símbolo c para cada sentencia $\exists x \ \phi(x) \in L$.
- $T^* = Cons(T \cup \{\exists x \phi(x) \rightarrow \phi(c) \mid \exists x \phi(x) \in SENT \text{ con testigo } c \})$

Completitud: Paso 1

- T teoría consistente \Rightarrow existe T_m consistente maximal tal que $T \subseteq T_m$ (extensión conservativa)
 - T* conservativa con respecto a T con idea de ser de Henkin (pero no se sabe si llega a serlo).
 - T_w conservativa con respecto a T y de Henkin
 - $-\ T_{\rm m}$ De Henkin, Conservativa respecto a T y CM.
- $T \subseteq T^* \subseteq T_w \subseteq T_m$

Lógica Predicados - Completitud

Teorías de Henkin II

<u>Lema</u> 3.1.5

 T^* es conservativo con respecto a T ($T^* \cap L=T$).

- La idea es probar que:
 - $-\Gamma$, $\exists x \phi \rightarrow \phi[c/x] \mid -\psi \Rightarrow T \mid -\psi$
- ¡Qué bueno, ya lo probamos!

Teorías de Henkin III

<u>Lema</u> 3.1.6 [Tw]

- Definimos:

 - $T_0 = T$ $T_{n+1} = (T_n)^*$
 - $T_w = \bigcup T_n$
- Luego Tw es una teoria de Henkin y es conservativa con respecto a T.

Lógica

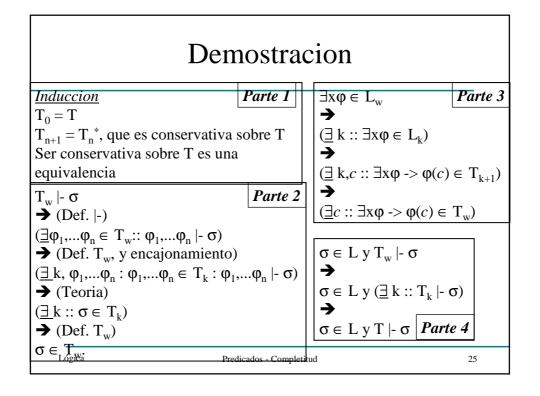
Predicados - Completitud

Demostracion

- 1. Cada T_n es conservativa sobre T
- 2. T_w es teoria
- 3. T_w es de Henkin
- 4. T_w es conservativa sobre T

Lógica

Predicados - Completitud



Un poco de orden (1)

- Un conjunto parcialmente ordenado (poset) es una estructura (U, ≤) tal que
 - $-(\forall a:: a \leq a)$
 - $-(\underline{\forall} a, b : a \le b, b \le a : a = b)$
 - $-(\forall a, b, c : a \le b, b \le c : a \le c)$
 - por ejemplo, (Pot (Nat), \subseteq)
- Un subconjunto $C \subseteq U$ es una cadena si
 - $-C \neq \emptyset$ y $(\forall a, b :: a \leq b \acute{o} b \leq a)$
 - por ejemplo, {{}, {1}, {1,2}, {1,2,3}}

Un poco de orden (2)

- Un elemento a ∈ U es una cota superior de C ⊆ U si
 - $-(\underline{\forall} c \in C :: c \leq a)$
 - por ejemplo, {1,2,3,4,5} es cota superior de {{}, {1},
 {1,2}, {1,2,3}}
 - la union tambien es una cota superior
- Un elemento $m \in U$ es maximal si
 - $-\ (\underline{\forall}\ a\in\ U: m\leq a: a=m)$
 - por ejemplo, Nat

Lógica Predicados - Completitud

27

Un poco de orden (3)

- Lema de Zorn
 - Sea U un poset. Luego,
 - si toda cadena de U tiene una cota superior en U
 - entonces U tiene un elemento maximal.

Lógica

Predicados - Completitud

Completitud: Parte I (cont.)

Lema 3.1.7 [Lindenbaum]

- Si T es una teoría consistente, entonces existe
 Tm consistente maximal tal que T ⊆ Tm
- 1. Sea $A := \{T' : T' \text{ es extension consistente de } T\}$
- 2. Toda cadena $\{T_i : i \in I\}$ tiene una cota superior: $\cup \{T_i : i \in I\}$
- 3. Existe una extension consistente maximal que llamamos T_m (Lema de Zorn)

Lógica Predicados - Completitud 29

¿Qué tenemos hasta ahora?

- Partimos de Γ consistente.
- Tomamos $T = Cons(\Gamma)$, que también es consistente
- Definimos T_w que es una extensión conservativa (luego consistente) de T y es de Henkin (lema 3.1.6)
- $T_{\rm w}$ puede extenderse a una teoría maximal $T_{\rm m}$ (lema 3.1.7)
- T_m es de Henkin (lema 3.1.8: no cambiamos el lenguaje) y también una extensión conservativa maximal de T

Completitud: Paso 2

<u>Lema</u> 3.1.1 [consistencia \Rightarrow existencia de modelo] Si Γ es consistente,

entonces existe M tal que $M \models \Gamma$

- Esquema de la prueba:
 - Sea $T = Cons(\Gamma)$
 - Consideramos T_m una teoría de Henkin tal que es extensión consistente maximal de T_w .
 - (L_m es el lenguaje de T_m)
 - Construimos un modelo.

Lógica Predicados - Completitud 3

Construcción del modelo sintáctico

- $A := \{ t \in Lm \mid t \text{ es cerrado} \}$
- Para cada símbolo de constante <u>c</u>∈ Lm se define la constante c[^] :=<u>c</u>
- Para cada símbolo de función n-ario f∈ Lm se define la función f^: Aⁿ → A como: f^(t₁..t_n) = f(t₁,..t_n)
- Para cada símbolo de predicado p-ario $P \in Lm$ se define la relación $P^{\wedge} \subseteq A^p$ como

$$P^{\wedge} = \{ < t_1..t_n > | T_m | - P(t_1...t_p) \}$$

• $\sim := \{ (t,s) \in A^2 \mid T_m \mid -t = s \}$

~ es de equivalencia ([t] denota la clase de t)

Lógica

Predicados - Completitud

Construcción del modelo sintáctico (II)

• Se construye M:

$$\begin{split} \textbf{M} &=< \textbf{A}/\!\!\sim, \, \widetilde{\textbf{P}}_1...\widetilde{\textbf{P}}_n, \, \widetilde{\textbf{f}}_1, ... \, \widetilde{\textbf{f}}_m, \, \{\textbf{c}_i \mid i \!\in\! \textbf{I}\} \} \qquad \text{(modelo sintáctico)} \\ \widetilde{\textbf{c}}_i &:= [\textbf{c}_i \land] \\ \widetilde{\textbf{f}}_j \left([\textbf{t}_1], ...[\textbf{t}_{aj}]\right) = [\textbf{f}_j \land (\textbf{t}_1, ... \textbf{t}_{aj})] \\ \widetilde{\textbf{P}}_i &:= \{ \, <[\textbf{t}_1], ...[\textbf{t}_{ri}] > \, \mid \, \, <\textbf{t}_1...\textbf{t}_{ri} > \in \, \textbf{P}_i \land \} \\ &\quad \text{está bien definido pues} \, = \, \acute{} \, \, \text{es una conguencia!} \end{split}$$

Se prueba : $(\underline{\forall} \phi \in T_m :: M \models \phi)$. O sea, $M \models T_m$

Lógica Predicados - Completitud

Modelos y Teorías

Def [Mod]

 $\operatorname{Mod}(\Gamma) = \{ \mathbf{M} \mid \mathbf{M} | = \alpha \text{ para toda } \alpha \in \Gamma \}$ también escribimos $\mathbf{M} | = \Gamma \text{ por } \mathbf{M} \in \operatorname{Mod}(\Gamma)$

Sea **K** una clase de estructuras para un tipo de similaridad:

Def [Th]

Th($\boldsymbol{\mathcal{K}}$) = { $\alpha \mid \boldsymbol{\mathsf{M}} \mid = \alpha \text{ para todo } \boldsymbol{\mathsf{M}} \in \boldsymbol{\mathcal{K}}$ }

Propiedades:

- $\Gamma \subseteq \text{Th}(\text{Mod}(\Gamma))$
- $\mathcal{K} \subseteq Mod(Th(\mathcal{K}))$
- $Cons(\Gamma) = Th(Mod(\Gamma))$

Lógica

Predicados - Completitud

Lógica Predicados - Completitud

Prueba para Predicados

T teoría consistente ⇒ existe Tm consistente maximal tal que $T \subseteq Tm$ (extensión conservativa)

> Aplica el lema de Zorn para obtener Tm (El lenguaje puede no ser numerable debido a los símbolos de constante a)

 Γ consistente \Rightarrow existe M tal que $M \models \Gamma$

- (i) Tomamos Tm CM tal que $\Gamma\subseteq T\subseteq Tw\subseteq Tm$ (donde T=Cons(Γ)) (ii) Definimos la estructura M (se utiliza la definición de Tm)
- (iii) Probamos M |= Tm

Como $\Gamma \subset \mathsf{Tm}$ luego $\mathsf{M} \models \Gamma$

Lógica

Predicados - Completitud

36