
A parallel micro evolutionary algorithm
for taxi sharing optimization

Renzo Massobrio, Gabriel Fagúndez and Sergio Nesmachnow
Centro de Cálculo, Facultad de Ingenierı́a, Universidad de la República

Herrera y Reissig 565, 11300 Montevideo, Uruguay
Email: {renzom, gabrielf, sergion}@fing.edu.uy

Abstract—This article presents the application of a parallel
micro evolutionary algorithm to the problem of distributing
passengers traveling from the same origin to different destinations
in several taxis, with the goal of minimizing the total cost of the
trips. The proposed method is designed to provide an accurate
and efficient way to solve the problem. The experimental analysis
compares the solutions found using the proposed algorithm versus
those computed using a sequential evolutionary algorithm and
an intuitive greedy heuristic. The results show that the parallel
evolutionary algorithm is able to efficiently reach significant im-
provements in the total cost, outperforming the greedy heuristic in
up to 36.1% (18.2% on average), and the sequential evolutionary
algorithm in up to 8.5% (4.3% on average).

I. INTRODUCTION

Car pooling is the concept of sharing car journeys, and
it has gained massive public attention in recent years [1].
Both economical and environmental benefits (at individual
and collective levels) are obtained by sharing car trips, as it
minimizes travel expenses as well as the amount of vehicles
on the streets, thus reducing pollution. This contributes to min-
imize the impact of transportation in the environment, which
is a major concern nowadays, especially for big cities [2] [3].
Additionally, less traffic leads to fewer traffic jams, resulting
in a more fluent, thus more efficient, trip. From an economical
perspective, sharing trips between multiple passengers signifi-
cantly reduces the transportation costs.

The aforementioned benefits have led to several initiatives
to attend the public concern on this topic. Exclusive car-pool
lanes, campaigns to promote car sharing when commuting to
work, and a plethora of mobile applications to find car pooling
mates [4], are some of the many examples that illustrate the
importance of this subject.

Taxis are a fast and reliable mean of transportation. How-
ever, they rarely run at full capacity and could therefore benefit
from the car pooling idea. There are some web platforms that
provide solutions for ride-sharing scheduling, and some re-
search works on different variants of the taxi-pooling problem.
The taxi sharing problem is NP-hard [5]. Thus, heuristics and
metaheuristics [6] are needed to find high-quality solutions in
reasonable execution times for realistic problem instances.

In this line of work, this article introduces a parallel micro
evolutionary algorithm to solve the one origin to multiple des-
tinations variant of the taxi sharing problem. The experimental
evaluation, performed over real-world scenarios, demonstrates
that the proposed method is an accurate and efficient tool to
solve the problem, which can be easily integrated in on-line
(web and/or mobile) applications.

The article is organized as follows. Section II introduces
the taxi sharing problem and reviews related work. Section III
introduces evolutionary algorithms (EAs), and the proposed
micro EA to solve the problem. Section IV reports the experi-
mental evaluation, including a comparison against a sequential
EA from [12] and a greedy heuristic to solve the problem.
Finally, Section V formulates the conclusions and the main
lines for future work.

II. THE TAXI SHARING PROBLEM

This section introduces the taxi sharing problem and re-
views related works on the topic.

A. Problem model and formulation

The problem models the reality of a group of people (the
passengers) willing to share a taxi from the same origin to
different destinations. Passengers are interested in knowing
the appropriate number of taxis needed and how to visit their
destinations in order to minimize the total cost.

Passenger distribution is restricted to the maximum number
of people allowed by safety regulations to travel in each taxi.
The transportation costs model realistic data in a fluid traffic
scenario (including a model for delays and traffic congestion is
proposed as future work). The cost for each taxi includes the
cost to hire the taxi (minimum fare), and the cost for traveling
from the origin to the final destination; additional costs related
to baggage, tips, or waiting times are not considered.

The mathematical formulation of the taxi sharing problem
considers the following elements:

• A set of passengers P = {p1, p2, . . . , pN}; travelling
from the same origin point O to a set of (potentially
different) destination points D = {d1, d2, . . . , dN};

• A set of taxis T = {t1, t2, . . . , tM}, M≤N ; the
maximum number of passengers in the taxi is CMAX ,
and a function C:T → {0, 1, . . . , CMAX} indicates
how many passengers use the taxi in a trip.

• A symmetric matrix M (dimension (N+1)×(N+1))
with the distances between each one of the geographic
points in the problem (one origin and N destinations);

• A cost function cT given by the constant MF (mini-
mum fare) and the cost by distance c(dist(O, di)).

The problem goal is to find a planning function f :P→T to
transport the N passengers in K taxis (K≤M ), determining
both the passengers-to-taxis assignment and the order to visit
the destinations, minimizing the total cost (TC, Eq. 1).



TC =
∑
ti

(MF +

C(ti)∑
j=1

c(dist(dj−1, dj)) (1)

The proposed formulation minimizes the total cost. Differ-
ent options can be applied to compute the cost for each passen-
ger [7], including: i) paying for distance and equally dividing
the minimum fare, each passenger j in a shared taxi ti pays
MF/C(ti)+dist(dj−1, dj); ii) paying a flat fare, disregarding
distances, (MF+

∑C(ti)
j=1 c(dist(dj−1, dj)))/C(ti), etc.

The taxi sharing problem is NP-hard, as it is a variant
of the car pooling problem [5]. Thus, when dealing with
realistic problem instances, heuristics and metaheuristics [6]
are the most useful methods to find high-quality solutions in
reasonable execution times.

B. Related work

The taxi pooling problem is a variant of the car pooling
problem, which has been studied from different perspectives
in the related literature. From the point of view of the taxi
companies, Xin et al. [8] studied the optimization of the total
cost of k taxis serving clients on-line, applying a heuristic that
sends the two nearest taxis to attend a request, promoting com-
petition and avoiding underutilization. The results showed that
the problem, as a generalization of the k-servers problem [9],
holds a competitive ratio of k against an optimal algorithm
that knows the entire sequence of requests beforehand.

Balancing the interest of both taxi owners and users, Ma
et al. [10] proposed a dynamic system for taxi sharing, by
combining a search and a planning method to find taxis/assign
passengers. A lazy strategy is applied to improve execution
times, using previously computed results to delay the shortest
path calculation as much as possible. Using a database of
33.000 GPS taxi trajectories from Beijing, the dynamic system
reduced the travelled distances up to 13%, while serving 25%
more requests in a simulated scenario with 6 requests per taxi.

Closer to the problem we tackle in this article, which
focuses mostly on the interests of the customers, Tao et al. [11]
proposed two heuristic algorithms to optimize taxi ride-sharing
costs based on greedy strategies. One algorithm is applied
to the one-origin-to-many-destinations problem, and the other
one is designed for the many-to-one scenario. The results of
a field test of taxi-pooling at Taipei with 10 taxis and 798
passengers show an average matching success rate of 60.3%.
However, the fuel savings results are shown only in absolute
terms, making it difficult to extract meaningful information to
compare with other techniques. The one-to-many problem is
the one tackled in this paper, so it is of particular interest to
see the performance of the greedy method against the parallel
method evolutionary algorithm we propose here.

Besides the academic proposals, there are several on-line
applications to solve different version of the car pooling
problem, including Carpooling (http://carpooling.com), which
allows finding trip partners to share costs when people use
their own cars. Carpling (http://carpling.com) focuses on taxi
pooling from the point of view of the companies, finding users
with nearby destinations. The solutions computed by Carpling
are restricted to trips totally contained in other trips, without

considering different trip combinations. There are no proposals
of applications solving the taxi sharing problem by explicitly
computing routes as proposed in this article.

The analysis of related works indicates that the taxi sharing
problem is interesting for the scientific community, having a
significant impact on environment protection and economy.
There are few user-oriented solutions in literature, so there
is room to contribute in this line of research, by proposing
efficient methods for planning and reducing vehicular traffic.

In our previous work [12], we proposed a simple EA for
taxi sharing optimization that showed a good capability of
solving realistic medium-size problem instances, but requiring
large execution times. The parallel micro EA we propose in
this article is conceived to improve both the quality of results
and the computational efficiency of the search.

III. A PARALLEL MICRO EA FOR TAXI SHARING

This section introduces EAs and describes the proposed
parallel micro-EA for taxi sharing.

A. Evolutionary algorithms

EAs are non-deterministic methods that emulate the evo-
lution of species in nature to solve optimization, search, and
learning problems [13]. In the last twenty-five years, EAs have
been successfully applied for solving optimization problems
underlying many real applications of high complexity.

Parallel models are a popular option to improve the effi-
ciency and the efficacy of EAs. By splitting the population into
several computing elements, parallel evolutionary algorithms
(PEAs) allow reaching high quality results in a reasonable
execution time even for hard-to-solve optimization problems.
The parallel EA proposed in this work is categorized within the
distributed subpopulations model [14]: the population is split
in several subpopulations (demes). Each deme runs a serial
EA, and the individuals are able to interact only with other
individuals in the deme. An additional migration operator is
defined: occasionally some individuals are exchanged among
demes, introducing a new source of diversity in the EA.

Micro-EAs provide an efficient alternative to reduce the
execution times when solving on-line optimization problems,
by using small populations and restarting procedures. In our
research group, micro-EAs have been applied successfully to
solve combinatorial optimization problems [15] [16]. The main
features of the proposed parallel micro-EA to solve the taxi
sharing problem are presented next.

B. Implementation details: encoding and fitness function

Solutions are represented as tuples containing integers
between 1 and N , representing the passengers, and N−1 zeros
to separate passengers assigned to different taxis The order for
visiting the destinations is the one specified in the sequence.
Fig. 1 shows an example of the solution encoding for an
instance with N = 5.

The solution encoding has some restrictions/features: i) the
number of consecutive (non-zero) integers is limited to CMAX ;
ii) each integer must appear only once in the encoding; iii)
consecutive zeros mean the same than a single one.



Fig. 1. Example of solution representation for the taxi sharing problem.

The fitness function accounts for the problem objective
(cost of the trips). In order to transform the cost minimization
problem to a maximization one, we define the fitness function
as the inverse of the total cost (defined in Eq. 1).

C. Evolutionary operators

The proposed encoding has specific features and restric-
tions, so we apply ad-hoc search operators.

Population initialization: the population is initialized using
two alternative methods. The random initialization uses a con-
structive algorithm that randomly places the numbers from 1 to
N into a tuple initially created with 2N -1 zeroes. The greedy
initialization (see next section) applies a random number of
perturbations, i.e. swaps two elements, over the solution found
by a greedy algorithm to solve the problem. Both initialization
methods are studied in the experimental evaluation.

Feasibility check and correction process: both initialization
methods might violate some of the constraints defined for
the solution encoding. Thus, a corrective function is applied
to guarantee solution feasibility. The method searches for
sequences of non-zero digits larger than the maximum number
of passengers allowed per taxi. Then, the correction algorithm
locates the first consecutive couple of zeroes, and moves the
first zero to a random place at the non-zero sequence, in order
to break the invalid group. The search for invalid sequences
continues until the end of the solution; at that point, the
sequence fulfills all the constraints.

Selection: a tournament selection is applied to provide an
appropriate selection pressure for the micro populations. Initial
experiments confirmed that the standard proportional selection
technique does not provide enough diversity to avoid premature
dominance and convergence in solutions far from the optimum.

Recombination: we apply an ad-hoc variant of the Position
Based Crossover (PBX) operator, explained in Algorithm 1.
In order to avoid violating the constraints imposed by the
solution encoding, the same corrective function used after the
initialization is applied on the offspring produced using the
PBX crossover. Fig. 2 shows an example of the PBX crossover
for two individuals with 5 passengers and CMAX = 4.

Mutation: we apply the Exchange Mutation operator, which
randomly selects and exchanges two positions in the solution
encoding. Afterward, the same corrective function mentioned
above is applied to fix invalid solutions, if necessary.

Migration: the migration operator considers the demes
connected in an unidirectional ring topology, where immigrants
replace the worst individuals in the destination deme.

Algorithm 1 Ad-hoc PBX for the taxi sharing problem
1: Randomly select several positions in parent 1.
2: Partially generate the offspring, copying the selected values from

parent 1.
3: Mark in parent 2 the positions already selected in parent 1.
4: Select the next non-marked value in parent 2, sequentially from

the beginning, and copy it in the first free position in offspring.

Fig. 2. PBX applied to the taxi sharing problem.

IV. EXPERIMENTAL ANALYSIS

This section reports the experimental analysis of the pro-
posed parallel micro EA to solve a set of realistic instances of
the taxi sharing problem.

A. Development and execution platform

The proposed EA was implemented in the C++ program-
ming language, using Malva [17]. The experimental evalu-
ation was performed on a Dell Power Edge server, Quad-
core Xeon E5430 processor at 2.66GHz, 8 GB RAM and
Gigabit Ethernet, from the Cluster FING high performance
computing facility (Universidad de la República, Uruguay,
website http://www.fing.edu.uy/cluster) [18].

B. Problem instances

In order to evaluate the proposed EA, a group of real
instances were generated. A specific methodological approach
for the generation of realistic instances of the problem was
used, taking into account the problem restrictions and using
services available to gather information about taxi demands,
maps, and fares, including:

• Taxi Query Generator (TQG), a tool that uses informa-
tion from a database of taxi trajectories obtained from
GPS devices installed for a week in 10,357 taxis in
the city of Beijing, to generate realistic taxi demands.
The data are a subset of those used by Ma et al. [10].
TQG produces a list of origin/destination coordinates
for individual trips. In order to design useful instances
for the problem addressed in this article, we developed
a script that groups those trips that originate in nearby
locations, thus outputs are according to the one origin-
to-many destinations problem formulation.

• QGIS Desktop, a free, open source geographic infor-
mation system, used to create, edit, view and publish
geospatial material. QGIS was used to transform the
list of coordinates obtained at the output of a script
grouping, into a KML (Keyhole Markup Language)
file, which allows it to be displayed using Google
Maps/Google Earth, to have a visual representation
of the origin and destinations instance on a map.



• The TaxiFareFinder interface [19], which was used
to obtain the cost matrix for each generated instance
of the problem, along with the prices corresponding
to the minimum fare. Each pair of coordinates for a
given instance of the problem is sent to the interface
TaxiFareFinder to get the cost between each point.

Following the proposed approach, we created a benchmark
set of 24 realistic instances of the taxi sharing problem, with
different dimensions: small (10–25 taxi requests), medium
(25–40 requests), large (40–55 requests), and very large (55–70
requests), to use in the experimental evaluation.

C. Parameter tuning

EAs are stochastic search methods, thus a parameter setting
analysis is mandatory. For this purpose, a set of 5 medium-
size problem instances (different to the evaluation ones, to
avoid biased results) was generated using the aforementioned
method. After an initial evaluation, the micro-population size
was set to 15. The parameter tuning focused on two key
aspects of the EA: crossover (pC) and mutation probability
(pM ). Three candidate values were picked for each one:
pC ∈ {0.6, 0.75, 0.95} and pM ∈ {0.001, 0.01, 0.1}.

For all 9 combinations of candidate values, 20 indepen-
dent executions were performed for each problem instance,
with 100.000 generations in each run. Representative results
are shown in Figure 3, reporting the average cost obtained
for each combination of candidate values. Because this is a
minimization problem, those settings that achieve lower cost
values are preferred. The parameter setting results suggest that
using pC = 0.75 and pM = 0.1 allows computing the best
results for the problem instances solved.

D. Experimental evaluation

The experimental analysis focused on both the quality of
the solutions and the performance of the proposed parallel EA.

1) Comparison of initialization strategies: the two strate-
gies used to initialize the population were comparatively
studied on the whole set of problem instances, by analyzing the
cost values obtained after 100.000 generations using 24 cores
to decide which initialization performs the best. We applied
the Kolmogorov-Smirnov statistical test with a significance
level of 0.05 and we found that the results distributions do
not follow a normal distribution. Afterward, the Kruskal-Wallis
test was applied to analyze the results distributions for each
initialization method.

Table I reports the best, average, and standard deviation
cost values obtained when using the greedy and the random
initialization in 20 independent executions performed for each
problem instance. Overall, both initialization methods com-
puted the same average cost for two small problem instances,
the greedy method found the best average in 11 instances, and
the random one in 9 instances. Instances where the greedy ini-
tialization performed the best, with 95% statistical confidence
(pvalue <0.05 on the Kruskal-Wallis test) are marked in bold.

From the results in Table I, we can assess with statistical
confidence that the greedy initialization allows computing
better solutions than the random method, especially for large
problem instances. Thus, this method was selected for the rest
of the experimental evaluation.

TABLE I. INITIALIZATION STRATEGIES: COMPARATIVE RESULTS

instance greedy initialization random initialization
best avg.±std best avg.±std

#1 125.5 125.5 ± 0.0 125.5 125.5 ± 0.0
#2 168.8 168.8 ± 0.0 168.8 168.8 ± 0.0

small #3 191.0 191.2 ± 0.5 191.0 191.0 ± 0.0
(10–25) #4 215.5 215.6 ± 0.1 215.5 215.5 ± 0.0

#5 297.5 298.4 ± 0.3 297.5 300.9 ± 3.5
#6 246.1 252.2 ± 2.4 244.1 245.9 ± 2.1
#1 336.5 344.5 ± 5.6 336.5 340.5 ± 3.9
#2 320.2 323.1 ± 3.4 319.1 324.3 ± 3.6

medium #3 795.5 801.2 ± 4.2 796.1 803.7 ± 4.8
(25–40) #4 351.2 357.4 ± 3.4 351.8 358.6 ± 3.0

#5 436.8 443.7 ± 3.8 435.6 443.3 ± 5.7
#6 359.3 367.0 ± 5.0 360.9 375.2 ± 6.1
#1 415.0 429.9 ± 7.1 412.6 420.0 ± 3.7
#2 304.9 319.8 ± 7.5 306.4 322.0 ± 6.5

large #3 416.2 425.0 ± 4.3 417.2 431.2 ± 7.1
(40–55) #4 362.1 367.7 ± 3.2 361.6 367.0 ± 3.3

#5 440.3 446.3 ± 2.6 437.6 445.2 ± 4.8
#6 553.5 562.1 ± 4.3 554.2 566.5 ± 7.6
#1 626.3 637.7 ± 3.6 630.7 643. ± 6.4
#2 517.2 524.8 ± 4.5 509.0 520.8 ± 7.7

very large #3 490.0 498.4 ± 3.5 487.3 501.6 ± 7.8
(55–70) #4 736.8 744.9 ± 6.1 729.0 742.1 ± 8.0

#5 548.7 560.6 ± 4.7 551.9 564.3 ± 7.0
#6 1412.6 1424.6 ± 6.1 1418.7 1430.0 ± 6.1

2) Comparison against the sequential EA: Table II reports
the average costs obtained for each instance dimension, using
the pµEA—with 8, 16, and 24 cores—and the sequential EA.
From the results, it is clear that using more generations leads
to better solutions. In addition, pµEA has a good scalability
behavior, as cost results improve when using additional cores,
up to 1.6% when comparing pµEA–24 cores vs. pµEA–8 cores
on a large problem instance.

The results in Table II demonstrate that pµEA outperforms
the sequential EA on every instance in the test set, with signifi-
cant cost improvements (according to the Kruskal-Wallis test).
Over all instances, the average cost improvements computed
by pµEA over the sequential EA were 4.3%. In the best case,
instance #1 in the set of large problem instances, an improve-
ment of up to 8.5% was achieved against the average cost ob-
tained by the sequential EA. The full experimental results are
available at www.fing.edu.uy/inco/grupos/cecal/hpc/AG-Taxi.

TABLE II. COMPARISON OF PµEA USING DIFFERENT NUMBERS OF
SUBPOPULATIONS AND THE SEQUENTIAL EA

instances algorithm generations
10000 25000 50000 75000 100000

pµEA–8 cores 212.2 211.2 210.1 209.7 209.5
small pµEA–16 cores 210.6 209.7 209.2 208.9 208.8

(10–25) pµEA–24 cores 209.9 209.3 208.9 208.7 208.6
sequential EA 219.3 217.6 216.5 215.6 215.2
pµEA–8 cores 454.9 449.3 447.5 446.9 446.5

medium pµEA–16 cores 449.5 444.0 442.2 441.6 440.7
(25-40) pµEA–24 cores 448.0 442.7 441.0 440.0 439.5

sequential EA 475.6 468.7 466.3 465.2 464.6
pµEA–8 cores 454.2 438.8 433.6 432.2 431.4

large pµEA–16 cores 450.9 435.4 428.9 427.6 426.9
(40–55) pµEA–24 cores 448.7 432.4 427.6 425.8 425.1

sequential EA 475.7 456.6 449.3 447.2 446.6
pµEA–8 cores 788.2 759.3 745.8 741.4 739.5

very large pµEA–16 cores 781.5 752.8 741.0 736.7 734.9
(55-70) pµEA–24 cores 777.9 750.9 737.9 733.6 731.8

sequential EA 815.0 782.2 766.4 762.7 761.1

3) Comparison against an intuitive greedy algorithm: A
greedy strategy was implemented in order to compare the
performance of pµEA against a traditional intuitive heuristic.



(a) Instance #1 (b) Instance #2 (c) Instance #3

Fig. 3. Average cost obtained with different parameter configurations on three different problem instances

The greedy method (Algorithm 2) sequentially adds the
passenger whose destination is closer to the origin in a taxi,
until the taxi is full. In the case where the cost of adding one
passenger to the current taxi is greater than the one obtained by
assigning a new taxi to serve that passenger request, the current
taxi is full, and a new one is formed. The algorithm ends when
every passenger is assigned to a taxi. This method emulates
an intuitive approach to solve the problem by taking local
optimum decisions [11]. A similar strategy can be expected
from a group of human users trying to solve the problem.

Algorithm 2 Intuitive greedy algorithm for taxi sharing
taxi = 1; counter = 0; {Init}
while passengers to assign do

if (counter == 0) then
p1 = nearestDestinationfromOrigin();
addPassenger(p1,taxi,solution);
counter++;

else if (counter ≥ CMAX ) then
counter = 0; {Current taxi is full}
taxi++;

else
p2 = nearestLocation(p1);
if (cost(p1,p2) ≤ cost(origin,p2) + MF) then

addPassenger(p2,taxi,solution);
p1 = p2;
counter++;

else
taxi++; {Start a new taxi}
counter = 0;

end if
end if

end while
return solution;

Since the greedy algorithm is very fast, it is important to
evaluate how long it takes the pµEA to outperform it. Figure 4
reports the average time pµEA need to outperform the greedy
solution by 5%, 10%, 15% and 20% (in the best case for each
instance). Additionally, the average overall improvement and
average time to reach 100.000 generations is displayed for each
problem instance (upper row, in red).

The greedy algorithm executes in a negligible amount of
time, but the results in Figure 4 show that pµEA is able to im-
prove the greedy by 5% almost instantaneously, and improve-
ments of about 10% are computed in most small/medium/large
cases in a few seconds. pµEA also computes solutions with
larger improvements over greedy (up to 36.1%), in execution
times that strongly depends on the instance and dimension.

In the best case for each problem dimension, pµEA
improved the results computed using the greedy algorithm
by 36.1% in small instance #2, 27.4% in medium instance
#5, 27.2% in large instance #4, and 25.0% in very large
instance #3. The full results of the comparison are available at
www.fing.edu.uy/inco/grupos/cecal/hpc/AG-Taxi

The previous results demonstrate that the proposed pµEA
is an accurate and very efficient tool for cost optimization
in the taxi sharing problem. The reduced execution times to
compute significant improvements over traditional techniques
make pµEA an appropriate method for on-line optimization,
to be used in application-oriented websites such as the one we
are currently deploying in http://www.mepaseaste.uy.

V. CONCLUSIONS AND FUTURE WORK

This work has presented the design and implementation of
a parallel micro evolutionary algorithm for the one-origin-to-
many-destinations taxi pooling problem.

Vehicle sharing is an interesting topic nowadays, mainly
because its impact in economic cost and environmental pro-
tection, and the scientific community has been studying diverse
variants of the car pooling problem in the last years. In this
work, we study a specific variant of the taxi sharing problem
and propose a parallel micro EA to solve it.

The proposed algorithm was conceived to provide accurate
and efficient solutions for the problem, in order to improve
the previous results computed by the sequential EA presented
in [12]. By using a distributed model and micro populations,
the proposed pµEA provides an improved search pattern that
allows solving the planning problem in online mode.

Indeed, in the experimental analysis performed over a
benchmark set of 24 realistic problem instances generated
using real GPS data from taxis in the city of Beijing, pµEA
was able to compute significant improvements over both the
sequential EA and an intuitive greedy algorithm to solve the
problem. Regarding the cost of solutions, improvements up
to 8.5% (4.3% in average) were achieved over the sequential
EA and up to 36.1% (18.2% in average) over the greedy
method. Furthermore, significant improvements are computed
in very fast execution times, making the proposed optimization
technique an appropriate tool for online taxi sharing planning

The main lines for future work are focused on including
other user-oriented information in the problem formulation,
such as online traffic data and taxi availability, in order



Fig. 4. pµEA comparison against the greedy algorithm: best and average cost improvements and average execution times.

to provide a more realistic planning. The proposed pµEA
will be incorporated in our website for taxi planning. Other
optimization techniques, including multiobjective EAs should
also be evaluated to solve the problem.

ACKNOWLEDGEMENT

The research reported in this article was partly supported
by ANII and PEDECIBA, Uruguay.

REFERENCES

[1] N. Fellows and D. Pitfield, “An economic and operational evaluation
of urban car-sharing,” Transportation Research Part D: Transport and
Environment, vol. 5, no. 1, pp. 1–10, 2000.

[2] E. Ferrari, R. Manzini, A. Pareschi, A. Persona, and A. Regattieri, “The
car pooling problem: Heuristic algorithms based on savings functions,”
Journal of Advanced Transportation, vol. 37, pp. 243–272, 2003.

[3] R. Katzev, “Car sharing: A new approach to urban transportation
problems,” Analyses of Social Issues and Public Policy, vol. 3, no. 1,
pp. 65–86, 2003.

[4] “Ride-Sharing Services Grow Popular in Europe,” The New
York Times, By Eric Pfanner, Published: Oct. 1, 2012, [Online
02-2014] http://www.nytimes.com/2012/10/01/technology/ride-sharing-
services-grow-popular-in-europe.html.

[5] A. Letchford, R. Eglese, and J. Lysgaard, “Multistars, partial multistars
and the capacitated vehicle routing problem,” Mathematical Program-
ming, vol. 94, no. 1, pp. 21–40, 2002.

[6] S. Nesmachnow, “Metaheuristics as soft computing techniques for
efficient optimization,” in Encyclopedia of Information Science and
Technology, M. Khosrow-Pour, Ed. IGI Global, 2014, pp. 1–10.

[7] “How to Split a Shared Cab Ride? Very Carefully, Say Economists,”
The Wall Street Journal, Dec. 8, 2005, [Online 06-2014]
http://online.wsj.com/news/articles/SB113279169439805647.

[8] C.-L. Xin and W.-M. Ma, “Scheduling for on-line taxi problem on a real
line and competitive algorithms,” in Proc. of the Int. Conf. on Machine
Learning and Cybernetics, 2004, pp. 3078–3083.

[9] E. Koutsoupias, “The k-server problem,” Computer Science Review,
vol. 3, no. 2, pp. 105–118, 2009.

[10] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in IEEE 29th Int. Conf. on Data Engineering,
2013, pp. 410–421.

[11] C.-C. Tao and C.-Y. Chen, “Heuristic algorithms for the dynamic
taxipooling problem based on intelligent transportation system technolo-
gies,” in 4th Int. Conf. on Fuzzy Systems and Knowledge Discovery,
2007, pp. 590–595.

[12] G. Fagúndez, R. Massobrio, and S. Nesmachnow, “Resolución en
lı́nea del problema de viajes compartidos en taxis usando algoritmos
evolutivos,” in Conferencia Latinoamericana de Informática, 2014.

[13] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of evolutionary
computation. Oxford University Press, 1997.

[14] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics:
Recent advances and new trends,” Int. Transactions in Operational
Research, vol. 20, no. 1, pp. 1–48, 2013.

[15] S. Nesmachnow, H. Cancela, and E. Alba, “A parallel micro evolu-
tionary algorithm for heterogeneous computing and grid scheduling,”
Applied Soft Computing, vol. 12, no. 2, pp. 626–639, 2012.

[16] S. Nesmachnow and S. Iturriaga, “Multiobjective grid scheduling using
a domain decomposition based parallel micro evolutionary algorithm,”
Int. Journal of Grid and Utility Computing, vol. 4, pp. 70–84, 2013.

[17] “The Malva Project: A framework for comutational intelligence in
C++,” [Online 05-2014] https://github.com/themalvaproject.

[18] S. Nesmachnow, “Computación cientı́fica de alto desempeño en la
Facultad de Ingenierı́a, Universidad de la República,” Revista de la
Asociación de Ingenieros del Uruguay, vol. 61, pp. 12–15, 2010.

[19] “TaxiFareFinder API,” [Online 05-2014] http://www.taxifarefinder.com.


