
Metaheuristics for multiobjective energy-aware scheduling

in heterogeneous computing systems

Santiago Iturriaga, Sergio Nesmachnow, Carlos Tutté
Universidad de la República, Uruguay

Email: {siturria,sergion,ctutte}@fing.edu.uy

1 Introduction

The allocation of tasks to be executed in distributed hetero-
geneous computing (HC) infrastructures is a key problem
to solve in order to take full advantage of the computing
power of the distributed resources. Nowadays, energy effi-
ciency has become a great challenge in distributed high per-
formance computing, and researchers have focused on de-
veloping energy-aware scheduling algorithms for distributed
HC infrastructures.

This article reports the advances on applying metaheuris-
tic algorithms to solve the scheduling problem that proposes
the simultaneus optimization of makespan and energy con-
sumption in HC systems. The proposed methods include
Multithreading Local Search (MLS), a highly efficient mul-
tiobjective local search; and two well-known multiobjective
evolutionary algorithms (MOEAs), namely NSGA-II and
SPEA2. The three methods follow a fully multiobjective
approach, since they do not optimize an aggregated func-
tion of the problem objectives, but they use Pareto-based
dominance techniques in the optimization.

The multiobjective metaheuristics are compared to well-
known deterministic heuristic methods over a large set of
instances. The experimental results show that the three
methods are able to compute accurate schedules in short
execution times.

2 Problem formulation

Given a HC system composed of a set of heterogeneous ma-
chines P = {m1, . . . ,mM}; each machine with a a certain
number of cores mc, processing speed, and energy consump-
tion; and a collection of tasks T = {t1, . . . , tN} to be exe-
cuted on the system. Let there be an execution time func-
tion ET : T × P → R+, where ET (ti,mj) is the time
required to execute task ti on one core of the machine mj ;
and an energy consumption function EC : T × P → R+,
where EC(ti,mj) is the energy required to execute task ti
on one core of the machine mj , and ECIDLE(mj) is the
energy that machine mj consumes in idle state.

The ME-HCSP proposes to find a schedule f : TN→PM

that simultaneously minimizes the makespan, i.e. the total
time to execute a bunch of tasks (Eq. 1), and the energy
consumption (Eq. 2). The energy for executing a given task
depends on the execution time, but these two objectives are
usually in conflict, since fast machines generally consume
more energy than the slower ones.

max
mj∈P

∑
ti∈T :

(ti,mj)∈f

ET (ti,mj) (1)

∑
ti∈T :

(ti,mj)∈f

EC(ti,mj) +
∑

mj∈P

ECIDLE(mj) (2)

Two versions of the ME-HCSP have been tackled in this
work, by considering single-core and multi-core machines
respectively. In the multi-core version, a single machine
can execute more than one task at the same time, provided
the number of cores available.

3 Proposed metaheuristics

This section details the proposed metaheuristics to effi-
ciently solve the ME-HCSP. MLS was proposed for the
single-core version of the problem, while the MOEAs were
applied to solve the multi-core version.

3.1 Multithreading Local Search

MLS is a population-based local search algorithm for the
single-core ME-HCSP that maintains a population of non-
dominated schedules in order to avoid biasing the search
toward one of the objectives of the problem.

The algorithm uses a pool of threads in which each thread
is a peer, and no thread performs a master role. Each
thread starts by initializing a schedule in the population us-
ing a randomized version of the Minimum Completion Time
heuristic. After that, each thread loops over the schedules
in the population applying a LS to improve them. The local
search performed by each thread is based on a randomized
version of the Problem Aware Local Search method [1].

MLS is implemented in GNU C++ 4.6. The multithread-
ing support is provided by the GNU POSIX thread library
2.13 and a thread-safe Mersenne Twister method is used for
the generation of pseudorandom numbers.

3.2 NSGA-II

NSGA-II is a well-known EA by Deb et al. [2]. The proposed
NSGA-II for the ME-HCSP solves the multi-core version
of the problem and is implemented using jMetal, a Java
framework for multiobjective optimization. The population
is initialized using randomized versions of well-known list
scheduling heuristics.

1



dimension 512× 16 1024× 32 2048× 64
objective makespan energy makespan energy makespan energy
algorithm avg. best avg. best avg. best avg. best avg. best avg. best

MLS 10.2% 14.9% 5.8% 7.8% 11.1% 17.2% 6.3% 8.7% 10.0% 19.8% 6.8% 9.4%
NSGA-II 15.4% 33.3% 10.0% 22.0% 16.2% 28.1% 10.4% 18.9% 14.5% 38.2% 9.3% 25.0%
SPEA2 15.2% 33.3% 9.4% 21.9% 15.9% 28.1% 9.7% 17.6% 13.9% 36.5% 8.5% 24.0%

Figure 1: Average improvement over the best deterministic
heuristic.

3.3 SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2)
is also a well-known evolutionary algorithm proposed by
Zitzler et al. [4]. Like NSGA-II, the proposed SPEA2 for
the ME-HCSP solves the multi-core version of the problem
and is implemented using jMetal. The initial population is
initialized exactly the same as the NSGA-II.

4 Experimental analysis

The experimental analysis of the proposed methods com-
pares the makespan and energy results with the Suffer-
age heuristic and four multiobjective variants of the Min-
Min heuristic [3]. All the experiments were performed in
a 24-core machine with AMD Opteron 6172 Processors at
2.1GHz and 24 GB of RAM.

A total number of 792 instances were used in the MLS ex-
perimental analysis, and 55 instances where used to evaluate
the proposed MOEAs. The parameter configuration study
performed on 4 small instances showed that the best con-
figuration for MLS consists in using 24 concurrent threads,
a population of 30 individuals, and a stopping criterion of
10 seconds. On the other hand, the proposed MOEAs com-
puted the best results when using a population of 150 in-
dividuals for NSGA-II and 100 individuals for SPEA2, and
both using a stopping criterion of 60 seconds.

Table 1 reports the average and best improvements over
the best deterministic heuristic for each problem dimension,
computed in 30 independent executions performed for each
algorithm. Figure 1 summarizes the average improvements
by dimension.

For the MLS algorithm, the results in Table 1 indicates

that disregarding the problem dimension, an average im-
provement above of 10% in makespan and 6% in energy can
be obtained in only 10 seconds execution time. A scalabil-
ity analysis showed a promising 19.4 speedup value when
using 24 threads. The good scalability behavior of MLS in-
dicate further experiments should be performed increasing
the number of threads and increasing the dimension of the
problem instances.

The experimental analysis also demonstrate that both
proposed MOEAs compute accurate solutions in bounded
execution time. Average improvements up to 18.6% in
makespan and up to 11.9% in energy where computed by the
NSGA-II algorithm, and similar improvements up to 18.3%
in makespan and up to 11.5% in energy where computed
by the SPEA2 algorithm. Even though the MOEAs require
substantially longer execution times, the improvements over
the MLS are not overly significant; this results suggest that
the multi-core problem is in fact harder to solve than the
single-core problem.

Because of the reduced execution time demanded to com-
pute accurate schedules, MLS is a candidate to be consid-
ered when hybridizing EA with LS. As future work we pro-
pose to compare our current MOEAs results with an im-
proved version of hybrid NSGA-II+MLS and SPEA2+MLS,
by including MLS as an internal operator of the proposed
MOEAs.

References

[1] E. Alba and G. Luque. A new local search algorithm for the
DNA fragment assembly problem. In Proc. of 7th European
Conference on Evolutionary Computation in Combinatorial
Optimization, pages 1–12, 2007.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimisation: NSGA-II. In Proceedings of the 6th
International Conference on Parallel Problem Solving from
Nature, PPSN VI, pages 849–858, London, UK, UK, 2000.
Springer-Verlag.

[3] P. Luo, K. Lü, and Z. Shi. A revisit of fast greedy heuristics
for mapping a class of independent tasks onto heterogeneous
computing systems. J. Parallel Distrib. Comput., 67(6):695–
714, 2007.

[4] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for Multiobjec-
tive Optimization. In Evolutionary Methods for Design, Op-
timisation and Control with Application to Industrial Prob-
lems, pages 95–100, 2002.

2


