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1 Introduction

The allocation of tasks to be executed in distributed hetero-
geneous computing (HC) infrastructures is a key problem
to solve in order to take full advantage of the computing
power of the distributed resources. Nowadays, energy effi-
ciency has become a great challenge in distributed high per-
formance computing, and researchers have focused on de-
veloping energy-aware scheduling algorithms for distributed
HC infrastructures.

This article reports the advances on applying metaheuris-
tic algorithms to solve the scheduling problem that proposes
the simultaneus optimization of makespan and energy con-
sumption in HC systems. The proposed methods include
Multithreading Local Search (MLS), a highly efficient mul-
tiobjective local search; and two well-known multiobjective
evolutionary algorithms (MOEAs), namely NSGA-II and
SPEA2. The three methods follow a fully multiobjective
approach, since they do not optimize an aggregated func-
tion of the problem objectives, but they use Pareto-based
dominance techniques in the optimization.

The multiobjective metaheuristics are compared to well-
known deterministic heuristic methods over a large set of
instances. The experimental results show that the three
methods are able to compute accurate schedules in short
execution times.

2 Problem formulation

Given a HC system composed of a set of heterogeneous ma-
chines P = {my,...,mps}; each machine with a a certain
number of cores m,, processing speed, and energy consump-
tion; and a collection of tasks T' = {¢1,...,tn} to be exe-
cuted on the system. Let there be an execution time func-
tion ET : T x P — R, where ET(t;,m;) is the time
required to execute task ¢; on one core of the machine m;;
and an energy consumption function EC : T x P — R™T,
where EC(t;,m;) is the energy required to execute task ¢;
on one core of the machine m;, and EC;prr(m;) is the
energy that machine m; consumes in idle state.

The ME-HCSP proposes to find a schedule f : TV —PM
that simultaneously minimizes the makespan, i.e. the total
time to execute a bunch of tasks (Eq. 1), and the energy
consumption (Eq. 2). The energy for executing a given task
depends on the execution time, but these two objectives are
usually in conflict, since fast machines generally consume
more energy than the slower ones.
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Two versions of the ME-HCSP have been tackled in this
work, by considering single-core and multi-core machines
respectively. In the multi-core version, a single machine
can execute more than one task at the same time, provided
the number of cores available.

3 Proposed metaheuristics

This section details the proposed metaheuristics to effi-
ciently solve the ME-HCSP. MLS was proposed for the
single-core version of the problem, while the MOEAs were
applied to solve the multi-core version.

3.1 Multithreading Local Search

MLS is a population-based local search algorithm for the
single-core ME-HCSP that maintains a population of non-
dominated schedules in order to avoid biasing the search
toward one of the objectives of the problem.

The algorithm uses a pool of threads in which each thread
is a peer, and no thread performs a master role. Each
thread starts by initializing a schedule in the population us-
ing a randomized version of the Minimum Completion Time
heuristic. After that, each thread loops over the schedules
in the population applying a LS to improve them. The local
search performed by each thread is based on a randomized
version of the Problem Aware Local Search method [1].

MLS is implemented in GNU C++ 4.6. The multithread-
ing support is provided by the GNU POSIX thread library
2.13 and a thread-safe Mersenne Twister method is used for
the generation of pseudorandom numbers.

3.2 NSGA-II

NSGA-IT is a well-known EA by Deb et al. [2]. The proposed
NSGA-II for the ME-HCSP solves the multi-core version
of the problem and is implemented using jMetal, a Java
framework for multiobjective optimization. The population
is initialized using randomized versions of well-known list
scheduling heuristics.



dimension 512 x 16 1024 x 32 2048 x 64
objective makespan energy makespan energy makespan energy
algorithm avg. best avg. best avg. best avg. best avg. best  avg. best
MLS 10.2% 14.9% 5.8%  7.8% 11.1% 172% 6.3% 8.7% 10.0% 19.8% 6.8%  9.4%
NSGA-IT | 15.4% 33.3% 10.0% 22.0% 16.2% 28.1% 104% 18.9% 14.5% 382% 9.3% 25.0%
SPEA2 15.2% 33.3% 9.4% 21.9% 15.9% 28.1% 9.7% 17.6% 13.9% 36.5% 8.5% 24.0%
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Figure 1: Average improvement over the best deterministic
heuristic.

3.3 SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2)
is also a well-known evolutionary algorithm proposed by
Zitzler et al. [4]. Like NSGA-II, the proposed SPEA2 for
the ME-HCSP solves the multi-core version of the problem
and is implemented using jMetal. The initial population is
initialized exactly the same as the NSGA-IL

4 Experimental analysis

The experimental analysis of the proposed methods com-
pares the makespan and energy results with the Suffer-
age heuristic and four multiobjective variants of the Min-
Min heuristic [3]. All the experiments were performed in
a 24-core machine with AMD Opteron 6172 Processors at
2.1GHz and 24 GB of RAM.

A total number of 792 instances were used in the MLS ex-
perimental analysis, and 55 instances where used to evaluate
the proposed MOEAs. The parameter configuration study
performed on 4 small instances showed that the best con-
figuration for MLS consists in using 24 concurrent threads,
a population of 30 individuals, and a stopping criterion of
10 seconds. On the other hand, the proposed MOEAs com-
puted the best results when using a population of 150 in-
dividuals for NSGA-II and 100 individuals for SPEA2, and
both using a stopping criterion of 60 seconds.

Table 1 reports the average and best improvements over
the best deterministic heuristic for each problem dimension,
computed in 30 independent executions performed for each
algorithm. Figure 1 summarizes the average improvements
by dimension.

For the MLS algorithm, the results in Table 1 indicates

makespan and up to 11.9% in energy where computed by the
NSGA-II algorithm, and similar improvements up to 18.3%
in makespan and up to 11.5% in energy where computed
by the SPEA2 algorithm. Even though the MOEASs require
substantially longer execution times, the improvements over
the MLS are not overly significant; this results suggest that
the multi-core problem is in fact harder to solve than the
single-core problem.

Because of the reduced execution time demanded to com-
pute accurate schedules, MLS is a candidate to be consid-
ered when hybridizing EA with LS. As future work we pro-
pose to compare our current MOEASs results with an im-
proved version of hybrid NSGA-II+MLS and SPEA2+MLS,
by including MLS as an internal operator of the proposed
MOEAs.
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