
Parallel Computing Applied to Satellite Images

Processing for Solar Resource Estimates

Rodrigo Alonso1 and Sergio Nesmachnow2

1 Instituto de F́ısica, Facultad de Ingenieŕıa, Universidad de la República
2 Centro de Cálculo, Facultad de Ingenieŕıa, Universidad de la República

Abstract. This article presents the application of parallel computing
techniques to process satellite imagery information for solar resource
estimates. A distributed memory parallel algorithm is introduced, which
is capable to generate the required inputs from visible channel images
to feed a statistical solar irradiation model. The parallelization strategy
consists in distributing the images within the available processors, and so,
every image is accessed only by one process. The experimental analysis
demonstrate that a maximum speedup value of 2.32 is achieved when
using four computing resources, but beyond that point the performance
rather decrease due to hard-disk input/output velocity.

Keywords: parallel computing, satellite images, solar resource assessment

1 Introduction

Interest in renewable energies—such as solar and wind energy and its related
applications—has strongly increased in the recent years. In Uruguay, a country
with no conventional energy resources such as coal, oil, natural gas or potentially
fissile materials, renewable energies are seen as a way to reduce the dependence of
international oil and energy prices and availability. The Uruguayan government
has set some ambitious national objectives concerning renewable energies, which
are projected to contributed in more than a 50% of the country primary energy
supply by the year 2015. A primordial step for the successful introduction of
renewable energy is resource assessment. Even though the important part that
is expected for renewable energies to contribute into the primary energy mix,
the assessment of the available solar resource at the national territory has been
initiated only recently.

The first solar map of Uruguay was built in 2009 based on a well-established
correlation between irradiation and insolation ground measurements [1]. The
spatial and temporal resolution obtained from methodologies based on correlat-
ing ground-data is very limited, and the method usually requires applying in-
terpolation techniques. Such interpolation techniques provide limited accuracy,
even over small distances. Perez et al. [9] showed that simple satellite-based ir-
radiation models are able to achieve better accuracy for hourly irradiance than
interpolation techniques over distances as short as 30 km. In fact, from an end-
user perspective, it is preferable to rely on satellite hourly estimates than using
ground data from stations located more than 30 km away of the target point.

2

Historically, models to assess irradiance estimates using satellite information
were classified into two categories: statistical [7] and physical [8]. Statistical mod-
els use regression techniques between satellite data and ground measurements.
As a result, they require reliable ground measurements to tune some coefficients
to a target region. On the other hand, physical models intend to describe the
physical processes that occur at the atmosphere. Satellite-based solar resource
estimation is also quite recent in Uruguay. The first local implementation of a
irradiation model was done in 2011 [2]. A statistical model was adjusted for the
Uruguayan territory and it was able to perform hourly irradiation estimations
with a spatial resolution of 2km and an uncertainty of 19.8%.

For research purposes, is usually required to process several times a big
amount of satellite images. Typically, processing all the 91950 images database
demands more than a day of computing time. The main contribution of this
article is to present a study devoted to show how parallel computing techniques
help to compute efficiently the satellite inputs required for a satellite-based solar
resource model. A distributed-memory parallel algorithm was developed to as-
sess mean satellite observed brightness in site neighborhoods that are distributed
through the target territory. The utility of the proposed parallel algorithm re-
lies in the possibility of performing in significantly reduced execution times the
processing of the complete image database, which could be useful, for example,
to process several times the data-bank varying the neighborhood size.

The rest of the article is organized as follows, in section 2 a brief description
of the model and the satellite data-bank is presented. Section 3 explains the
main design considerations for the parallel algorithms, while the implementation
details of the proposed algorithm are described in section 4. The experimental
analysis is reported in section 5. Finally, section 6 presents the conclusions of
the research and the main lines for future work.

2 Problem description

This section briefly describes the model implemented in this article to assess
solar irradiation from satellite imagery, and the required satellite information.
Also, a description of the satellite data-bank and its information is offered.

2.1 Satellite-based model for solar resource estimates

The first model that use satellite information to estimate the available solar
resource at ground level adjusted for the Uruguayan territory was the one by
Justus et al. [6]. This model is a parametrization to estimate solar radiation from
satellite data proposed in 1979 by Tarpley et al. [11], modified in 1986 by Tarpley
and colaborators to his actual version, due to some bias problems noticed in the
previous model. We will refer to that second version as JPT model hereafter. The
JPT model is, in fact, an statistical model that utilizes visible channel satellite
information to provide and estimation of the total amount of solar energy at a
given point—specified by his latitude and longitude—at an hourly scale.

3

Taking into account the statistical conception of the model, some parameters
must be adjusted for a target region using measurements from both satellite
radiometer and ground pyranometers. The JPT model proposes the multiple
regression presented in Equation 1 where the parameters a, b, c and d are the
regression coefficients.

I = Isc

(r0
r

)2
(

a cos θz + b cos2 θz + c cos3 θz
)

+ d
(

B2

m
−B2

0

)

(1)

In Equation 1, Isc is the hourly value of the solar constant (Isc = 4920 kJ/m2),
cos θz is the cosine of the zenital angle and (ro/r)

2 is a factor that accounts to
the Sun-Earth distance. All these variables could be calculated knowing the spa-
tial position of a site {φ, ψ} (latitude and longitude, respectively) and a given
time {n, h} (day of year and hour) [5].

The information required from satellite images for both operational purposes
and model adjustment, are the values of Bm and B0. Bm is the actual brightness
of a site at a certain time, and B0 is the brightness for the same site and time but
in clear-sky condition. So that, we will refer to Bm simply as a site brightness and
to B0 as a clear-sky brightness. Once the values of cos θz, brightness, and clear-
sky brightness are calculated for every hour for each site, it is possible to make an
estimation of the hourly irradiation, or, if the hourly integral for measurement
is available for a specific site, it is possible to perform an adjustment of the
coefficients a, b, c, and d by using a standard least square technique.

Due to the non-homogeneous shape of clouds and their quick movement
within an hour, the Bm values are averaged in a small cell of a site. If more
than one image is available for the hour, the Bm hourly value is assessed by
the mean value of the values obtained at each image. In order to compute the
clear-sky brightness, a parametrization is trained based on the Bm values. Thus,
the computation of the Bm values by averaging the counts in a small cell of a
site is the base step of the process.

In this article, we focus on the implementation of a parallel algorithm to
perform the computation of the brightness values for equally spaced sites in
latitude and longitude through the Uruguayan territory.

2.2 Satellite image data-bank

Image database consist of observations of the Geostationary Operational Envi-
ronmental Satellite (GOES) located at geostationary orbit at 75 degrees West.
The series of satellites that operated in that position is called GOES-East. An
image for the visible channel and five spectral bands are available. The images
were downloaded from the Comprehensive Large Array-data Stewardship Sys-
tem (CLASS) website that is administrated by the National Oceanic and Atmo-
spheric Administration (NOAA), and available at http://www.class.noaa.gov.
Images from the time period 2000 to date were acquired. The spatial resolution
of the images is about 2km between pixels for the target region and, in average,
there are two images per hour. GOES-East physical device has changed over time
so that the database is compose with GOES8, GOES12 and GOES13 images.

4

In total numbers, more than 90.000 images such as the ones presented in
Fig. 1 must be processed in order to compute solar irradiation estimations for all
the data-bank period. Without using parallel computing, processing this amount
of images could take about 15 hours to perform in a single PC/server machine.
Table 1 shows the composition of the satellite data-bank up to April 2012.

Table 1. Satellite database composition

satellite start date end date images

GOES 8 01/01/2000 31/03/2003 24750

GOES 12 01/04/2003 14/04/2010 51900

GOES 13 14/04/2010 30/04/2012 15300

total 01/01/2000 30/04/2012 91950

The images acquired are in NetCDF format, a standard machine-independent
data format that support the creation, access, and sharing of array-oriented
scientific data [10]. Visible channel information is recorded in each file as a data
matrix. Also, every file have his own navigation information due to the fact that
GOES satellite might present orientation movements. Two additional matrices
that correspond with the latitude (lat) and longitude (lon) are available for each
image file. A position (i, j) in the matrices lat and lon correspond to the latitude
and longitude information of the brightness count at the same matrix position.

The spatial window of the target region varies between 30 and 35 degrees
South, and 53 and 59 degrees West, including the Uruguayan territory. A total
of (5× 30)× (6× 30)× 90.000 = 2.43× 109 averages are needed to compute Bm

at cells that are spaced by 5 minutes in latitude-longitude intervals.

(a) Clear-sky image. (b) Partially cloudy image.

Fig. 1. Two examples of visible channel satellite images.

5

3 Parallel computing for satellite image processing

This section describes the main details about the parallel model and the design
of the proposed parallel algorithm.

3.1 Context and parallel model

The parallel implementation described in this article is the first step for migrat-
ing the system to a C platform using parallel computing strategies, in order to
implement an efficient operational model for solar image processing. The opera-
tional model will allow researchers to perform efficiently experiments related to
the characterization and prediction of solar energy availability, climate research
(fog, precipitation, cloud classification, etc.), agricultural products like the esti-
mation of evapotranspiration, and other satellite assessed products. As a result,
not only the main parallel algorithm was developed, but also a set of common
libraries that are used by other similar algorithms or may be used by future ones.
The implemented libraries are independent from any parallelization scheme.

Processing a single image takes a reduced execution time (about half a sec-
ond), so each image can be efficiently processed by an individual processor.
Applying parallel processing within each image is not useful from a performance-
oriented point of view, since it severely reduces the granularity of each task, and
causes that several processes simultaneously try to access to the same image or
to write to the same output file.

The real complexity of the tackled problem relies on the large number of
images to process. Thus, a data-parallel scheme was adopted to efficiently solve
the problem. Several processes are used, each one of them conceived to execute in
a different node in a distributed-memory cluster infrastructure. A master-slave
parallel model was adopted as shown in Fig. 2.

Fig. 2. Master-slave parallel model for the satellite image processing algorithm.

6

The master process is in charge of performing the domain-decomposition and
the distribution of work to slave processes. The domain decomposition approach
divides the total amount of images into p subsets of time consecutive images,
where p is the total amount of processes. At the beginning of its execution, every
process receives a reference of the first and last image it is supposed to compute.

An active master-slave model is used: the master process also works in the
image processing, performing the same operation than the slave processes.

Cell size may not be the same as the spacing between cells. Spacing between
cells correspond with the spatial resolution of the resulting irradiation map for
every image. On the other hand, cell size is concerned with the accuracy which
with a Bm value, calculated for one particular image time, could represent all
the time interval between two images. In this article, we work with 5 × 5 cell
size and 5 × 5 latitude-longitude spacing between cells. These parameters are
introduced via plain text file by the user, jointly with other configuration options.
An example of a plain text file with input parameters to feed the algorithm is
presented in Fig.3.

/home2/rodrigoa/satellite/TRAW/ % Origin folder

/home2/rodrigoa/satellite/T000/ % Destiny folder
1 % Spectral band to process

2 % Amount of years to process
2005 % First year to process
2009 % Second year to process

35 0 0 59 0 0 % Init of the target region
30 0 0 53 0 0 % Finish of the target region

0 5 0 0 5 0 % Cell’s latitude and longitud spacing
0 5 0 0 5 0 % Cell’s latitude and longitud size

Fig. 3. Example of plain text file with user parameters for the proposed algorithm.

4 Parallel implementation of the image processing

algorithm

This section describes the details of the implemented parallel algorithm. It
presents a description of the set of common libraries implemented and their
characteristics, the parallelization scheme, and other features of the parallel im-
plementation.

4.1 Brief description of implemented libraries

Three libraries were built: (a) a processing library, which implements all the
specific processing duties, (b) an assigment library to assess the distribution of
duties in the parallelization, and (c) a calibration library to perform satellite
calibration and count-to-radiance conversion.

7

The processing library implements all the specific functionalities required for
image processing. This library includes the specials features to interact with
NetCDF files, to write down the information to disk, and the logic to process
every image. The reference to the start and finish image is received as a pa-
rameter. The images are scanned and the pixel values are accumulated in the
corresponding cell based on the latitude and longitude information for the pixel.
The average is computed for each every cell by performing the quotient between
the accumulated value and the total amount of pixels counted for that cell.
Finally, the average matrix of equally spaced cell is saved to disk.

In the current version of the processing software, the user is able to specify
which years of images want to process. The assignment library is able to count
how many images were requested to process by scanning hard-disk drive direc-
tories. Also, it has the internal logic to assess the domain-decomposition and the
load balancing that is explained in the next subsection.

Finally, a library for satellite calibration was implemented. A set of coeffi-
cients is applied to the brightness count values to assess satellite observed radi-
ance or to compensate the radiance due to satellite sensor degradation. These
coefficients differ depending on the physical device and time. A different cali-
bration procedure can be applied if a better one is available. Thus, a modular
approach was followed to design the calibration library in order to easily allow
changing this module.

4.2 Load balancing

Taking into account the uniform processing model for images, a static load bal-
ancing scheme was used. All the images in the data-bank have the same size and
the processing of each separately image is exactly the same.

The parallel algorithm was conceived to execute in a dedicated parallel com-
puting infrastructure. Thus, there is no a priori reason to think that a given pro-
cess will result overloaded. In the proposed parallel algorithm, load balancing
is performed simply by dividing the domain into subsets containing the same
amount of images. The experimental evidence showed that in practice, some
processes usually complete its assigned processing before some other ones, when
executing the algorithm in operational mode. However, the deviation from the
ideal equally-time processing is never larger than 20 images when processing a
entire year (approximately 7500 images), corresponding to a negligible value of
less than 10 seconds of execution time.

In the static load balancing scheme used, the distribution of images is done
by the assignment library, which is able to count all the actual images at the
directories. Then, the image assignments are performed based on the available
quantity of processes p and the total amount of images required to process.
The responsibilities for each process is assigned by generating six arrays, which
keep the information about the starting and finishing image for each process.
Thus, two arrays indicate the starting and finishing year, two more indicate the
starting and finishig month and, finally, the last two arrays got the information
about the starting and finishing image’s index in the corresponding starting and

8

finishing folder. The size of these arrays is equal to p, and are such that, when
the k-process, k :: k ∈ {0 . . . (p − 1)}, evaluates them in the k position, they
specify the first and last image of the assignation to that process.

4.3 Algorithm description

The parallel algorithm was implemented in C. The parallelism was implemented
following the MPI standard for parallel and distributed programming [4], by
using the 1.2.7p1 version of the well-known MPICH implementation.

The algorithm is composed by four main stages: (a) initialization and data
parallel distribution (b) upload of images from hard-disk, (c) computation of the
Bm values for each assigned image, and (d) save processed data to hard-disk.
A final step is done by the master process to save some final parameters and
information regarding the size of the cell, the amount of cells, and the grid used
in the processing. A graphical explanation of this scheme is presented in Fig. 4.

Fig. 4. Flow scheme of the stages in the image processing algorithm.

The master process is in charge of performing the initialization phase of the
algorithm. The master reads the user data, initializes some parameters of the
system (e.g. paths, filenames, cell size and spacing), counts the images in the
data-bank, and generates the data for domain decomposition. After that, the
master process send the references about the images, as well as user and system
variables, to each one of the p slave process. Once the initialization phase is
done, every slave process knows all the data needed to work independently. In
particular, each slave have references to the first and the last image to process
and where it has to write down to hard-disk the information about the processing
of each assigned image.

The output of the processing includes six plain text files. Four of them con-
tain the grid values that correspond to the brightness for each cell, and three
subproducts from the image calibration. The last two files are the grid mask that
indicate if a given value in the grid is corrupted or not, and the amount of pixels
counted for each cell in the grid. When a process finishes its assigned processing,
it sends a notification to the master, jointly with a resume of the processing
performed. Since all processes inform the master when they stop working, the
master knows when all the requested processing is done.

9

Fig. 5 shows an example of the (optional) user output that the master process
writes after the initialization stage just before creating and launching the slave
processes. In order to illustrate the domain decomposition performed, the sample
case in Fig. 5 shows that the algorithm is executed with four processes executing
on four processing units (p = 4) and the parameters already presented in Fig. 3.
In the presented example, each process is in charge of processing 3892 images
(q = 3892), and 3 out of 4 processes has to compute one extra image (r = 3). A
total number of 15.571 NetCDF files are processed. This kind of output is useful
to inform the user about the system parameters, as a way to know if they are
adequate before processing.

----- rank = [0] :: Processing data ---

Path: /home2/rodrigoa/satelite/TRAW/

Channel to process: [01.nc] Years to process: [2005, 2009]
Amount of images found: [15571] Assigment: q = [3892] :: r = [3]

Amount of nodes = [4]
Amount of cells to process: Ci = [30] :: Cj = [36] :: Ct = [1080]

Latitude region = [-35.000000 ... -30.166667]

Longitude region = [-59.000000 ... -53.166667]
incLAT = [0.083333] :: incLON = [0.083333]

Channel images per month: [826, 718, 744, 594, 539, 403, 469, 560, 411, 710, 840, 862]
842, 707, 683, 596, 568, 486, 542, 510, 679, 770, 716, 796]

Fig. 5. Example of the (optional) master process user output after the initialization
stage, just before launching the slave processes. All system parameters are reported.

5 Performance evaluation

This section describes the computational platform and the image test-set used
in the experimental analysis. After that, the methodology followed in the exper-
imental analysis is described. Finally, the results of the performance analysis are
presented and discussed, with special emphasis on the speedup analysis of the
parallel algorithm.

5.1 Execution platform

The experimental analysis of the proposed parallel algorithm was performed in
a server with two Intel quad-core Xeon processors at 2.6 GHz, with 8 GB RAM,
CentOS Linux, and Gigabit Ethernet. The infrastructure is part of the Cluster
FING, Facultad de Ingenieŕıa, Universidad de la República, Uruguay; cluster
website: http://www.fing.edu.uy/cluster).

10

5.2 Test set images

A test-set of images was used to carry out the performance analysis for the satel-
lite data-bank processing algorithm. NetCDF files that correspond to satellite
images of the year 2011 were used. A total number of 7670 images comprises
the data-bank information for that year, which represent a total disk capacity of
about 60GB. Hard-disk drive used to store the test set was local to the node used
to run the evaluation, to avoid the performance degradation due to transferring
large image files through NFS.

5.3 Methodology

The experimental evaluation studies the execution time of the parallel algorithm
when varying the number of working processes between 2 and 8. This subsection
introduces the performance metrics used to evaluate the parallel algorithm and
the methodology used in the analysis.

Performance metrics. The most common metrics used by the research com-
munity to evaluate the performance of parallel algorithms are the speedup and
the efficiency.

The speedup evaluates how much faster a parallel algorithm is than its corre-
sponding sequential version. It is computed as the ratio of the execution times of
the sequential algorithm (T1) and the parallel version executed on m computing
elements (Tm) (Equation 2). When applied to non-deterministic algorithms, the
speedup should compare the mean values of the sequential and parallel execu-
tion times (Equation 3). The ideal case for a parallel algorithm is to achieve
linear speedup (Sm = m), but the most common situation is to achieve sublin-
ear speedup (Sm < m), mainly due to the times required to communicate and
synchronize the parallel processes.

The efficiency is the normalized value of the speedup, regarding the number
of computing elements used to execute a parallel algorithm (Equation 4). This
metric allows the comparison of algorithms eventually executed in non-identical
computing platforms. The linear speedup corresponds to em = 1, and in the
most usual situations em < 1.

Sm =
T1
Tm

(2) Sm =
E[T1]

E[Tm]
(3) em =

Sm

m
(4)

Statistical analysis of execution times. In order to reduce the effect of non-
determinism in the execution, a well-know side effect of parallel programming [3],
fifty independent execution of the parallel program were performed for each
value of p. For every execution the total time spent for processing the image
data-bank was recorded, and the average execution time of the fifty executions
was computed for every value of p, in order to compute an accurate estimation
for the operation time of the test.

11

In addition, an estimation of the time required by the sequential algorithm
was computed by averaging fifty executions. The proposed parallel algorithm
does not modify the algorithmic structure of the sequential version, since only
the image processing is performed in parallel and no additional components
are included. From the algorithmic point of view, the required communication
between master and slave processes to start the execution and return the results
is identical to a standard function calling in a sequential algorithm.

The time required for both the initialization of the MPI environment and
the data parallel distribution are negligible in comparison with the time needed
to processed the images. The final stage of recoding the system parameters and
the grid data, which is performed by the master process, cannot be parallelized.
It is included in the serial fraction of the parallel algorithm, since it demands
the same execution time that when using a sequential algorithm. Taking into
account the previous comments, the time that a sequential algorithm will require
to perform the processing is almost equal to the time that the proposed parallel
algorithm needs when using a single processing element(p = 1).

With the aforementioned execution time values, estimations for the speedup
and efficiency metrics are computed to evaluate the performance of the proposed
parallel algorithm for solar image processing.

Results and discussion. Table 2 reports the best, average, and standard de-
viation (σ) values of the execution times computed in the fifty independent
executions performed for both the sequential and the parallel algorithm for dif-
ferent values of the number of processes p. The corresponding speedup values
for different values of p are also reported.

Table 2. Performance metrics for different values of p.

processes
execution time (s) metric

best avg σ speedup efficiency

1 (sequential) 4555 4786 380 – –

2 2587 2720 316 1.76 0.88

3 2047 2123 214 2.25 0.75

4 1989 2062 130 2.32 0.58

5 2124 2200 136 2.18 0.44

6 2127 2360 293 2.03 0.34

7 2324 2370 36 2.02 0.29

8 2438 2484 32 1.93 0.24

According to the straightforward domain decomposition approach applied in
the proposed parallel algorithm, the performance was expected to increase when
increasing the number of processes. However, the analysis of the execution time
results reported in Table 2 indicates that this behavior only holds for p < 5.

12

Fig. 6 shows examples of the estimated average execution time values ob-
tained in the fifty executions of the sequential and the parallel algorithm with
p = 2, p = 4 and p = 8. The figure shows that the majority of the execution
time values are aligned, and the standard deviation tends to reduce when more
processes are used.

0 10 20 30 40 50

20
00

30
00

40
00

50
00

60
00

70
00

number of execution

ex
ec

ut
io

n
tim

e
(s

)

sequential
2 processes
4 processes
8 processes

Fig. 6. Example of the times recorded for fifty executions of the proposed parallel
algorithm for p = 1, p = 2, p = 4, and p = 8.

Regarding the speedup and efficiency metrics, a speedup value of 1.76 was
achieved when working with p = 2 and then it is slightly improved using more
processes, obtaining a maximum speedup value of 2.32 at p = 4. Beyond this
point, using more processes causes the execution times to deteriorate. The most
probable explanation for this phenomena is that the input/output capacity of
the hard-disk drive severely affects the computational efficiency of the proposed
parallel algorithm. Due to the large data transferred, the maximum bandwidth
capacity of the data bus is almost reached using p = 3 and fully achieved using
p = 4. In addition, when a large number of processes (e.g. p > 6) is used, the idle
times due to unbalanced processing also contributes to reduce the computational
efficiency of the proposed parallel algorithm.

The variation of the best and average execution times for different values of p
is presented in Fig. 7. The variation of the values for the speedup and efficiency
metric for different values of p is presented in Fig. 8 (a) and (b), respectively.

13

2 4 6 8

20
00

25
00

30
00

35
00

40
00

45
00

50
00

number of processes

ex
ec

ut
io

n
tim

e
(s

)

average time
best time

Fig. 7. Best and average execution times vs. processes used.

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

number of processes

sp
ee

d
up

(a) speedup vs. processes.

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of processes

ef
fic

ie
nc

y

(b) efficiency vs. processes.

Fig. 8. Estimated speedup and efficiency vs. processes used. A red line was drawn to
show the ideal linear speedup/efficiency situation

14

6 Conclusions and future work

This article has presented a parallel implementation for an algorithm to process
satellite image information for solar resource estimates.

Nowadays, satellite applications in Uruguay are at a research stage. As a
consequence, satellite imagery is being processed several times. Processing each
image individually does not take many computational effort and half a second
is often spent. The complexity of the problem lies in the big amount of images
that should be processed. The computation of all the database involves to work
with more than 90000 images and a suitable automatic solution to process such
a volume of information is needed. In this line of work, the parallel computing
strategy described in this article was applied to reduce the computation time of
a GOES-East satellite data-bank.

A parallel master-slave algorithm was developed in order to solve the particu-
lar problem of computing the inputs for a satellite-based solar irradiation model.
Also, a set of common libraries were implemented to address specific processing
tasks. The proposed scheme is based on image domain-decomposition in order
to fully exploit the master-slave parallel model when executing in a cluster in-
frastructure.

The experimental analysis show that significant improvements in the exe-
cution times are obtained with the parallel algorithm when compared with the
sequential version. A maximum speedup value of 2.32 was reached by the pro-
posed parallel algorithm when using four processes, but when using more than
four processes the computational efficiency reduces and the execution times in-
crease. The phenomena is explained by the limited input/output hard-disk drive
bandwidth of the infrastructure used. In its current implementation, the algo-
rithm shall be used splitting the work on four processes, to take the best advan-
tage of the parallel platform. Although the proposed parallel algorithm does not
scale appropriately for more than four processes, it is a promising first step in
the quest of designing an efficient automatic tool for solar image processing in
our research context.

The main lines for future work are related to improving the computational
efficiency of the proposed method, by addressing the main issues that conspire
against a good scalability behavior. We plan to implement both a dynamic load
balancing to execute in non dedicated infrastructures, and the parallelization of
hard-disk drive access as a strategy to reduce the negative effects of hard-disk
bounded bandwidth. The distribution of images in different physical hard-disk
drives will aloud to launch processes in nodes with local access to them. This
is expected to increase the efficiency of the parallelization when using more
than four processes, and thus, to decrease execution times in such situation.
Another promising line for future work is the possibility of executing the image
processing in grid infrastructures, in order to take advantage of the large resource
availability of distributed computing platforms.

15

Acknowledgments

The work of R. Alonso has been partially supported by ANII and CSIC, Uruguay.
The work of S. Nesmachnow has been partially supported by ANII and PEDECIBA,
Uruguay.

References

1. G. Abal, M. D’Angelo, J. Cataldo and A. Gutierrez, Mapa Solar del Uruguay. IV
Conf. Latinoamericana de Enerǵıa Solar (IV ISES-CLA), 2010 (text in Spanish).

2. R. Alonso, G. Abal, R. Siri, P. Musé and P. Toscano, Solar irradiation assessment
in Uruguay using Tarpley’s model and GOES satellite images. Proceedings of the
2011 ISES Solar World Congress. 2011.

3. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison Wesley, 1995.

4. W. Gropp, E. Lusk and A. Skjellum, Using MPI: portable parallel programming with
the message-passing interface. MIT Press Cambridge, MA, USA, 1999.

5. M. Iqbal, An introduction to Solar Radiation, Academic Press, 1983.
6. C. Justus, M. Paris and J. Tarpley, Satellite-measured insolation in the United

States, Mexico, and South America. Remote Sensing of Environment, vol. 20, pag.
57-83, 1986.

7. M. Noia, C. Ratto and R. Festa, Solar irradiance estimation from geostationary
satellite data: 1. Statistical Models, Solar Energy 51, 449–456, 1993.

8. M. Noia, C. Ratto and R. Festa, Solar irradiance estimation from geostationary
satellite data: 2. Physical Models, Solar Energy 51, 457–465, 1993.

9. R. Perez, R. Seals and A. Zelenka, Comparing satellite remote sensing and ground
network measurements for the production of site/time specific irradiance data, Solar
Energy 60, 89–96, 1997.

10. R. Rew and G. Davis, NetCDF: An Interface for Scientific Data Access, IEEE
Computer Graphics and Applications 10(4), 76–82, 1990.

11. J. Tarpley, Estimating Incident Solar Radiation at the Surface from Geostationary
Satellite Data. Journal of Applied Meteorology, vol. 18, pag. 1172-1181, 1979.

