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ABSTRACT 

The deadline scheduling problem in project management is a NP-hard problem 
with major relevance in software engineering and scheduling of activities. In this article, we 
introduce an efficient parallel evolutionary algorithm applied to solve that problem, 
engineered to compute accurate solutions in reduced execution times. Specific evolutionary 
operators are proposed to allow solving realistic problem instances, and a master-slave 
parallel strategy is applied to further improve the computational efficiency and the results 
quality. The experimental analysis performed on a set standard problem instances shows 
that accurate solutions are computed. The comparative evaluation demonstrates that the 
proposed parallel evolutionary algorithm is able to outperform one of the best well-known 
deterministic techniques for the problem in reduced execution times, especially when 
facing instances with tight deadline constraints. 
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1. Introduction 

Project management involves planning and organizing a set of activities in order to 
generate a product or offer a service in the best possible way (Nicholas and Steyn 2011). In 
order to shorten the project duration, some activities can be performed faster by employing 
additional resources, increasing the cost of the entire project. Considering that each activity 
can be performed by using a set of alternative modes, each one defined by a time-cost pair, a 
key problem to enable the best project performance consists in finding a schedule that 
assigns modes to activities, providing a good tradeoff between the duration and cost for 
each activity. In this article, we tackle the scheduling problem known as Deadline Problem 
in Project Management (DPPM), which accounts for both precedence between activities and 
deadline for its execution. In the related literature, the problem is also known as the 
Discrete Time/Cost Trade-off Problem (DTCTP). 

Traditional scheduling problems are NP-hard (Garey and Johnson 1979), thus 
classic exact methods are only useful for solving problem instances of reduced size. 
Heuristics and metaheuristics are promising methods for solving scheduling problems, 
since they are able to get efficient solutions in reasonable time, even for large problem 
instances. Evolutionary algorithms (EAs) have emerged as flexible and robust metaheuristic 
methods for solving this kind of complex problems, achieving the high level of accuracy and 
efficiency also shown in many other application areas (Bäck et al. 1997). Parallel 
implementations have been proposed to improve both the computational efficiency and 
search quality of EAs (Alba 2005). 

The main contributions of this article are: i) to introduce a highly efficient parallel 
EA to solve the DPPM, designed to solve realistic instances in reduced execution times, and 
ii) to efficiently compute accurate schedules, outperforming previous results in literature, 
for a set of problem instances with tight deadline constraints. Overall, the proposed parallel 
EA was able to compute 12 new best solutions for the set of 36 problem instances tackled. 

The manuscript is structured as follows. Section 2 describes the paradigm of 
evolutionary computation and parallel EAs. The DPPM formulation is introduced in Section 
3. Section 4 reviews previous works applied to solve the DPPM and problem variants. The 
features of the parallel EA used in the study are described in Section 5. The experimental 
analysis and the discussion of the results are presented in Section 6, while the conclusions 
and main lines for future work are formulated in Section 7. 

2. Evolutionary algorithms and parallel implementations 

EAs are non-deterministic methods that emulate the evolutionary process of 
species in nature, in order to solve optimization, search, and machine learning problems 
(Bäck et al. 1997). In the last twenty-five years, EAs have been successfully applied for 
solving optimization problems underlying many real applications of high complexity. 

An EA is an iterative technique (each iteration is called a generation) that applies 
stochastic operators on a pool of individuals (the population P) in order to improve their 
fitness, which is a measure related to the objective function. Every individual in the 
population is the encoded version of a solution for the problem. The initial population is 
generated by a random method or by using a specific heuristic for the problem. An 
evaluation function associates a fitness value to every individual, indicating its suitability to 
the problem. Iteratively, the probabilistic application of variation operators like the 
recombination of parts from two individuals or random changes (mutations) are guided by a 
selection-of-the-best technique to tentative solutions of higher quality. The stopping 
criterion usually involves a fixed number of generations or execution time, a quality 
threshold on the best fitness value, or the detection of a stagnation situation. Specific 
policies are used to select the groups of individuals to recombine (the selection method) and 
to determine which new individuals are inserted in the population in each new generation. 
The EA returns the best solution ever found, taking into account the fitness function. 



Parallel implementations are used to improve the efficiency of EAs. By using 
several computing elements, parallel EAs allow reaching high quality results in a reasonable 
execution time even for hard-to-solve optimization problems. Three main paradigms have 
been proposed in the related literature to design parallel EAs, regarding the criterion used 
for the organization of the population (Alba and Tomassini2002). In this work, we have 
applied the master-slave model to design the proposed parallel EA. 

The master-slave model follows a functional decomposition of the evolutionary 
search. A master-slave parallel EA is organized in a hierarchic structure: a master process 
guides the search, while it controls a group of slave processes which perform the fitness 
function evaluation and/or the application of the variation operators (when they require 
large computing times) over different candidate solutions in parallel. 

3. Deadline Problem in Project Management 

The DPPM formulation considers the following elements:  
 A set of activities                with starting times   . Some activities may 

require the completion of some other activities before they begin, so a precedence 
function   is defined, where    is the set of immediate predecessors of activity   .  

 A set of execution modes                   
  is defined for each activity   , 

where each activity must be assigned to exactly one mode.  
 For each activity    and each mode     the time/cost pair           is defined, 

where     is the duration and     is the cost. For any two modes     
and     

 of a 

given activity        
     

 implies     
     

 , which means that in order to 

speed up the time of a given activity additional resources are needed, i.e. higher 
costs are demanded. In addition,       implies     

      
 for all activities   , 

that is, the activity modes are ordered by decreasing order of duration. 
 A deadline   for the project duration is established. 

The goal of the DPPM is to find a schedule, i.e. a function         that assigns 
modes to the activities, which minimizes the total cost while fulfilling the precedence 
constraints and subject to that the entire project duration cannot exceed the deadline  . 

For the DPPM mathematical formulation, let consider two dummy activities,    
which precedes all those real activities with no predecessors, and     , which is performed 
after all activities having no successors are finished (thus,      is the entire project 
duration), and the binary decision variables    , whose values are given by Eq. 1. 

      
                                              
                                                                      

      

So, the DPPM formulation as an optimization problem is presented in Eq. 2. 

Minimize          

  

   

 

   
       

subject to               
  

   
       

                                    
  

   
       

                 
                     
                                 

The DPPM objective is the minimization of the total cost (2.1). The constraints of 
the problem are: each activity must be assigned to exactly one mode (2.2); an activity 
cannot start before all its immediate predecessors are completed (2.3); the entire project 
duration cannot exceed the deadline   (2.4); the starting time of the activities must be non-
negative (2.5); and the values of     are binary (2.6).  



4. Related work: heuristics and metaheuristics for the DPPM 

This subsection presents a review of previous works that have proposed applying 
heuristics and metaheuristics to the DPPM and related variants of the problem. 

Pioneering works on scheduling proved that for linear time/cost functions, the 
DPPM can be solved by traditional methods such as Maximum Flow or Cut Search 
algorithms. Dunne et al. (1997) showed that the DTCTP is NP-hard in the strong sense, but 
some special structures like pure parallel and pure series are solvable in polynomial times.  

Demeulemeester et al. (1998) solved the Time/Cost Curve Problem by applying a 
horizon-varying approach using iterative solutions of the DPPM, computed with a Branch 
and Bound (BAB) algorithm using Linear Relaxation based lower bounds (LB). The 
proposed approach solved small-sized instances up to 30 activities and four modes easily, 
but failed to solve most of the tackled instances with 40 activities. Deineko et al. (2001) 
proved that there cannot exist a polynomial time approximation algorithm with a 
performance guarantee better than 3/2 for any versions of the DTCTP. 

Akkan et al. (2005) computed LB for the DPPM using column generation techniques 
based on a network decomposition approach. The proposed techniques were also applied 
to construct feasible solutions. The experimental analysis revealed the satisfactory behavior 
of the algorithm, which obtained solutions with average gap less than 7% in only 6 seconds. 

Hafizoglu and Azizoglu (2010) studied algorithms based on linear programming 
relaxation to solve the DPPM. They defined two LBs on the optimal total cost, namely Naive 
Bound and LPR-Based LB, which are used in their BAB algorithm to define the branching 
strategy and to eliminate non-promising partial solutions. BAB solved instances with up to 
150 activities and 10 modes in reasonable execution times, showing a satisfactory behavior 
for loose deadline time constraints. However, when faced with tighter constraints, the 
execution time of BAB increased considerably, reaching an hour of computing time. Up to 
our knowledge, the BAB algorithm is one of the best method for solving the DPPM, although 
it demands a large computing time for instances with tight deadlines. 

Anagnostopoulos et al. (2010) developed five variants of a simulated annealing 
(SA) algorithm for the DPPM, using different parametrizations. The SAs achieve feasible 
solutions in a few seconds, and solved large-sized instances up to 300 activities with 4 
modes. However, the quality of the computed solutions is only evaluated with estimations 
of the global optimum within a certain confidence interval. 

Hazir et al. (2010) proposed an exact algorithm to solve the time minimization 
version of the DTCTP by a decomposition strategy. A master problem solves a relaxed DTCTP 
generating a LB for minimization and trial values for the integer variables to be used as 
fixed values in the subproblem. Instances with 85 to 136 activities, 2 to 10 modes, and tight 
deadline constraints were solved. The results show that 74% of the instances are solved 
exactly in 10 minutes, 96% in an hour, and all of them are solved in 90 minutes. Up to our 
knowledge, this is the best method for the time minimization DTCTP with tight deadlines. 

Zhang et al. (2010) extended the DTCTP by considering renewable and non 
renewable resource-constrains simultaneously. A genetic algorithm was implemented for 
this problem, which is able to solve an instance with two renewable and two nonrenewable 
resources and with up to 30 activities and three modes. The computation experiments show 
that the algorithm solved these instances in no more than four seconds. 

Recently, Fallah-Mehdipour et al. (2012) included a new parameter, the quality of 
the project, to previously considered time and cost parameters. Two multiobjective EAs 
(NSGA-II and MOPSO) are used to solve the proposed problem. The experimental analysis 
solved two instances with two objectives and 18 activities, and three objectives and 7 
activities, respectively. The results show that both multiobjective EAs are able to achieve 
feasible solutions, but no computing times are reported. 

Up to our knowledge, there are no antecedents of previous works applying parallel 
metaheuristic to solve the DPPM/DTCTP. 



Summarizing, the analysis of the related works shows that solving DPPM/DTCTP 
instances with tight deadline constraints in reduced execution times is a hard task. For this 
kind of instances, the best existing approaches demands more than one hour of execution 
time. Thus, there is still room to contribute in this line of research, by developing efficient 
and accurate methods to solve the DPPM/DTCTP, able to handle the increasing complexity 
of realistic instances with tight constraints in reduced execution times. 

5. An efficient parallel EA for the DPPM 

This section presents the main features of the proposed parallel EA for the DPPM. 

5.1. The GAlib library 

The algorithm was implemented on GAlib, a library for EAs developed in C/C++ 
using the object oriented paradigm (Wall 1996). The library includes tools to implement 
EAs and offers the possibility of developing user-defined representations and operators. 
Several modifications were needed in order to provide support for the master-slave model 
applied to the proposed EA, including: i) implementing the thread creation, management, 
and synchronization, ii) implementing a thread-safe variant for the pseudorandom number 
generator, and iii) applying mutual exclusion sections for the selection operator, 
population, and statistical variables.  

5.2. Features of the proposed EA 

This subsection presents the main features of the proposed parallel EA, designed 
with two main goals: computing accurate DPPM solutions in reduced time and providing a 
good exploration pattern by using ad-hoc variation operators. 

Solution encoding. A non-traditional encoding is defined to represent solutions, 
taking into account the precedence relations between activities and the different modes in 
which each activity can be performed. Each individual in the population is encoded as an 

array      
    

      
      

      
   where    represents the activity   , and   

  denotes the 
activity    in mode    . The execution order of activities is from left to right: all of the 
predecessors of activity     are located before—i.e. at the left—of    . 

Fitness function. Let S be a solution, represented by    
    

       
       

       
  . 

The fitness function is given by Eq. 3, where   is the maximum cost of the project, i.e. the 
sum of all activity costs assuming that all activities are in the costliest mode. 

                     
   

 

   
     

Feasibility check and repair mechanism. The proposed operators never violate the 
precedence constrains, but they can generate non-feasible solutions that do not fulfill the 
deadline constraints. Thus, a feasibility check/repair method is applied to correct non-
feasible solutions. The total time of the project cannot exceed the deadline  . Therefore, any 

individual    
    

       
       

       
   must fulfill t      

             
      

       
     . When this condition is not verified, the feasibility repair mechanism works 

by randomly selecting an activity and changing its mode in order to demand a shorter 
execution time. This procedure is iteratively applied until the deadline constraint is met. 

Initialization. An initial population of feasible solutions is generated by applying an 
ad-hoc randomized construction operator. Starting from      

            , a new 
activity    in mode     is randomly selected. If all the predecessors of activity    have been 

inserted in the solution, then   
  is inserted in the first available empty location. Otherwise, 

another activity is selected. When the whole schedule has been constructed, the feasibility 
check/repair mechanism is applied in order to meet the deadline constraints. 

Selection. The proportional selection method is used. An individual    is selected to 
recombine/mutate with probability    given by Eq. 4, where pSize is population size. 



      
          

           
     
   

     

Exploitation: recombination. An ad-hoc single point crossover operator is used to 
recombine solutions, in order to preserve the precedence relations between activities. Two 

parents      
    

        
    

        
   and      

    
        

    
 
       

   are 
selected from the population, and an integer   is selected randomly from the interval      . 
Then, two offspring   and   are generated according to  : 
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         are the elements   

    
        

  
in  , but using the modes in  , and arranged in the order they are in  , and   

   
        

              
           

 
      

   where   
        

              
         are the elements   

        
 in  , but 

using the modes in  , and arranged in the order they are in  . So, each offspring inherits 
activities from one parent, half of them with the order and modes they have in the other 
parent. The crossover operator can generate solutions that exceed the maximum time 
allowed, so the feasibility check/repair method is used to assure that all constraints are 
met. 

Exploration: mutation.  Let      
      

      
      

        
   be the individual 

that is selected for mutation, where   
  denotes the activity    in any (fixed) mode. An 

integer   is selected at random from the interval      . Let activity    be the last 

predecessor of activity   , and let activity    be the first successor of activity   . An integer 
  is selected randomly from the interval          , then: 

              
    

     
    

       
         

      
       

    

              
    

        
      

        
     

     
      

   

The mutation operator maintains the precedence relations between activities, but 
the new mode is randomly selected, so the feasibility check/repair mechanism is applied to 
guarantee that the deadline constraint is met. 

Local search. The local search operator attempts to improve a given solution 

     
    

     
      

      
   by evaluating to change the activities to a mode that 

reduces the total cost. Starting on a randomly selected activity   , the operator cyclically 
analyzes all the   activities, attempting to change it to mode        , assuming that the 

activity is assigned to execute in mode    . The process is iteratively applied until all 
activities have been analyzed and no change has been applied, because making such 
changes will imply to violate the deadline constraint. Thus, a new schedule    

   
    

      
  

     
       

   is generated. This operator maintains the precedence relations 
between activities and it also guarantees that the deadline constraint is not violated.  

Parallel model. The proposed parallel EA uses a pool of t threads. Each thread 
executes all the operators, including the time-consuming LS operator and the feasibility 
check/repair mechanism (see a diagram in Figure 1). Each thread creates two new 
solutions, so a synchronizing procedure is required in order to build the new population.  

Figure 1: Master-slave model implemented in the proposed parallel EA. 
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6. Experimental analysis 

This section introduces the set of DPPM instances and the platform used in the 
experimental evaluation. After that, the parameter setting experiments are commented. The 
last subsection presents and discusses the numerical results of the proposed parallel EA.  

6.1. DPPM instances  

Thirty-six complex instances in the benchmark from Akkan et al. (2005) are used 
to evaluate the proposed EA. The complexity is evaluated regarding two metrics: Coefficient 
of Network Complexity (CNC), the ratio between number of activities and number of modes, 
and Complexity Index (CI), that evaluates how close an instance to a series-parallel one is. 

In the selected instances, the number of modes and the durations of each activity 
are selected using a discrete uniform distribution in        and        , respectively. The 
minimum cost      is uniformly selected in [5,15] for all activity   , and        is defined 

recursively by                                , where   is also taken from a uniform 

distribution. The deadline values are defined by                      being      and 
     the shortest and longest project durations respectively, and θ  {0.15, 0.30, 0.45}. 

6.2. Development and execution platform 

The EAs was implemented in C++, using the GAlib library. The experimental 
analysis was performed on a HP server with an Opteron 6172 Magny Cours (24 cores) 
processor at 2.26 GHz, with 24 GB RAM, and CentOS Linux 5.2. 

6.3. Parameter setting experiments 

A study was performed to determine the best values of three EA parameters: pSize, 
and the crossover    and mutation    probabilities. The candidate values were: 
                  ,                    , and                    . Thirty executions of 
the proposed parallel EA were performed for two average-size DPPM instances, with CI=14, 
CNC=6, N=102, and       . The best results were obtained when using the configuration 
pSize=50,   =0.95,   =0.01, showing the importance of the crossover operator to compute 
accurate solutions. No significant improvements were detected when increasing pSize, 
suggesting that using a larger population is not useful to improve the results quality. 

6.4. Validation experiments 

In the experimental evaluation, fifty executions of the proposed parallel EA were 
performed to solve each of the 36 DPPM instances studied, using from one to 24 threads. 
The parallel EA is compared against LBs for the problem computed using CPLEX and against 
the BAB method by Hafizoglu and Azizoglu (2010), which is, up to our knowledge, the best 
method to solve the DPPM, even outperforming the original method by Akkan et al (2005). 

We defined two GAP metrics in order to compare the quality of the solutions 
computed by the proposed parallel EA against BAB and LBs. The GAP metrics are defined in 
Eq. 5, where bestPEA, bestBAB, and bestLB are the cost of the best solution computed by the 
proposed parallel EA, BAB and the LB, respectively. 

        
               

       
        

              

      
     

We also evaluated the wall-clock time required by the proposed parallel EA, and 
report a comparison with the sequential version using only one thread of execution. 

Table 1 presents the experimental results obtained by the proposed parallel EA 
using 24 threads, and a comparison with BAB and LB regarding both the quality of solutions 
and the execution time. The best, average, and standard deviation results computed in 50 
independent executions of the parallel EA are reported. In those cases where the proposed 
parallel EA found the optimal solution or it outperformed the BAB method—regarding 
either the cost of the best solution or the execution time—the results are marked in bold. 



CI = 13 

CNC N Ɵ 
  parallel EA (24 threads)   BAB   LB 

  avg tAVG σ best tBEST   best tBAB GAPBAB   best tLB GAPLB 

5 85 

0.15   12988.4 18.2 43.4 12951 18,0   12951 2094.7 0.00%   12951 1.9 0.00% 

0.30 
 

7838.1 14.5 21.2 7790 14,0 
 

7790 158.7 0.00% 
 

7790 0.4 0.00% 

0.45   5072.0 12.0 10.6 5054 12,1   5054 65.5 0.00%   5054 0.5 0.00% 

6 102 

0.15   15502.6 40.0 49.8 15440 39,3   15555 3600.0 -0.74%   15440 87.8 0.00% 

0.30 
 

10585.6 30.1 63.0 10392 31,1 
 

10547 3600.0 -1.47% 
 

10326 190.0 0.64% 

0.45   6057.6 24.1 21.7 6010 23,2   6010 294.9 0.00%   6010 3.3 0.00% 

7 117 

0.15   27624.1 76.8 12.6 27585 75,6   27693 3600.0 -0.39%   27526 2305.2 0.21% 

0.30 
 

17578.6 51.8 34.8 17537 51,2 
 

17537 3600.0 0.00% 
 

17537 112.1 0.00% 

0.45   11488.2 38.2 48.1 11377 38,0   11389 3600.0 -0.11%   11308 2.0 0.61% 

7 119 

0.15   23930.9 79.3 21.7 23895 77,4   24406 3600.0 -2.09%   23895 3601.4 0.00% 

0.30 
 

14537.4 57.4 39.1 14425 55,1 
 

14425 3600.0 0.00% 
 

14425 32.4 0.00% 

0.45   8695.5 35.7 38.2 8625 37,3   8625 398.9 0.00%   8625 1.4 0.00% 

8 128 

0.15   22048.7 112.1 194.5 21715 117,2   22125 3600.1 -1.85%   21603 260.3 0.52% 

0.30 
 

12908.2 80.5 142.4 12733 90,0 
 

13357 3600.0 -4.67% 
 

12696 14.2 0.29% 

0.45   7480.9 53.6 22.0 7428 54,4   7428 210.4 0.00%   7428 0.6 0.00% 

8 129 

0.15   17067.2 81.5 77.1 17005 86,1   17118 3600.0 -0.66%   17005 11.2 0.00% 

0.30 
 

11078.3 55.2 2.4 11077 54,7 
 

11077 950.6 0.00% 
 

11077 5.8 0.00% 

0.45   7095.4 44.0 6.5 7092 44,4   7092 48.8 0.00%   7092 0.3 0.00% 

CI = 14 

CNC N Ɵ 
  parallel EA (24 threads)   BAB   LB 

  avg tAVG σ best tBEST   best tBAB GAPBAB   best tLB GAPLB 

5 85 

0.15   13160,3 13.5 90.9 13057 13.3   13057 247.0 0.00%   13057 0.3 0.00% 

0.30 
 

8518,6 11.1 10.2 8481 11.0 
 

8481 157.6 0.00% 
 

8481 0.2 0.00% 

0.45   5640,8 9.5 60.2 5573 9.6   5573 10.4 0.00%   5573 0.1 0.00% 

6 102 

0.15   19020,3 30.3 32.3 18948 29.9   18948 238.7 0.00%   18948 0.9 0.00% 

0.30 
 

12585,9 23.6 38.1 12558 23.6 
 

12558 82.4 0.00% 
 

12558 0.5 0.00% 

0.45   7656,2 18.9 33.3 7610 18.7   7610 9.5 0.00%   7610 0.1 0.00% 

7 116 

0.15   19646,4 58.0 65.7 19585 57.2   19585 1891.3 0.00%   19585 9.7 0.00% 

0.30 
 

11175,6 46.6 59.5 11123 47.2 
 

11123 127.6 0.00% 
 

11123 0.7 0.00% 

0.45   7380,9 32.7 14.2 7364 32.9   7364 57.6 0.00%   7364 0.3 0.00% 

7 119 

0.15   9747,4 69.8 18.2 9693 70.2   9736 3600.1 -0.44%   9693 482.0 0.00% 

0.30 
 

5937,2 47.3 19.7 5884 45.6 
 

5886 3600.0 -0.03% 
 

5884 13.5 0.00% 

0.45   3868,4 35.0 10.4 3841 34.3   3834 3.6 0.18%   3834 0.3 0.18% 

8 128 

0.15   8089,5 90.1 6.6 8082 88.1   8082 3600.1 0.00%   8082 92.3 0.00% 

0.30 
 

5330,2 63.4 30.2 5263 63.9 
 

5326 3600.0 -1.18% 
 

5263 11.3 0.00% 

0.45   3637,0 42.8 5.5 3607 43.0   3575 160.7 0.90%   3575 0.5 0.90% 

8 129 

0.15   18757,8 76.4 43.2 18697 78.4   18794 3600.0 -0.52%   18642 96.3 0.30% 

0.30 
 

11864,6 59.7 26.3 11808 59.1 
 

11808 1014.1 0.00% 
 

11808 3.6 0.00% 

0.45   7858,2 48.0 13.2 7850 47.5   7850 237.5 0.00%   7850 0.8 0.00% 

Table1: Experimental results and comparison versus BAB and LB. 

The results in Table 1 show that the proposed parallel EA is an accurate method to 
solve the DPPM. Regarding the solution quality, the parallel EA outperformed BAB in 12 
instances, 8 of them for CI = 13. The parallel EA also computed identical results than BAB 
but requiring significant less execution time in other 21 instances, especially when tight 
deadlines are imposed. The percentage of improvement in the project cost are slight, mainly 
due to the excellent results computed by BAB, one of the best existing exact method to solve 
the problem. However, by taking advantage of the local search operator, a maximum cost 
improvement of 4.67% over the BAB solution was obtained for an instance with CI = 13, 
CNC = 8, 128 activities, and   = 0.30. The proposed parallel EA required less than one 
minute of execution time in all but nine of the problem instances tackled. The comparison 
with LB indicates that the EA was able to compute at least 28 optimal solutions for the 
problem, and in the remaining eight instances the GAPLB metric was always below 1%. 



Table 2 presents a comparison between the parallel EA using 24 threads and the 
sequential version, when using a predefined time stopping criterion of 60 seconds of 
execution time. The best, average, and standard deviation results computed in 50 
independent executions of both parallel and sequential EA are reported. The Kruskal-Wallis 
test was applied to analyze the results distributions in order to verify the statistical 
significance of the parallel EA improvements over the sequential version. When the 
improvements are statistically significant with a confidence level of 99.9% (i.e. the p-value 
is less than 0.001), the cost value is marked in bold. In addition, the number of generations 
performed in 60 seconds to achieve the average and best cost value is also reported. The 
last column (24/1) reports the percent of improvement obtained when using the parallel EA 
over the sequential EA. 

CI = 13 

CNC N Ɵ 
parallel EA (24 threads) 

 
sequential EA 

24/1 avg genAVG σ best genBEST   avg genAVG σ best genBEST 

5 85 

0.15 12951.0 2706.6 0.0 12951 2650   12980.2 584.3 38.6 12951 424 0.00% 

0.30 7808.7 3447.7 24.7 7790 3370 
 

7836.4 789.6 22.3 7790 780 0.00% 

0.45 5064.6 4128.1 1.9 5054 4154   5071.4 948.3 11.5 5064 943 0.20% 

6 102 

0.15 15457.3 1428.5 26.7 15440 1429   15512.5 292.3 55.8 15440 310 0.00% 

0.30 10546.5 1929.0 57.1 10390 1893 
 

10624.4 389.1 49.3 10480 400 0.87% 

0.45 6034.8 2393.9 13.3 6010 2362   6071.9 496.7 31.8 6010 489 0.00% 

7 117 

0.15 27629.0 853.4 14.1 27585 862   27695.9 186.8 65.3 27603 169 0.07% 

0.30 17575.7 1270.3 23.9 17537 1247 
 

17672.9 282.8 61.7 17537 294 0.00% 

0.45 11457.7 1774.7 7.0 11382 1735   11510.9 393.0 60.9 11457 416 0.66% 

7 119 

0.15 23928.9 829.9 16.5 23895 802   24033.1 173.4 72.3 23912 180 0.07% 

0.30 14537.1 1128.2 37.1 14465 1121 
 

14672.5 234.5 88.1 14481 246 0.11% 

0.45 8686.0 2028.8 45.7 8625 1858   8734.6 485.9 28.7 8625 459 0.00% 

8 128 

0.15 21955.8 661.5 146.5 21663 644   22305.0 146.7 136.0 21998 163 1.55% 

0.30 12927.6 939.5 149.3 12733 940 
 

13234.9 197.2 176.8 12735 198 0.02% 

0.45 7471.0 1484.2 17.8 7428 1416   7508.6 322.2 20.5 7444 359 0.22% 

8 129 

0.15 17106.8 924.6 97.7 17005 851 
 

17185.1 214.9 50.5 17005 171 0.00% 

0.30 11077.0 1406.8 0.0 11077 1267 
 

11087.7 321.1 9.3 11077 276 0.00% 

0.45 7092.0 1693.2 0.0 7092 1652   7114.1 367.7 33.5 7092 373 0.00% 

CI = 14 

CNC N Ɵ 
parallel EA (24 threads) 

 
sequential EA 

24/1 avg genAVG σ best genBEST   avg genAVG σ best genBEST 

5 85 

0.15 13086.9 3607.2 50.3 13057 3514 
 

13146.8 880.3 93.4 13057 863 0.00% 

0.30 8491.6 4502.0 11.9 8481 4507 
 

8510.3 1095.5 8.8 8481 1094 0.00% 

0.45 5580.1 5163.7 9.0 5573 5187 
 

5590.2 1295.3 23.1 5573 1272 0.00% 

6 102 

0.15 18987.2 1860.2 31.4 18948 1860 
 

19076.7 447.3 73.8 18948 403 0.00% 

0.30 12562.3 2448.4 5.5 12558 2351 
 

12684.2 557.7 168.3 12558 539 0.00% 

0.45 7644.1 3207.1 35.4 7610 3038 
 

7666.2 725.6 24.7 7610 685 0.00% 

7 116 

0.15 19659.9 1134.6 80.9 19585 1139 
 

19871.8 293.0 95.3 19586 328 0.00% 

0.30 11147.9 1394.3 36.1 11123 1398 
 

11329.1 284.2 90.8 11123 247 0.00% 

0.45 7373.2 2139.4 7.4 7364 2032 
 

7404.9 448.9 25.1 7364 465 0.00% 

7 119 

0.15 9758.1 948.0 23.5 9693 957 
 

9795.7 196.5 20.0 9731 187 0.39% 

0.30 5922.9 1416.5 20.4 5884 1423 
 

5958.1 286.3 23.0 5884 299 0.00% 

0.45 3855.6 1936.3 11.7 3834 1924 
 

3883.9 407.4 14.3 3842 422 0.21% 

8 128 

0.15 8092.9 785.9 7.6 8082 778 
 

8111.2 198.3 17.2 8082 196 0.00% 

0.30 5335.9 1122.5 29.6 5263 1092 
 

5379.7 228.9 27.6 5282 215 0.36% 

0.45 3632.0 1682.8 8.0 3599 1576 
 

3645.5 374.0 6.0 3633 351 0.94% 

8 129 

0.15 18810.8 1139.9 62.7 18697 882 
 

18867.0 226.5 55.3 18750 194 0.28% 

0.30 11858.6 1191.3 24.1 11819 1200 
 

11914.7 254.5 26.3 11856 249 0.31% 

0.45 7861.4 1513.1 16.8 7850 1468 
 

7931.9 316.9 62.8 7850 281 0.00% 

Table 2: Parallel EA versus sequential EA. 



The results in Table 2 demonstrate that the parallel model allows computing 
better solutions than the sequential EA. When using the time stop limit of 60 seconds, the 
average fitness values computed by the parallel EA outperformed the ones computed by the 
sequential version in all the instances, and regarding the best values the parallel EA found 
best solutions in 16 out of 36 instances. The largest solution improvement found by the 
parallel EA was 1.55% for an instance with CI = 13, CNC = 8, 128 activities, and   = 0.15. 

A summary of the results quality is presented in Figure 2, reporting the 
comparative improvements over the BAB algorithm (larger improvements are better), and 
the GAPs with respect to the LB (smaller GAPs are better). 

 
 

(a) Improvement over BAB (larger is better) (b) GAP with respect to LB (smaller is better) 

Figure 2: Summary of results, parallel EA and sequential EA versus BAB and LB. 

The computational efficiency of the parallel version is significantly better than the 
sequential EA. The values of genAVG and genBEST reported in Table 2 and the values of genAVG 
summarized in Figure 3 indicate that the parallel EA allows performing more than four 
times the number of generations performed by the sequential version in 60 seconds. This 
feature permits the parallel EA to perform a better search and to compute better solutions. 

 
Figure 3: Summary of genAVG for the parallel EA and the sequential EA. 

We also performed a scalability analysis of the parallel EA when varying the 
number of cores used. Figure 4 reports the average execution times required to perform a 
fixed number of generations (1000) for each value of the   parameter. The time results 
demonstrate that tightest instances (       ) are the most difficult to solve, since both the 
feasibility check/repair and the local search demand larger computing times. Figure 4 also 
shows that the execution times reduce when using a larger number of cores. The average 
ratio between the execution times of the sequential EA (using one core) and the parallel EA 
using 24 cores is 3.9.  



 
Figure 4: Scalability analysis of the parallel EA using different number of cores. 

Overall, Table 3 summarizes the main results in the experimental analysis. 

metric sequential EA parallel EA 
outperform BAB 10 instances 12 instances 
identical results to BAB 12 instances 21 instances 
optimal solutions 21 instances 28 instances 
maximum GAPLB 1.2% 0.9% 
average execution time (1000 generations) 180.3 seconds 46.6 seconds 

Table 3: Summary of parallel EA versus sequential EA results. 

7. Conclusions and future work 

This article presented an accurate and efficient parallel EA to solve the DPPM, an 
important problem in project management. The DPPM proposes to assign modes to 
activities in order to provide a good tradeoff between duration and cost, enabling the best 
project performance, while fulfilling deadline constraints on the total project duration.  

The proposed parallel EA was designed to provide accurate and efficient solutions, 
by using operators that allow realistic problem instances to be solved in reduced execution 
times. Recombination, mutation, and local search operators have been specifically proposed 
to achieve this goal, and a feasibility check/repair method is incorporated in order to 
guarantee that the candidate solutions meet the problem constraints. In addition, a master-
slave parallel model was implemented to improve the computational efficiency, extending 
the GAlib library by implementing a multithreading approach in C++.  

The experimental evaluation of the proposed EA was performed on a set of 36 
complex benchmark instances from Akkan (2005), regarding standard metrics for 
complexity. A comparative study against the BAB algorithm (Hafizoglu 2010), one of the 
best well-known deterministic techniques for the problem, was performed. The numerical 
results demonstrated that the proposed parallel EA is able to outperform BAB in terms of 
both quality of solutions and computational efficiency, especially when solving instances 
with tight deadlines. The proposed EA was able to find 12 new best-known solutions for the 
benchmark instances solved, obtaining cost improvement of up to 4.7% over BAB. The EA 
also computed similar results than BAB but requiring significant less execution time in 
other 21 instances. The comparison with lower bounds indicates that the parallel EA was 
able to compute 28 optimal solutions out of the 36 problem instances tackled. A scalability 
analysis demonstrated that the parallel EA was able to execute four times more generations 
than the sequential version in a given time, and that the execution times reduce when using 
an increasing number of computational resources. 



The previous results indicate that the proposed parallel EA is an accurate and 
efficient method to solve the DPPM, especially when dealing with tight deadlines. The main 
lines for future work are related with improving the evolutionary search and the 
computational efficiency of the proposed EA. Regarding the first line, new evolutionary 
operators can be designed in order to improve the results quality and allowing tackling 
larger problem instances. In addition, other parallel models of the proposed EAs can be 
applied in order to further improve the efficiency of the method. 
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