
Shared and distributed memory implementations for parallel simulations of a
quantum search algorithm to solve the 3-SAT problem

Sergio Nesmachnow, Marcos Barreto, Gonzalo Abal
Facultad de Ingeniería, Universidad de la República, Uruguay

{sergion,mbarreto,abal}@fing.edu.uy

Abstract

This article presents two parallel implementations for
simulations of a new quantum search algorithm to solve the
3-SAT problem, by using shared-memory and distributed-
memory approaches. Very large computing time are needed
to perform the simulations of quantum computing algo-
rithms to solve realistic problems, thus high performance
computing approaches are the only viable option to com-
pute results in reasonable times. The experimental analysis
demonstrates the advantage of using both shared-memory
and distributed-memory parallel computing techniques in
order to take advantage of available computing resources in
a distributed computing environment to perform higly com-
plex quantum simulations. Speedup values up to 5× for
the shared-memory implementation and up to 6× for the
distributed-memory implementation are reported.

1 Introduction

Quantum computing has emerged as a new computing
model that can offer significantly improvement over clas-
sical computation. By combining physics, mathematics
and computer science concepts, quantum computing speeds
up classical computation for important problems such as
search and factorization [18]. Several quantum algorithms
have been proposed that, when executed on a quantum
computer, could provide significantly computational im-
provements compared to their best-known analogue classi-
cal methods [2].

Nowadays, the research community is in the quest for a
practical quantum information processing machine, but the
existing prototypes are only useful to handle a few quan-
tum units of information (qubits). Meanwhile a quantum
machine is not available, quantum algorithms are tested by
performing simulations on classical computers. These sim-
ulations demand exponential computing resources (memory
to storage and CPU time to process), since a quantum state
of n qubits is represented by a matrix of dimension 2n.

Parallel and distributed computing techniques are viable
strategies to reduce the execution time and memory needed
to simulate quantum algorithms as if they were executed on
a quantum computer. This techniques make quantum sim-
ulations tractable by sharing the large amounts of calcula-
tions among different processing units that cooperate to per-
form the simulation. In the past ten years, parallel comput-
ing techniques received a renewed interest due to the emer-
gence of distributed computing platforms (cluster, grid, and
cloud) and multicore processors [9, 14].

In this line of work, this article presents two parallel im-
plementations for the simulation of a quantum search al-
gorithm to solve the 3-SAT. The 3-SAT is a case of the
Boolean satisfiability problem (with m clauses and 3 vari-
ables in each clause), a classical optimization problem with
important applications in many areas. The 3-SAT is NP-
hard [7] since no polynomial-time algorithm is known to
solve, it and it is used to prove that many other problems
are in the NP-complete class [10]. Stochastic algorithms
have been successfully applied to solve hard-optimization
problems as they allow to find solutions in reasonable
times [24]. The proposed quantum algorithm combines one
of the best known classical methods for the 3-SAT prob-
lem (the Schöning algorithm) [21], with a local search vari-
ant of Shenvi’s quantum search algorithm [22]. This article
extends our previous work on spatial quantum search algo-
rithms [1] and its application to 3-SAT [4].

The main contribution of this article are: i) to introduce
shared- and distributed-memory parallel implementations
for the simulation of a quantum search algorithm to solve
the 3-SAT problem, and ii) to report efficient simulation
times for the parallel quantum algorithm, achieving speedup
values up to 5× for the shared-memory implementation and
up to 6× for the distributed-memory implementation.

The article is organized as follows. Section 2 briefly in-
troduces basic concepts about parallel computing and per-
formance metrics. A review of related works on simulation
techniques for quantum computing algorithms in presented
in Section 3. After that, Section 4 introduces the quantum
search algorithm designed to solve the 3-SAT problem.

The proposed parallel implementations for the quantum
simulations are described in Section 5. The experimental
evaluation of the proposed parallel algorithms is reported in
Section 6, with especial emphasis on studying the computa-
tional performance of both implementations. Finally, Sec-
tion 7 summarizes the conclusions and discusses the main
lines for future work.

2 Parallel Computing

This section introduces the main concepts about parallel
computing techniques.

2.1 Introduction

Parallel computing techniques are commonly used to de-
sign algorithms that are able to execute faster than its se-
quential counterpart. Moreover, parallel computing allows
researchers to tackle larger and more difficult problems by
applying a rather simple approach: the original problem is
divided in subproblems, which are simultaneously solved
using several computing resources. This cooperative ap-
proach allows exploiting the current availability of comput-
ing resources in multicore and parallel/distributed comput-
ing environments [9].

Nevertheless, parallel computing also introduces some
difficulties when developing a program and when executing
or verifying its correctness. The main difficulties are re-
lated with the simultaneous execution of several processes
in different computing resources and the communication
and synchronization required to achieve the cooperation be-
tween different processes [9].

The strategies for designing parallel programs differ
from the traditional ones used in sequential programming.
Since the resolution of many subproblems have to be taken
into account, applying wise strategies for splitting data and
control between processes is highly desirable, since it can
significantly increase the performance improvements pro-
vided by a parallel algorithm. Another aspect to consider
are the communication paradigms between processes and
the way to perform them (e.g. shared or distributed mem-
ory, see next subsection) [25].

2.2 Parallel programming

Two main paradigms exists for parallel programming:
shared-memory and distributed-memory. The shared-
memory paradigm is based on a number of processes (usu-
ally light processes or threads) executing on different cores
of a single computer, while sharing a single memory space.
The main advantages of this model are that it is easy to im-
plement, and it has a relatively low communication cost via
the shared memory resource.

However, the scalability of the shared-memory approach
is limited by the number of cores integrated in a single
multicore server (up to 64 cores nowadays) and it can-
not take advantage of parallel environments composed by
many computers. Several libraries are available to imple-
ment the thread creation, management, communication and
synchronization, including the POSIX thread library for C,
OpenMP [5], and others.

On the other hand, the distributed-memory paradigm re-
lies on many processes executed on different computers.
The communication and synchronization is performed by
explicit message passing, since there is no other shared re-
source available than the network used to interconnect the
computers. The main feature of this model is that it can take
advantage of parallel environments with a large number of
computer resources available (i.e. large clusters and grids
of computers). Nevertheless, the communication between
processes is more expensive than in the shared-memory ap-
proach, and carefully implementation is needed to achieve
maximum efficiency. Several languages and libraries have
been developed for designing and implementing parallel
programs using the distributed-memory approach, includ-
ing the Message Passing Interface (MPI) standard [12].

2.3 Performance Metrics

The most common metrics used by the research commu-
nity to evaluate the performance of parallel algorithms are
the speedup and the efficiency.

The speedup evaluates how much faster a parallel algo-
rithm is than its corresponding sequential version. It is com-
puted as the ratio of the execution times of the sequential
algorithm (T1) and the parallel version executed on m com-
puting elements (Tm) (Equation 1). When applied to non-
deterministic algorithms, the speedup should compare the
mean values of the sequential and parallel execution times
(Equation 2). The ideal case for a parallel algorithm is to
achieve linear speedup (Sm = m), but the most common
situation is to achieve sublinear speedup (Sm < m), mainly
due to the times required to communicate and synchronize
the parallel processes.

The efficiency is the normalized value of the speedup,
regarding the number of computing elements used to exe-
cute a parallel algorithm (Equation 3). This metric allows
the comparison of algorithms eventually executed in non-
identical computing platforms. The linear speedup corre-
sponds to em = 1, and in the most usual situations em < 1.

Sm =
T1

Tm
(1) Sm =

E[T1]

E[Tm]
(2) em =

Sm

m
(3)

2

2.4 Models for communication

Three main communication models have been proposed
for parallel algorithms:

• master-slave: a distinguished process (the master) con-
trols a group of slave processes. The master process
creates and manages the slaves, by sending informa-
tion regarding the subproblem or function to perform.
The slaves perform the computing and then they com-
municate back to the master process the results of their
execution. The communication and control are cen-
tralized in the master process.

• client-server: two classes of processes are used; the
clients, which request services from a process of
another kind, and the servers, that handle requests
from clients and provide the services. Each server
is always waiting for requests, and typically many
clients consume services from only one server pro-
cess. This paradigm provides a model to communicate
distributed applications that simultaneously behave as
clients or servers for different services.

• peer-to-peer: each client process has the same capa-
bilities to establish communication. Nowadays, this
model is well-known by its use in P2P networks to
share files. This model can be implemented by devel-
oping the logic of a both a client and a server process
within the same peer process.

The parallel quantum algorithms proposed in this work
follow the master-slave model for communication, using
shared-memory and distributed-memory approaches, re-
spectively.

3 Related work

In the last decade quantum mechanics have become
an important matter of research, but the existing technol-
ogy only allows to construct quantum computers of few
qubits [11]. Meanwhile, the behavior of quantum comput-
ers has to be simulated on classical computers. The intrin-
sic parallelism of quantum computing allows performing si-
multaneous operations on a set with an exponential number
of elements. Thus, parallel computing techniques seem an
intuitive idea to simulate such parallelism. The main lim-
itations when simulating quantum algorithms on classical
computers are the memory and CPU time required, which
grow exponentially with the number of qubits used in the
quantum algorithm. Therefore, parallel computing tech-
niques are used to distribute both the state and the computa-
tions among many processes, in order to reduce the overall
simulation time.

Raedt et al. [20] presented a quantum computer simu-
lator developed in Fortran 90 that can execute on parallel
environments such as supercomputers and cluster of com-
puters. The reported software balances memory consump-
tion among computers on an distributed environment using
the MPI library. Quantum registries are distributed in many
computers to reduce memory consumption, but the commu-
nication between distributed process is increased and com-
putational performance is reduced. Nevertheless, this is a
useful approach to simulate quantum algorithms to solve
real size problems. The authors proposed to use the quan-
tum simulator as a new type of benchmark to assess the
computational power of the new generation of high-end
computer systems.

Obenland [19] proposed another quantum computer sim-
ulator. It simulates one of the most promising physical
implementations: the Cirac and Zoller implementation [6].
Just like in the work by Raedt et al. [20], parallel comput-
ing techniques are used to distribute memory consumption
on a cluster of computers. The simulator is implemented in
C language and the MPI library is used to implement the
communication between process. The reported results ex-
hibit close to ideal speedup for as many as 256 processors.

In recent years, researchers have put attention to the
highly parallel structure of GPUs (graphic processing units)
to execute scientific applications. This is also the case of
quantum computing. Gutierrez et al. [13] proposed a par-
allel quantum computer simulator that runs on GPU. The
speedup obtained is up to 85 relative to the CPU implemen-
tation reported. Nevertheless, there is a maximum registry
size allowed of 26 qubits, imposed by the available memory
in the GPU device.

Apart from parallel simulations of quantum computers,
there are quantum programming languages that can exploit
the advantages provided by a parallel/distributed environ-
ment. For instance, LanQ [16] is an imperative program-
ming language which supports interprocess communication
to allow the parallel execution of quantum algorithms.

In this article, parallel simulations of a new quantum al-
gorithm are presented, by extending our previous work on
spatial local search quantum algorithm for the 3-SAT [4].
High performance parallel computing techniques applying
both shared-memory and distributed-memory are used to
speedup the execution time required to simulate the quan-
tum algorithm on classical computer.

4 Quantum-search applied to the 3-SAT

This section introduces the 3-SAT problem and the quan-
tum algorithm proposed to solve it.

3

4.1 The 3-SAT problem

The 3-SAT is a classical optimization problem in the
field of computing theory, with important applications
in many other research fields including electronic design
and verification planning [15], scheduling [8], cryptogra-
phy [23], and others.

Boolean satisfiability. In propositional logic, a literal is
either a logical variable or its negation, and a Boolean ex-
pression is a conjunction of m clauses, each of whom is
a disjunction of literals. The Boolean satisfiability (SAT)
problem consists of determining, if it exists, a truth assign-
ment for the variables that makes a given Boolean expres-
sion true. The k-SAT is the variant where clauses have k
literals, and the 3-SAT problem is a special case for which
k = 3. The k-SAT for k > 3 can always be mapped to an
instance of a 3-SAT [10].

Mathematical formulation. The mathematical formula-
tion of the 3-SAT problem is as follows:

• Let a set of n literals X ≡ {x1, . . . , xn}, where xr =
{0, 1}.

• Let a Boolean expression Φ =
i=m
∧
i=1

Ci, formed by m

clauses C = {C1, . . . , Cm}, with Ci =
3
∨

j=1
lij , where

lij is either a literal xr or its negation ¬xr.

• The 3-SAT problem consists in determining the set of
values for the literals X ≡ {x1, . . . , xn} that makes
the Boolean expression Φ true.

When k = 2 the problem is in the complexity class P,
as it can be solved in polynomial time [3]. On the other
hand, the k-SAT problem is NP-Complete when k ≥ 3 [7];
in fact, it was the first problem proved to be NP-Complete
and many NP-complete problems have been proved so, by
reducing them to an instance of 3-SAT. Thus, if a polyno-
mial time algorithm to solve the k-SAT for k ≥ 3 is known,
then every NP–complete problem can be solved in polyno-
mial time. However, no such efficient algorithm to solve the
3-SAT is known.

4.2 A quantum search algorithm for the
3-SAT problem

The proposed method combines the ideas in the algo-
rithms by Schöning [21] and Shenvi [22], applying a quan-
tum search using neighborhoods, a common procedure in
metaheuristic optimization methods [24]. The proposed al-
gorithm is simulated using parallel computing techniques to
evaluate its correctness.

Two elements in the search space are in the same neigh-
borhood if they are “close”, considering the number of
movements needed to get to one element from the other. In
the 3-SAT problem, a neighborhood is a subspace of qubits:
let be the element x = [x1, x2, ..., xn], xi ∈ {0, 1} and
r ≤ l ≤ n. Two strings t1, t2 belong to the same neigh-
borhood if and only if xt1

k = xt2
k ∀ k ̸∈ [r, l] (these are the

fixed qubits that defines the neighborhood). For example,
|00011⟩, |00010⟩ and |00001⟩ belong to the neighborhood
defined by the elements in the search space that have x5, x4

and x3 fixed in |0⟩. The neighborhood is N = |000 ∗ ∗⟩, a
subspace of size 2 qubits (∗ stands for a ‘don’t care’ boolean
value).

Algorithm 1 describes the proposed method, named
Shenvi with Local Search in Neighborhood (SLSN). It ran-
domly chooses a string x∗ and searches for a solution using
Shenvi’s algorithm in a neighborhood of x∗. If a solution
is not found in this subset of elements, the algorithm jumps
randomly to another location in the search space and repeats
the process.

Algorithm 1 Description of the SLSN algorithm
while not solution found do

x∗ = generate random state
define neighborhood N as the closest elements to x∗

if (N is satisfiable) then
apply Shenvi(x∗, N)
measure quantum state

end if
end while

5 Parallel implementations of the quantum
simulations

Simulating quantum computing demands high compu-
tational resources, as the required memory and processing
power grows exponentially with the number of qubits used
in quantum algorithms. Parallel computing techniques are
an useful approach to reduce the execution time of such sim-
ulations, by exploiting the simultaneous execution on many
available computing resources.

This section presents two parallel implementations of
the SLSN quantum algorithm using shared-memory and
distributed-memory approaches.

5.1 Shared-memory parallel SLSN algo-
rithm

This section presents the shared-memory parallel quan-
tum simulation of the proposed search algorithm to solve
the 3-SAT.

4

Figure 1. Diagram of the shared-memory parallel SLSN algorithm

All shared-memory versions of the proposed quantum
search algorithms were developed using the OpenMP li-
brary [5]. The shared-memory approach was developed
by splitting the workload of matrix operations in different
cores. Figure 1 shows a diagram of the implementation,
where shared-memory parallelization was used in the im-
plementation of Shenvi algorithm using 8 processing cores.
The parallel version of Shenvi is also used as a baseline for
comparing the efficiency of the new SLSN algorithm.

5.2 Parallel Distributed SLSN

The second proposed implementation of SLSN is able to
execute over a distributed computing resource (i.e. a cluster
of computers), by combining both the shared-memory and
the distributed-memory approaches.

Such combination of distributed- and shared-memory
parallelism is not an easy-to-develop solution, since sev-
eral issues had to be taken into account, including com-
munication, synchronization, and load balancing between
tasks. The distributed-shared-memory version of the pro-
posed quantum search algorithm was developed using the
MPI library [12].

The distributed simulation was developed using the
master-slave model of communication between processes,
and a specific load balancing method is applied to equally
distribute the processing load among processes. Within

each process, the implementation of the Shenvi algorithm
applies a shared-memory parallelism strategy using the
OpenMP library [5].

Initially, the master process randomly chooses a com-
patible neighborhood for each slave and another for itself.
The slaves receive information to execute the SLSN algo-
rithm; when a solution is found, the slave sends it to the
master node. If the master node finds a solution or receives
one, a message is sent to every slave to end the algorithm.
Algorithm 2 describes the master process. Messages from
slaves are listened in the reader thread (Algorithm 3), while
the execution thread (Algorithm 4) sends necessary data to
slaves and executes the shared-memory parallel SLSN al-
gorithm itself (an active master-slave model is used, since
the master also performs the same work than the slaves).

Algorithm 2 Master process of the parallel SLSN
read 3-SAT instance
create reader thread {it waits for messages of the slaves}
create execution thread {it sends data to the slaves and exe-
cutes Shenvi}
while solution NOT found or received do

wait
end while
{solution found or received}
for all s in slaves do

send DIE signal
end for

5

Figure 2. Diagram of the distributed-memory parallel SLSN algorithm

Algorithm 3 Reader thread (master process)
receive message from slave
if message received then

kill execution thread
save solution
wake up master process

end if

Algorithm 4 Execution thread (master process)
repeat

for all s in slaves do
repeat
x∗ = generate random state
define neighborhood N as the closest elements
to x∗

if N is satisfiable then
send N ,x∗ to s

end if
until N is satisfiable

end for
x∗ = generate random state
define neighborhood N as the closest elements to x∗

res = Shenvi(x∗, N)
if res is solution then

kill reader thread
save solution and wake up master process

end if
until solution found

The slave processes (Algorithm 5) perform the search
until they receive a DIE message from the master, meaning
that some slave process has found a solution to the problem.

Algorithm 5 Slave process
read 3-SAT instance
repeat
x∗, N = receive neighbourhood and state of master
process
res = apply Shenvi(x∗, N)
if res is solution then

send res to master process
end if
{If a DIE message is not received, a solution is not
found yet.}

until DIE message received

Figure 2 presents a diagram of the hybrid distributed-
memory parallel implementation of the master process of
the simulation of the quantum algorithm.

6 Experimental analysis

This section presents the problem instances and the ex-
ecution results of the parallel implementations of the pro-
posed algorithm. Also, it briefly presents the development
and execution platform used to develop the simulations.

6.1 Development and execution platform

The parallel SLSN simulations were developed in C/C++
programming language. The shared-memory parallel simu-
lation was developed using the OpenMP library version 4.3
and the distributed-memory simulation was developed us-
ing MPICH library version 1.2.7.

6

The experimental evañuation of the proposed parallel
quantum search implementations was performed on a clus-
ter of Dell Power Edge servers, with Quad-core Xeon
E5430 processors at 2.66GHz and 8 GB of RAM, from the
Cluster FING high performance computing infrastructure
(cluster website: http://www.fing.edu.uy/cluster).

6.2 3-SAT instances

A benchmark set of 3-SAT instances with up to 23 vari-
ables and 83 clauses were used in the experimental analysis.

The G3 algorithm [17] was used to generate 3-SAT in-
stances with few solutions. The theoretical relationship
m∗ = 4.26n + 6.24 defines a phase transition in which
the 3-SAT problem goes from being a simple problem to an
extremely hard-to-solve problem [8]. This relation was con-
sidered in order to generate hard-to-solve 3-SAT instances
with few solutions.

6.3 Shared-memory simulations

The efficiency analysis results for the shared-memory
simulations are presented in Table 1. The table reports the
average execution times and speedup values obtained in the
10 executions of the Shenvi simulation performed for each
problem instance. The results in Table 1 indicate that ac-
ceptable sub-linear speedup values are obtained when using
8 computing elements.

n m
Shenvi execution time (in s.) speedup

sequential parallel
15 52 78 23 3.39
16 55 316 76 4.15
17 60 1258 309 4.07
18 64 2989 818 3.65
19 67 10904 (3 hours) 2705 (45 minutes) 4.03
20 70 57308 (16 hours) 11428 (3 hours) 5.01
21 73 84730 (23.5 hours) 21239 (5.9 hours) 3.99

Table 1. Comparison of the sequential and
parallel simulations for Shenvi’s algorithm.

The experimental results of the shared-memory parallel
SLSN evaluation are shown in Table 2. The table reports the
problem dimensions and the average values for the execu-
tion time, for the number of steps until a solution was found,
and for the measures required. All average were computed
over 10 independent executions performed for each prob-
lem instance.

Figure 3 compares the execution times (in logarithmic
scale) of the parallel SLSN simulations using the best and
the worst neighborhood size, and the Shenvi simulation.
The best and worst neighborhood sizes are defined as the
neighborhood sizes that provided the lowest and highest ex-
ecution times, respectively.

Figure 3. Execution time comparison:
Shenvi, SLSN (best) and SLSN (worst) (log-
arithmic scale)

The results in Table 2 indicate that the configuration
that computed the best results was always the one with the
lower number of qubits. The default value of qubits in
the neighborhood was 2 log2(3n)—in order to perform 3n
steps, as proposed in Schöning’s algorithm—, but the best
efficiency values were obtained when using fewer qubits,
since the neighborhood size notably impacts in the perfor-
mance of simulation of the SLSN algorithm. SLSN suc-
cessfully solved all the problem instances, and the number
of steps significantly reduced as the number of variables
grows. The results demonstrate that use of shared-memory
parallel computing techniques significantly reduced the ex-
ecution time of the quantum simulations.

6.4 Parallel distributed SLSN algorithm

The experimental results of the distributed-memory par-
allel SLSN algorithm are presented on Table 3. The table
reports the problem dimensions and average values for ex-
ecution time in 10 independent executions performed for
each problem instance for 1, 2, and 3 computer nodes. The
number of steps until a solution was found, measures re-
quired, and speedup are reported for 2 and 3 nodes.

Figure 4 graphically compares the execution time (in
logarithmic scale) of the distributed-memory parallel SLSN
implementation with the shared-memory parallel SLSN im-
plementation.

7

n m # sol. s time(s) steps measures n m # sol. s time(s) steps measures

15 52 14

2 0.2 3822 3.5

19 67 53

5 0.9 5970 6.0
5 0.1 1041 9.3 7 2.2 2324 7.5
7 0.5 1142 8.7 9 13.1 1469 4.5
9 4.7 1155 5.0 12 91.8 316 5.2

11 18.5 369 4.6 14 479.9 273 6.0
13 140.8 226 10.1

16 55 27

2 0.1 2646 5.3

20 70 233

5 0.2 510 3.6
5 0.2 1286 4.2 7 1.2 506 3.2
7 0.1 250 3.3 10 4.4 73 8.6
9 2.6 479 2.9 11 10.4 97 2.4

11 9.5 181 6.4 12 16.2 36 3.0
13 93.6 237 4.4 14 131.4 32 6.4

16 1225.2 40 2.0

17 60 55

2 0.2 3966 3.2

22 78 54

5 4.2 13688 4.2
5 0.1 1370 6.1 7 16.2 11498 5.4
7 0.2 639 4.7 10 75.6 1529 6.6
9 1.9 370 7.7 11 319.0 2741 8.6

11 15.1 290 4.5 12 894.0 2375 8.6
13 43.7 111 4.1 14 1982.6 454 4.8
15 409.5 86 4.1 16 11676.8 353 9.8

18 64 13

9 15.0 530 2.6
23 83 50

10 137.4 2653 2.0
12 353.8 791 4.2 12 353.8 791 4.2
11 26.8 160 4.0
13 108.0 107 2.4
15 370.6 28 8.6

Table 2. SLSN results for the 3-SAT.

n m s
1 node 2 nodes 3 nodes
time(s) time steps measures speedup time steps measures speedup

15 52
11 18.5 12.2 50 2.9 1.5 8.5 24 4.7 2.2
13 140.8 560.0 682 66.0 0.3 607.5 404 6.7 0.2

16 55
11 9.5 9.1 35 3.7 1.0 12.0 48 2.7 0.8
13 93.6 128.3 27 3.1 0.7 104.0 52.3 6.5 0.9

17 60
11 15.1 9.9 29 4.5 1.5 7.6 109.6 27 2.0
13 43.7 57.8 21 3.4 0.8 37.4 7 7.3 1.2
15 409.5 310.9 10 7.1 1.3 273.9 13 5.8 1.5

18 64
11 26.8 21.8 69 4.0 1.2 18.4 58 5.2 1.5
13 108 88.0 23.0 6.4 1.2 61.3 39 1.5 1.87
15 370.0 395.1 27 3.0 0.9 278.0 9 7.2 1.3

19 67
12 91.8 72.0 70 5.7 1.3 36.1 36 8.4 2.5
14 479.9 322.0 33 5.6 1.5 191.6 19 5.2 2.5

20 70
12 16.2 18.8 26.0 5.2 0.9 11.3 33.2 14.8 1.4
14 131.4 143.8 17 3.2 0.9 82.3 4 12.7 1.6
16 1225.2 787.4 13 8.8 1.6 184.3 11 8.3 6.6

22 78
12 894.0 724.2 36 4.4 1.2 598.2 97 3.4 1.5
14 1982.6 1010.4 102 9.8 2.0 283.3 59 1.4 7.0
16 11676.8 9516.0 222 5.0 1.2 2065.0 47 5.8 5.6

Table 3. Parallel distributed SLSN results for the 3-SAT problem.

8

Figure 4. Execution time comparison: paral-
lel distributed SLSN (best) using 1, 2, and 3
computing nodes (logarithmic scale)

The improvement in computational efficiency compared
to the sequential simulation of SLSN algorithm is graphi-
cally analyzed in Figure 5.

Figure 5. Speedup comparison: parallel dis-
tributed SLSN (best), executed with 2 and 3
computing nodes

The results in Table 3, and Figures 4 and 5 demonstrate
that the distributed-memory parallel implementation of the
SLSN algorithm provides improvements in the execution
time when the work performed by each slave is relatively
high. As the neighborhoods grow, the workload performed
by each slave grows as well, and a better load distribution
among processes is achieved, thus the speedup increases.
For neighborhoods with more than 10 qubits (210 elements
in the neighborhood’s search space) the parallel distributed
SLSN algorithm provides improvements in the execution
time compared to the parallel shared-memory SLSN.

7 Conclusions and future work

This article has presented two parallel implementations
for the simulation of SLSN, a new quantum computing al-
gorithm to solve the 3-SAT problem. Quantum methods to
solve the 3-SAT problem have been previously proposed,
but few simulated on classic computers. Thus, the main
contributions of the research reported in this article are the
SLSN quantum algorithm itself, and the parallel simulations
over classical computers, especially the new hybrid parallel
implementation for quantum simulation using both shared
and distributed-memory approaches.

The experimental analysis performed over a set of hard-
to-solve 3-SAT instances generated using a well-known
methodology demonstrated that the proposed method al-
lows computing accurate results. In addition, the computa-
tional efficiency analysis proved that the parallel implemen-
tations significantly speed up the execution time required to
perform the quantum simulations.

The shared-memory simulation of the proposed algo-
rithm was an easy to develop solution that significantly re-
duced the execution time of the simulation, reaching an
speedup up to 5×. On the other hand, the hybrid imple-
mentation, combining distributed and shared-memory, ap-
plies a more sophisticated simulation approach, taking into
account several important features such as problem decom-
position, load balancing, and communication between pro-
cesses. Nevertheless, the hybrid distributed-memory paral-
lel implementation allowed to significantly reduce the exe-
cution time of the quantum simulation, and a speedup of 6×
was obtained.

Mainly due to the computational complexity of the quan-
tum simulation, the best speedup and efficiency results were
obtained when using small neighborhoods in the hybrid
distributed-memory parallel implementation of the SLSN
algorithm.

The main lines for future work are related with further
studying the behavior of the SLSN algorithm and the paral-
lel implementations of the quantum simulations. Regarding
the first line, the impact of the neighborhood size on both
the quality of results and the computational efficiency shall
be better analyzed; and it would be interesting to investi-
gate the distortion effect of noise in the quantum algorithm.
Regarding the parallel implementations, the design of dis-
tributed algorithms able to execute in large computing in-
frastructures (i.e. grid and volunteer-computing platforms),
is also a promising line of work. Finally, this line of re-
search could be also extended to tackle other known NP-
hard problems, taking advantage of the intrinsic parallelism
of quantum computing to build better alternatives to the best
known classic algorithms.

9

References

[1] G. Abal, R. Donagelo, F. Marquezino, and R. Portugal. Spa-
tial search on a honeycomb network. Mathematical Struc-
tures in Computer Science, 21:1–11, 2010.

[2] A. Ambainis. Quantum search algorithms. SIGACT News,
35:22–35, 2004.

[3] B. Aspvall, M. Plass, and R. Tarja. A linear-time algorithm
for testing the truth of certain quantified boolean formulas.
Information Processing Letters, 8:121–123, 1979.

[4] M. Barreto, G. Abal, and S. Nesmachnow. A parallel spatial
quantum search algorithm applied to the 3-SAT problem. In
Proceedings of XII Argentine Symposium on Artificial Intel-
ligence, pages 84–95, Córdoba, Argentina, 2011.

[5] B. Chapman, G. Jost, and R. Van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. MIT Press,
1999.

[6] J. Cirac and P. Zoller. Quantum computations with cold
trapped ions. Physical Review Letters, 74(20):4091–4094,
1995.

[7] S. Cook. The complexity of theorem proving procedures.
In Proceedings 3rd Annual ACM Symposium on Theory of
Computing, pages 151–158. ACM Press, New York, 1971.

[8] J. Crawford and L. Auton. Experimental results on the cross-
over point in satisfiability problems. In Proceedings of the
11th National Conference of the American Association for
Artificial Intelligence, pages 21–27, Washington, D.C., 1993.
AAAI.

[9] I. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1995.

[10] M. Garey and D. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[11] I. Glendinning and B. Omer. Parallelization of the qc-lib
quantum computer simulator library. In R. Wyrzykowski
et al., editor, Proceedings of the 5th International Confer-
ence on Parallel Processing and Applied Mathematics, pages
461–468, Czestochowa, Poland, 2004. Springer.

[12] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with Message-Passing Interface. MIT
Press, 1999.

[13] E. Gutierrez, S. Romero, M. Trenas, and E. Zapata. Paral-
lel quantum computer simulation on the CUDA architecture.
In M. Bubak et al., editor, Computational Science, volume
5101 of Lecture Notes in Computer Science, pages 700–709.
Springer Berlin/Heidelberg, 2008.

[14] C. Lin and L. Snyder. Principles of Parallel Programming.
Addison-Wesley, 2009.

[15] J. P. Marques-Silva and K. A. Sakallah. Boolean satisfia-
bility in electronic design automation. In Proceedings of
the 37th Annual Design Automation Conference, pages 675–
680. ACM New York, NY, USA, 2000.

[16] H. Mlnarík. Operational semantics of quantum programming
language lanq. Technical Report FIMU-RS-2006-10, FI MU,
Brno, 2006.

[17] M. Motoki and O. Watanabe. Random generation of unique–
solution 3SAT instances. Technical report, Tokyo Insti-
tute of Technology, 2011. Available at http://www.is.
titech.ac.jp/~watanabe/gensat/a1. Retrieved
April 2013.

[18] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge Series on Information and
the Natural Sciences. Cambridge University Press, 2000.

[19] K. Obenland and A. Despain. A parallel quantum computer
simulator. quant-ph/9804039, 1998.

[20] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu,
G. Arnold, M. Richter, Th. Lippert, H. Watanabe, and N. Ito.
Massively parallel quantum computer simulator. Computer
Physics Communications, 176(2):121–136, 2007.

[21] U. Schöning. A probabilistic algorithm for k-SAT and con-
straint satisfaction problems. In 40th Annual Symposium on
Foundations of Computer Science, page 410. IEEE, 1999.

[22] N. Shenvi, J. Kempe, and B. Whaley. Quantum random walk
search algorithm. Physical Review A, 67:(052307), 2003.

[23] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT
solvers to cryptographic problems. In Proceedings of the
12th International Conference on Theory and Applications
of Satisfiability Testing, pages 244–257. Springer-Verlag
Berlin, Heidelberg, 2009.

[24] E.-G. Talbi. Metaheuristics: From Design to Implementa-
tion. Wiley, 2009.

[25] L. Yang and M. Guo. High-Performance Computing:
Paradigm and Infrastructure. Wiley-Interscience, 2005.

10

