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Abstract. This paper presents an efficient parallel algorithm for the problem of
converting satellite imagery in binary files. The algorithm was designed to update
at global scale the land cover information used by the WRF climate model. We
present the characteristics of the implemented algorithm, as well as the results
of performance analysis and comparisons between two approaches to implement
the algorithm. The performance analysis shows that the implemented parallel al-
gorithm improves substantially against the sequential algorithm that solves the
problem, obtaining a linear speedup.

1 Introduction

Wind prediction is crucial for many applications in environmental, energy, and eco-
nomic contexts. The information about wind is important for weather forecasting, en-
ergy generation, aircrafts and ship traffic, dispersal of spilled fuel prediction, coastal
erosion, and many other issues. In the last thirty years, researchers have made impor-
tant advances in methods and models for wind prediction [1,4].

The Weather Research and Forecasting (WRF) model [8] is a flexible and efficient
mesoscale numerical weather prediction system developed by a collaborative partner-
ship including several centers, administrations, research laboratories and universities in
the USA. With a rapidly growing community of users, WRF is currently in operational
use at several centers, labs and universities through the globe, including our research
group at Instituto de Mecánica de los Fluidos e Ingenierı́a Ambiental (IMFIA) de la
Facultad de Ingenierı́a, Universidad de la República, Uruguay.

In our context, WRF is applied to analyze the availability of wind energy, which
depends on the wind speed, in order to perform accurate forecasting in the range of
24-48 hours, required for the integration of wind energy into the power grid. These
predictions are a valuable help for the power grid operators to make critical decisions,
such as when to power down traditional coal-powered and gas-powered plants.

Soil information is very relevant for wind forecasting using WRF, since the ter-
rain type directly affects the wind received by the generators (usually placed at 100 m
from the ground). The soil information used by the WRF is outdated, and in the case
of Uruguay, the last actualization was performed in the early 1990’s. Thus, there is a
specific interest on updated soli information in order to improve the accuracy of wind
forecasting.



In the WRF model, the information about soil is stored in files using a proprietary
binary format. so, in order to perform the soil information update, it is needed to convert
the information obtained from satellite images to the binary format used in WRF. The
conversion process also includes performing a change of projection due to the input
information from satellites has a different projection than the output information.

In order to perform the soil information update not only for our country, but at
planetary scale, a large number of satellite images need to be processed. In this context,
applying high performance computing (HPC) techniques is a valuable strategy to reduce
the execution time required to process the large volume of information in the images.
More than 300 images have to be processed in the world scenario, with a total size of
27 GB, and the sequential algorithm demands 1710 minutes of execution time.

The main contributions of the research reported in this article are: i) to introduce
two parallel versions—using shared memory and distributed memory approaches—of
an algorithm that process the satellite images to update the soil information used for
wind prediction in the WRF model, and ii) to report an exhaustive experimental anal-
ysis that compares the computational efficiency of the shared and distributed memory
parallel versions. The experimental results demonstrate that both parallel implementa-
tions achieve good computational efficiency, and the distributed memory is the most
efficient method for parallelization.

The rest of the manuscript is organized as follows. Next section present a review
of related work on parallel algorithms to process satellite images for wind prediction.
Section 3 describes the design and details of the proposed parallel algorithm. The de-
scription of the two variants implemented are presented in Section 4. The experimental
analysis that compares the two parallel versions and the sequential one is presented in
Section 5. Finally, Section 6 summarizes the conclusions of the research and formulates
the main lines for future work.

2 Related work

Several works have recently addressed the satellite image processing problem using
high-performance computing techniques. These works are mainly focused on process-
ing data received directly from the satellites, making a classification of pixels in order
to obtain land cover information [3,5]. Maulik and Sarkar [3] proposed a strategy for
satellite image classification by grouping the pixels in the spectral domain. This method
allows performing the detection of different land cover regions. A parallel implemen-
tation of the proposed algorithm following the master-slave paradigm was presented
in order to perform the classification efficiently. The experimental analysis on differ-
ent remote sensing data performed on INRIA PlaFRIM cluster varying the number of
processors from 1 to 100, demonstrated that the proposed parallel algorithm is able to
achieve linear speedup when compared against a sequential version of the algorithm.

Nakamura et al. [5] described how the researchers at Tokyo University of Informa-
tion Sciences receive MODIS data to be used in one of the major fields of research:
the analysis of environmental changes. Several applications to analyze environmental
changes are developed to execute on the satellite image data analysis system, which is
implemented in a parallel distributed system and a database server.



Sadykhov et al. [9] described a parallel algorithm based on fuzzy clustering for pro-
cessing multispectral satellite images to enforce discrimination of different land covers
and to improve area separation. A message passing approach was used as basis of paral-
lel calculation because it allows simple organization of interaction between of calculat-
ing processes and synchronization. Experimental testing of developed algorithms and
techniques has been carried out using images received from Landsat 7 ETM+ Satellite.
However, the article does not report experimental analysis focused on evaluating the
performance improvements when using parallel computing techniques.

Plaza et al. [6,7] described a realistic framework to study the parallel performance
of high-dimensional image processing algorithms in the context of heterogeneous net-
works of workstations (NOWs). Both papers provided a detailed discussion on the ef-
fects that platform heterogeneity has on degrading parallel performance in the context
of applications dealing with large volumes of image data. Two representative parallel
image processing algorithms were thoroughly analyzed. The first one minimizes inter-
processor communication via task replication. The second one develops a polynomial-
time heuristic for finding the best distribution of available processors along a fully het-
erogeneous ring. A detailed analysis of parallel algorithms is reported, by using an
evaluation strategy based on comparing the efficiency achieved by an heterogeneous
algorithm on a fully heterogeneous NOW. For comparative purposes, performance data
for the tested algorithms on Thunderhead (a large-scale Beowulf cluster at NASA God-
dard Space Flight Center) are also provided. The experimental results reveal that het-
erogeneous parallel algorithms offer a surprisingly simple, platform-independent, and
scalable solution in the context of realistic image processing applications.

Unlike the previously commented articles, our research corresponds to a later stage,
which took the land cover information generated by some source and convert it to an-
other format to feed the WRF model. We have designed and implemented two paral-
lel implementations of the conversion algorithm, using shared memory and distributed
memory approaches. Both parallel implementations of the conversion algorithm are
currently operative in our cluster infrastructure (Cluster FING), allowing to perform an
efficient conversion of satellite images downloaded from NASA satellites, in order to
update the information used by the WRF climate model.

3 Conversion of satellite images to binary files

This section describe the main decisions taken to design the parallel conversion algo-
rithm, and the main features of the parallel model used.

3.1 Design considerations

The proposed algorithm implements the conversion of satellite images from the Terra
and Aqua (NASA) satellite to binary files supported by the WRF model.

In the design phase of the algorithm, it was necessary to analyze the input and
output files of the conversion process and the way that the data is contained. After that,
the design of a strategy for converting the information from the input format to the
output format was devised.



In order to reduce the large execution times required by a sequential implementation
of the algorithm when processing a large number of images, a parallel implementation
was conceived in order to assure a more efficient processing. The parallel implementa-
tion is capable to convert the full domain requiring significantly lower execution times,
allowing the researchers to scale up and processing world-size scenarios.

3.2 Data-parallel: domain decomposition

The work domain of the WRF model is a grid that covers all the world. Each cell in this
grid represents an area of 600×600 kilometers of land cover. Thus, a straightforward
domain decomposition is suggested by using the WRF grid. Since the WRF grid is the
output of the conversion process, an output domain descomposition is used.

The domain decomposition is achieved by generating small cells that are repre-
sented by matrices with dimensions 1200×1200 (rows by columns). This data partition
is important because it divides the amount of data that each process in the parallel algo-
rithm has to work with.

3.3 Parallel model

Taking into account the characteristics of the algorithm to be parallelized, the selected
domain partition, and mainly because there is no need to use border information in order
to generate one cell of the output domain, a master-slave model was adopted to imple-
ment the parallel algorithms. The use of this model to implement the communication
between the processes seems to be appropriate for the conversion algorithm, because
the slave processes participating in the conversion process do not have to share infor-
mation between each other. Figure 1 presents a graphic representation of the proposed
parallel algorithm, showing the interaction between the different processes.

Fig. 1. Scheme of the proposed parallel algorithm.



In the proposed parallel model, the master process initializes all data structures,
variables and control structures, and then continues fully dedicated to control the exe-
cution of the conversion process and implementing a dynamic load balancing schema
for assigning tasks to the slave processes. On the other hand, the slaves processes re-
ceive the assigned work or cell, and then they execute the processing tasks in order to
convert the land cover data, from the satellite format to binary format.

Two variants of the proposed algorithm were implemented with focus on two dif-
ferent paradigms of parallel computing. One variant was implemented using shared
memory, and the other using distributed memory. Both algorithm variants follows the
same general approach, but they are designed to execute on different parallel comput-
ing infrastructures. The shared memory algorithm is conceived to specifically execute
on a multicore computer, while the distributed memory algorithm is able to execute on
a distributed infrastructure, such as a cluster of computers.

Both algorithms have been tested in a hybrid cluster infrastructure formed by many
multicore computers. Testing the algorithms in the same environment makes possible
an analysis comparing the two implementations.

3.4 Load balancing

The two versions of the implemented algorithm gain efficiency by applying a correct
load balance strategy. Taking advantage of the domain partition selected, the proposed
strategy for load balancing is conceived to be performed in two steps. First, at the ini-
tialization step, the master process statically assigns to each slave process a cell to gen-
erate. This initial assignment assures that all the slave processes have a work to perform
at the beginning of their execution. After that, in each execution step, while the master
process has cells to generate and one of the slave processes finish its work, the master
dynamically assigns to that slave another cell. The dynamic cell assignment performed
by the master process keeps the conversion process running and generating cells, while
minimizing the idle time. Each time that one of the slaves processes finishes the gener-
ation of a cell, the master process immediately assigns a new one to be generated, and
the slave keeps working.

4 Parallel implementation of the conversion algorithm

This section presents the implemented parallel algorithms for the conversion process.
In the shared memory algorithm, the master and slaves processes are threads, which are
controlled and synchronized using mutexes In the distributed memory algorithm, the
master and slaves are processes, which use message passing to perform communication
and synchronization.

4.1 Data structures

The common data structures used by the both implemented algorithms are the ones
listed in the Data structure frames 1.1 and 1.2.



s t r u c t d e s c r i p t o r H D F{
i n t h ;
i n t v ;
char f i l eName [ 1 0 2 4 ] ;
char gridName [ 6 4 ] ;

/ / coord SINUSOIDALES
long double l o w e r L e f t L a t s y n ;
long double l o w e r L e f t L o n s y n ;
long double l o w e r R i g h t L a t s y n ;
long double l o w e r R i g h t L o n s y n ;
long double u p p e r L e f t L a t s y n ;
long double u p p e r L e f t L o n s y n ;
long double u p p e r R i g h t L a t s y n ;
long double u p p e r R i g h t L o n s y n ;

/ / coord GEOGRAFICAS
long double l o w e r L e f t L a t g e o ;
long double l o w e r L e f t L o n g e o ;
long double l o w e r R i g h t L a t g e o ;
long double l o w e r R i g h t L o n g e o ;
long double u p p e r L e f t L a t g e o ;
long double u p p e r L e f t L o n g e o ;
long double u p p e r R i g h t L a t g e o ;
long double u p p e r R i g h t L o n g e o ;

} ;

Data structure 1.1. descriptorHDF

The data structure descriptorHDF contains the fields to save the necessary infor-
mation about the satellite imagery files. This data structure saves the coordinates in
geographic projection and in sinusoidal projection. Both groups of coordinates indicate
the area covered by the file. The data structure also contains the fields ’h’ and ’v’ that
indicates the horizontal and vertical position of the HDF file at the satellite imagery
grid, respectively. Other fields are used for the file name and for the object that contains
the information to be converted.

s t r u c t c e l d a S a l i d a{
char n o m b r e A r c h i v o S a l i d a [ 2 5 6 ] ;
long double l o w e r L e f t L a t ;
long double l o w e r L e f t L o n ;
long double l o w e r R i g h t L a t ;
long double l owerRigh tLon ;
long double u p p e r L e f t L a t ;
long double u p p e r L e f t L o n ;
long double u p p e r R i g h t L a t ;
long double upperRigh tLon ;

} ;

Data structure 1.2. celdaSalida

The data structure celdaSalida is used in the algorithms to indicate a given slave
process which cell of the output grid it must generate. The data structure contains fields
for the cell coordinates, and the output binary file name. This structure is communicated
between the master and slaves processes when the master assigns a cell to be generated
by the slave process.



4.2 Shared memory algorithm

The shared memory version of the conversion algorithm uses a pool of threads, imple-
mented using the standard POSIX thread library (pthread). The algorithm is divided in
three procedures, the procedure that runs the master thread, other for each slave thread,
and the main procedure. The conversion algorithm has two phases. In the first phase,
the main procedure initializes all the threads, mutexes and data structures. The data
structures used by the algorithm are an array of ‘descriptorHDF’ and a matrix of ‘cel-
daSalida’. The shared memory algorithm uses a set of global variables:

– turn: used by each slave thread to indicate the master when it has finished working.
– finish: used to indicates the slave treads to exit.
– iSlave, jSlave: this are two arrays of integer used to indicate which cell generates a

slave. The indexes i and j indicate the position on the matrix ‘celdaSalida’

In the second phase of the algorithm, the master thread first assigns one cell to each
slave, and then it waits for the slave answers, to assign a new cell to the requesting slave.
When all cells have been assigned, the master thread waits until all slaves finish their
work, and then it sets the ‘finish’ variable to true, causing all slaves to exit. On the other
hand, the slaves threads are implemented as a loop that generate cells and performs the
conversion until the ‘finish’ variable is set to true.

On each loop step, the slave processes execute three main tasks. Initially, the as-
signed cell is received; after that, the assigned cell is generated, and finally the master
process is notified that the cell has been generated and the slave process is available
to get a new cell assigned. A pseudocode of the algorithm is presented in Algorithm 1
(main program), Algorithm 2 (master process), and Algorithm 3 (slave processes).

Algorithm 1 Main program
1: initialize mutexes
2: create and initialize master thread
3: create and initialize slave threads
4: //parallel execution
5: wait(for the exit of all threads)
6: destroy(all structures used)

4.3 Distributed memory algorithm

The parallel algorithm has been implemented to be executed in a distributed infras-
tructure such as a cluster of computers, using the C language and the Message Passing
Interface library (MPI) [2]. MPI allows simple organization, communication, and syn-
chronization of the master and the slaves processes.

For the distributed execution, the set of satellite images to convert (with a total size
of 27 GB), was stored in the file system of the cluster, that is accessible by all running
processes.



Algorithm 2 Master thread
1: for all slave thread do
2: assing(cell to generate)
3: unlock(slave)
4: end for
5: while has cell to be generated do
6: wait(slave answer)
7: receive(answer)
8: assign(new cell to the slave who answered)
9: unlock(slave who answered)

10: end while
11: while are slave working do
12: wait(slave answer)
13: end while
14: finish← true

Algorithm 3 Slave thread
1: isThereWork← true

2: while isThereWork do
3: lock(until work is assigned)
4: if not finish then
5: i← iSlave[my id]

6: j← jSlave[my id]

7: search(HDF files to use)
8: stitch(HDF files)
9: proyectAndSubset(cell to generate)

10: generateBinaryFile()
11: wait(turn to alert the master)
12: turn← my id

13: alert(master)
14: else
15: isThereWork← false

16: end if
17: end while

The creation of distributed processes is configured and built using the available
TORQUE manager in the cluster FING. The number of processes to create, the cluster
nodes to be used, the distribution of processes between nodes, and the priority of the
scheduled job are indicated in a configuration file.

The structure of the algorithm closely matches the shared memory algorithm already
described. In a first step, the master process initializes the data structures, and in the
second stage, the master process begins to perform dynamic load balancing by assigning
the work to the slave processes. Then, it waits the responses from the slaves processes,
and then assigns new work to idle slaves. On the other hand, the slave processes execute
a loop with the following steps: expect a cell to generate, running the conversion process
of the received cell, and finally notifies the end of processing to the master process.



Slaves remain in this loop until the master process indicates to finish the execution. A
pseudocode of the algorithm is presented in the algorithm 4.

One of the most important tasks in the communication between the master process
and slave processes is sending the array with the information of the input files (descrip-
torHDF). Since this is a large amount of information organized in an array of structs,
the use of the common functions of MPI for sending data (MPI Send) is ineffective,
since they cause corruption in the information. For properly implement the communi-
cation, it was necessary to use specific MPI functions for sending arrays by perform-
ing a serialization of structures (functions MPI Buffer attach, MPI Buffer dettach and
MPI Bsend). The master process has to wait for messages sent by the slave processes
to report that they have finished processing the assigned work, so the master process is
blocked by applying the MPI Recv function using the MPI ANY SOURCE flag, which
allows receiving messages from any process. To find out which process is the source of
communication, the master reads the status parameter returned by the operation and so
is obtained the rank that identifies the slave process.

Algorithm 4 Distributed memory algorithm
1: initialize MPI structures
2: master process do
3: initialize matrix of celdaSalida
4: initialize array of descriptorHDF
5: master process send array of descriptorHDF to all slaves
6: if master process then
7: for i = 1→ #process do
8: send(cell[i], process[i])
9: end for

10: while not receive all slaves answers do
11: waitForAnswer(answer)
12: slave id← answer.slave id

13: cell← answer.cell

14: markCellAsGenerated(cell)
15: if not allCellsGenerated() then
16: cell← nextCell()
17: send(cell, process[slave id])
18: end if
19: end while
20: send finish message to all slaves processes
21: else if slave process then
22: while not receive finish message do
23: cell id← receive()
24: generate(cell)
25: sendMaster(cell id, my id)
26: end while
27: end if



5 Experimental evaluation

This section presents the results of the experimental evaluation for the two parallel
versions of the proposed algorithm.

5.1 Development and execution platform

Both implementations of the parallel conversion algorithms were developed in C. The
distributed algorithm uses MPICH version 1.2.7, and the shared memory algorithm was
implemented using the pthread library. The experimental evaluation was performed in a
server with two Intel quad-core Xeon processors at 2.6 GHz, with 8 GB RAM, CentOS
Linux, and Gigabit Ethernet (Cluster FING, Facultad de Ingenierı́a, Universidad de la
República, Uruguay; cluster website: http://www.fing.edu.uy/cluster).

5.2 Data used in the experimental evaluation

The input of the conversion process is a set with more than 300 image files in HDF
format, with a total size of 28 GB of information. As a baseline reference, converting
all these images with a sequential process takes 1710 minutes.

5.3 Performance metrics

The most common metrics used by the research community to evaluate the performance
of parallel algorithms are the speedup and the efficiency.

The speedup evaluates how much faster a parallel algorithm is than its correspond-
ing sequential version. It is computed as the ratio of the execution times of the sequential
algorithm (TS) and the parallel version executed on m computing elements (Tm) (Equa-
tion 1). The ideal case for a parallel algorithm is to achieve linear speedup (Sm = m),
but the most common situation is to achieve sublinear speedup (Sm < m), mainly due to
the times required to communicate and synchronize the parallel processes.

The efficiency is the normalized value of the speedup, regarding the number of com-
puting elements used to execute a parallel algorithm (Equation 2). The linear speedup
corresponds to em = 1, and in the most usual situations em < 1.

We have also studied the scalability of the proposed parallel algorithm, defined
as the ratio of the execution times of the parallel algorithm when using one and m
computing elements (Equation 3).

Sm =
TS

Tm
(1) em =

Sm

m
(2) Scm =

T1

Tm
(3)

5.4 Performance evaluation and discussion

This subsection presents and analyzes the performance results of the implemented
shared memory and distributed memory parallel algorithms. All the execution time re-
sults reported correspond to the average values computed in five independent execution
performed for each algorithm and experimental scenario.



Shared memory implementation. The experimental analysis of the shared memory par-
allel implementation was performed on a single host, varying the number of cores used.
Table 1 reports the execution time results and the performance metrics for the for the
shared memory implementation, and Figures 2 and 3 graphically summarize the results.

# cores (m) time (minutes) speedup (Sm) efficiency (em) scalability (Scm)
1 1349.00 1.27 1.27 1.00
2 683.00 2.26 1.13 1.78
4 456.00 3.75 0.94 2.96
8 311.67 5.49 0.69 4.33

16 158.00 10.82 0.68 8.54

Table 1. Performance metrics for the shared memory implementation.

(a) Execution time

(b) Speedup

Fig. 2. Execution time and speedup for the shared memory implementation.



(a) Efficiency

(b) Scalability

Fig. 3. Efficiency and scalability for the shared memory implementation.

The results in Table 1 indicate that acceptable improvements in the execution times
are obtained when using several cores in the shared memory parallel implementation
of the conversion algorithm. Fig. 2(a) graphically shows the reduction in the execution
times. While the sequential algorithm takes 1710 minutes to perform and the parallel
version running on a single core takes 1349 minutes, the execution time is reduced down
to 158 minutes when using the maximum number of cores available in the execution
platform (16). Fig. 2(b) indicates that when using up to four cores, the parallel algorithm
comes to obtain a linear speedup, and even superlinear speedup when two cores are
used, mainly due to the time improvements in the image loading process. Using more
cores yields to a sublinear speedup behavior, and both the computational efficiency
and the scalability of the algorithm reduces, as shown in Fig. 3. Several factors can
be mentioned as possible explanations for this behavior, including the overhead for the
thread management, the simultaneous bus access, and also that the infrastructure used
has four cores per processor, so the use of the memory bus for accessing the images
have a larger impact when using more than four cores.

Overall, efficient results are obtained for the shared memory implementation of the
parallel conversion process. Speedup values up to 10.82 are obtained when using 16
cores, and the efficiency values are almost linear.



Distributed memory implementation The experimental analysis for the distributed mem-
ory implementation was performed on a cluster infrastructure, varying the number of
hosts and also the number of cores used in each host. Table 2 reports the execution time
results and the performance metrics for the for the distributed memory implementation,
and Fig. 4 and 5 graphically summarize the results.

# host # cores (m) time (minutes) speedup (Sm) efficiency (em) scalability (Scm)

1

1 1313,00 1,30 1,30 1,00
2 783,00 2,18 1,09 1,68
4 421,33 4,06 1,01 3,12
8 260,67 6,56 0,82 5,04

16 158,67 10,78 0,67 8,28

2

2 805.00 2.12 1.06 1.63
4 408.66 4.18 1.05 3.21
8 188.33 9.08 1.13 6.97

16 138.00 2.39 0.77 9.51

4
4 356.67 4.79 1.20 3.68
8 192.33 8.89 1.11 6.83

16 110.00 15.55 0.97 11.94

Table 2. Performance metrics for the distributed memory implementation.

The results in Table 2 indicate that notable improvements in the execution times
are obtained by the distributed memory parallel implementation of the conversion algo-
rithm, specially when distributing the processing in several hosts.

The sequential algorithm takes 1710 minutes to execute in the cluster infrastructure.
When using one host, the best performance was reached when using 16 cores, with an
execution time of 159 minutes. Using up to four cores, the algorithm comes to obtain
a linear speedup as shown in Fig. 4(b). Just like for the sared memory implementation,
using more than four cores yields to a sublinear speedup behavior, and both the compu-
tational efficiency and scalability of the algorithm reduces. Better results are obtained
when distributing the processing in two hosts. The execution time is reduced to 138
minutes when using 16 cores. In this case, the linear speedup/computational efficiency
behavior holds up to the use of eight cores, as shown in Figures 4(b), 5(a).

Finally, when using four hosts, the best results of the analysis are obtained. The
execution time using 16 cores distributed in four hosts is 110 minutes, almost 16 times
faster than the sequential one. The linear speedup/efficiency behavior holds with up 16
cores The scalability of the algorithm also increases up to a value of 11.94.

The previously presented results show that when using the distributed memory al-
gorithm, the better approach is to distribute the execution across several hosts, rather
than using additional cores into a single host. The possible reason for this behavior
is that when more hosts are involved, more resources are available for the distributed
image processing (i.e. memory, disk access, number of open files per process). This is
consistent with the large number of files and memory used by the algorithm.



(a) Execution time

(b) Speedup

Fig. 4. Execution time and speedup for the distributed memory implementation.

Comparison: shared memory vs. distributed memory. By comparing the two imple-
mented algorithms, the main conclusion is that the distributed memory version reaches
better performance in the four hosts scenario. As it was already commented, this sit-
uation occurs due to the use of distributed resources, which improves the efficiency
since there is a minimal communication between the master and the slaves, and no data
exchange is performed between slaves. At the same time, by distributing the resources
utilization, the waiting time for input/output and the time added by the operating system
tasks do not impact significantly in the efficiency. The experimental results suggest that
even better performance could be obtained when using an increasing number of hosts.

6 Conclusions and future work

This article presented an efficient algorithm for converting the full domain of land cover
satellite images to the binary files within the WRF model. The proposed method is an
important contribution, as it helps to efficiently generate better wind forecasts.

The implemented parallel algorithm has already been used to generate updated bi-
nary WRF files, an the results are now used for wind forecasting at wind farm Emanuelle
Cambilargiu, Uruguay. In addition, the binaries for full world are published, and the out-
come of this research is currently under examination by experts from NCAR (National
Center for Atmospheric Research, USA) to be included in future releases of WRF.



(a) Efficiency

(b) Scalability

Fig. 5. Efficiency and scalability for the distributed memory implementation.

The parallel implementation of the conversion process provided an accurate and ef-
ficient method to perform the image processing. Two implementations, using shared and
distributed memory, were implemented and analyzed. Regarding to the performance re-
sults, both algorithms allowed to obtain significant reductions in the execution times
when compared with a traditional sequential implementation. The shared memory im-
plementation did not scale well when more than four cores are used within the same
host. On the other hand, the distributed memory algorithm have the best efficiency re-
sults: while the sequential algorithm took about 28 hours to perform the conversion, the
distributed memory algorithm executing on 4 hosts takes 110 minutes to complete the
process. A linear speedup behavior was detected for the distributed memory algorithm,
and speedup values of up to 15.55 were achieved when using 16 cores distributed on
four hosts. The computational efficiency is almost one, meaning that we are in pres-
ence of an almost-ideal case of performance improvement. The values of the scalability
metric indicate that the distributed memory implementation of the proposed parallel
algorithm scales well when more hosts are used, mainly due to the minimal need of
communications between the master and slave processes. The presented results suggest
that adding more hosts would improve even more the efficiency, and it also allow to
tackle more complex image processing problems.



The main lines for future work are related with further improving the computational
efficiency of the proposed implementations and studying the capability of tackling more
complex versions of the satellite image processing problem. Regarding the first line,
specific details about input/output performance and data bus access should be studied, in
order to overcome the efficiency loss of the shared memory implementation. In addition,
the scalability of the distributed memory implementation should be further analyzed,
specially to determine the best approach for tackling more complex image processing
problems (e.g. with better spatial and time resolution), eventually by using the computer
power available in large distributed computing infrastructures, such as grid computing
and volunteer-computing platforms.
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