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Abstract—This article presents the application of a parallel
evolutionary algorithm implemented in both CPU and Graphic
Processing Units (GPU), to solve large instances of the noisy
OneMax problem with up to one billion variables. Actually,
new GPU platforms provide the computing power needed to
apply massively parallel strategies to solve large problems.
We report here the experimental evaluation of both CPU and
GPU implementations for a compact evolutionary algorithm.
The proposed method demonstrates a high problem solving
efficacy and shows a good scalability behavior when facing
high dimension instances of the noisy OneMax problem,
improving the computational efficiency and the results reported
in previous similar approaches developed on CPU.
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I. INTRODUCTION

Evolutionary algorithms (EAs) are stochastic methods
successfully used in the last twenty-five years to solve
hard optimization, search, and machine learning problems,
achieving a high level of problem solving efficacy in many
application areas [1]. As long as the available processing
power in modern computers has become larger, EAs have
been applied to solve optimization problems with increasing
difficulty and complexity.

In order to improve the efficiency of EAs, parallel im-
plementations have been used to significantly enhance and
speed up the search, allowing to reach high quality results
in reasonable execution times even for hard-to-solve opti-
mization problems [2].

The capability of scaling up to solve increasingly complex
problem instances is a very desirable feature for modern
optimization techniques, and EAs in particular. However,
few articles has studied the applicability of EAs to solve very
large—i.e. with a million or more variables—optimization
problems (see a review of the related work in Section III).
Nowadays, the new computing platforms—multicore CPUs
and GPUs—provide an accessible infrastructure for applying
massive parallelism with the goal of designing efficient EAs
to solve large and complex problems.

Thus, there is still room to contribute in this line of
research by studying highly efficient parallel EA implemen-
tations, able to deal with very large optimization problems
by using the computational power of parallel systems.

In this line of work, the main contribution of this article
are: i) to present a performance analysis for an efficient
EA when solving very large optimization problems, ii) to
introduce a new parallel EA implementation in order to
take advantage of the massive computing power available in
GPUs, and iii) to perform an experimental analysis demon-
strating the capabilities the parallel EA implementations in
CPU and GPU for solving very large optimization problems.

The reported research is a first step in the quest to
devise specific guides for designing EAs to solve hard prob-
lems quicky, reliably, and accurately, by using cutting-edge
hardware infrastructure available today in every research
laboratory, and also in personal computers.

The manuscript is structured as follows. Section II
presents the problem formulation. Section III introduces
evolutionary computation and the compact EA applied in
this work. After describing the computing infrastructures in
Section IV, Section V describes the implementation details
of the compact EA in CPU and GPU. The discussion
of the experimental analysis and results are presented in
Section VI, while the conclusions and possible lines for
future work are formulated in Section VII.

II. THE ONEMAX AND THE NOISY ONEMAX PROBLEMS

This section describes the OneMax and the noisy OneMax
problems used to evaluate the EA proposed in this article.

A. OneMax problem

The OneMax Problem or bitcounting problem [3] is a
simple optimization problem consisting in maximizing the
number of ones of a bitstring. Formally, given a set of binary
variables ~x = [x1, x2, . . . , xD], xi ∈ {0, 1}, the OneMax
problem is defined by the expression in Equation 1.

max f(~x) =

D∑
i=1

xi (1)

The OneMax problem has a very simple formulation,
but it is useful to perform empirical analysis to evaluate
the computational efficiency of a given EA implementa-
tion. The linear-order OneMax fitness function models the
computational complexity of the evaluation function used in



many traditional combinatorial optimization problems [5],
including:

• routing and path planning problems, including Hamil-
tonian cycle and Traveling Salesman Problem (TSP),
shortest path and spanning tree problems.

• graph and set problems, including covering and parti-
tioning, coloring, matching, clique, etc.

• scheduling problems, including job sequencing, multi-
processor scheduling, open-shop and flow-shop.

• propositional logic problems, including the Satisfiabil-
ity Problem (SAT) in all its flavors.

B. Noisy OneMax problem

In a noisy optimization problem [4], the function used
to evaluate solutions is affected by exogenous noise. In
practice, many real-world optimization problems concern
objective functions which are perturbed by noise.

A noisy fitness function within an EA is modeled as
fNOISY = f + n, where f is the true fitness of a given
solution and n is the external noise, a random variable usu-
ally defined according to a zero-mean Gaussian distribution.

The fitness function for the noisy OneMax problem is
defined by Eq. 2, where N(0, σ2

N ) is a Gaussian random
variable with mean 0 and variance σ2

N .

max f(~x) =

D∑
i=1

xi +N(0, σ2
N ) (2)

By including exogenous noise in the fitness evaluation, the
OneMax problem can be used to model complex optimiza-
tion problems involving constraints and other features [5].

III. EVOLUTIONARY COMPUTATION

This section introduces EAs and the compact genetic
algorithm.

A. Evolutionary algorithms

EAs are non-deterministic methods that emulate the evo-
lution of species in nature, which have been successfully
applied for solving optimization problems underlying many
complex real-life applications in the last twenty years [1].

An EA is an iterative technique that applies stochastic
operators on a population of individuals, which encode
tentative solutions of the problem, in order to improve their
fitness. An evaluation function associates a fitness value to
every individual, indicating its suitability to the problem.
The initial population is generated at random or by using a
specific heuristic for the problem. Iteratively, the probabilis-
tic application of recombinations of individuals or random
changes (mutations) in their contents, using a selection-of-
the-best technique, guides the EA to better solutions.

The stopping criterion usually involves a fixed number
of generations or execution time, a quality threshold on the
best fitness value, or the detection of a stagnation situation.
Specific policies are used for the selection of individuals to

recombine and to determine which new individuals replace
the older ones in each new generation. The EA returns the
best solution found, regarding the fitness function values.

B. The compact genetic algorithm
The compact genetic algorithm (cGA, see Algo-

rithm 1) [6] is an EA that represents the population as a
probability distribution over the set of solutions, in order to
allow an efficient use of the available memory. From the
algorithmic point of view, the cGA is similar to a simple
GA that uses the uniform crossover and the flip bit mutation
operators. Each element in the probability vector represents
the proportion of a given value (i.e. ones) in each gene
position. Since the population is not explicitly stored and
each gene is independently processed, a considerable amount
of memory is saved when compared with a traditional GA.

Algorithm 1 Schema of the compact genetic algorithm.
1: initialize probabilistic model(p0)
2: t ← 0 {generation counter}
3: while not stop criteria do
4: [x1, x2] = generate (pt) {model sampling}
5: evaluate (x1, x2)
6: selection (x1, x2)
7: pt+1 = probabilistic model update (pt)
8: end while
9: return best solution ever found

The phases in cGA are: i) initialization: the entries in the
probability vector are initially set to 0.5; ii) model sampling:
generate two candidate solutions by sampling the probability
vector; iii) evaluation: the fitness of the selected individuals
are computed; iv) selection: the tournament selection oper-
ator is applied in order to assure that the best individual
propagates its characteristics; and v) probabilistic model
update: After selection, the proportion of winning alleles
is increase by 1/n, according to the expression in Eq. 3.

pt+1
i =


pti + 1/n if xW

i 6= xL
i and xW

i = 1,

pti − 1/n if xW
i 6= xL

i and xW
i = 0,

pti otherwise.

(3)

In Eq. 3, xWi and xLi are the i-th gene of the winner and
loser individuals in the tournament, respectively, and pti is
the i-th element of the probability vector at generation t.

C. Parallel evolutionary algorithms
Parallel implementations became popular in the last

decade as an effort to improve the efficiency of EAs. By
splitting the population into several processing elements,
parallel evolutionary algorithms (PEAs) allow reaching high
quality results in a reasonable execution time even for hard-
to-solve optimization problems [2].

The PEAs proposed in this work are categorized within
the master-slave model [7]: a master process guides the
evolution while a group of slave processes perform the evo-
lutionary search by executing the computationally expensive
functions in parallel.



D. Related work

Deb et al. [8] presented the first attempt to solve an
optimization problem with more than a million variables
using EAs. They showed that a traditional GA is not useful
to solve very large problems, since it requires an excessive
execution time. The EA by Deb and Pal [9] computed near-
optimum solutions for a problem with 100,000 variables in
a few minutes, but took more than 10 hours when facing an
instance with a million variables. Semet and Schoenauer [10]
solved with an EA a large real-world instance of the train
timetabling problem, with more than a million variables and
two million constraints. The EA took 15 minutes to perform
20 generations before it prematurely converged, so it was
hybridized with CPLEX in order to produce better results,
but in that case four hours were required. The applicability
of the previous approaches to solve generic optimization
problems is limited since they use problem-specific operators
and small population sizes, causing premature convergence.

Regarding more generic proposals, Kunasol et. al. [11]
solved one-million bit problems by applying a GA and a
search space reduction approach. The experimental evalu-
ation solved the OneMax, the Royal Road and the Trap
problems, but since a space reduction was applied, the EA
does not really faced one-million-variable problems.

In 2007, Goldberg et al. [12] faced the OneMax problem
by using a parallel implementation of cGA that “could solve
very large scale problems with up to 32 million variables to
full convergence”. Several tweaks were applied to increase
the efficiency, but the cGA still required a large parallel
computing infrastructure and demanded hours to perform a
single execution, mainly due to the very large population
modeled—over one million individuals, sized according to
a gambler ruin model [13]— When facing the one-billion
problem, even using 256 processors in a large cluster, the
authors needed to relax the stopping criterion to a very
weak “relaxed convergence” (i.e. the probability for each
variable is 0.501), which in reality means that cGA has an
infinitesimal probability of sampling the optimal solution.

Suwannik and Chongstitvatana [14] applied an Estima-
tion of Distribution Algorithm (EDA) with a compressed
arithmetic coding to solve the one-billion Noisy OneMax
problem. A population size of 3200 individuals was used,
significantly smaller than the one used by Goldberg et al. [5].
The proposed EDA required about 16 hours to perform only
100 generations when solving the OneMax and almost 34
hours when solving the Noisy OneMax problem.

The related work indicates that few articles have tackled
very large optimization problems using EAs, and that the
proposed implementations are not computationally efficient.
In this article, we adopt the cGA by Goldberg et al. to
analyze how the new multithreading computing platforms
(multicore CPUs and GPUs) allow extending the capabilities
to solve very large optimization problems efficiently.

IV. NEW MULTICORE PLATFORMS

This section briefly introduces the new multicore comput-
ing platforms using in this work.

A. Multicore CPUs

In a multicore processor, several independent computing
units (i.e. cores) are available to execute program instruc-
tions. Executing in multiple cores at the same time by
applying parallel computing techniques allows increasing
the overall computational efficiency, specially for speeding
high-demanding CPU applications. Nowadays, multi-core
processors are widely used to solve complex problems in
many application domains. Modern technologies such as
Opteron Magny-Cours—used in the experimental analysis
reported in this article— allow integrating up to 24 cores in
the same processor/machine.

B. GPU computing

GPUs were originally designed to perform the graphic
processing in computers, allowing the CPU to concentrate
in the remaining computations. Nowadays, GPUs have a
considerably large computing power, provided by hundreds
of processing units with reasonable fast clock frequencies.
In the last ten years, GPUs have been used as a powerful
parallel hardware architecture to achieve efficiency in the
execution of applications.

The CUDA [15] software architecture allows managing
GPUs as a parallel computing device, able to execute a large
number of threads in parallel. A specific procedure to be
executed many times over different data can be isolated in a
GPU-function using many execution threads. The function is
compiled using a specific set of instructions and the resulting
program (named kernel) is loaded in the GPU. The GPU has
its own DRAM, and the data are copied from the DRAM
of the GPU to the RAM of the host (and viceversa) using
optimized calls to the CUDA API.

The CUDA architecture is built around a scalable array
of multiprocessors, each one of them having eight scalar
processors, one multithreading unit, and a shared memory
chip. The multiprocessors are able to create, manage, and
execute parallel threads, with reduced overhead. The threads
are grouped in blocks (with up to 512 threads), which are
executed in a single multiprocessor, and the blocks are
grouped in grids. When a CUDA program calls a grid to
be executed in the GPU, each one of the blocks in the grid
is numbered and distributed to an available multiprocessor.
When a multiprocessor receives a block to execute, it splits
the threads in warps, a set of 32 consecutive threads. Each
warp executes a single instruction at a time, so the best
efficiency is achieved when the 32 threads in the warp
executes the same instruction. Each time that a block finishes
its execution, a new block is assigned to the available
multiprocessor.



V. THE PARALLEL CGA IN CPU AND GPU

This section presents the implementation details of the
parallel compact GA on CPU and GPU.

A. Performance analysis of cGA for the OneMax problem

The main goal of the experimental analysis is to study the
ability to efficiently solve very large problems using cGA.
So, initially, we carried out a performance analysis to know
which operators contribute the most to the total execution
time. The analysis was done using the standard gprof tool
for C/C++ profiling in CPU, and using the CUDA Event
API [16] in GPU. As an example, Figure 1 summarizes the
contribution of the main functions in cGA when solving a
one-million variables OneMax in CPU and GPU.

Figure 1. Performance analysis of cGA for the OneMax problem with
one million variables in CPU and GPU.

The results in Figure 1 demonstrate that the random
number generation is the function that contributes the most
to the total execution time, by a significant margin.

cGA needs 2×n random numbers to generate the sampled
individuals in each generation, thus for a representative run
(about 50,000 generations) and n=1,000,000 variables, 100
billion calls to the random number generator are required.

B. Implementation details

In order to reduce the execution time required to per-
form the simulations, we have followed the suggestions for
implementing efficient EAs given in [17]. In particular, we
adopted the following decisions:

• since the generation of random numbers plays a major
role in the computational requirements of cGA, we
decided to use the Mersenne Twister generator [18],
which provides both a very large period and significant
efficiency improvements with respect to traditional ran-
dom numbers generators.

• we avoided using dynamic memory to store the large
variables in cGA (the probability vector and the two
sampled individuals);

• we decided not to use the char type to represent binary
variables;

• we reduced the number of function calls;
Several other performance-oriented modifications were

applied in the Mersenne Twister implementation in order
to avoid high-cost operations (e.g. floating point divisions).

C. Parallel model

Figure 2 presents a diagram for the parallel model used in
the cGA implementation in both CPU and GPU. The parallel
model follows a domain-decomposition strategy, splitting the
problem domain (i.e. variables) in equally-sized chunks to
be handled in parallel. We propose a multithreading imple-
mentation for cGA that takes advantage of the computing
resources available to execute parallel threads in CPU and
GPU to perform the costliest operations in cGA: i) the
evolution step, which executes the probability model sample,
the generation of candidate individuals x1 and x2, and the
partial fitness evaluation for each chunk handled by each
thread; and ii) the probability vector update, which computes
the values of the probability vector p according to the
winner individual in the tournament selection. The internal
synchronization is needed in order to globally compute the
fitness of complete solutions from partial solutions.

Figure 2. Schema for the parallel cGA in CPU and GPU.

D. CPU implementation

A traditional master-slave model for EAs is applied, where
a master process is in charge of creating, managing, and
synchronizing a pool of threads, which perform the model
sampling and generate the sampled individuals. After the
synchronization to globally compare the fitness of individ-
uals, each thread in the pool performs the update of the
probability vector. The thread support is implemented with
the standard POSIX thread library (pthread) in C.



The CPU implementation does not apply a method for
packing/unpacking individuals, since the available memory
is enough to store the probability vector and the two sampled
individuals for dimensions up to one billion.

E. GPU implementation
The GPU implementation of cGA is able to take advan-

tage of multiple GPU devices installed on the host machine.
So, the domain decomposition is applied at the GPU device
level, splitting the domain in equally-sized sub-domains one
for each GPU device. Each GPU device is managed by a
CPU thread which executes the cGA skeleton and guides
the GPU device code execution.

The first step of the algorithm is to initialize the GPU
devices. This initialization takes some seconds, but it is
performed only once during the initialization of the whole
algorithm. After the devices are initialized, one CPU thread
per GPU device is launched. Algorithm 2 presents the
pseudocode of each CPU thread of the cGA for GPU.

Algorithm 2 Schema of each cGA thread in GPU.
1: initialize probabilistic submodeli(p0)
2: t ← 0 {generation counter}
3: while not stop criteria do
4: [x1, x2] = generate (pt)
5: evaluate thread submodeli(x1, x2)
6: synchronize()
7: evaluate

∑n
k=0 submodelk {the complete model}

8: synchronize()
9: selection (x1, x2)

10: pt+1 = probabilistic model update (pt)
11: end while
12: return best solution ever found

The OneMax is a separable problem, so we also im-
plemented an asynchronous version of cGA in GPU (cGA
GPU-async), where the probabilistic model update is per-
formed within each thread. This model executes significantly
faster than the synchronous cGA, but it is only useful to
solve separable optimization problems.

VI. EXPERIMENTAL ANALYSIS

This section describes the experimental analysis when
solving the OneMax and Noisy OneMax (noise = 0.5%)
with cGA in CPU and GPU.

A. Development and execution platform
The cGA for CPU was implemented in C using the

standard pthread library, and evaluated in a Opteron 6172
Magny-Cours processor with 24 cores at 2.1 GHz, with
24 GB RAM and CentOS Linux. The cGA for GPU was
implemented in CUDA v3.0 using OpenMP for thread
management, and evaluated in a eight-cores Xeon processor
at 2.33 GHz, with 8GB RAM and 4 Tesla C1060 GPUs. The
computing infrastructure used in the experimental analysis is
from Cluster FING, Universidad de la República, Uruguay
(cluster website: http://www.fing.edu.uy/cluster).

B. Results and discussion

Table I reports the results when solving the OneMax and
Noisy OneMax using cGA. In CPU, instances with 1, 8, and
24 million variables were solved (the multicore computer
used does not allow scaling up to solve larger problems).
In GPU, instances with 1, 8, and 32 million variables, and
a very large instance with more than a billion variables—
230 = 1 073 741 824 variables, exactly—were solved.

Table I
EXPERIMENTAL RESULTS FOR CGA IN CPU AND GPU

variables OneMax time (m) Noisy OneMax time (m)
cGA-CPU

1 million 97.9% 12 97.8% 14
8 millions 85.5% 250 82.5% 292

24 millions 71.3% 1018 71.1% 1197
cGA-GPU

1 million 82.5% 10 81.3% 12
8 millions 79.1% 178 78.0% 189

32 millions 74.1% 819 72.9% 874
1074 millions 62.3% 5800 60.1% 5982

cGA-GPU-async
1 million 91.0% 9 86.8% 10

8 millions 82.6% 126 79.8% 153
32 millions 77.8% 590 76.6% 622

1074 millions 66.8% 5251 64.0% 5402

The results in Table I indicate that cGA in CPU is
able to efficiently solve up to 8 million variables, but the
efficiency significantly reduces for 24 million variables. On
the other hand, the GPU implementations (specially the
asynchronous version) require less execution time to achieve
similar results quality than the CPU version, and they also
allow scaling up to solve very large instances. The three cGA
implementations have a very robust behavior: the results do
not vary significantly when solving the noisy OneMax.

The experimental analysis confirmed that cGA is not the
best choice to efficiently solve large optimization problems,
due to its very slow evolution pattern. cGA required 100.000
generations for reaching an average fitness of 66.8% for
the largest problem instance tackled. However, the GPU
implementations proposed in this work are able to perform
that number of generations rather efficiently, allowing to
perform about 20 one-billion-bits generations per minute.

Figures 3 and 4 summarize the comparative analysis of
the parallel cGA implementations in CPU and GPU, plotting
the results quality vs. the problem dimension (in logarithmic
scale) and the execution time required.

VII. CONCLUSIONS AND FUTURE WORK

This article presented a parallel EA applied to solve large
instances of the OneMax and Noisy OneMax problems. The
EA was conceived to efficiently scale up to solve problem
instances with several millions and even more than one
billion variables, by using the computing power available
in new multicore infrastructures (CPU and GPU).



Figure 3. Comparison of parallel cGAs in CPU and GPU (OneMax).

Figure 4. Comparison of parallel cGAs in CPU and GPU (Noisy OneMax).

Three versions of the proposed parallel EA were im-
plemented: synchronous cGA in CPU and GPU, and an
asynchronous version in GPU (only useful for separable
optimization problems).

The experimental analysis showed that the GPU cGA
implementations achieved the best results and efficiency
values when solving problems with more than 8 million
variables. This fact indicates that the new multicore GPU
infrastructures provide a promising platform for implement-
ing efficient EAs to solve very large optimization problems.

The main lines for future work include to further analyze
the computational efficiency of EAs when solving very large
optimization problems, in order to design even more efficient
EAs able to tackle large real-world problems. The implemen-
tations in GPU can be optimized to compute accurate results
in reduced execution times. Other algorithmic approaches,
different to cGA, and other parallel implementations (such
as distributed memory versions) of EAs should be studied to
better understand the contribution of parallel models when
solving huge optimization problems.
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