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Abstract. This work presents a parallel implementation on GPU for
a stochastic local search method to efficiently solve the task schedul-
ing problem in heterogeneous computing environments. The research
community has been searching for accurate schedulers for heterogeneous
computing systems, able to run in reduced times. The parallel stochas-
tic search proposed in this work is based on simple operators in order to
keep the computational complexity as low as possible, thus allowing large
scheduling instances to be efficiently tackled. The experimental analysis
demonstrates that the parallel stochastic local search method on GPU
is able to compute accurate suboptimal schedules in significantly shorter
execution times than state-of-the-art schedulers.

Keywords: GPU computing, heterogeneous computing, scheduling.

1 Introduction

Scheduling tasks in current heterogeneous computing (HC) systems challenges
researchers to the problem of assigning dozens of thousands of tasks in very short
times that should be limited to a few seconds. Indeed, HC systems are becoming
larger and larger during the last fifteen years, mainly due to the fast increase
of computing power and the rapid development of high-speed networking pro-
tocols, but also to the demand of the scientific community that has to address
increasingly large problems that require an enormous computing power [7]. As-
signing and mapping tasks becomes therefore a critical issue since finding an
accurate schedule significantly impacts in both the resource utilization costs and
the quality of service (QoS) perceived by the user.

Scheduling problems have been widely studied in operational research [4,12],
but most of the classical approaches have faced the task scheduling in homo-
geneous environments. The ultimate goal of a scheduling problem is to provide
an assignment of tasks to resources so that some efficiency criteria is satisfied,
usually related to the total execution time for a bunch of tasks (makespan), but
frequently also considering other metrics such as the resource utilization and/or
the QoS.



The Heterogeneous Computing Scheduling Problem (HCSP), in which the re-
sources are different among them, has become important due to the populariza-
tion of distributed computing and the growing use of heterogeneous clusters [5,8].
Even the traditional homogeneous scheduling problems are NP-hard [9], so het-
erogeneity makes this problem even harder, thus allowing exact methods being
only useful for solving instances of reduced size.

When dealing with large problem instances, as demanded by the size of cur-
rent HC systems, heuristic and metaheuristic methods [14,18,19] are the only
viable options in practice to compute efficient schedules in reasonable execution
times. In this context, the faster the scheduler, the quicker the HC system can al-
locate new tasks and, as a consequence, the better its utilization degree (and the
corresponding income). However, it is very hard, particularly for metaheuristics,
to meet the wall-clock time constraint imposed in current heterogeneous cluster
computing infrastructures and in grid computing systems. In fact, scheduling
dozens of thousands of tasks is even slow for basic low level heuristic methods,
which are usually much faster than metaheuristics. This work is focussed on these
latter heuristic methods and the use of parallelism to reduce their computational
times. The actual scientific contribution therefore lies in the parallelization of a
stochastic local search (rPALS [15]) on GPU (Graphic Processing Units) cards.
It has been called gPALS. Its main goal is to profit from the computing power of
these newly available massively parallel platforms in order to address very large
HCSP instances. Indeed, the testbed used is composed of problem instances that
range from 8096 to 32768 tasks, and 256 to 1024 machines, respectively. Aver-
aging over 60 different instances, the results have shown that, compared to the
state-of-the-art deterministic MinMin heuristic [11], gPALS is able to reach task
schedules with a 5% lower makespan more than 11 times faster.

The rest of the manuscript is organized as follows. The next section presents
the HCSP formulation and briefly describes the list scheduling heuristics used
for initializing the proposed gPALS and in the results comparison. Section 3
introduces the main concepts about GPU computing. The details about the GPU
implementation for the stochastic local search method proposed to efficiently
solve the HCSP are presented in Section 4. The experimental analysis is described
in Section 5, studying the numerical efficacy and the computational efficiency
of the proposed method in a number of large-sized HCSP scenarios. Finally,
Section 6 presents the main conclusions of the research and formulates the main
lines for future work.

2 Heterogeneous computing scheduling

This section introduces the HCSP formulation and presents some considerations
about the execution time estimation model used in the problem instances to
solve. In addition, the classic deterministic heuristics applied for initializing the
proposed gPALS method and the one used as a baseline to compare the gPALS
results are described.



2.1 Formal definition

An HC system is a computational platform composed of many computational
resources, also called processors or machines. The scheduling problem in HC
considers a set of tasks with variable computing demands to be executed on
the system. A task is the atomic unit of workload, so it cannot be divided
into smaller chunks, nor interrupted after it is assigned to a machine (i.e., the
scheduling problem follows a non-preemptive model). The execution times of
each task vary from one machine to another, so there will be competition among
tasks for using those machines able to execute them in the shortest time.

The most usual objective to minimize in scheduling is the makespan, defined
as the time spent from the moment when the first task begins its execution to
the moment when the last task is completed. However, many other objectives
have been considered in scheduling problems [12].

The following formulation presents the mathematical model for the HCSP:

– given an HC system composed of a set of machines M = {m1,m2, . . . ,mL}
and a collection of tasks T = {t1, t2, . . . , tN} to be executed on the system,

– let there be an execution time function ET : T×M → R+, where ET (ti,mj)
is the time required to execute the task ti in the machine mj ,

– the goal of the HCSP is to find an assignment of tasks to machines (a function
f : TN → ML) which minimizes the makespan metric, defined in Eq. 1.

max
mj∈M

∑

ti∈T :

f(ti)=mj

ET (ti,mj) . (1)

Using the 3-field notation from Graham et al. [10], the HCSP is denoted
Rm|1|Cmax.

2.2 Execution time estimation model

In this work, we adopted the expected time to compute (ETC) performance es-
timation model by Ali et al. [2], which has been widely used by the research
community when facing the HCSP. ETC provides an estimation for the execu-
tion time of a collection of tasks in an HC system, taking into account three key
properties: machine heterogeneity, task heterogeneity, and consistency.

Machine heterogeneity evaluates the variation of execution times for a given
task across the HC resources. A system with similar computing resources has low
machine heterogeneity, while high machine heterogeneity represents HC systems
with computing resources of different power. Task heterogeneity represents the
variation of the tasks execution times for a given machine. In a high task het-
erogeneity scenario, different types of applications are submitted to execution,
from simple programs to complex tasks which require large CPU times to be
performed. On the other hand, low task heterogeneity models those scenarios
when the tasks computational requirements, and thus their execution times, are
similar for a given machine.



The ETC model considers a second classification. In a consistent ETC sce-
nario, whenever a given machine mj executes any task ti faster than other ma-
chine mk, then machine mj executes all tasks faster than machine mk. An incon-
sistent ETC scenario lacks of structure among the computing demands of tasks
and the computing power of machines, so a given machine mj may be faster
than another machine mk when executing some tasks, and slower for others.
In addition, a third category of semi-consistent ETC scenarios is included, to
model those inconsistent systems that include a consistent subsystem.

2.3 List scheduling heuristics

Several deterministic heuristics have been proposed for HC scheduling. One of
the most used class of such methods is list scheduling heuristics [11]. List schedul-
ing methods work by assigning priorities to tasks based on a particular criteria,
sorting the list of tasks in decreasing priority, and assigning each task to a pro-
cessor, regarding both the task priority and the processor availability.

Variations of two well-known list scheduling heuristics have been used in this
work to generate the initial solution for the gPALS method:

– Minimum Completion Time (MCT) considers the set of tasks sorted in an
arbitrary order. Then, it assigns each task to the machine with the minimum
ET for that task.

– MinMin greedily picks the task that can be completed the soonest. The
method starts with a set U of all unmapped tasks, calculates the MCT for
each task in U for each machine, and assigns the task with the minimum
overall MCT to the machine that executes it faster. The mapped task is
removed from U , and the process is repeated until all tasks are mapped.

The MinMin heuristic provides an excellent packing of tasks for HC environ-
ments with high level of heterogeneity of both tasks and machines, thus comput-
ing better makespan values than other well-known list scheduling heuristics [11].
For this reason, the MinMin results are used in this work as a reference baseline
for comparing the results computed with the proposed local search algorithm.

3 GPU computing

GPUs were originally designed to exclusively perform the graphic processing
in computers, allowing the Central Process Unit (CPU) to concentrate on the
remaining computations. Nowadays, GPUs have a considerably large comput-
ing power, provided by hundreds of processing units with reasonable fast clock
frequencies. In the last ten years, GPUs have been used as a powerful parallel
hardware architecture to achieve efficiency in the execution of applications.

GPU programming and CUDA. The first GPUs used for general-purpose com-
puting were programmed using low-level mechanisms such as the interruption
services of the BIOS, or by using graphic APIs such as OpenGL and DirectX [6].



Later, the programs for GPU were developed in assembly language for each card
model, and they had very limited portability. So, high-level languages were devel-
oped to fully exploit the capabilities of the GPUs. In 2007, NVIDIA introduced
CUDA (Compute Unified Device Architecture) [16], a software architecture for
managing the GPU as a parallel computing device without requiring to map the
data and the computation into a graphic API.

CUDA extends the C language, and it is available since cards of the GeForce
8 Series onwards. Three software layers are used in CUDA to communicate with
the GPU (see Fig. 1): a low-level hardware driver that performs the CPU-GPU
data communications, a high-level API, and a set of libraries such as CUBLAS
for linear algebra and CUFFT for Fourier transforms calculation.

Fig. 1. CUDA architecture.

For the CUDA programmer, the GPU is a computing device which is able to
execute a large number of threads in parallel. A specific procedure to be executed
many times over different data can be isolated in a GPU-function using many
execution threads. The function is compiled using a specific set of instructions
and the resulting program (named kernel) is loaded in the GPU. The GPU has
its own DRAM, and the data are copied from the DRAM of the GPU to the
RAM of the host (and viceversa) using optimized calls of the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors,
each one having eight scalar processors, one multithreading unit, and a shared
memory chip. The multiprocessors are able to create, manage, and execute par-
allel threads, with reduced overhead. The threads are grouped into blocks (with
up to 512 threads), which are executed in a single multiprocessor of the graphic
card, and the blocks are grouped in grids. Each time that a CUDA program calls
a grid to be executed in the GPU, each of the blocks in the grid is numbered
and distributed to an available multiprocessor. When a multiprocessor receives
a block to be executed, it splits the threads into warps, a set of 32 consecutive
threads. Each warp executes a single instruction at a time, so the best efficiency
is achieved when the 32 threads in the warp executes the same instruction. Oth-
erwise, the warp serializes the threads. When a block finishes its execution, a
new block is assigned to the available multiprocessor.



The threads are able to access the data using three memory spaces: a shared
memory which can be used by the threads in the block; the local memory of the
thread; and the global memory of the GPU. Minimizing the access to the slower
memories (the local memory of the thread and the global memory of the GPU)
is a very important feature to achieve high efficiency in GPU computing. On the
other hand, the shared memory is placed within the GPU chip, thus providing
a faster way to store data, such as the registers of each multiprocessor.

4 gPALS: a GPU implementation of a stochastic local

search scheduler

This section describes both rPALS, the base algorithm that has been parallelized,
and gPALS, its deployment on GPU cards.

4.1 rPALS

The stochastic local search algorithm proposed in this work to efficiently solve the
HCSP is based on PALS [1]. The original PALS method is a deterministic local
search algorithm originally proposed for the DNA fragment assembly problem.

PALS works on a single solution s, which is iteratively modified by applying
a series of movements aimed at locally improving their objective function value
f(s). The movement operator performs a modification on two positions i and j

in the solution s, while the key step is the calculation of the objective function
variation ∆f(i,j) when applying a certain movement. When the calculation of
∆f(i,j) can be performed without significantly increasing the computational cost
of the algorithm, PALS provides a very efficient search pattern for combinatorial
optimization problems.

In this work, a randomized variant of PALS (rPALS), has been used for the
HCSP [15]. The aim of the algorithm is to reach accurate schedules in very
short times. To do so, from a initial solution computed by a fast scheduling
heuristic, rPALS iteratively applies two basic operations that either swap or move
randomly chosen tasks allocated to randomly chosen machines, thus avoiding
exploring all the possible neighbors. The algorithm has been designed under the
paradigm of simplicity; by using simple search operators, the resulting rPALS
method is able to scale up in order to face realistic medium-sized HCSP instances.

4.2 gPALS

The emergence of general purpose GPU computing has opened new research
lines specially promising in this field of scheduling and planning. Indeed, this
new technology will help to address more and more larger problem instances (up
to 32768 tasks and 1024 machines in this work) in reasonable wall-clock times
which are closer to the actual HC infrastructures. The key issue is to fully exploit
the massively parallelism of the GPU cards. This is precisely the main design
goal of gPALS, the GPU version of rPALS.



Algorithm 1 presents the pseudo-code of the gPALS algorithm for the HCSP.
The method starts by generating an initial schedule s using a list scheduling
heuristic (e.g. MCT, pMin-Min/DD, etc.). Then, a search is performed in the
GPU in order to find candidate movements to improve the schedule, this search
is detailed in Algorithm 2. The GPU search returns the best GPU BLOCKS move-
ments found. The best movement is always applied, the remaining movements
are applied in random order as long as they do not modify a machine already
modified by a previous movement, otherwise the movement is discarded. Once
all the movements are either applied or discarded, the stopping criterion is tested
and the algorithm either ends or performs a new iteration.

The movement search on the GPU is organized in blocks; there are GPU BLOCKS

blocks, each block having GPU THREADS threads. Each block performs an indepen-
dent local search in a randomly selected neighbourhood, with the threads in the
block collaborating with each other to find the best movement in the assigned
neighbourhood. Algorithm 2 presents the movement search performed on the
GPU. First, each block deterministically selects a movement type (i.e. MOVE or
SWAP). Then each thread in the block randomly selects the source and destination
elements to modify. Each thread evaluates its assigned movement and computes
a score for it. After each thread in the block evaluated its assigned movement,
the best movement (i.e. the one with the lower score) is selected and returned
to Algorithm 1 as the best movement found in the block.

Algorithm 1 gPALS for the HSCP

1: s← initialize using a list scheduling heuristic
2: while STOPPING CONDITION is not met do
3: m← Parallel execution of the movement search kernel in s with 128 blocks with

256 threads each {A total of 32768 threads are launched}
4: s← Apply the best movement from m

5: s← Apply the rest of the movements in m in random order
6: end while
7: return s

As it can be seen, gPALS requires an initial solution which is iteratively
improved (line 1 in Algorithm 1). For this initial solution to be generated, any
classical list heuristic could be used in order to provide gPALS with a rather
high quality task schedule. Two different versions of gPALS have been devised
depending on this heuristic:

– gPALSMCT : it uses MCT for generating the initial task schedule.
– gPALSMMDD: the pMin-Min/DD (or parallelMin-Min with domain decom-

position) heuristic is adopted. It is a multithreading version of the Min-Min
algorithm, which performs a task domain decomposition and does not require
any synchronization mechanism (see [13] for the details).

A diagram of the parallel model used in gPALS is presented in Fig. 2.



Algorithm 2 Movement search kernel for the GPU.

1: shared M ← ∅ {shared across all threads in the block}
2: s← Current schedule
3: movement ← Choose which movement to perform
4: if movement is TASK SWAP then
5: tx, ty ← Choose two random tasks (tx 6= ty)
6: m← Swap tx with ty

7: else if movement is TASK MOVE then
8: tx ← Choose a random task
9: my ← Choose a random machine
10: m← Move tx to my

11: end if
12: if makespan of the schedule s increases after the movement m then
13: score←∞
14: else
15: ctx ← Compute time of the machine mx to which tx is assigned
16: ct′x ← Compute time of the machine mx after applying the movement
17: cty ← Compute time of the machine my (when swapping, the machine to which

ty is assigned)
18: ct′y ← Compute time of the machine my after applying the movement
19: score← (ct′x −max(ctx, cty)) + (ct′y −max(ctx, cty))
20: end if
21: M ←M ∪m

22: synchronize() {threads in the block}

23: mbest ← Parallel reduce M to find best movement in the block
24: return mbest

Fig. 2. Parallel model applied in gPALS.



5 Experimental analysis

This section introduces the set of HCSP instances and the computational plat-
form used to evaluate the proposed LS algorithm. After that, the experiments
conducted to determine the best values for the randomized PALS parameters are
presented. Finally, the results obtained when solving realistic HCSP instances
are analyzed in detail.

5.1 HCSP instances

To evaluate the proposed gPALS method, a specific set of 60 HCSP instances
was used. These instances were randomly generated following the range based
methodology proposed by Ali et al. [2], and they were previously employed to
evaluate a cellular genetic algorithm scheduler for HC systems in the work by
Pinel et al. [17].

The HCSP instances solved in this article model realistic large-sized HC in-
frastructures. Three problem dimensions were studied in the experimental anal-
ysis of gPALS: (tasks×machines) 8192×256, 16384×512, and 32768×1024. This
dimensions are far more larger than the ones usually tackled in the related lit-
erature. For each problem dimension considered, 20 instances were used, follow
the parametrization values suggested by Braun et al. [3].

5.2 Development and execution platform

The rPALS algorithm was implemented in C, using the standard stdlib library
and compiled with gcc 4.1.2. The experimental analysis was performed in a Dell
PowerEdge with QuadCore Xeon E5430 processor at 2.66 GHz, 8 GB RAM, and
CentOS Linux (platform website: http://www.fing.edu.uy/cluster).

5.3 Results and discussion

This section is aimed at presenting the experimental results obtained. It has
been structured in two separate subsections so as to analyze, firstly, the quality
of the tasks schedules reached by MinMin, gPALSMCT , and gPALSMMDD in
terms of their makespan and, secondly, the parallel performance of the proposed
approaches, gPALSMCT and gPALSMMDD, with respect to MinMin.

Numerical efficiency. Table 1 reports the makespan reached by MinMin and
the two versions of gPALS for the three set of instances with increasing size.
Before going into details, we want to make clear the experimental conditions.
Whereas MinMin has been let to execute until it schedules all the tasks, i.e.,
until a full solution is built (it is a constructive heuristic), both gPALSMCT

and gPALSMMDD stop when 30 seconds of GPU computation have elapsed (the
loading time of the instance is not considered here). The cells with the best
makespan are marked with a gray background.



Table 1. Makespan of the three algorithms for 60 HCSP instances, 20 for each dimen-
sion —8192×256, 16384×512, and 32768×1024.

8192×256 16384×512 32768×1024
MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 1845.2 1835.4 1710.4 1934.1 1886.1 1777.0 1996.2 1927.3 1831.3
2 1889.9 1863.2 1740.0 1940.5 1889.9 1781.2 1979.0 1918.0 1824.3
3 1894.3 1831.0 1716.0 1949.0 1895.7 1782.1 1980.7 1919.7 1821.6
4 1890.1 1866.4 1743.0 1922.0 1887.1 1778.4 1982.8 1929.3 1830.6
5 1859.6 1843.7 1724.8 1904.1 1867.7 1757.1 1971.9 1918.5 1818.4
6 1863.4 1829.0 1715.4 1901.7 1885.7 1772.6 1973.4 1912.0 1816.3
7 1897.3 1862.3 1736.9 1945.5 1898.1 1787.6 1991.0 1926.0 1829.0
8 1874.5 1852.6 1738.4 1903.8 1878.6 1768.5 1991.8 1922.5 1822.0
9 1871.5 1853.3 1730.9 1937.3 1894.7 1782.4 1994.8 1929.5 1832.2

10 1865.9 1867.2 1742.5 1935.7 1877.6 1769.9 1997.1 1922.1 1822.9
11 1840.7 1823.8 1711.9 1937.4 1899.2 1786.7 1975.8 1914.7 1816.2
12 1867.3 1836.7 1724.2 1916.2 1871.6 1762.8 1974.2 1912.2 1813.5
13 1895.4 1867.5 1744.6 1911.8 1884.8 1771.6 1978.6 1915.2 1818.6
14 1884.8 1841.8 1725.4 1927.6 1898.7 1784.0 1988.1 1923.3 1824.3
15 1851.0 1828.2 1710.8 1944.4 1901.0 1787.5 1972.1 1915.8 1819.3
16 1846.3 1837.2 1724.1 1939.5 1886.5 1777.9 1979.3 1913.3 1814.2
17 1874.7 1818.1 1707.8 1933.6 1878.4 1764.9 1991.8 1916.7 1814.9
18 1862.8 1856.5 1736.7 1929.5 1887.0 1776.4 1986.8 1922.5 1825.5
19 1892.5 1853.4 1732.7 1910.8 1880.6 1765.6 1975.2 1914.5 1814.2
20 1869.0 1853.8 1731.2 1941.0 1891.6 1781.0 1991.7 1919.9 1819.2

The experimental results in Table 1 clearly point out that gPALSMMDD is
the algorithm that reached the task schedules that most reduces the makespan for
all the instances addressed. This occurs consistently for the three instances sizes,
i.e., 8192×256, 16384×512, and 32768×1024. Averaging over all the instances of
the same size, gPALSMMDD improves the makespan computed by MinMin in
7.72%, 7.91%, and 8.18%, respectively. It is important to note the relevance of
these values, given the experimental conditions. Though slightly, these average
values show that, the larger the instances, the better the improvement, and this
has been achieved by keeping the same computation time, i.e., 30 seconds. That
is, for search spaces very much larger (both the number of tasks and machines
is doubled), our approach is able to improve even more MinMin, which requires
in turn very much longer execution times (see the next section). To a lesser
extent, the same claims hold for gPALSMCT : the average improvements are also
increasing with the instance size, but only 1.37%, 2.13%, and 3.24%, respectively.

In order to better support our claims, Fig. 3 displays the evolution of the
makespan of a typical 8192×256 instance in terms of (a) the iterations and (b)
the execution time of gPALSMCT and gPALSMMDD in a typical execution, re-
spectively. The makespan obtained by Min-Min is also included as a baseline
for the comparison. These subfigures shows a very interesting fact. For gPALS,
the more accurate the initial solution (in this case, that computed by MCT),
the earlier the stagnation in a local minimum. Indeed, it can be seen that pMin-



(a) (b)

Fig. 3. Evolution of the makespan during a typical execution of the three compared
algorithms for a 8192×256 instance with respect to (a) the iterations of gPALS and
(b) its wall-clock time.

(a) (b)

Fig. 4. Evolution of the makespan during a typical execution of the three compared
algorithms for a 16384×512 instance with respect to (a) the iterations of gPALS and
(b) its wall-clock time.

MinDD reaches a task schedule with much higher (worse) makespan, and then
gPALS is able to iteratively move and swap tasks between machines that al-
low the makespan to be continuously reduced up to the iteration 2500. With
respect to Min-Min, gPALSMCT requires around 1000 generations to reach a
lower makespan, whereas gPALSMMDD is around iteration 2000. If we now turn
to analyze the evolution with respect the execution time, the picture changes.
The first remark here is that the two gPALS versions outperform MinMin af-
ter just one single second of computation, clearly showing their suitability for
addressing this large instances of the HCSP problem. The second remark raises
when comparing gPALSMCT and gPALSMMDD: the latter also requires just one
second to reach a more accurate task schedule than the former.



Figure 4 presents the evolution of makespan values with respect to both the
iterations of gPALS and the execution time, but for a representative 16384×512-
sized instance. All the previous claims hold as well with the only difference in sub-
figure (b), in which now the generation of the initial solution for gPALSMMDD

with the pMin-MinDD heuristic takes longer and delays outperforming both
MinMin and gPALSMCT about one second. The same behavior was detected for
the other HCSP instances in the benchmark set solved in this article.

Table 2. Wall-clock of the three algorithms (in seconds) for 60 HCSP instances, 20 for
each dimension —8192×256, 16384×512, and 32768×1024.

8192×256 16384×512 32768×1024
MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 15.0 11.6 10.6 110.7 9.7 16.7 839.8 21.1 112.6
2 15.0 9.8 9.8 110.6 9.9 17.0 838.8 20.5 115.8
3 14.8 9.7 8.5 110.6 9.7 17.6 842.5 18.9 98.5
4 14.9 10.4 9.7 110.7 11.4 19.1 841.7 20.9 111.3
5 14.9 8.1 8.4 111.2 13.1 17.1 845.3 22.2 105.7
6 14.9 7.9 8.9 111.4 12.0 17.9 834.6 21.9 110.9
7 14.9 8.4 9.0 111.3 11.7 19.0 837.4 20.6 105.5
8 15.3 8.0 8.4 111.3 12.4 17.1 843.2 19.6 112.3
9 15.0 8.6 8.3 111.1 10.0 18.1 838.4 19.6 105.0

10 15.0 11.8 8.2 110.7 12.4 18.9 839.3 21.4 122.2
11 14.8 8.8 8.6 110.8 13.1 19.8 840.4 20.6 109.6
12 14.9 7.9 8.2 110.9 12.6 19.8 838.7 19.1 100.3
13 14.9 7.7 8.2 110.7 13.4 19.9 843.1 20.3 110.3
14 14.9 7.5 8.2 110.8 13.5 20.2 841.8 19.9 112.1
15 14.9 7.7 8.2 110.5 13.4 19.1 844.0 20.8 107.4
16 15.1 8.7 8.2 110.8 12.7 19.9 834.9 22.0 111.2
17 15.0 7.5 8.2 111.3 13.3 19.9 837.6 21.1 106.1
18 14.6 9.0 8.3 111.3 13.2 19.7 842.7 20.5 108.3
19 14.9 7.5 8.2 111.2 13.0 20.2 838.8 19.3 125.0
20 14.9 8.1 8.2 111.1 13.3 19.1 840.0 19.9 99.3

Parallel performance. We have already provided the reader with some hints
about the main features of the computational times of the three algorithms, but
we now want to detail them in a separate experimentation. Table 2 includes
the wall-clock time of MinMin, gPALSMCT and gPALSMMDD for the 60 HSCP
instances with increasing size considered in this work. The experimental con-
ditions for the two gPALS methods have changed: they stop when they reach
a task schedule with a lower makespan than that of MinMin (in the previous
section, the stopping condition was to reach 30 seconds of GPU computation).

The first clear claim is that the two gPALS versions are always faster than
MinMin to achieve an task schedule with the same makespan. The truly inter-
esting point here is that, the larger the instance, the higher the reduction in the



Fig. 5. Average execution time improvements of gPALSMCT and gPALSMMDD with
respect to MinMin.

execution times. Indeed, MinMin requires roughly 15, 110, and 840 seconds to
build a solution for 8192×256, 16384×512, and 32768×1024 instances, respec-
tively, whereas gPALSMCT and gPALSMMDD need 8, 12, and 20 seconds, and 9,
18, and 110 seconds, respectively. These differences can be clearly seen in Fig. 5,
which displays the average execution time improvements over all the instances
of the same size reached by gPALSMCT and gPALSMMDD. The execution time
improvement refers to the reduction in the execution time of an algorithm that
runs in a parallel computing platform (in our case the GPU) with respect another
one that executes sequentially, i.e., tCPU

tGPU
. For the smaller instance considered in

this work, the two gPALS approaches perform the same, with execution time im-
provements of 1.73 and 1.67. However, as long as the size of instance increases,
MinMin requires more time to complete, i.e., it does not scale well, whereas our
approaches do scale properly, specially gPALSMCT , which has been able to reach
an execution time improvement of 40.1 for the largest instance. We would like
to dive a little bit more on the results of the two gPALS versions and explain
why the execution time improvements of gPALSMCT is much higher. Obviously,
it has to do with the computational time of the initial task schedule by the
heuristic. MCT is a extremely fast method whose translation to the GPU does
not make sense because little benefits would be obtained. On the other hand,
pMinMinDD is much heavier and, even ported to the GPU, takes longer to build
a solution, what reduces its execution time improvements.



6 Conclusions

This work has presented gPALS, a GPU implementation of a randomized local
search procedure for addressing large instances of the scheduling problem in
HC systems. The aim of the algorithm is to reach accurate schedules in very
short times for large HCSP instances using the parallel computing resources
available in GPUs. To do so, from a initial solution computed by either the
MCT heuristic or a parallel version of the MinMin heuristic, two variants of
gPALS were implemented in GPU by iteratively applying two basic operations
that either swap or move randomly chosen tasks allocated to randomly chosen
machines. The key is that the variation in the makespan of these operations
can be computed efficiently and, consequently, several millions operations can
be performed in few seconds.

The experimental analysis performed using a testbed with 60 large HCSP
instances of three increasing dimensions (up to 32768 tasks and 1024 machines)
compared the two proposed versions of gPALS against Min-Min, one of the best
state-of-the-art list scheduling heuristics for HC environments. The experimen-
tal results demonstrate that the proposed gPALS implementations are able of
compute better makespan values than MinMin in all the 60 studied instances.

The gPALSMMDD variant is the best method between the two GPU im-
plementations, obtaining significant improvements (up to 8.18%) with respect
to MinMin. These reductions in the makespan obtained by gPALSMMDD have
taken a wall-clock time of 30 seconds, which represent a factor of almost 8×
in the computational efficiency with respect to the MinMin scheduler. On
the other hand, gPALSMCT computed schedules significantly faster than both
gPALSMMDD and MinMin, achieving execution time improvements up to 41.05
with respect to MinMin. The solution computed by gPALSMCT improves upon
the ones computed using MinMin, but they have lower quality (i.e., larger
makespan values) than those found by the gPALSMMDD implementation. Re-
garding the execution time comparison, both gPALS implementations are able
to improve over the MinMin makespan result in only a few seconds of execution
time (without counting the time spent in computing the initial solution).

The previously commented results have demonstrated that the new
gPALSMMDD algorithm is an accurate and very efficient scheduler for the HCSP
instances tackled in this article.

Two main lines are proposed for future work: improve the efficacy of the
search in gPALS, and also to enhance the computational efficiency of the pro-
posed optimization method. Regarding the first issue, we propose to analyze
carefully the landscape of the HCSP, in order to design specialized basic oper-
ations that further improve the efficacy of the search in gPALS, by avoiding to
explore non-promising regions of the search space. On the other hand, in order to
be able to address even larger HCSP instances in shorter times, we also plan to
engineer a more efficient version of gPALS by employing domain-decomposition
parallel computing techniques in GPU.
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