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Abstract—This work presents the application of a parallel
micro-CHC evolutionary algorithm to the scheduling problem
in heterogeneous computing environments, to minimize the
makespan and weighted response ratio objectives. The studied
problem is NP-hard, and significant effort has been made
to develop efficient methods to compute accurate schedules
in reduced execution times. Efficient numerical results are
reported in the experimental analysis performed on both well-
known and new large problem instances that model medium-
sized grid environments. The parallel micro-CHC achieves a
high problem solving efficacy and shows a good scalability
behavior when facing high dimension instances.
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I. INTRODUCTION

Nowadays, distributed computing platforms usually in-
clude a large number of heterogeneous devices that pro-
vides the computing power needed to solve complex prob-
lems arising in many areas of application. The expression
grid computing defines the set of distributed computing
techniques that work over a large loosely-coupled virtual
supercomputer, formed by many heterogeneous computing
devices widespread around the globe. This infrastructure
has made it feasible to provide pervasive and cost-effective
access to a collection of distributed computing resources for
solving problems that demand large computing power [1].

A key problem when using distributed heterogeneous
computing (HC) consists in finding a scheduling for a set
of tasks to be executed. The goal is to assign the computing
resources by satisfying some efficiency criteria, usually
related to the total execution time, the resource utilization, or
the quality of service (QoS). Scheduling problems have been
widely studied in operational research [2], [3], and the het-
erogeneous computing scheduling problem (HCSP) became
important due to the popularization of distributed computing
and the growing use of heterogeneous clusters [4], [5].

Traditional scheduling problems are NP-hard [6], thus
classic exact methods are only useful for solving instances
of reduced size. Heuristics and metaheuristics methods are
then used to compute efficient schedules in reasonable times
for large problem instances.

Evolutionary algorithms (EAs) have emerged as flexible
and robust metaheuristics for scheduling, achieving the high
level of problem solving efficacy also shown in many other
application areas [7]. EAs usually require larger execution
times than ad-hoc scheduling heuristics, but they can find
better solutions. So, EAs are competitive schedulers for HC
systems where large tasks (with execution times of minutes,
hours, or days) are submitted for execution. In order to fur-
ther improve the efficiency of EAs, parallel implementations
have been used to enhance and speed up the search, allowing
to reach high quality results in reasonable execution times
even for hard-to-solve optimization problems [8].

EAs have been applied to the single-objective HCSP [9]–
[13], but the simultaneous optimization of several objectives
has been seldom tackled. Realistic HCSP instances in grid
environments have rarely been faced, mainly due to the
complexity of dealing with the underlying high-dimension
optimization problem. In addition, few works have studied
parallel methods and their ability to use the computing
power of large clusters to improve the search. Thus, there
is still room to contribute in these lines of research by
studying highly efficient parallel EAs, able to deal with
large-size HCSP instances by using the computational power
of parallel and distributed environments.

In this line of work, the main contribution of this article is
to solve a new HCSP variant that proposes the simultaneous
optimization of the makespan and weighted response ratio
objectives, using a parallel micro-CHC (pµ-CHC) algorithm.
Efficient numerical results are reported in the experimental
analysis performed on both well-known and large problem
instances. The analysis shows that pµ-CHC is able to achieve
high problem solving efficacy, and also to exhibit a good
scalability when solving high dimension problem instances.

The manuscript is structured as follows. Section II
presents the problem formulation. Section III introduces EAs
and describes the pµ-CHC algorithm. Section IV describes
the implementation details of pµ-CHC applied to the HSCP.
The discussion of the experimental analysis and results are
presented in Section V, while the conclusions and possible
lines for future work are formulated in Section VI.



II. SCHEDULING IN PARALLEL HC SYSTEMS

A HC system is composed of many computers (machines),
and a set of tasks to be executed on the system. A task is the
atomic unit of workload, so it cannot be divided into smaller
chunks, nor interrupted after it is assigned to a machine.
The execution times of any task vary from one machine to
another, so there will be competition among tasks for using
those machines able to execute them in the shortest time.

The most usual objective to minimize in scheduling is
the makespan, defined as the time spent from the moment
when the first task begins to the moment when the last
task is completed. However, other efficiency objectives have
been considered in scheduling problems [3]. When consid-
ering several objectives, usually in conflict with each other,
scheduling is a complex multiobjective problem.

The response time of each task is an important objec-
tive from the user point-of-view. The response ratio [14]
evaluates the sum of the response time, but it inversely
depends on the task estimated completion time, thus favoring
short tasks over long tasks. Minimizing the response ratio
of each task is important for the QoS of the system, but
from an economic cost perspective not every task contributes
the same to the QoS. A common approach in modern
computational grid environments is to group task in different
classes according to their importance, or priority [15]. To
model these two previous features, in this work we introduce
the weighted response ratio (wrr) objective: each task is
assigned a positive weight pi which represents the relative
priority of the task in the system. The wrr is then defined as
the total response ratio of each task multiplied by its weight
in the system, pi. This kind of weighted approach has been
previously applied to the response time objective [16].

The following is the mathematical formulation for the
HCSP variant studied in this work (MR-HCSP):

• given an HC system composed of a set of machines
M = {m1,m2, . . . ,mL} and a collection of tasks T =
{t1, t2, . . . , tN} to be executed on the system,

• let there be an execution time function ET : T ×M →
R+, where ET (ti,mj) is the time required to execute
the task ti in the machine mj ,

• let there be a priority function P : T → N+, where
P (ti) is the priority of the task ti in the system,

• let F (ti) be the finishing time of task ti in the system;
• the goal of the MR-HCSP is to find an assignment of

tasks to machines (a function f : TN → ML) which
simultaneously minimizes the makespan (Eq. 1), and
the weighted response ratio (Eq. 2).

max
mj∈P

∑
ti∈T :

f(ti)=mj

ET (ti,mj) (1)

∑
ti∈T :

f(ti)=mj

P (ti)×
F (ti)

ET (ti,mj)
(2)

To deal with both objectives, this work combines the
makespan and wrr in a linear aggregation function. Although
the aggregate function approach is often outperformed by
Pareto-based methods, it is a common approach in the
literature, with three main advantages [17]: i) it is suitable
for optimization problems with a convex Pareto front, ii) it
is computationally efficient (recommended when the times
available for search is short), and iii) it is well-suited for the
decomposition approach used in pµ-CHC. In the MR-HCSP,
since the makespan and wrr objectives are in different units,
they have to be normalized before the aggregation.

Several deterministic heuristics have been proposed for
HC scheduling [18]. Three of them have been used in this
work to seed the population in the pµ-CHC algorithm:

Minimum Completion Time (MCT) considers the set of
tasks sorted in an arbitrary order. Then, it assigns each task
to the machine with the minimum ET for that task.

Sufferage identifies the task that if it is not assigned to
a certain host, will suffer the most. The sufferage value is
computed as the difference between the best MCT of the task
and its second-best MCT, and this method gives precedence
to those tasks with high sufferage value.

Min-Min greedily picks the task that can be completed
the soonest. The method starts with a set U of all unmapped
tasks, calculates the MCT for each task in U for each
machine, and assigns the task with the minimum overall
MCT to the machine that executes it faster. The mapped
task is removed from U , and the process is repeated until
all tasks are mapped.

III. EVOLUTIONARY ALGORITHMS

EAs are non-deterministic methods that emulate the evo-
lution of species in nature, which have been successfully
applied for solving optimization problems underlying many
complex real-life applications in the last twenty years [7].

An EA is an iterative technique (each iteration is called
a generation) that applies stochastic operators on a popula-
tion of individuals which encode tentative solutions of the
problem in order to improve their fitness, a measure related
to the objective function. The initial population is generated
at random or by using a specific heuristic for the problem.
An evaluation function associates a fitness value to every
individual, indicating its suitability to the problem. Itera-
tively, the probabilistic application of variation operators
like the recombination of two individuals or random changes
(mutations) in their contents are guided by a selection-of-
the-best technique to tentative solutions of higher quality.

The stopping criterion usually involves a fixed number
of generations or execution time, a quality threshold on the
best fitness value, or the detection of a stagnation situation.
Specific policies are used for the selection of individuals to
recombine and to determine which new individuals replace
the older ones in each new generation. The EA returns the
best solution found, regarding the fitness function values.



A. The CHC algorithm
The CHC acronym stands for “Cross generational elitist

selection, Heterogeneous recombination, and Cataclysmic
mutation” [19]. CHC (Algorithm 1) is a specialization of a
traditional EA that uses an elitist selection strategy that tends
to perpetuate the best individuals in the population. CHC
uses a special mating: only those parents which differ from
each other by some number of bits are allowed to reproduce.
The initial threshold for allowing mating is often set to 1/4
of the chromosome length. If no offspring is inserted into
the new population, this threshold is reduced by 1.

The recombination operator in CHC is Half Uniform
Crossover (HUX), which randomly swaps exactly half of
the bits that differ between the two parent strings. CHC does
not apply mutation; diversity is provided by applying a re-
initialization procedure, using the best individual found so
far as a template for partially creating a new population after
convergence is detected.

Algorithm 1 Schema of the CHC algorithm.
1: initialize(P (0))
2: generation ← 0
3: ux_threshold ← 1/4 * chromosomeLength
4: while not stopcriteria do
5: parents ← selection(P (generation))
6: if hamming distance(parents) ≥ ux_threshold then
7: offspring ← HUX(parents)
8: evaluate(offspring)
9: newpop ← replace(offspring, P (generation))

10: end if
11: if newpop == P (generation) then
12: distance – –
13: end if
14: generation ++
15: P (generation) ← newpop
16: if ux_threshold == 0 then
17: re-initialization(P (generation))
18: ux_threshold ← 1/4 * chromosomeLength
19: end if
20: end while
21: return best solution ever found

B. Parallel evolutionary algorithms
Parallel implementations became popular in the last

decade as an effort to improve the efficiency of EAs. By
splitting the population into several processing elements,
parallel evolutionary algorithms (PEAs) allow reaching high
quality results in a reasonable execution time even for
hard-to-solve optimization problems [8]. The PEAs pro-
posed in this work are categorized within the distributed
subpopulations model according the classification by Alba
and Tomassini [20]: the original population is divided into
several subpopulations (demes), separated geographically
from each other. Each deme runs a sequential EA, so
individuals are able to interact only with other individuals
in the deme. An additional migration operator is defined:
occasionally some selected individuals are exchanged among
demes, introducing a new source of diversity in the EA.

C. The parallel micro-CHC evolutionary algorithm

By splitting the global population, PEAs allow achieving
high computational efficiency due to the limited interaction
and the reduced population size within each deme. However,
EAs quickly lose diversity in the solutions when using small
populations, and the search stagnates, due to a premature
convergence. The mating restriction and the reinitialization
operator used in CHC are usually not powerful enough to
provide the required diversity to avoid premature conver-
gence in the parallel model when using very small popula-
tions. The pµ-CHC algorithm was conceived as a fast and
accurate version of CHC for solving optimization problems.

pµ-CHC is based on theoretical concepts from Gold-
berg [21], some ideas about micro-genetic algorithm (µ-GA)
by Krishnakumar [22], and the implementation of µ-GA for
multiobjective optimization by Coello and Pulido [23].,

pµ-CHC combines a distributed subpopulation parallel
model of the original CHC (using HUX and mating re-
striction) with two key concepts from µ-GA: an external
population of elite solutions stored during the search, and
an accelerated reinitialization using a randomized version
of a well-known local search (LS) method to provide di-
versity within each deme. A micro-population (i.e., 8 to 12
individuals) is used in each deme of pµ-CHC. The size of
the external population is three individuals, and a simple
remove-of-the-worst strategy is used when a new individual
is inserted in the elite set. Fig. 1 presents a graphic schema
of the distributed subpopulations model used in pµ-CHC.

In order to deal with the multiobjective MR-HCSP, a
decomposition approach similar to the one used in the
MOEA/D algorithm for multiobjective optimization [24] is
employed in pµ-CHC. Each subpopulation solves a specific
subproblem, each one using a different pair of weights for
the makespan and wrr objectives. This approach allows to
sample the Pareto front of the problem, despite that the
method does not use a Pareto-based fitness assignment.

Figure 1. Schema of the decomposition approach for multiobjective
optimization in the pµ-CHC algorithm.



IV. A MICRO-CHC ALGORITHM FOR THE MR-HCSP

This section presents the implementation details of the
pµ-CHC algorithm to solve the MR-HCSP.

A. The MALLBA library

MALLBA [25] is a library of optimization algorithms that
deals with parallelism in a user-friendly and efficient manner.
MALLBA implements EAs and other metaheuristics as
generic templates in software skeletons, which incorporate
the knowledge related to the resolution method, its interac-
tions with the problem, and the parallelism. Skeletons are
implemented by required and provided C++ classes that
abstracts the entities in the resolution method:

• The provided classes implement internal aspects of the
skeleton in a problem-independent way. The most im-
portant provided classes are Solver (the algorithm) and
SetUpParams (for setting the algorithms’ parameters).

• The required classes specify information related to
the problem. Each skeleton includes the Problem and
Solution required classes, that encapsulate the problem-
dependent entities needed by the resolution method.

pµ-CHC was implemented using the CHC skeleton in
MALLBA. Additional code was included to define and
manage the elite population, and to implement the variation
operators and other features for the MR-HCSP resolution.

B. Problem encoding

A machine-based encoding (see an example in Figure 2)
was used to represent MR-HCSP solutions. A bidimensional
dynamic structure is used to store the list of tasks assigned
to each machine in the system, ordered by the execution
precedence. By using the machine-oriented encoding pµ-
CHC significantly simplifies the fitness calculation for MR-
HCSP solutions after the variation operators are applied.

Figure 2. Machine-oriented encoding.

C. Initialization

Several methods have been proposed to generate the
initial population when applying EAs to the single-objective
HCSP [10], [12], [13], [26]. A usual option is to use ad-hoc
scheduling heuristics to start the evolutionary search from a
set of useful suboptimal schedules.

In the pµ-CHC applied to the MR-HCSP, exactly one
individual in the whole population is initialized with Min-
Min and other one with Sufferage, and one individual in each
subpopulation is initialized with MCT. As for the rest of the
population, 60% is initialized using a randomized MCT and
the remaining 40% is initialized at random.

D. Exploitation: recombination

The pµ-CHC uses HUX to recombine characteristics of
two solutions. In the MR-HCSP HUX implementation, a
group of tasks to be recombined are chosen with uniform
probability (0.5). When a chosen task is assigned to different
machines in its parents, the machine to place that task in
each offspring is chosen to optimize either the makespan or
the wrr objectives with uniform probability (0.5).

E. Exploration: reinitialization

The reinitialization operator performs small perturbations
in a given schedule, aimed at providing diversity to the
population, in order to avoid the search from getting stuck
in local optima. When a stagnation situation is detected two
different actions are performed: the LS operator is applied to
the best solution in the population to further improve it and
after that, simple tasks move-and-swap are randomly applied
to the rest of the population to restart the search process from
a hopefully unexplored location in the solution space.

F. Local search: randomized PALS

Most of the related works concluded that LS methods
are needed within any EA to find accurate HCSP solutions
in short times [12], [13], [26]. In order to improve the
population diversity, pµ-CHC incorporates a randomized
version of Problem Aware Local Search (PALS) [27].

Algorithm 2 presents the pseudo-code of the randomized
PALS for the MR-HCSP. Working on a given schedule s,
the method selects a collection of machines M to perform
the search. With high probability the search focuses on
improving the assignment for the machines contributing the
most to the global solution fitness, but it also introduces
a chance of improving the assignment for other machines
too. Then, for each machine, the outer cycle iterates on
TOP_M tasks assigned to machine m (randomly starting
in task start_m), while the inner cycle iterates on TOP_T

tasks assigned to other machines (randomly starting in task
start_t). For each pair (tM , tT ), the fitness improvement
when swapping tasks tM and tT is computed, storing the
best improvement found for the whole schedule on the TOP_M

× TOP_T swaps evaluated. After the double cycle ends, the
best_move found is applied only if it improves the current
solution fitness. For each machine, the process is applied
until finding a schedule which improves the original fitness
or after performing MAX_TRIALS attempts. If a better schedule
is not found for the current machine, then the swap-search
is performed on the next machine in M .



Algorithm 2 Randomized PALS for the MR-HSCP.
1: M ← Select a list of #MAX_MACH machines
2: end search← false
3: while count(M ) > 0 and not end search do
4: m = pop(M )
5: trials← 0
6: while trials < MAX TRIALS and not end search do
7: ∆best ← 0
8: for tM = start_m to TOP_M do
9: {Iterate on tasks of machine m}

10: for tT = start_t to TOP_T do
11: {Iterate on tasks of other machines}
12: ∆current ← SwapImprovFitness(tM , tT )
13: if ∆current > ∆best then
14: best swap← (tM , tT )
15: ∆best ← ∆current

16: end if
17: end for
18: end for
19: trials← trials+ 1
20: if ∆best > 0 then
21: s← DoSwap(best swap)
22: end search← true
23: end if
24: end while
25: end while

G. Migration

The migration operator in pµ-CHC considers the subpop-
ulations connected in a unidirectional ring topology. It uses
an elitist selection for migration policy that exchanges the
best two individuals between demes (the received individuals
substitutes the worst ones in the destination deme) with a
migration frequency of 100 generations.

V. EXPERIMENTAL ANALYSIS

This section introduces the set of MR-HCSP instances
computational platform used to evaluate the proposed pµ-
CHC. After that, the pµ-CHC parameter settings experi-
ments are presented. Last, the experimental results when
solving realistic MR-HCSP instances are analyzed, by pre-
senting the numerical results and a comparison with the
results obtained using deterministic techniques.

A. HCSP instances

To evaluate the proposed pµ-CHC, a specific set of
84 MR-HCSP instances was randomly generated fol-
lowing the methodology by Ali et al. [28], and using
two parametrization values [10], [28]. These instances
model realistic medium-sized heterogeneous computing and
grid infrastructures. Four problem dimensions were stud-
ied: (tasks×machines) 512×16, 1024×32, 2048×64, and
4096×128.

B. Development and execution platform

pµ-CHC was implemented in C++, using MALLBA and
MPICH 1.2.7p1. The experimental analysis was done in a
cluster with four Dell PowerEdge (QuadCore Xeon E5430,
2.66 GHz, 8 GB RAM), CentOS Linux and Gigabit Ethernet.

C. Performance metrics
Several metrics for multiobjective optimization have been

considered in this work to evaluate pµ-CHC [17].
The efficacy metrics evaluate the quality of results by

analyzing the convergence towards the Pareto front:
• The number of non-dominated solutions found (ND).
• Inverted Generational Distance (IGD): the (normalized)

sum of the distances between the non-dominated solu-
tions found and a set of uniformly distributed points v
in the Pareto front P ∗ (Eq. 3).

IGD =
1

|P ∗|
∑
v∈P∗

d(v, P ) (3)

The diversity metrics evaluate the distribution of the
solutions, analyzing the ability of sampling the Pareto front:

• Spread: evaluates the dispersion of non-dominated so-
lutions in the calculated Pareto front, considering the
extreme points of the true Pareto front (Eq. 4).

spread =

k∑
h=1

dh
e +

ND∑
i=1

(
d̄− di

)2
k∑

h=1

dh
e +ND × d̄

(4)

• Relative hypervolume (RHV): evaluates the ratio of the
volumes (in the objective functions space) covered by
the computed Pareto front and by the real Pareto front.

In Eq. 4, di is the distance between the i-th solution in
the calculated Pareto front and its nearest neighbor, d̄ is the
average of all di, and dh

e is the distance between the extreme
of the h-th objective function in the true Pareto front and
the closest point in the calculated Pareto front.

The true Pareto front, which is unknown for the MR-
HCSP instances studied, was approximated by gathering
the non-dominated solutions found in the 30 independent
executions performed for each instance.

D. Parameter settings
The main objective of the research is to study the ability of

pµ-CHC to efficiently solve the MR-HCSP. Thus, a stopping
criterion fixed at 90 s. of execution time is used, following
several works on parallel EAs applied to the single-objective
HCSP [12], [13], [29]. This is an efficient time limit for
scheduling in realistic distributed HC and grid infrastructures
where large tasks -with execution times in the order of
minutes, hours and even days- are submitted to execution.

A configuration analysis studied the best values for the
crossover (pC) and reinitialization (pR) probabilities, the
number of demes (#I) and its size (#pop) in pµ-CHC.
The parameter setting analysis was performed over a subset
of six MR-HCSP instances with dimension 512×16. The
candidate values for the studied parameters were: pC : 0.8,
0.9, 1.0; pR: 0.7, 0.9, 1.0; #I: 4, 8, 16; #pop: 10, 15, 20.

The best makespan and wrr results were obtained with the
parameter configuration pC=1.0, pR=0.9, #I=16, #pop=10.



Table I
EXPERIMENTAL RESULTS FOR THE 512×16 HCSP INSTANCES FROM BRAUN ET AL. [10]

instance ND IGD Spread RHV
pµ-CHC MOCHC pµ-CHC MOCHC pµ-CHC MOCHC pµ-CHC MOCHC

u c hihi.0 13.60±1.63 49.77±7.59 1.00±0.39 1.65±0.30 1.22±0.13 1.00±0.05 1.00±0.02 0.87±0.02
u c hilo.0 14.80±1.10 22.20±4.45 1.00±0.11 6.99±0.44 1.24±0.12 1.00±0.10 1.00±0.01 0.44±0.01
u c lohi.0 14.43±1.38 48.00±5.38 1.00±0.15 2.29±0.30 1.12±0.14 1.00±0.02 1.00±0.03 0.76±0.02
u c lolo.0 14.70±1.02 24.23±5.09 1.00±0.11 5.40±0.28 1.00±0.19 1.36±0.04 1.00±0.02 0.55±0.01
u i hihi.0 4.97±1.47 45.37±5.53 2.82±0.26 1.00±0.31 1.11±0.02 1.00±0.08 1.00±0.05 0.93±0.04
u i hilo.0 7.83±1.32 27.37±4.00 1.00±0.16 6.53±0.31 1.26±0.16 1.00±0.10 1.00±0.03 0.58±0.01
u i lohi.0 4.67±1.09 64.57±10.07 1.07±0.15 1.00±0.15 1.14±0.04 1.00±0.10 1.00±0.04 0.84±0.04
u i lolo.0 8.30±1.53 27.47±3.77 1.00±0.19 6.77±0.36 1.07±0.27 1.00±0.06 1.00±0.04 0.63±0.02
u s hihi.0 8.80±1.79 44.07±7.18 1.00±0.12 1.94±0.36 1.26±0.17 1.00±0.09 1.00±0.03 0.84±0.03
u s hilo.0 10.80±1.52 26.47±4.26 1.00±0.11 6.01±0.51 1.25±0.13 1.00±0.08 1.00±0.02 0.42±0.02
u s lohi.0 9.60±1.59 44.63±8.58 1.00±0.14 2.59±0.51 1.22±0.16 1.00±0.11 1.00±0.02 0.74±0.05
u s lolo.0 11.40±1.75 39.13±6.89 1.00±0.13 8.15±0.46 1.00±0.18 1.05±0.04 1.00±0.01 0.42±0.01

Table II
SCALABILITY ANALYSIS: MOEAS FOR THE MULTIOBJECTIVE HCSP

dimension ND IGD Spread RHV
pµ-CHC MOCHC pµ-CHC MOCHC pµ-CHC MOCHC pµ-CHC MOCHC

512×16 10.32±1.64 53.15±8.54 1.00±0.15 2.11±0.26 1.13±0.14 1.00±0.07 1.00±0.02 60.47±0.03
1024×32 9.97±1.79 27.01±8.28 1.00±0.07 1.21±0.03 1.00±0.08 1.01±0.02 1.00±0.03 81.48±0.08
2048×64 6.70±1.76 23.65±8.05 1.05±0.09 1.00±0.02 1.00±0.08 1.04±0.02 1.00±0.04 71.52±0.14
4096×128 5.67±1.80 24.48±11.82 1.16±0.13 1.00±0.02 1.00±0.10 1.08±0.01 1.00±0.07 70.59±0.14

E. Results and discussion

This subsection discusses the experimental results of pµ-
CHC applied to the MR-HCSP. In order to have a baseline
to perform a comparison, the MOCHC algorithm [30] was
applied with the same parameter configuration than pµ-CHC
to the same HCSP instances. MOCHC follows a sequential
evolutionary approach, without applying the randomized
PALS local search operator. The Min-Min (single-objective)
results are also used as a baseline to analyze the pµ-CHC
results. The experimental results for the 512×16 HCSP in-
stances by Braun et al [10] are presented separatly, since this
benchmark is frequently used by the research community.

Table I reports the results for the set of 512×16 HCSP
instances. The average and standard deviation values for
each metric in the 30 independent executions of each EA
were computed, and the Kruskal-Wallis test was performed
to analyze the statistical confidence of the results. The
best results for each metric are marked in bold when the
computed p-value is below 10−3.

The results in Table I indicate that pµ-CHC computed
better schedules than MOCHC for the 512×16 HCSP in-
stances. MOCHC found a large number of non-dominated
solutions, but they are always dominated by the solutions
computed using pµ-CHC, as it is demonstrated by the
(normalized) values of IGD (smaller values of IGD mean
a better approximation to the Pareto front) and RHV (larger
values of RHV mean a better coverage). In addition, the
spread results (smaller values of the spread metric mean
a better distribution), demonstrate that pµ-CHC correctly
samples the Pareto front.

Table II summarizes the results obtained in the scalability
analysis that solve the large HCSP instances. It reports
the average and standard deviation values computed in
the 30 independent executions of each EA performed for
each instance dimension. The results show that pµ-CHC
computed the best IGD values for two dimensions, the best
spread values for three dimensions, and the best values of
RHV for all the problem dimensions studied. The number
non-dominated solutions decrease when solving the largest
HCSP instances, but accurate schedules are found. The RHV
values confirm both a good quality of solutions and a correct
sampling of the Pareto front. The previous results indicate a
good scalability behavior of the proposed pµ-CHC algorithm
when solving large HCSP instances.

Table III reports the best improvements obtained by pµ-
CHC over the best deterministic results for each objective
(computed by Min-Min). Acceptable improvements -up to
14.0%- are obtained by pµ-CHC in the makespan objective,
and significant improvements -up to 61.4%- are obtained in
the wrr. This is an expected result, since Min-Min computes
schedules with accurate makespan values [18], but it does
not account for the wrr or other QoS-related objectives.

The best and average improvements obtained by pµ-CHC
over the (single-objective) Min-Min results are summarized
in Table IV for each problem dimension studied. The im-
provement values demonstrate that pµ-CHC is an accurate
scheduler even for the largest problem dimension studied,
outperforming the Min-Min results for up to 14.0% (more
than 6.0% in average) in the makespan objective and up to
72.1% (more than 22% in average) in the wrr objective.



Table III
Pµ-CHC IMPROVEMENTS OVER MIN-MIN RESULTS (512×16).

instance Min-Min p-µCHC improvement
makespan wrr makespan wrr makespan wrr

u c hihi 8460680.0 46084.6 7916760.0 19027.2 6.4% 58.7%
u c hilo 161805.0 36170.9 156242.0 20687.6 3.4% 42.8%
u c lohi 275837.0 48269.5 255943.0 18645.5 7.2% 61.4%
u c lolo 5441.4 36057.9 5259.6 20244.4 3.3% 43.9%
u i hihi 3513920.0 17862.1 3042690.0 15415.1 13.4% 13.7%
u i hilo 80755.7 23502.6 74798.7 17301.2 7.4% 26.4%
u i lohi 120518.0 17630.7 105402.0 14985.9 12.5% 15.0%
u i lolo 2785.7 24238.9 2598.1 17709.5 6.7% 26.9%
u s hihi 5160340.0 25884.0 4435520.0 16936.4 14.0% 34.6%
u s hilo 104375.0 27566.5 98697.7 18056.4 5.4% 34.5%
u s lohi 140284.0 26006.6 127456.0 17071.3 9.1% 34.4%
u s lolo 3806.8 27608.1 3530.2 17519.0 7.3% 36.5%

Table IV
Pµ-CHC IMPROVEMENTS OVER MIN-MIN RESULTS.

dimension best improvement avg. improvement
makespan wrr makespan wrr

512×16 14.0% 61.4% 8.0% 35.7%
1024×32 19.2% 63.3% 9.5% 34.5%
2048×64 15.1% 62.9% 7.1% 22.8%

4096×128 24.6% 72.1% 5.9% 21.9%

Figure 3 presents two samples of the Pareto fronts com-
puted by pµ-CHC and MOCHC for the problem instances
u c lohi and u c lolo in the set from Braun et al.

(a) u c lohi (512×16)

(b) u c lolo (512×16)

Figure 3. Two samples of Pareto fronts found.

The Pareto fronts in Figure 3 exemplifiy the algorithmic
behavior also shown for the other problem instances solved.
The results demonstrate that significant improvements in the
objective functions values and the diversity of the computed
solutions are obtained when using pµ-CHC when compared
with those found by the MOCHC algorithm.

VI. CONCLUSIONS AND FUTURE WORK

This article has presented the application of the parallel
micro-CHC evolutionary algorithm to the scheduling prob-
lem in heterogeneous computing environments, to minimize
the makespan and weighted response ratio objectives.

The proposed pµ-CHC was designed to solve standard
benchmark instances of the problem, by using simple explo-
ration operators that allow the method to scale in order to
efficiently solve large-dimension HCSP instances. A specific
local search operator based on PALS was included to com-
pute accurate schedules. A decomposition approach similar
to the one used in the MOEA/D algorithm was employed
in pµ-CHC, where each subpopulation solves a specific
subproblem, each one using a different pair of weights for
the makespan and wrr objectives.

The comparative analysis demonstrated that pµ-CHC is
an effective method for the simultaneous optimization of
the makespan and wrr objectives. The multiobjective ap-
proach applied in pµ-CHC was capable to compute accurate
solutions for standard HCSP instances, obtaining schedules
with accurate trade-off values between the makespan and
wrr objectives, and a correct sampling of the Pareto front
for each problem. pµ-CHC computed significantly better
solutions than a sequential MOCHC algorithm applied to the
problem, and significant improvements were also obtained
when comparing with the (single objective) makespan and
wrr results computed by the Min-Min heuristic. The scal-
ability analysis showed that pµ-CHC was able to compute
accurate schedules for a test suite of large HCSP instances
with up to 4096 tasks and 128 machines.

The results obtained in the experimental analysis indicate
that pµ-CHC is a useful scheduler for distributed HC and
grid systems when considering the makespan and wrr
objectives to optimize.

The main lines for future work include to study specific
techniques for improving the results and the efficiency of
pµ-CHC, and to extend the proposed methods to solve other
multiobjective HCSP variants. Regarding the first issue,
specific exploration operators based on improving the pro-
posed objectives can be incorporated in pµ-CHC in order to
further improve the wrr results and the population diversity,
allowing to compute more accurate scheduling when solving
large HCSP instances. On the other hand, further work is
also needed to study the efficacy and efficiency of the pµ-
CHC algorithm for solving other multiobjective variants of
the HCSP.
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