
Designing Data Warehouses
through schema transformation primitives

Verónika Peralta, Adriana Marotta, Raúl Ruggia

Instituto de Computación – Universidad de la República - Uruguay
vperalta@fing.edu.uy, adriana@fing.edu.uy, ruggia@fing.edu.uy

Introduction
Data Warehouses (DW) are databases that store
information in order to satisfy decision-making
requests. DW features are very different from
conventional database ones, so that design strategies
developed for the latter are generally not applicable for
DW. Existing work in DW design consists mainly of
techniques for specific sub models (e.g. star and
snowflake) and design patterns for specific domain
areas, which lack of generality in the treatment of
design techniques.

This work addresses the DW design problem through a
schema transformation approach. More concretely, this
work proposes primitives1 that abstract and generalise
DW design techniques in order to build DW schema
relations from the source schema ones.

Existing knowledge concerning DW design mainly
consists in practical techniques and methods. One of
the main authors is R. Kimball, and proposes practical
design guidelines following a star-schema approach
[1], [2]. In [3], Adamson and Venerable also present
specific solutions for different target business. In [4],
Silverston, Inmon and Graziano present DW models in
a pattern-oriented approach, and propose techniques
for converting a corporate logical data model into the
DW model.

In the present work, the application of the design
primitives is complemented with two kinds of
guidelines: (i) a set of consistency rules that must be
always applied to ensure the consistency of the
obtained result, and (ii) some strategies that provide
different solutions to typical problems that must be
faced during the design of a DW.

Furthermore, this work also presents the connection
with a multidimensional (MD) conceptual model. This
connection supplies the high level vision about the
information requirements and it is used as a
specification and starting point for the logical design.
This work also addresses code generation issues, both
for schema and ETL2 code.

The primitives as well as strategies and rules are
currently being prototyped in a CASE tool. The
prototype also includes the conceptual model parsing
and the graphical interface to the user assistance
modules.

1 The primitive set is listed in Appendix 1. A more detailed
description can be found in [10].
2 ETL: Extraction, Transformation, Loading.

The DW design approach
The approach we follow distinguishes three main steps:
(i) conceptual design, (ii) logical design, and (iii)
implementation.

The present work focuses in the logical design step and
proposes a transformation-based approach to build a
relational DW schema.

In our approach, DW logical design is a process that
starts with a source schema and ends with a final
schema, corresponding to the DW schema. The DW
schema is constructed by the application of primitives
to the source schema relations. The process also gives
rise to intermediate relations.

The primitives are basic transformations applied to a
relational database schema in order to obtain a
Relational DW schema. Roughly speaking, they take as
input a sub-schema3 and their output is another sub-
schema. The primitives also specify the semantics of
the resulting relation through a data transformation
operation in a SQL-like language.

Some primitives are grouped into families because in
some cases there are several alternatives for solving the
same problem, or more than one style of design that
can be applied.

It is important to note that primitives do not lead to a
specific strategy or methodology. Moreover, their
application without well-defined design criteria can
lead to undesired results, sometimes having
consistency problems. In order to help the designer in
this aspect we provide: (i) the definition of DW schema
invariants, (ii) strategies for solving typical problems
that appear in DW design, and (iii) consistency rules
for application of primitives.

In addition, the present work takes as input the results
of conceptual design step. These results consist of the
conceptual schema itself as well as the
correspondences with source databases. We use a
multidimensional conceptual model4 and focus on the
conceptual representation of MD concepts.

By using the proposed techniques, the designer starts
with the conceptual schema and the correspondences.
This information is complemented with logical schema
design decisions (like to keep value history, or to force
(des)normalisation). All these design decisions are

3 In this work, we consider a sub-schema as a set of relations that are
part of a schema.
4 We are currently using the CMDM model, described in [9].

applied through the primitives and guidelines obtaining
the final DW schema.

In order to generate ETL code, the proposed
environment makes use of the primitive application
trace. At this point, the designer can add other
transformations to ensure semantic consistency of data
and quality control over it. For example: eliminate data
that satisfy a condition (filter), alter an attribute type,
change characters to upper cases, etc.

Figure 1 shows the steps of the design process.

DW logic
schema

 source databases

conceptual schema

relational

correspondences

ETL processes

trace of primitives

multidimensional

designer guidelines

refresh
strategies

quality
assurance

design plan
generator

schema
generator

ETL code
generator

Figure 1 – Design steps.

The design process has three inputs: conceptual
schema, source databases and correspondences
between them. In a first step the designer indicates
some guidelines that complement the conceptual
schema. The design plan generator assists the designer
in determining which primitives should apply. Once
the primitives are applied, the schema generator builds
the DW schema. The primitive trace in addition with
refresh strategies, cleansing transformations and
quality assurance processes, will be the input to the
ETL code generator, obtaining the ETL processes.
These processes will take data from the source
databases and populate the DW.

A CASE tool is currently being implemented to
support this design process. The current prototype
includes the design primitives (already implemented)
as well as graphical interface to the user assistance
modules. This prototype is implemented in Java (jdk
1.2) using Jbuilder as the development platform. Parts
of the prototype code have been reused from [12] and
[13] projects.

The demonstration will consist in the prototype as well
as the explanation about the underlying design
strategies.

Conclusion
This work presents a DW design approach based on
schema transformation primitives. It also includes
strategies and rules that assist the designer. These
schema primitives enable to design a DW from a
source schema acting as design building blocks that
have DW design knowledge embedded in their
semantics.

Finally, we also present a prototype that implements
the set of primitives and their application starting from
the conceptual schema.

Acknowledgements.
We would like to acknowledge Alejandro Gutierrez for
his contributions and support.

Bibliography
[1] R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons,

Inc. 1996.
[2] R. Kimball. The Data Warehouse Lifecycle Toolkit. J. Wiley &

Sons, Inc. 1998.
[3] C. Adamson, M. Venerable. Data Warehouse Design Solutions.

J. Wiley & Sons, Inc. 1998.
[4] L. Silverston, W. H. Inmon, K. Graziano. The Data Model

Resource Book. J. Wiley & Sons, Inc. 1997.
[5] R. Agrawal, A. Gupta, S. Sarawagi. Modelling

Multidimensional Databases. ICDE’ 1997.
[6] L. Cabbibo, R. Torlone. Querying Multidimensional

Databases. DBPL Workshop 1997.
[7] M. Gyssens, L.V.S. Lakshmanan. A foundation for

multidimensional databases. Proc. 22nd. VLDB. 1997.
[8] M. Golfarelli, D. Maio, S. Rizzi. Conceptual design of data

warehouses from E/R schemas. Proc.HICSS-31,VII,Hawaii.
1998.

[9] F. Carpani. CMDM: Un modelo conceptual para Data
Warehouse. Research Report. UdelaR, Uruguay. 1998.

[10] A. Marotta. A transformations based approach for designing
the Data Warehouse. Technical Report. UdelaR, Uruguay.
1999.

[11] V. Peralta. Técnicas de integración de diseño conceptual y
lógico de Data Warehouses. Research Report. UdelaR,
Uruguay. 1999.

[12] P. Garbusi, F. Piedrabuena, G. Vazquez. Design and
Implementation of a schema transformation based DW design
tool. Graduate Project, ongoing work. UdelaR, Uruguay.

[13] A. Picerno, M. Fontan. An editor for CMDM. Graduate Project,
ongoing work. UdelaR, Uruguay.

Appendix 1 – The set of primitives
 Primitive Description

P1 Identity Given a relation, it generates another that is exactly the same as
the source one.

P2 Data Filter Given a source relation, it generates another one where only
some attributes are preserved. Its goal is to eliminate purely
operational attributes.

P3 Temporalization It adds an element of time to the set of attributes of a relation.
P4 Key Generalisation

*
These primitives generalise the primary key of a dimension
relation, so that more than one tuple of each element of the
relation can be stored.

P5 Foreign Key
Update

Through this primitive, a foreign key and its references can be
changed in a relation. This is useful when primary keys are
modified.

P6 DD-Adding * The primitives of this group add to a relation, an attribute that is
derived from others.

P7 Attribute Adding It adds attributes to a dimension relation. It should be useful for
maintaining in the same tuple more than one version of an
attribute.

P8 Hierarchy Roll Up This primitive does the roll up by one of the attributes of a
relation following a hierarchy. Besides, it can generate another
hierarchy relation with the corresponding level of detail.

P9 Aggregate
Generation

Given a measure relation, this primitive generates another
measure relation, where data are resumed (or grouped) by a
given set of attributes.

P10 Data Array
Creation

Given a relation that contains a measure attribute and an
attribute that represents a pre-determined set of values, this
primitive generates a relation with a data array structure.

P11 Partition by
Stability *

These primitives partition a relation, in order to organise its
history data storage. Vertical Partition or Horizontal Partition
can be applied, depending on the design criterion used.

P12 Hierarchy
Generation *

This is a family of primitives that generate hierarchy relations,
having as input, relations that include a hierarchy or a part of
one.

P13 Minidimension
Break off

This primitive eliminates a set of attributes from a dimension
relation, constructing a new relation with them.

P14 New Dimension
Crossing

This primitive allows materialising a dimension data crossing in
a new relation. It also is useful to simply de-normalise relations,
which improves queries performance.

