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Abstract. Data Warehouse logical design involves the definition of structures that enable an efficient 
access to information. The designer builds relational or multidimensional structures taking into ac-
count a conceptual schema representing the information requirements, the source databases, and non-
functional (mainly performance) requirements. Existing work in this area has mainly focused into as-
pects like data models, data structures specifically designed for DW, and criteria for defining table par-
titions and indexes. This work presents a framework for generating a DW logical schema from a con-
ceptual schema. A rule-based mechanism automatically generates the DW schema by applying exist-
ing DW design knowledge. The proposed rules embed design strategies which are triggered by condi-
tions on the conceptual schema enriched with non-functional requirements, a source database and 
mappings between them. They perform the schema generation through the application of predefined 
DW design oriented transformations. The overall framework consists of: the rules, design guidelines 
that state non-functional requirements, mapping specifications that relate the conceptual schema with 
the source database schema, and a set of schema transformations. 
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1 Introduction 

This work presents an environment to generate the Data Warehouse logical schema from a conceptual 
schema. 1 The main goal is to aid the designer automating some design tasks.  

This section motivates the problem and describes the proposed solution. 

1.1 Motivation 

A Data Warehouse (DW) is a database that stores information devoted to satisfy decision-making re-
quests. DWs have features that distinguish them from transactional databases [9][22]. Firstly, DWs are 
populated from source databases, mainly through batch processes [6] that implement data integration, 
quality improvement, and data structure transformations. In addition, the DW has to support complex que-
ries (grouping, aggregates, crossing of data) instead of short read-write transactions (which characterizes 
OLTP). Furthermore, end users analyze DW information through a multidimensional perspective using 
OLAP tools [10][21].  

Adopting the terminology of [4][11][1], we distinguish three different design phases: conceptual de-
sign manages concepts that are close to the way users perceive data; logical design deals with concepts 
related to a certain kind of DBMS (e.g. relational, object oriented,) but are understandable by end users; 
and physical design depends on the specific DBMS and describes how data is actually stored. In this work 
we deal with logical design of DWs.  

DW logical design processes and techniques differ from the commonly applied on the OLTP database 
design. DW considers as input not only the conceptual schema but also the source databases, and is 
                                                      
1 The work summarizes a master thesis of the Universidad de la República, Uruguay [27].  



strongly oriented to queries instead of transactions. Conceptual schemas are commonly specified by 
means of conceptual multidimensional models [1]. Concerning the logical relational schema, various data 
structures have been proposed in order to optimize queries [22]. These structures are the well-known star 
schema, snowflake, and constellations [22][3][25].   

For transactional databases, there are some proposals to build a relational schema from a conceptual 
schema, particularly from an Entity-Relationship (E/R) schema [23][32][20], but there are not general 
methodologies for DWs. Some proposals to generate DW relational schemas from DW conceptual sche-
mas are presented in [15][7][3][17]. We believe that existing work lack in some main aspects related to 
the generation and management of mappings to source databases, and flexibility to apply different design 
strategies that enable to build complex DW structures (for example, explicit structures for historical data 
management, dimension versioning, or calculated data). 

An automated DW logical design mechanism should consider as input: a conceptual schema, non-
functional requirements (e.g. performance) and mappings between the conceptual schema and the source 
database. In addition, it should be flexible enough to enable the application of different design strategies. 
The mentioned mappings should provide the expressions that define the conceptual schema items in terms 
of the source data items. These mappings are also useful to program the DW loading and refreshment 
processes. 

 
We consider that it is necessary to have techniques and strategies that allow building the DW logical 

schema from a conceptual schema taking into account the previous ideas.  
The goal of this work is to provide an environment for an aided design of the DW logical schema, 

automating part of the design tasks.  

1.2 Proposed solution 

This work addresses the DW logical design problem through a schema transformation approach. We pro-
pose an environment where the DW logical schema is built through the application of predefined schema 
transformations to the source schema [24]. Each transformation performs a specific operation such as: ta-
ble fragmentation, table merge, calculation, or aggregation.  

The environment also provides a set of rules that embed high-level design strategies and are oriented to 
the solution of general design problems. These rules determine which transformations must be applied in 
order to solve each problem, working from information provided by the designer such as the DW require-
ments, their relationship with the source database, and the design criteria to be applied.  

The environment allows the designer to specify the rules’ input information through three construc-
tions: (1) a multidimensional conceptual schema [8], (2) mappings, which specify correspondeces between 
the elements of the conceptual and source schemas, and (3) guidelines, which provide information on DW 
logical design criteria and state non-functional requirements. The rules are triggered by conditions in these 
constructions, and perform the schema generation through the application of the suitable transformations. 
This approach provides some aspects that we consider are very important for developing DW projects: (1) 
design traceability, (2) a mapping between the source logical schema and DW logical schema, and (3) fa-
cilities for designing complex DW structures (e.g. data structures to manage historical data, dimension 
versioning and calculated data).  

Furthermore, the use of guidelines constitutes a flexible way to express design strategies and properties 
of the DW in a high-level way. This allows the application of different design styles and techniques, gen-
erating the DW logical schema following the designer approach. This flexibility is a very important qual-
ity for an automatic process.  



1.3 Contributions 

The main contribution of this work is the specification of an open rule-based mechanism that builds com-
plex DW structures, applying design strategies and keeping mappings with the source database.  

The proposed mechanism includes: 
- Design guidelines that abstract different DW design criteria. 
- Mappings between the conceptual schema and the source database. 
- A set of design rules. 
- An algorithm that automatically generates the DW logical schema applying the rules.  

 
We have also built a prototype of a CASE tool that implements the proposed environment. 
The environment aids the designer to specify high-level guidelines and define the mappings. Then, the 

DW relational schema is automatically generated applying the rule-based algorithm. 

1.4 Outline of the document  

The remaining sections are organized as follows: Section 2 discusses related work. Section 3 presents a 
global overview of the proposition and an example. Section 4 describes the design guidelines and the 
mappings between the DW conceptual schema and the source schema. Section 5 presents the rule-based 
mechanism, describes the DW schema generation algorithm and illustrates it within an example. Finally, 
section 6 points out conclusions and future work.  

2 Related work 

There are several proposals concerning to the automation of some tasks of DW relational design 
[15][7][3][17][25][5]. Some of them mainly focus on conceptual design [15][7][3][17] and deal with the 
generation of relational schemas following fixed design strategies. In [7], the MD conceptual model is 
presented (despite authors calling it a logical model) and two algorithms are proposed in order to show 
that conceptual schemas can be translated to relational or multidimensional logical models. But the work 
does not focus on a logical design methodology. In [15] a methodological framework, based in the DF 
conceptual model is proposed. Starting from a conceptual model, they propose to generate relational or 
multidimensional schemas. Despite not suggesting any particular model, the star schema is taken as ex-
ample. The translation process is left to the designer, but interesting strategies and cost models are pre-
sented. Other proposals [3][17] also generate fixed star schemas. 

As the proposals do not aim at generating complex DW structures, they do not offer flexibility to apply 
different design strategies. Furthermore, they do not manage complex mappings, between the generated 
relational schemas and the source ones, though some of them derive the conceptual schema from the 
source schema. 

Other proposals do not take a conceptual schema as input to the logical design task [25][5][22]. In [25], 
the logical schema is built from an Entity-Relationship (E/R) schema of the source database. Several logi-
cal models, as star, snowflake and star-cluster are studied. In [22] logical design techniques are presented 
by means of examples.  

Other works related to automated DW design mainly focus in DW conceptual design and not logical 
design, like [18][28] which generate the conceptual schema from an E/R schema of the source database. 

3 The DW logical design environment 

In this section we present the proposed environment for DW logical design and we illustrate our approach 
within an example. The approach is described in a more detailed way in the following sections. 



3.1 General description 

Our underlying design methodology for DW logical design takes as input the source database and a con-
ceptual multidimensional schema ([14][7][18][28][8]).  

Then, the design process consists of three main tasks:  
(i) Refine the conceptual schema adding non functional requirements and obtaining a "refined 

conceptual schema". The conceptual schema is refined by adding design guidelines that express 
non-functional requirements. As an example of guideline, the designer indicates that he wants to 
fragment historical data or states the desired degree of normalization.   

(ii) Map the refined conceptual schema to the source database. The mapping of the refined con-
ceptual schema to the source database indicates how to calculate each multidimensional structure 
from the source database. 

(iii) Generate the relational DW schema according to the refined conceptual schema and the 
source database. For the generation of the DW relational schema we propose a rule-based 
mechanism in which the DW schema is built by successive application of transformations to the 
source schema [24]. Each rule determines which transformation must be applied according to the 
design conditions given by the refined conceptual schema, the source database and the mappings 
between them, i.e., when certain design condition is fulfilled, the rule applies certain transforma-
tion. 

 
Figure 1 shows the proposed environment. 
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Figure 1. DW logical design environment. The refined conceptual schema, the source database and the mappings between them 
(left side) are the input to the automatic rule-based mechanism that builds the DW relational schema (right side) applying schema 
transformations. 

The environment provides the infrastructure to carry out the specified process. It consists of: 
- A refined conceptual schema, which is built from a conceptual multidimensional schema 

enriched with design guidelines.  
- The source schema and the DW schema. 
- Schema mappings, which are used to represent correspondences between the conceptual schema 

and the source schema.  
- A set of design rules, which apply the schema transformations to the source schema in order to 

build the DW schema.  
- A set of pre-defined schema transformations that build new relations from existing ones, 

applying DW design techniques.  
- A transformation trace, which keeps the transformations that where applied, providing the 

mappings between source and DW schemas. 



3.2 Motivation example 

Consider a simple example of a company that brings phone support to its customers and wants to analyze 
the amount of time spent in call attentions. 

In the conceptual design phase, the DW analyst has identified two dimensions2: customers and dates. 
The customers dimension has four levels: state, city, customer and department, organized in two hierar-
chies. The dates dimension has two levels: year and month. Levels are composed of attributes called 
items. The designer also identified a fact3: support that crosses customers and dates dimensions and takes 
the call duration as measure. Figure 2 sketches the conceptual schema using CMDM graphical notation 
[8]. 
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Figure 2. Conceptual schema. Dimension representation consists of levels in hierarchies, which are stated as boxes with their 
names in bold followed by the items. The items followed by a sharp (#) identify the level. Arrows between levels represent di-
mension hierarchies. Facts are represented by ovals linked to the dimensions, which are stated as boxes. Measures are distin-
guished with arrows. 

The source database has three master tables: customers, cities and states, a table with the customers’ 
incomes and a table that registers customer calls (Figure 3): 

 
Figure 3. Source database. The boxes represent tables in the relational model. In the top part appears the table name, followed 
by its attributes. The attributes in bold represent the primary key and the lines between tables (links) indicate the attributes used to 
join them, though complex join conditions are also supported [27].  

                                                      
2 A dimension represents a real world object, which is used as analysis criteria in user queries. 
3 A fact represents a measurable real world event. A fact indicates a relation between several dimensions, obtaining measure val-
ues for each combination of dimension values. 



The logical design process starts from the conceptual schema and the source database. The first task 
consists in the refinement of the conceptual schema by adding non-functional requirements through guide-
lines.  

Guidelines enable to state the desired degrees of normalization [25] or fragmentation [16] in a high 
level way. Concerning the degree of normalization, there are several alternatives to define dimension ta-
bles. For example, for the customers dimension, we can store each level in a different table, having attrib-
utes for each item of the level and additional items to perform joins (Figure 4a). Other options are to main-
tain only one table for the whole dimension (Figure 4b), or to follow intermediate strategies. The designer 
must decide which levels to store together in the same table (by means of the guideline: Vertical Fragmen-
tation of Dimensions), based on several criteria like performance, redundancy and disk storage.  

Furthermore, guidelines enable to define which aggregations (called cubes [8]) are going to be imple-
mented, obtaining derived fact tables. For example, the more detailed cube for the support relation is per 
month and customer (Figure 4c) but the designer may want to store totals, per city and quarter (Figure 4d). 
The designer must decide which cubes to materialize (Cube Materialization guideline), trying to obtain a 
balance between performance and storage. 

We can also indicate the degree of fragmentation of fact tables [26] (Horizontal Fragmentation of 
Cubes guideline), in order to manage tables with fewer records and improve query performance, for ex-
ample, storing a table with data of the last two years and another with historical data.  

Finally, guidelines can be explicitly defined by the designer or derived using other specific techniques, 
for example [25] [16]. 

a)

b)

c) d)

 
Figure 4. Different strategies to generate relational structures: (a) normalize dimensions, (b) denormalize dimensions, (c) 
store maximum detail fact tables, and (d) store aggregates.  

The second design task is to relate the refined conceptual schema with the source database. For exam-
ple, we can indicate that the items of the city level are calculated respectively from the city-code and city-
name attributes of the Cities table and the month and year items of the dates dimension are obtained from 
the date attribute of the Calls table performing a calculation. This is done through the schema mappings. 

 
Finally, the DW schema has to be generated.  In order to do this manually, the designer takes a se-

quence of decisions that transform the resulting DW schema in each step. Different transformations can be 
applied depending on the different input information and the design strategies. 

For example, if we want to denormalize the customers dimension, we have to store attributes corre-
sponding to all the dimension items in the dimension table. This implies joining Customers, Cities and 
States tables and projecting the desired attributes. But if we want to normalize the dimension this trans-
formation is not needed. Furthermore, if an item maps to a complex calculated expression several trans-
formations are needed to calculate an attribute for it, for example, for calculating the income item as the 
sum of all customer job's incomes, stored in the Incomes table (sum(Incomes.income)). Analogous deci-
sions can be taken for selecting which aggregates to materialize, fragmenting fact tables, filtering data, 
versioning or removing additional attributes. 



 We propose to automate most of this last task by using a set of rules. The rules check the conditions 
that hold and determine which transformations are to be applied. The rule conditions consider the concep-
tual schema, the source database, mappings between them, and additional design guidelines. The applica-
tion of the rules follows the design strategies expressed in the guidelines, and is guided by the existence of 
complex mapping expressions.  

4 Guidelines and Mappings 

In this section we formalize the concepts of guidelines and mappings introduced in the previous example. 

4.1 Design guidelines 

Through the guidelines, the designer expresses design decisions related to non-functional requirements as 
performance, storage constraints and use of the system.  

We propose guidelines related to the above-mentioned Cube Materialization, Horizontal Fragmenta-
tion of Cubes and Vertical Fragmentation of Dimensions. In the rest of the section we describe the last 
one; the whole set can be consulted in [27]. 

Vertical fragmentation of dimensions.  

Through this guideline, the designer specifies the level of normalization he wants to obtain in relational 
structures for each dimension. In particular, he may be interested in a star schema, denormalizing all the 
dimensions, or conversely he may prefer a snowflake schema, normalizing all the dimensions [25]. This 
decision can be made globally, regarding all the dimensions, or specifically for each dimension. An inter-
mediate strategy is still possible by indicating the levels to be stored in the same table, allowing more 
flexibility for the designer. To sum up, for specifying this guideline, the designer must indicate which lev-
els of each dimension he wishes to store together. Each set of levels is called a fragment.  

Given two levels of a fragment (A and B) we say that they are hierarchically related if they belong to 
the same hierarchy or if there exists a level C that belongs to two hierarchies: one containing A and the 
other containing B. A fragment is valid only if all its levels are hierarchically related. For example, con-
sider a fragment of the customers dimension of Figure 2 containing only city and department levels. As 
the levels do not belong to the same hierarchy, storing them in the same table would generate the cartesian 
product of the levels’ instances. However, if we include the customer level to the fragment, we can relate 
all levels, and thus the fragment is valid. 

In addition, the fragmentation must be complete, i.e. all the dimension levels must belong to at least 
one fragment to avoid losing information. If we do not want to duplicate the information storage for each 
level, the fragments must be disjoint, but this is not a requirement. The designer decides when to duplicate 
information according to his design strategy.  

 



� SCHFRAGMENTS  ⊆ { <FNAME, D, LS> /  
FNAME ∈ STRINGS ∧  
D ∈ SCHDIMENSIONS ∧  
LS ⊆ GETLEVELS(D) ∧  
∀A,B ∈ LS . ( 

<A,B> ∈ GETHIERARCHIES(D) ∨ 
<B,A> ∈ GETHIERARCHIES (D) ∨ 
∃ C ∈ LS . (<A,C> ∈ GETHIERARCHIES (D) ∧ <B,C> ∈ GETHIERARCHIES (D))  )  

} 4 
Definition 1 – Fragments.  A fragment is formed by a name, a dimension and a sub-set of the dimension levels that are hierar-
chically related. 

Graphically, a fragmentation is represented as a coloration of the dimension levels. The levels that be-
long to the same fragment are bordered with the same color. Figure 5 shows three alternatives to fragment 
the customers dimension.  
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Figure 5. Alternative fragmentations of customers dimension. The first one has only one fragment with all the levels. The sec-
ond alternative has two fragments, one including state and city levels (continuous line), and the other including the customer and 
department levels (dotted line). The last alternative keeps the customer level in two fragments (dotted and continuous line). 

For each dimension, the designer specifies a set of fragments. He should consider performance, storage 
and use constraints to do the fragmentation. 

The definition of fragments with several levels (denormalization) achieves better query response time 
but increases redundancy. If dimension data changes slowly, redundancy is not a problem. But if dimen-
sion data changes frequently and we want to keep the different versions, the maintenance cost grows. Stor-
ing the levels separately is a good option in the last case. This guideline tries to find a balance between 
query response time and redundancy. 

Default strategies that automate the guideline definition can be studied, for example building only star 
schemas. Better strategies should study cost functions and heuristics, taking into account storage con-
straints, performance, affinity and data size. Some ideas are presented in [15]. 

                                                      
4 SCHDIMENSIONS is the set of dimensions of the conceptual schema. The GETLEVELS function returns the set of levels of a dimen-
sion and the GETHIERARCHIES function returns the pairs of levels that conform the dimension hierarchies [8]. 



4.2 Mappings between the refined conceptual schema and the source database  

Correspondences or mappings between different schemas are widely used in different contexts 
[31][12][33][34]. Most of them consider only equivalence correspondences, but in the context of DW de-
sign, other types of correspondences are needed to represent calculations and functions over the source 
database structures. In our proposal, the mappings give the correspondence between the different concep-
tual schema objects and the logical schema of the source database. They are functions that associate each 
conceptual schema item with a mapping expression. 

Mapping expressions.  

A mapping expression is an expression that is built using attributes of source tables. It can be: (i) an at-
tribute of a source table, (ii) a calculation that involve several attributes from a tuple, (iii) an aggregation 
that involves several attributes of several tuples, or (iv) an external value like a constant, a time stamp or 
version digits. As examples of expressions we have: Customers.city, Year (Customers.registration-date), 
Sum (Incomes.income), and "Uruguay", respectively. 

The specification of the mapping expressions is given in Definition 2. AttributeExpr is the set of all the 
attributes of source tables. CalculationExpr and AggregationExpr are built from these attributes, combin-
ing them through a set of predefined operators and roll-up functions. (The Expressions and RollUpExpres-
sions functions recursively define the valid expressions. They are specified in [27].)  ExternalExpr is the 
union of constants (set of expressions defined from an empty set of attributes), time stamps and version 
digits. The latter are defined through the TimeStamp and VersionDigits functions. 
 

� MAPEXPRESSIONS ≡ ATTRIBUTEEXPR ∪ CALCULATIONEXPR ∪ 
AGGREGATIONEXPR ∪ EXTERNALEXPR 

� ATTRIBUTEEXPR ≡ { E ∈ ATTRIBUTES(T) / T ∈ SCHTABLES } 

� CALCULATIONEXPR ≡ { E ∈ EXPRESSIONS(AS) / AS ⊆ ATTRIBUTEEXPR } 

� AGGREGATEEXPR ≡ { E ∈ ROLLUPEXPRESSIONS(AS) / AS ⊆ ATTRIBUTEEXPR } 

� EXTERNALEXPR ≡ EXPRESSIONS(∅) ∪ {TIMESTAMP(), VERSIONDIGITS() } 
Definition 2 – Mapping expressions.   

Mapping functions.  

Given a set of items (Its), a mapping function associates a mapping expression to each item of the set. We 
also define the macro Mapping(Its) as the set of all possible mapping functions for a given set of items. 
 

� MAPPINGS(ITS) ≡ { F / F : ITS Æ MAPEXPRESSIONS } 
Definition 3 – Mapping functions.   

Mapping functions are used in two contexts: in order to map dimension fragments with source tables 
(fragment mappings), and to map cubes with source tables (cube mappings). In both contexts, each frag-
ment or cube item is associated with a mapping expression. 



Consider, for example, a fragment of the customers dimension, which includes customer and depart-
ment levels. We define a mapping function for the fragment: F, as follows: 

- F (customer_id) = Customers.customer-code 
- F (customer_name) = Customers.name 
- F (income) = SUM (Incomes.income) 
- F (version) = VersionDigits() 
- F (department) = Customers.department 
- F (city_id) = Customers.city 

The mapping function maps the version item to an external expression (version digits), the income item 
to an aggregation expression obtained from the income attribute of the Incomes table, and the other items 
to attribute expressions. The city_id item, which is a key of a higher level, is also mapped to allow poste-
rior joins between the generated dimension tables. Figure 6 shows the graphical representation of the 
mapping function. 

Customers.category = “G”
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Figure 6. Mapping function.  Arrows represent a mapping function from the conceptual schema items to attributes of the source 
tables. For attribute expressions continuous lines are used, for calculation and aggregation expressions dotted lines linking the 
attributes involved in the expression are used, enclosing the calculations involved, and for external expressions, no lines are used 
but the calculations are enclosed. 

Source database metadata, such as primary keys, foreign keys or any other user-condition involving at-
tributes of two tables (called links), are used to relate the tables referenced in a mapping function. 

Further conditions can be applied while defining a mapping function for a fragment or cube, e.g. con-
strain an attribute to a certain range of values. In the previous example, a condition has been defined: the 
category attribute of Customers table must have the value “G”. Graphically, conditions are represented as 
callout boxes as can be seen on Figure 6. Formally, conditions are predicates involving attributes of source 
tables [27].  

For mapping a fragment the designer must define a mapping function and optional conditions. For 
mapping a cube in addition to the mapping function, he must define other elements, like measure roll-up 
operators. These definitions can be consulted in [27]. 

 
Finally, we say that a mapping function references a table if it maps an item to an expression that in-

cludes an attribute of the table, and we say that it directly references a table if the expression is either an 
attribute or a calculation (aggregations are not considered). If the mapping function directly references 
only one table, we say that the table is its skeleton. 



5 The rule-based mechanism 

Different DW design methodologies [16][22][3][25][15][2][19] divide the global design problem in 
smaller design sub-problems and propose algorithms (or simply sequences of steps) to order and solve 
them.  

The here proposed mechanism makes use of rules to solve those concrete smaller problems (e.g. re-
lated with key generalization). At each design step different rules are applied. 

The proposed rules intend to automate the sequence of design decisions that trigger the application of 
schema transformations and consequently the generation of the DW schema. Alike the designer behaviour 
rules take into account the conceptual and source schemas as well as the design guidelines and mappings, 
and then perform a schema design operation.  

5.1 The schema transformations 

In order to generate the DW schema, the design rules invoke predefined schema transformations which are 
successively applied to the source schema. We use the set of predefined transformations presented in [24]. 
Each one takes a sub-schema as input and generates another sub-schema as output, as well as an outline of 
the transformation of the corresponding instance. These schema transformations perform operations such 
as: table fragmentation, table merge, calculation, or aggregation.  

Figure 7 shows an example, where the transformation T6.3 (DD-Adding N-N) is applied to a sub-
schema. It adds an attribute to a relation, which is derived from an attribute of another relation. 

T6.3 Generated Instance:

SELECT X.*, sum(Y.income)
FROM Customers X, Incomes Y

WHERE X.customer-code = Y.customer-code
GROUP BY X.*

Parameters:

Tables: Customers, Incomes
Calculation: income = sum(Incomes.income)
JoinCondition: Customers.customer-code = 

Incomes.customer-code

 
Figure 7. Application of the transformation DD-Adding N-N. It is applied to Customers and Incomes tables and the table Cus-
tomers-DW is obtained. The attribute income has been added to the Customers-DW table containing the sum (aggregation) of all 
customer jobs’ income. The foreign key has been used to join both tables. 

5.2 The rules 

Table 1 shows a table with the proposed set of rules. The rules marked with * represent families of rules, 
oriented to solve the same type of problem with different design strategies. 



 

 Rule Description Application Conditions 
R1 Merge  Combines two tables generat-

ing a new one. It is used to de-
normalize.  
 

The mapping function of a fragment or cube directly refer-
ences two tables (possibly more).  
In source metadata, there is a join condition defined be-
tween both tables. 5 

R2 Higher Level 
Names 

Renames attributes, using the 
names of an item that maps to 
it. 

An item of a fragment or cube maps to an attribute, but its 
name is different to the attribute name.  

R3 Materialize 
Calculation * 

Adds an attribute to a table to 
materialize a calculation or an 
aggregation.  

An item of a fragment or cube maps to a calculation or ag-
gregation expression. 
The mapping function directly references only the skeleton. 

R4 Materialize 
Extern * 

Adds an attribute to a table to 
materialize an external expres-
sion.  

An item of a fragment or cube maps to an external expres-
sion. 
The mapping function directly references only the skeleton. 

R5 Eliminate 
Non Used 
Data  

Deletes not-mapped attributes, 
grouping by the other attributes 
and applying a roll-up function 
to measures.  

A table has attributes that are not mapped by any item. 
The mapping function directly references only the skeleton. 

R6 Roll-Up * Reduces the level of detail of a 
fact table, performing a roll-up 
of a dimension. 

A cube is expressed as an aggregate of another one. 
The mapping function of the second cube directly refer-
ences only the skeleton. 

R7 Update Key  Changes a table primary key, 
so as to agree the key of a 
fragment or cube with the at-
tributes that it maps.  

The key of a fragment or cube does not agree with the key 
of the table referenced by the mapping function. 
The mapping function directly references only the skeleton. 

R8 Data Con-
straint  

Deletes from a table the tuples 
that don’t verify a condition.  

A mapping has constraints or a horizontal fragmentation is 
defined. 
The mapping function directly references only the skeleton. 

Table 1. Design rules.  

Figure 8 sketches the context of a rule. 
 
In the next section we show the specification of the rule R3.2 (MaterializeAggregate) of the family R3. 

The goal of this rule is to materialize an aggregation. The conditions to apply the rule are: (i) the mapping 
function of a cube or fragment maps an item to an aggregate expression, and (ii) the mapping function 
directly references only the skeleton. The effect of this last condition is to simplify the application of the 
corresponding transformation, enforcing to apply join operations before (The previous application of the 
merge rule assures that this condition can be satisfied). The rule invokes the transformation T6.3. 

Figure 9a shows an application example of Rule R3.2 to a fragment of the customers dimension.  The 
income item maps to the sum of the attribute income of source table Incomes. The rule evaluates the con-
ditions and applies the schema transformation DD-Adding N-N, which builds a new table with a calcu-
lated attribute (as SUM(Incomes.income)). 

The rule application also updates the mapping function to reference the new table. Figure 9b shows the 
updated mapping function. 

 

                                                      
5 The rule is applied successively to pairs of directly referenced tables until the mapping function directly references only one 
table, called its skeleton. 



call 

generate 

T6.3

in 

Rule 3.2

departmentdepartment
department

customercustomer
customer_id #
customer_name
income
version #

 
Figure 8. Context of application of a rule. Refined conceptual schema structures, source tables and mappings are the input of 
the rule. If conditions are verified, the rule calls a transformation, which generates a new table transforming the input ones. Map-
pings to the conceptual schema are updated, and a transformation trace from the source schema is kept.  

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

version Å VersionDigits()
income Å SUM(Incomes.income)

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

version Å VersionDigits()

a) b)  
Figure 9. Mapping function of a fragment of customers dimension: a) before and, b) after applying the rule 

5.3 Rule specification.  

Rules are specified in 5 sections: Description, Target Structures, Input State, Conditions and Output State. 
The Description section is a natural language description of the rule behaviour. The Target Structures sec-
tion enumerates the refined conceptual schema structures that are input to the rule. The Input State section 
enumerates the rule input state consisting of tables and mapping functions. The Conditions section is a set 
of predicates that must be fulfilled before applying the rule. Finally, the Output State section is the rule 
output state, consisting of the tables obtained by applying transformations to the input tables, and mapping 
functions updated to reflect the transformation. The following scheme sketches a rule: 
 

Input State <mapping, tables> RuleName: Target Structures Output State <mapping, tables> conditions 

 
Table 2 shows the specification of the rule R3.2 of family R3.  



 

RULE R3.2 – AGGREGATE CALCULATE 
Description: 

Given an object from the refined conceptual schema, one of its items, its mapping function (that 
maps the item to an aggregate expression) and two tables (referenced in the mapping function), 
the rule generates a new table adding the calculated attribute.  

Target Structures: 
- S ∈ SchFragments ∪ SchCubes // a conceptual structure: either fragment or cube 
- I ∈ GetItems(S) // an  item of S 

Input State: 
- Mappings: F ∈ Mappings(GetItems(S)) // the mapping function for S  
- Tables: T1 ∈ ReferencedTables (GetAttributeExprs(F) ∪ GetCalculationExprs(F))  

// a table referenced in all attribute and calculation expressions  
T2 ∈ ReferencedTables (F(I)) // a table referenced in the mapping expressions of the item  

Conditions: 
- F(I) ∈ GetAggregationExprs(F) // the expression for the item is an aggregation 
- #ReferencedTables (GetAttributeExprs(F) ∪ GetCalculationExprs(F)) = 1   

// all attribute and calculation expressions reference to one table  
Output State: 

- Tables:  
- T’ = Transformation T6.3 ({T1, T2 }, I = F(I), GetLink (T1, T2 ))   

// arguments are the source tables, the calculation function for the item and the join function 
between the tables. 

- UpdateTable (T’, T) // Update table metadata  
- Mappings:  

- F' / F'(I) = T'.I ∧ ∀ J∈GetItems(S), J≠I . ( F'(J) = UpdateReference(F,T,T') )  
// The mapping function will correspond the given item with an attribute expression. The mapping 
function is updated to reference the new table. 6 

Table 2. Specification of a rule. As Target structures we have a fragment or cube and one of its items. As Input we have the 
mapping function of the structure and two tables referenced in the mapping function. The first table is referenced by attribute and 
calculation expressions  and the second one is referenced by the aggregation expression. The Conditions have been explained 
previously. The Output table is the result of applying the transformation T6.3 and the Output mapping function is the result of 
updating mapping expressions in order to reference the new table. The function corresponds the target item with the new attribute. 

5.4 Rule execution.  

The proposed rules do not include a fixed execution order. Therefore, they need an algorithm that order 
their application. Our approach is similar to the one followed to perform View Integration in [31]. The 
algorithm states in which order will be solved the different design problems.  

We propose an algorithm that is based on existing methodologies and some practical experiences. The 
algorithm consists of 15 steps. The first 6 steps build dimension tables. Then, steps 7 to 12 build fact ta-
bles, steps 13 and 14 perform the aggregates and finally step 15 carries on horizontal fragmentations. Each 
step is associated to the application of one or more rules.  

We present the global structure of the algorithm (Table 3) and the details of one of its steps (Table 4). 
The complete specification can be found in [27]. 
                                                      
6 The GETATTRIBUTEEXPRS, GETCALCULATIONEXPRS, GETAGGREGATIONEXPRS and GETEXTERNALEXPR functions return all the 
attribute, calculation, aggregation and external expressions respectively, that are mapped by the mapping function. The 
GETREFERENCEDTABLES function returns the tables referenced in a set of mapping expressions. The GETLINK function returns the 
link predicate defined in the metadata to join the tables. 



ALGORITHM: DW RELATIONAL SCHEMA GENERATION 

Phase 1: Build dimension tables for each fragment 
Step 1: Denormalize tables referenced in mapping functions (R1) 
Step 2: Rename attributes referenced in mapping functions (R2) 
Step 3: Materialize calculations (R3, R4) 
Step 4: Data Filter following mapping function conditions (R8) 
Step 5: Delete attributes non-referenced in mapping functions (R5) 
Step 6: Update primary keys of tables referenced in mapping functions (R7) 
 

Phase 2: Build fact tables for each cube 
Step 7: Denormalize tables referenced in mapping functions (R1) 
Step 8: Rename attributes referenced in mapping functions (R2) 
Step 9: Materialize calculations (R3, R4) 
Step 10: Data Filter following mapping function conditions (R8) 
Step 11: Delete attributes non-referenced in mapping functions and apply measure roll-up 
(R5) 
Step 12: Update primary keys of tables referenced in mapping functions (R7) 
 

Phase 3: Build aggregates 
Step 13: Build an auxiliary table with roll-up attributes (if it does not exist) (R1, R2, R3, 
R5, R6) 
Step 14: Build aggregates tables (R5, R6) 
 

Phase 4: Build horizontal fragmentations 
Step 15: Data Filter following fragmentations conditions (R8) 

Table 3. Rule-based algorithm  

5.5 An example of application  

In this section we show the application of the rules to the example of section 3.2. 
The designer defines guidelines to denormalize the dates dimension and have two fragments for the 

customers dimension: geography (city, state) and departments (customer, department). He also wants to 
have two cubes: detail (by month and customer) and summary (by year and city). The first cube will be 
fragmented with calls after year 2000 and historical data. 

The mapping function of the department fragment is shown in Figure 6 and the other mapping func-
tions in Figure 10. The summary cube will be calculated as a roll-up of the detail cube and then no map-
ping is needed. 

 
The first step consists in denormalizing the fragments. The only fragment that directly references sev-

eral tables is geography. (aggregate expressions are processed later). Rule R1 is executed to merge tables 
Cities and States. The rule gives the following table as result: 

 
DwGeography01 (city-code, state, name, inhabitants, state-code, name#2, region) 
 

Step 2 renames direct mapped attributes. Rule R2 gives the following tables as result of each applica-
tion: 

DwGeography02 (city-id, state, city-name, inhabitants, state-id, state-name, region) 
DwDepartments01 (customer-id, customer-name, address, telephone, city-id, 

department, category, registration-date) 
 

 



STEP 3: MATERIALIZE CALCULATIONS 

For each fragment of the refined conceptual schema, apply: rule R3.1 to each calculation expression, rule R3.2 to 
each aggregation expression, and rule R4 to each external expression.  

 
For each S ∈ Fragments  // for each fragment S  

F = FragmentMapping(S) // F is the mapping function of the fragment  
{T} = ReferencedTables (GetAttributeExprs(F) ∪ GetCalculationExprs(F))  

// T is the table referenced by attribute and calculation expressions. There is only a referenced table 
because of previous execution of step 1  

For each I ∈ GetItems(S) // for each item of fragment S 
If F(I) ∈ GetCalculationExprs(F) // F corresponds I to a calculation expression  

<F,T>  Apply Rule3.1: S, I <F',T'>  
If F(I) ∈ GetAggregationExprs(F) // F corresponds I to an aggregation expression  

<F,T>  Apply Rule3.2: S, I <F',T'>  
If F(I) ∈ GetExternalExprs(F) // F corresponds I to an external expression  

<F,T>  Apply Rule4: S, I <F',T'>  
T = T' 
F = F' // update loop variables  

Next  
FragmentMapping(S) = F // update the mapping function for the fragment  

Next  
Table 4. Specification of a step of the algorithm  

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

country Å “Uruguay” (Constant)

monthmonth
month #

yearyear
year #

dates

year Å Year (Calls.date)
month ÅMonth (Calls.date)

customerscustomers
customer_id
version

monthmonth
month

durationduration
durationdetail

month ÅMonth (Calls.date)
version Å VersionDigits()

ROLL-UP (duration) = SUM

 
Figure 10. Mapping functions for the example. 



Step 3 materialize calculated attributes. The are two items that map to calculation expressions: month 
and year, an item that maps to an aggregation expression: income, and two items that map to extern ex-
pressions: country and version. Rules of family R3 and R4 are applied (as specified in the previous sec-
tion). The rules give the following tables as result of each application: 

 
DwGeography03 (city-id, state, city-name, inhabitants, state-id, state-name, region, 

country) 
DwDepartments02 (customer-id, customer-name, address, telephone, city-id, department, 

category, registration-date, income) 
DwDepartments03 (customer-id, customer-name, address, telephone, city-id, department, 

category, registration-date, income, version) 
DwDates01 (customer-code, date, hour, request-type, operator, duration, month) 
DwDates02 (customer-code, date, hour, request-type, operator, duration, month, year) 
 

Step 4 filters data following mapping constraints. The only fragment with mapping constraints is de-
partment. As rule R8 is a data operation, the table schema is not changed.  

 
DwGeography04 (city-id, state, city-name, inhabitants, state-id, state-name, region, 

country) 
 

Step 5 deletes not-mapped attributes and groups by the remaining attributes (then keys are altered). 
Rule R5 is applied. We obtain the following tables as result of each application.  

 
DwGeography05 (city-id, city-name, state-id, state-name, country) 
DwDepartments04 (customer-id, customer-name, city-id, department, income, version) 
DwDates03 (month, year) 
 

Finally, step 6 set primary keys applying rule R7. Conceptual schema key metadata is used by the rule. 
We obtain the following tables as result of each application.  

 
DwGeography06 (city-id, city-name, state-id, state-name, country) 
DwDepartments05 (customer-id, customer-name, city-id, department, income, version) 
DwDates04 (month, year) 
 

Analogously, steps 7 to 12 are applied for the support cube. An important difference is that rule R5 
also applies roll-up functions to the measures. We obtain the following tables as result of each application.  

 
DwDetail01 (customer-id, date, hour, request-type, operator, duration) 
DwDetail02 (customer-id, date, hour, request-type, operator, duration, month) 
DwDetail03 (customer-id, date, hour, request-type, operator, duration, month, version) 
DwDetail04 (customer-id, duration, month, version) 
DwDetail05 (customer-id, duration, month, version) 
 

Step 13 is executed when the attributes necessaries to make a roll-up (those that correspond to the 
items that identify the involved levels) are not contained in a same table. This is not the case here, because 
month and year (necessaries to make the roll-up by the dates dimension) are both contained in the 
DwDates04 table, and customer_id, version and city_id (necessaries to make the roll-up by the customers 
dimension) are contained in the DwDepartments05 table.  

Step 14 build an aggregate fact table for the summary cube applying rule R6. We obtain the following 
tables as result of each roll-up. 

 
DwSummary01 (customer-id, duration, version, year) 
DwSummary02 (duration, year, city-id) 
 

Finally, step 15 fragments the table referenced by the support cube, applying rule R8 twice. We obtain 
the following tables with identical schema.  

 
DwSupportActual01 (customer-id, duration, month, version) 
DwSupportHistory01 (customer-id, duration, month, version) 
 

 



The resulting DW has the following tables: 
 
DwGeography06 (city-id, city-name, state-id, state-name, country) 
DwDepartments05 (customer-id, customer-name, city-id, department, income, version) 
DwDates04 (month, year) 
DwSummary02 (duration, year, city-id) 
DwSupportActual01 (customer-id, duration, month, version) 
DwSupportHistory01 (customer-id, duration, month, version) 

6 Conclusions  

This work presents a rule-based mechanism to automate the construction of DW relational schemas.  The 
kernel of the mechanism consists of a set of design rules that decide the application of the suitable trans-
formations in order to solve different design problems. The overall framework integrates relevant ele-
ments in DW design: mappings between source and DW conceptual schemas, design guidelines that refine 
the conceptual schema, schema transformations which generate the target DW schema, and design rules 
that embed design strategies and call the schema transformations. 

The proposed framework is a step forward to the automation of DW logical design. It provides an open 
and extensible environment that enables to apply existing design techniques into a unique place allowing 
for enhanced productivity and simplicity. Moreover, new design techniques can be integrated as new rules 
or transformations.  

This framework has been prototyped [30][27][13]. The system applies the rules and automatically gen-
erates the logical schema by executing an algorithm that considers the most frequent design problems sug-
gested in existing methodologies and complemented with practical experiences. The prototype also in-
cludes a user interface for the definition of guidelines and mappings, an environment for the interactive 
application of the rules and the schema transformations and a graphical editor for the CMDM conceptual 
model. All this work has been implemented in a CASE environment for DW design.  

We are currently working in the extension of the framework to support multiple source databases. We 
also implement a CWM based repository to be used by the global CASE environment. 

In the near future we intend to enhance the capabilities of our framework, integrating further design 
techniques and extending it to cover the design of loading and refreshment tasks using the information 
provided by the mappings and the transformation trace.  Particular effort is been taken in adapting our sys-
tem to automatically suggest the design guidelines – based on heuristic cost functions dependent on physi-
cal storage constraints, query performance, affinity or amount of data. 

References 
 
[1] Abello, A.; Samos, J.; Saltor, F.: "A Data Warehouse Multidimensional Data Models Clasification". Technical Report LSI-

2000-6. Dept. Lenguages y Sistemas Informáticos, Universidad de Granada, 2000. 
[2] Adamson, C.; Venerable, M.: “Data Warehouse Design Solutions”. J. Wiley & Sons, Inc.1998. 
[3] Ballard, C.; Herreman, D.; Schau, D.; Bell, R.; Kim, E.; Valncic, A.: “Data Modeling Techniques for Data Warehousing”. 

SG24-2238-00. IBM Red Book. ISBN number 0738402451. 1998. 
[4] Batini, C.; Ceri, S.; Navathe, S.: “Conceptual Database Design- an Entity Relationship Approach”. Benjamin Cummings, 

1992. 
[5] Boehnlein, M.; Ulbrich-vom Ende, A.:”Deriving the Initial Data Warehouse Structures from the Conceptual Data Models of 

the Underlying Operational Information Systems". DOLAP’99, USA, 1999. 
[6] Bouzeghoub, M.; Fabret, F.; Matulovic-Broqué, M.: “Modeling Data Warehouse Refreshment Process as a Workflow Ap-

plication”. DMDW’99, Germany, 1999. 
[7] Cabibbo, L. Torlone, R.:"A Logical Approach to Multidimensional Databases", EDBT'98, Spain, 1998. 
[8] Carpani, F. Ruggia, R.: “An Integrity Constraints Language for a Conceptual Multidimensional Data Model”. SEKE’01, 

Argentina, 2001.  
[9] Chaudhuri, S.; Dayal, U.: "An overview of Data Warehousing and OLAP technology". SIGMOD Record, 26(1), 1997. 



[10] Codd, E.F.; Codd, S.B.; Salley, C.T.: "Providing OLAP (on-line analytical processing) to user- analysts: An IT mandate". 
Technical report, 1993. 

[11] Elmasri, R.; Navathe, S.: “Fundamentals of Database Systems. 2nd Edition”. Benjamin Cummings, 1994. 
[12] Fankhauser, P.: “A Methodology for Knowledge-Based Schema Integration”. PhD-Thesis, Technical University of Vienna, 

1997. ? 
[13] Garbusi, P.; Piedrabuena, F.; Vázquez, G.: “Diseño e Implementación de una Herramienta de ayuda en el Diseño de un Data 

Warehouse Relacional”. Undergraduate project. Universidad de la República, Uruguay, 2000.  
[14] Golfarelli, M.; Maio, D.; Rizzi, S.:"Conceptual Design of Data Warehouses from E/R Schemes.", HICSS’98, IEEE, Ha-

waii,1998.  
[15] Golfarelli, M. Rizzi, S.: ”Methodological Framework for Data Warehouse Design.", DOLAP’98, USA, 1998. 
[16] Golfarelli, M. Maio, D. Rizzi, S.:”Applying Vertical Fragmentation Techniques in Logical Design of Multidimensional 

Databases”. DAWAK’00, UK, 2000.  
[17] Hahn, K.; Sapia, C.; Blaschka, M.: ”Automatically Generating OLAP Schemata from Conceptual Graphical Models", 

DOLAP’00, USA, 2000. 
[18] Hüsemann, B.; Lechtenbörger, J.; Vossen, G.:"Conceptual Data Warehouse Design". DMDW’00, Sweden, 2000. 
[19] Inmon, W.: “Building the Data Warehouse”. John Wiley & Sons, Inc. 1996. 
[20] Jajodia, S. Ng, P. Springsteel, F.: “The problem of equivalence for entity-relationship diagrams”, IEEE Trans. on Software 

Engineering SEO,5. September 1983. 
[21] Kenan Technologies:"An Introduction to Multidimensional Databases”. White Paper, Kenan Technologies, 1996. 
[22] Kimball, R.:"The Datawarehouse Toolkit". John Wiley & Son, Inc., 1996. 
[23] Markowitz, V. Shoshani, A.: “On the Correctness of Representing Extended Entity-Relationship Structures in the Relational 

Model”. SIGMOD’89, USA, 1989.   
[24] Marotta, A. Ruggia, R.: “Data Warehouse Design: A schema-transformation approach”. SCCC’2002. Chile. 2002. 
[25] Moody, D.; Kortnik, M.: “From Enterprise Models to Dimensionals Models: A Methodology for Data Warehouse and Data 

Mart Design”. DMDW’00, Sweden, 2000. 
[26] Ozsu, M.T. Valduriez, P.: “Principles of Distributed Database Systems”. Prentice-Hall Int. Editors. 1991. 
[27] Peralta, V.: “Diseño lógico de Data Warehouses a partir de Esquemas Conceptuales Multidimensionales”. Master Thesis. 

Universidad de la República, Uruguay. 2001. 
[28] Peralta, V. Martota, A.: “Hacia la Automatización del Diseño de Data Warehouses”. CLEI’2002. Uruguay. 2002. 
[29] Phipps, C.; Davis, K.: "Automating data warehouse conceptual schema design and evaluation". DMDW'02, Canada, 2002. 
[30] Proyectos de Ingeniería de Software 2001. “Implementación de herramientas CASE que asistan en el Diseño de Data Wa-

rehouses”. Software engineering thesis. Universidad de la República, Uruguay, 2001. 
[31] Spaccapietra, S. Parent, C.: “View integration: A step forward in solving structural conflicts”. TKDE’94,  Vol 6, No. 2, 

1994. 
[32] Teorey, T. Yang, D. Fry, J.: “A logical design methodology for relational databases using: the extended entity-relationship 

model”, Cornput&Surveys 18,2. June 1986. 
[33] Vidal, V. Lóscio, B. Salgado, A.: “Using correspondence assertions for specifying the semantics of XML-based mediators”. 

WIIW’2001, Brazil, 2001. 
[34] Yang, L. Miller, R. Haas, L. Fagin, R.: “Data-Driven Understanding and Refinement of Schema Mappings”. ACM 

SIGMOD’01, USA, 2001. 


