On the evaluation of data freshness in data
integration systems

Veronika Peralta — Mokrane Bouzeghoub

Laboratoire PRiSM, Université de Versailles

45, avenue des Etats-Unis

78035 Versailles cedex, FRANCE

Veronika.Peralta@prism.uvsg.fr - Mokrane.Bouzegt@phbism.uvsq.fr

ABSTRACT Data freshness has been identified as one ofntbst important data quality
factors in information systems. This importancereases particularly in the context of
systems composed of a large set of autonomoussdataes, where integrating data having
different freshness may lead to semantic problefhere are various definitions of data
freshness in the literature as well as differentringe to measure them, depending on the
applications where they are used. This paper prssan analysis of these definitions and
metrics and proposes a taxonomy to compare them.t@konomy is useful for (i) analyzing
the way data freshness is defined and used in @letygres of systems and (ii) studying the
properties of the system that influence data fresenWe model the system and its properties
as a workflow and we present a mechanism for etialgedata freshness based on the
workflow representation.

RESUME La fraicheur des données est I'un des facteuguadité les plus importants dans les
systemes d'information. Cette importance est acdars le contexte des systémes composés
d'un grand nombre de sources de données autonooies|intégration des données
caractérisées par des fraicheurs différentes peertena des problemes sémantiques. Dans
la littérature, il existe différentes définitionse da fraicheur des données ainsi que des
métriques permettant de la mesurer, et ce en fomctles applications ou elles sont
employées. Cet article présente une analyse ddéfastions et ces métriques et propose une
taxonomie permettant de les comparer. Cette tax@nservira a (1) analyser la maniére
dont la fraicheur des données est définie et adlidans différents types de systemes, et (2)
étudier les propriétés du systéeme qui influencaiffitdicheur des données. Nous représentons
le systéme et ses propriétés comme un workflovoet présentons notre approche pour
I'évaluation de la fraicheur basée dans cette repnéation.

KEYWORDsdata freshness, quality evaluation, quality neri
MOTS-CLES fraicheur des données, évaluation de la qualitétriques de la qualité.

Bases de données avancée&™J0urnée, 2004



2 Bases de données avancée¥™®26urnée, 2004

1. Introduction

Data freshness has been identified as one of tls¢ important attributes of data
quality for data consumers (Shin, 1996). Some ssna;d empirical studies have
proved that data freshness is linked to informasgatem success (Wang et al.,
1996)(Shin, 2003). Then, achieving required da¢stness is a challenge for the
development of a large variety of applications.tk@more, the increasing need to
access to information that is available in sevdeth sources introduces the problem
of choosing between alternative data providersafrebmbining data with different
freshness values. This paper presents an analysiata freshness and its various
underlying metrics in a system that integratesrmtttion of several data sources.

Examples of Data Integration Systems (DIS) are lsltath systems, where data
is extracted from several sources, integrated andepted to the user, commonly
using the wrapper-mediator architecture. Data Wausé systems also extract,
transformandintegraténformationfrom various possiblyheterogeneouspurcesand
make it available for strategic analysis to theiglen makers. Other examples are
federations of databases, where a key characteisstine preservation of source
autonomy and Web Portals which provide access bfestioriented data acquired
and synthesized from web sources, generally cadhipgrtant amounts of data.

Several freshness definitions have been proposediifferent types of data
integration systems. The traditional freshnessnitefn is calledcurrency(Segev et
al., 1990) and describes hostale is data with respect to the sources. Recent
proposals incorporate another notion of freshneaslied timeliness(Wang et al.,
1996), which describes howld is data. Then, freshness represents a family of
quality factors, or a quality dimension, with diéat associated metrics. Each factor
best suites a particular problem or type of system.

In this paper we analyze this quality dimension aedpresent a taxonomy of its
factors and metrics based upon the nature of tkee daon the type of application
and upon the synchronization policies of the urnyilegl management system. We
analyze, in terms of the taxonomy, the way frestineslefined and used in several
types of systems.

Considering a freshness factor and a method to ureds at the sources, a
freshness value can be calculated for the datanediuo the user. To calculate this
value we should combine the different source freshrvalues and take into account
the processes that extract, transform and conweydia to the user. We model the
calculation process as a workflow of calculatiortiviiies and we present an
evaluation process based on the workflow representa

The contribution of this paper is twofold. Firstiwe analyze data freshness
factors and metrics within a taxonomy. Secondly,pr@pose a framework for data
freshness evaluation.

The rest of the document is organized as followsctiSn 2 discusses the
different definitions and metrics of the freshnedimmension and presents the



On the evaluation of data freshness in data integraystems 3

taxonomy. Section 3 presents the freshness ewvafugiroblem, summarizing
existing works and our current investigations. Bectd proposes a framework for
data freshness evaluation. Finally, section 5 eaates with our general remarks.

2. Analysis of data freshness

Intuitively, the concept of data freshness intragiuthe idea of how old is the
data: Is it fresh enough with respect to the usgreetations? Has a given data
source the more recent data? Is the extractedstlts? When was data produced?
Data freshness has then not a unique definitiothenliterature. There are various
definitions concerning different concepts and nestrivhich are mainly due to the
different objectives of the systems where theyused.

In this section we analyze data freshness defirstand metrics, we discuss the
dimensions that impact the evaluation and enforo¢roé data freshness and we
present a taxonomy that summarizes the discussion.

2.1.Freshness definitions and measurement

Data freshness comprises a family of quality facach one representing some
freshness aspect and having its own metrics. Fdrréason freshness is commonly
mentioned as guality dimensior{Jarke et al., 1999). From a user point of view, we
distinguish two sub-dimensions of this quality divei@n:

— Currency factor(Segev et al., 1990): It captures the gap betweemxtraction
of data from the sources and its delivery to theraisFor example, currency
indicates how stale is the account balance preddntéhe user with respect to the
real balance at the bank.

—Timeliness factofWang et al, 1996): It captures how often data gkaror how
often new data is created in a source. For exartipieliness indicates how often the
product prices change in a store or how often neokb are added to a library.

Factor Metric Definition

Currency | Currency The time elapsed since data was extrdmed the source (The
difference between query time and extraction tifs¢gev et
al., 1990)

Obsolescence The number of updates transactiopsatigns to a source sinte
data extraction timéGal, 1999)
Freshness rateThe percentage of tuples in the view that are ugatie (have nat
been updated since extraction tifl€ho et al., 2000)

Timeliness | Timeliness The time elapsed from theudaslate to a source (the difference
between query and last update tim@daumann et al., 1999)

Table 1.Summary of freshness factors and metrics



4 Bases de données avancée¥®6urnée, 2004

A metric is a specific instrument that can be utedneasure a given quality
factor. There might be several metrics for the sgodity factor. Table 1 describes
the metrics proposed in the literature for meagudata freshness, classified by
factor. A larger description of each one can beébim (Bouzeghoub et al., 2004).

2.2.Dimensionsfor freshness analysis

In this section we analyze some dimensions thataghghe analysis and
enforcement of data freshness. We analyze theeafutata, the type of application
and the synchronization policies of the system.

2.2.1.Nature of data

According to its change frequency, we classify seutata in three categories:

— Stable datalt is data that is improbable to change. Examplies scientific
publications; although new publications can be ddde the source, older
publications remain unchanged. Other examples ergop names, postal codes and
country names.

— Long-term-changing datalt is data that has a very low change frequency.
Examples are the addresses of employees, countgncies and hotel price lists in
a tourist center. The concept of “low frequency”’dismain dependent; in an e-
commerce application, if the stock of a productngjes once a week it is considered
to be low-frequency change while a cinema that gharits playbills weekly has a
high-frequency change for spectators.

— Frequently-changing datdt is data that has intensive change, such ddinea
traffic information, temperature sensor measuras satles quantities. The changes
can occur with a defined frequency or they candmelom. For example, restaurant
menus which are updated every morning have a dakfihange frequency, but the
account balances which are updated with every atcmovement have not got a
defined frequency.

When working with frequently changing data, it igerresting to measure how
long data can remain unchanged and minimize thévesgl of expired data.
However, when working with stable or long-term ofjiag data, these questions
have no sense since data does not change very. diftésn more interesting to
measure how often new data is created or how dltkislata.

2.2.2.System features

The freshness of the data returned to the userndspen the freshness of
extracted data but also on the processes thatceximsegrate and deliver this data.
These processes are very important because thejnttaduce additional delays.
We distinguish three main families of architectuwedhniques: those that calculate
data when a new query is posted, those that caehaata most frequently used, and
those that materialize the data needed to answer gseries. When using



On the evaluation of data freshness in data integraystems 5

materialization, data is stored for some time ir tHata integration system
repositories, which decreases its freshness. Taterfs of these three categories of
systems are summarized below:

— Virtual systemsThe system does not materialize any data souatigs are
calculated when they are posed. The users sendgtieiies to the system and wait
the response. The system queries the relevantesoarad merges their answers in a
global answer that is delivered to the user. Exas@re pure virtual mediation
systems and query systems in database federations.

— Caching systemsThe system caches some information, typically es@murce
relations that are frequently accessed or the tresubome frequent queries. The
system estimates the time during which the dathbeilup to date and invalidates it
when passed this time. The users pose their quésiethe system and if the
information required to answer the queries is stanethe cache, the system delivers
it to the user. If the information is not storedtire cache or it is invalidated, the
system queries the sources as in virtual systemigassibly refreshes cache data.
Examples are caching and replication systems.

— Materialized systemsThe system materializes large volumes of datahvis
refreshed with respect to a certain scenario. T$@supose their queries and the
system answers them almost using the materializah. dExamples are data
warehousing systems and web portals that suppderialization.

Virtual systems are conceived to retrieve datauaent as possible, returning a
current state of the source data. In caching systeome level of staleness is
allowed but the gap between source states andhtibgration system state should be
relatively small. In materialized systems that gap be greater, but its magnitude
depends on the concrete applications.

2.2.3.Synchronization policies

ThewaythedataintegrationsystemDIS) isimplemented influences the freshness
of the data delivered to the users. Particulaig synchronization between the
sources, the DIS and the users has impact in deshrfess because it introduces
delays. For example, a system that synchronizeatapceach end of the day may
provide data which is not fresh enough for the etgiéons of a given user.

According to the interaction between the DIS and $slources, the extraction
processes can haymull or push policies. With pull policy, the DIS queries the
sources to obtain data and with push policy, the@sends data to the DIS. The
notification of new available data can come from autive source (e.g. using
triggers) or can be determined by the DIS contistyopolling the source. Active
sources can have their own policies as sending wadhted tuple, or sending sets of
tuples every regular periods of time or when changarpass a threshold. Pull
policies can also be driven by temporal or non-terapevents.

According to the interaction between the DIS arsl ukers, the query processes
can also have pull or push policies. With pull ppliusers directly pose queries to



6 Bases de données avancée¥™®26urnée, 2004

the DIS. With push policy, users subscribe to dertmeries and the DIS regularly
conveys response data to the users. Push poliaiealso be driven by temporal or
non-temporal events.

Combining the previous interactions between udelS, and data sources leads
to six possible configurations which are shown igufe 1. With synchronous
policies, the user directly accesses source daité. &¥ynchronous policies, the DIS
answers user queries using materialized data anmtla®nously, the materialized
data is refreshed from source data.

]Users \ Configurations are named with the user-DIS
oull pusH policy followed by the DIS-source policy, (/)
represent asynchronisms and (-) synchronisms.
DIS \\@) (@) . * Synchronous configurations:
p- - pull-pull: arrow (a)
(a @ 0] - push-push: arrow (f)
JRY *, Asynchronous configurations:
va’ © © " - pull / pull: arrows (b) and (c)
- pull / push: arrows (b) and (e)
[ h
Fu pus - push / push: arrows (d) and (e)
| Sources - push / pull: arrows (d) and (c)

Figure 1. Synchronization policies

Asynchronous policies introduce delays. The refrégguency of the DIS
repository is important to evaluate the freshndssetsieved data. When pushing
data to the user, the push frequency is also irapbrt

In systems where there are heterogeneous dataesowith different access
constraints and users with different freshness &agtiens, it is important to support
and combine several kinds of policies.

2.3.A taxonomy of freshnessworks

In this section we present a taxonomy that summalitizis discussion and allows
comparing different proposals for freshness evanaflhe taxonomy is composed
of the previously described dimensions: (i) natofelata, (ii) application type and
(iif) synchronization policies.

Nature of datais a user-oriented dimension which qualifies thepprties of
source data from a user point of view. But notla combinations of nature of data
and freshness factors are interesting. On the @mel,hwhen data changes very
frequently, there is not interest in measuring lings, which captures stable data



On the evaluation of data freshness in data integraystems 7

behaviour. On the other hand, there is no sensedluate the currency of long-term
and stable data because they are almost alwaysntws they do not change very
often. In the latter case, the system can assumeray even without explicit
evaluation. The other combinations need evaludtaetermine the freshness level.
For them, the development of evaluation tools iergsting. Table 2 shows the
relation, indicating when data freshness can beradswithout evaluation and when
it is interesting to evaluate ¥/} or not ).

Frequently changing Long-term changing Stable
Timeliness X V Y,
Currency \% assured assured

Table 2.Interesting combinations of freshness factors azmine of data

System featureand synchronization policiesare system-oriented dimensions
which describe the system relation with data fresen Not all the combinations
between system features and synchronization psligie valid. Table 3 shows the
interrelations between them, indicating the validnbinations.Virtual systems only
support the pull-pull configuration. Materializegstems support the configurations
having an internal repository to store materialidath. Caching systems support the
configurations that pull source data (synchronaus @synchronous). The push-push
configuration is not usually implemented in thesthsystem types discussed.

pull-pull pull/ pull pull/ push push/ pull | push/ push
Materialized X \% \% \Y, \%
Caching \% \% X \% X
Virtual \% X X X X

Table 3.Valid combinations of system features and synchatioin policies

The user-oriented and the system-oriented dimessima orthogonal. Virtual,
caching or materialized systems (with their valambinations of synchronization
policies) can be built to query different typesdata.

The system-oriented dimensions are also orthogtmmdhe freshness factors,
because user interest in freshness is independerthe way the system is
implemented. However, the metrics for the currefacyor are related to the system
implementation. In virtual systems the main interissthe response time, so the
currency metric is appropriate. In caching systesisthe metrics have been
identified as interesting, as different existentplagations evaluate them. In
materialized systems, currency and obsolescence leen used. Table 4 shows the
co-relation of all the taxonomy dimensions:



8 Bases de données avancée¥™®26urnée, 2004

Frequently changing | Long-term changing Stable
Virtual L _
Currency Timeliness Timeliness
Pull-pull
Caching
Currency
Pull-pull Obsolescence Timeliness Timeliness
Pull/pull Freshness-rate
Pull/push
Materialized
Pullpul Currency Timelin Timeliness
Pull/push Obsolescence eliness
Push/pull
Push/push

Table 4.Co-relation of all the taxonomy dimensions

The technical problems to solve for each combimatice quite different. For
example, enforcing currency in a materialized systeplies developing efficient
update propagation algorithms to deal with conssteproblems, whilevaluating
timeliness in virtual systems is quite independamthe query rewriting algorithms
and is dominated by source data timeliness. In sestion we discuss the freshness
evaluation problems.

3. The data freshness evaluation problems

In this section we analyze several types of systhaisevaluate data freshness in
terms of the taxonomy. A larger description of gtate of the art and research
problems is presented in (Bouzeghoub et al., 2084) finally enounce our current
investigations in the line of data freshness evalnawhich are detailed in section 4.

3.1. Some systems that consider data freshness

In this section we analyze several types of systidrasevaluate data freshness
and we describe the goals and problems that thesept. Table 5 summarizes the
proposals in terms of the taxonomy presented before

3.1.1. Data warehousing systems

In data warehousing systems, freshness is studiedgh thecurrency factorin
the context of view materialization. Traditionaleqy optimizationalgorithms are
extended to take into account the materialized sidw (Gal, 1999), a cost model
has been proposed for balancing the query generatid data transmission cost on
the one hand, and tlodsolescenceost on the other hand.



On the evaluation of data freshness in data integraystems 9

Materialization introduces potential inconsistesciaith the sources and
warehouse data may become out-of-date (Zhuge, ét917). The view maintenance
problem consists in updating a materialized viewdsponse to changes arisen at
source data. Most of the work concentrates in aggiW consistency for different
types of views and refresh strategies (Gupta efl@B5). A key problem in the last
years has been the selection of a set of viewsatenmlizein order to optimize the
query evaluation and/or the maintenance cost, plgsgi the presence of some
constraints (Gupta, 1997)(Yang et al, 1997). Degahness is implicitly considered
when defining the update propagation processesmast works, the update
propagation processes are triggered by sources wiheramount of changes is
greater than a threshold or are executed peridgigplull/push and pull/pull
policies). In (Theodoratos et al., 1999), they jmsgan algorithm that takes as input
the user expectations for data currency and detesnithe minimal update
frequencies that allow achieving these values fpush policy).

3.1.2. Mediation systems

In classical mediation systems, freshness is disgies] through thesurrency
factor. In (Hull et al., 1996), authors propose the camgion of Squirrel mediators
which combine virtual and materialized data, amdnfaly proof that the freshness of
the returned data is bounded. They combine pullgmd pull/pull policies.

New proposals take into account ttimeliness factarlt is used as a quality
metric to compare among sources and to filter thg deturned to the user. In
(Naumann et al., 1999), they study how to propagaset of quality factors from
several heterogeneous sources to the mediator. drogpse a virtual scenario with
pull-pull policy.

3.1.3. Caching systems

In caching systems, data is considered fresh whanidlentical to data in the
sources, so freshness is represented byctinency factorand measured with its
metrics (currency, obsolescence, freshness-rate)imfortant problem is keeping
cache data up-to-date. Traditional cache propestisiate théime-to-live(TTL) of
an object (Bright et al., 2002), so the cache t¢aresfrequently changing data as
well as long-term changindata. When the TTL has expired the object is io\zéd
in the cache, so in the next access the objectbeiltlirectly read from the source
(pull-pull and pull/pullpolicies). In (Cho et al., 2000), they study symetization
policies for cache refreshment and experimentabyify their behavior. They
measure freshness with two metrics: currency (@allge in the paper) and freshness-
rate. In (Li et al., 2003), they balance resporige tand invalidation cycles for
assuring data currency. In (Bright et al., 200Bgyt propose the use tdtency-
recencyprofiles to adapt caching algorithms to user awyeequirements.

Newer proposals combine caching and materializagohniques. In (Labrinidis
et al., 2003), they propose an algorithm to seMtdth WebViews (html fragments
derivedfrom adatabasefp materialize without exceeding a given currencyshodd.



10 Bases de données avancée€®piurnée, 2004

3.1.4. Replication systems

In a replication context, data at a slave nodeislly fresh if it has the same
value as the same data at the master node, iteeakfresh transactions for that data
have been propagated to the slave node (Gancarskj 2003). Freshness is studied
by means of theurrency factoffor frequently changing data.

In (Gancarski et al.,, 2003), they determine the imim set of refresh
transactions needed to guarantee that a replifl@dh enough with respect to the
user freshness requirements for a given query. Tgrepose a load-balancing
algorithm that takes freshness into account todgeasihen to refresh a replica. They

follow pull-pull and pull/pull policies.

Works Measurement | Nature of data Application Schhronlz
type Policy
Materialization for | Obsolescence| Frequently | Virtual, Pull-pull,
guery processing changing materialized | pull/pull
View maintenance Currency Frequently | Materialized | Pull/pull,
changing pull/push
View maintenance | Currency Not specified Materialized Pull/pull
policies
Selection of views tg Currency Frequently Materialized | Pull/pull,
materialize changing pull/push
Mediation design | Currency Not specified Virtual, Pull-pull,
(with materialization materialized | pull/pull
Source selection in | Timeliness Not specified Virtual Pull-pull
mediation
Cache refreshment Currency, |Frequently Caching Pull-pull,
obsolescence, changing / long pull/pull,
freshness-rate| term changing Pull/push
Cache refreshment | Freshness-rat¢ Frequently | Caching, Pull-pull,
(with materialization changing materialized | pull/push
Replica refreshment| Currency, |Frequently Caching Pull-pull,
obsolescence | changing pull/pull

Table 5.Summary of proposals

3.3. Our current investigations

The analysis of existing works in terms of the t@xmy (Bouzeghoub et al.,
2004) suggested open problems in the specificatibruser expectations, the
acquisition of source freshness measures and thrufation of cost models for the
query evaluation and update propagation procedsbsterogeneous systems. This
knowledge can be used both for developing audttigs that estimate the freshness
of an existing system and for designing a systamedrby freshness expectations.



On the evaluation of data freshness in data integraystems 11

Among these problems, we are interested in thelderent of an auditing tool
for evaluating data quality, in particular datasfreess, and deciding if user quality
expectations can be achieved. The auditing toallshiake as input some metadata
describing the data integration system, the souroésthe query classes, as well as
measures of the actual quality of source data aed gquality requirements. The tool
should return a measure of the quality of the datiarned to the user.

The tool can be used to verify if the data returteethe user fulfills its freshness
requirements and if not, the evaluation can aiddetermining which parts of the
system should be improved. Furthermore, the toolbeaused to compare alternative
processes which can implement the data integradigstem either accessing to
different sources or computing the resulting infation following different
algorithms. The comparison can: (i) determine whpcbcesses achieve freshness
expectations, (ii) order the candidate processdhdiy freshness, or (iii) propose the
user only the most adequate process (or proceshles) section proposes a
framework to develop such tool.

4. A framework for data freshness evaluation

In this section we present a framework for datesHness evaluation. We
represent the DIS integration process as a workftdfwpossibly autonomous
calculation activities and we analyze how to meastata freshness within the
workflow. We also discuss how to compare freshnedges with user freshness
expectations and how to use the comparison to emfoeshness.

4.1. A graph representation of a DIS

The DIS integration system can be viewed as a Wawkfwhere different
calculation activities perform the different tagksit extract, transform and convey
data to end-users. Each activity takes input dat@ Sources or other activities and
produces result data that can be used as inpubtfier activities. Then, data
traverses a path from sources to user queries viher¢ransformed and processed
according to the system logics. The data produgeghbactivity can be immediately
consumed by other activities or it can be matexéaifor being queried later. Note
that this notion of activity can represent processkdifferent complexities, from
simple SQL operations to complex transformationcptures that can execute
autonomously.

The workflow representation is general enough farasent different types of
systems. We mention some of them:

— In classical mediation systems the workflow atidg are composed of
wrappers and mediators.

— In DW systems, the refreshment processes canbalseen as a workflow of
activities (Bouzeghoub et al., 1999). The actigitean be complex processes that



12 Bases de données avancée€®purnée, 2004

produce the views of the different DW repositories, the operational data store,
the corporate DW and the data marts.

— In caching systems, the refreshment processebeaeen as simple workflow
processes which store data in the cache and askethéor additional data.

Figure 2 sketches the workflow representation. l@nktottom diagram there are
remote source relations;JROn the middle diagram there are the differetivvdies
(A;) whose inputs are source data. The arrows indibatethe output node uses the
data returned by the input node. The activitieg thieectly take input data from
source relations are thverappersthat perform the data extraction from sources. The
other activities take input data, direct or indihgcfrom wrappers. On the top
diagram there are the user query class@srépresenting families of queries that can
be executed using the data produced by activities.

Queries
Classes

DIS
Activities

(8)

Wrappers
Source
Relations ﬂ

Figure 2. A workflow representation of a DIS

(A

4.1.1. The calculation dag

Formally, we represent the DIS workflow by meansadadirected acyclic graph
(dag) that describes the involved activities, theputs and outputs. The dag shows
the data paths from source relations to user queiiin the different activities.

Definition 1. A calculation dagis a dag G defined as follows: The nodes of G
are of three typessource nodegwith no input edges) that represent the source
relationstarget nodegwith no output edgeshat represeruery classeandactivity
nodes(with both input and output edges) that represeatdifferent activities that
calculate the set of target nodes from the soundes The edges of G represent that
a node is calculated from another (the data flowthé sense of the arrow). O

Example 1.Consider the calculation dag of figure 2 represgnthe refreshment
process of a simple DW system that integrates nmédion of source relations; Rnd



On the evaluation of data freshness in data intiegraystems 13

R,. Activities A; and A are the wrappers, activitiess And A, perform the cleaning
and activity A integrates and materialize data to support userieg of class Q
Activity Ag calculates a monthly summary and materializesritother user queries
(Q2). The edges entering tosAfor example, indicate that data produced hyaAd
A, is used as input in the integration process aadettyes coming outsAndicate
that integrated data is used as input fgard Q. 0

4.2. Labeling the calculation dag

The freshness of the data delivered to the usezrabpon the execution delay of
the system, that is the length of time from dat&raetion to data delivery. This
length of time is influenced not only for the exéen cost of each activity (the time
the activity needs for executing) but also for thdays that can exist between the
executions of consecutive activities. These detagsdetermined by the execution
policies of the system and the access constraitimeo$ources.

In this section we define some properties that rilest¢he execution delay of the
system. We will associate them as labels of theutation dag.

4.2.1. Some properties

We analyze the properties that impact in the executehavior of the system,
namely the execution policies, synchronization yelaaccess constraints and
execution costs.

Execution policy. We consider three possible execution policiesaforactivity
depending on the synchronization with predecesstisaccessor nodes:

— Input-synchronousT he activity is synchronized with its predecessodes. The
activity execution starts when it receives a nadifion about new available data in
one of its inputs. For wrapper activities, the ficdition comes from the source. For
the other activities, the notification comes frompradecessor node announcing that
it has finished its execution and has produced deta.

— Output-synchronousT he activity is synchronized with its successodes. The
activity execution starts when it receives a nedifion of some successor that needs
new data, then, the activity has to execute toigeothis new data. For the activities
that directly answer user queries, the notificattmmes from the processes that
manage user queries. For the other activitiesndtiéication comes from a successor
node announcing that it has to execute and needslai as input.

— AsynchronousThe activity is not synchronized with predecessor successor
nodes. The activity execution starts when the #gtreceives a notification from the
system. We consider that the system sends perinatifications, then there is a
fixed amount of time (period) between two conse@giexecutions.

In systems with homogeneous synchronization pai¢gee section 2.2.3) the
execution policies of its activities follow well-kvn patterns. For example, in a
pull-pull system all activities have output-synamos policies and in a pull/pull



14 Bases de données avancée€®piurnée, 2004

system, the activities that answer user queries fraaterialized data follow output-
synchronous policies while the activities that esfr the materialized data follow
asynchronous policies. In heterogeneous systemg¢ ft@mbine several

synchronization policies the synchronization betweeery pair of activities should
be studied.

Synchronization delay When two consecutive activities in a path haeerint
execution frequencies (due to different executiolicges), the data produced by the
former must be materialized for being queried latethe latter. In this case, there is
a synchronization delay. The synchronization ddlayween two activities is the
amount of time passed between the end of the drecot one activity and the start
of the other. The synchronization delays are vernyartant in the evaluation of data
freshness because they introduce extra waiting timelata and consequently they
decrease the data freshness.

If two consecutive activities are synchronized &imel second activity executes
always a fixed amount of time after the first otlee synchronization delay is well-
known. If activities are not synchronized, the dyomization delay has to be
estimated in the worst case. The algorithms tordeéte the delays between two
activities (or estimate them in the worst case)paesented in (Peralta et al., 2004).

Example 2. Consider the evaluation of timeliness in the dalton dag of
previous example and suppose that wrappersatdl A) execute weekly following
asynchronous policy, cleaning and integration psees (A, A; and A) execute
after the data extraction (input-synchronous pdlayd the monthly summary {A
executes at the end of each month (asynchronousypdmagine that source,R
materialize data, which is read by #wo days later (delay is 2 days) and sourge R
does not materialize data (no delay). As A, and A are input-synchronous there is
not delay with their predecessors. However, aarfd A have different policies with
different periods (and 30 days) the data produced kycAn have been materialized
for almost a week when read by, Ahen the delay will be a week in the worst case.
The delays with target nodes are the refresh periddhe materialized data, in the
worstcaseFigure 3sshowsthecalculationdaglabeledwith synchronizatiomelays[

Access constraint In some situations, the sources do not allowsystem to
continuously query them, or it is very expensiveqtery a source very often. We
can express such constraints giving a maximum aquersod for the data extraction.
The access periods the lowest time interval that a source allowswieen two
consecutive data extractions. Note that in the gores of access constraints, the
wrapper must periodically materialize data to asshe availability of source data
(asynchronous execution policy). The access canstshould be explicitly defined
by the source provider, the system designer or.both

Processing costThe processing cosf an activity is the amount of time, in the
worst case, necessary for reading input data, érgcand building result data. Each
activity needs some time for executing and obtgirdrresult; this amount of time is
the processing cost. There are several delaysodiine texecution of the activity. For



On the evaluation of data freshness in data intiegraystems 15

wrappers, it involves the time necessary for coninaiimg with the source (sending
the request and waiting for the response), the fionecomputing the extraction

query and the time for materializing the changeadeded). For the other activities,
it involves the time for reading input data, conipgtand the time for materializing

the result (if needed). Communication time can b#nmmted using statistics of

previous executions. Computation and materialipatimes can be estimated using
cost models. Our approach is independent of theraodel used but the estimation
depends on it. The determination of the approprést model depends on the
freshness metric and on the three dimensions dbstenomy.

Example 3. Consider the evaluation of timeliness in the dalton dag of
previous example. In such a system, the communitatiosts and the update
propagation costs are negligible compared to symibation delays (week, month).
A cost model for this system can neglect the executosts of the nodes. However,
if the cleaning activity Aneeds user interaction and the cleaning proceshaz a
duration of two days, this cost should be modeled. 0

4.2.2. Labeling the calculation dag

We label each node of the calculation dag with scdptive name. In addition,
we label activity nodes with the processing costecetion policy and access
constraint (if there is one). We label each eddh tiie synchronization delay.

0
@ (R (b)

Figure 3. (a) Synchronization delayéh) Freshness propagation

4.3. Evaluating freshness within the graph

In this section we specify how to propagate freshnealues within the graph,
calculating the freshness of the intermediate dedduced by each node. We firstly
give an intuitive idea of the freshness calculatisethod and we present a recursive
definition. We also enunciate some lemmas that shoather way to calculate
freshness in terms of the dag paths. Such caloalailows the definition of some
strategies to enforce freshness.



16 Bases de données avancée€®®piurnée, 2004

Intuitively, the freshness of the data producedimpde depends on the freshness
of data at the moment of reading it (the freshnessdata produced by the
predecessor node plus the synchronization delag)tlam time the node needs for
executing (the execution cost). To calculate tlsHness of a node we add such
values. When the node reads data from several impaets, input freshness values
should be combined. As we are interested in anripmend of freshness we take the
worst case (the maximum). We recursively defineftbghness of a node as follows:

Definition 2. Thefreshnes®f an activity or target node in a calculation dags
the maximum sum of the freshness of a predecessi®, plus the synchronization
delay between nodes, plus the processing costaidbde. Théreshnes®f a source
node is its actual freshness.

— For a source node A: Freshness(A) = ActualFrestiAgs

— For an activity or target node A: Freshness(A)nmax {Freshness(B) +
delay(B,A,G) /B0 predecessor(A,G)} + cost(A,G)

The ActualFreshnesss a measure of the freshness of data in a solileecost
anddelayfunctions return the corresponding properties aegtedecessofunction
returns the predecessors of a node in the dag. 0

Example 4.Figure 3b continues previous example, adding thehhess of each
node between square brackets. We suppose thatttred ieshness of sources is 30
and 7 days respectively. Freshness of activities qureries is calculated using the
previous definition (remember that most activitysisohave been neglected, except
A, which cost is 2). For Avalues of both inputs are compared, 30 and 11
respectively, taking the maximum. 0

Intuitively, if we consider a sequence of acti\stibat execute one after the other
(a path in the calculation dag), the freshnessatd dfter executing the last activity is
the sum of the freshness in the moment data wak brgahe first activity (initial
freshness), plus the cost of the path, i.e. the timexecute all the activities in the
path (execution cost) plus the time activities i@itstart execution (synchronization
delay). We define the path cost as follows:

Definition 3. Given a path [fA,,... Aj] in the calculation dag G from a source
node A, we define thgath costas the sum of processing costs (of nodesoAA,)
plus the synchronization delays between all theeand

PathCost([A,... Ap]) = Zx=1.p (COSt(A,G)) +2y=1 p (delay(Ac1,AxG)) O

Observe that for each node, there is a path fochwive add all synchronization
delays and processing costs to the source actashrfess and we obtain the
freshness of the node.

Exemple 5.In the previous example, the freshness @fcan be calculated
adding the freshness of sourcg(R), plus the delays (2,0,0,7) and the costs X2,
in the path [R Ay, As, As, Ag). O



On the evaluation of data freshness in data integraystems 17

Then, the freshness of a node can be calculatdteast of the most expensive
path from a source relation plus the source adteahness. The following lemmas
specify it:

Lemma 1.For a given node A there exists a path [#,... Aj] from a source node
Aq that verifies:

Freshness(# = Freshness(f + PathCost([AA,... Ay) O

Lemma 2.For a given activity node 4 freshness is given by the cost of the most
expensive path:

Freshness(f = max {Freshness@ + PathCost([fA4,... Ag]) / [AgAq,... Aj
is a path from a source node} 0

Lemma 1 states that there exists a path in thelddagletermines the freshness of
each node and lemma 2 states that this path imtist expensive one (the critical
path).Demonstration can be found in (Peralta et24104).The existence of a critical
path allows the use of a large spectrum of algamsthior optimizing a workflow of
activities. Next section discusses its use whenngspliirements are not achieved.

4.4. Enforcing freshness

Our goal is to provide at the query level the degahness expected by the users.
To know if user freshness expectations can be eetlidy the system, we can
propagate freshness values (as defined in definifjoand compare them with those
expected for queries. If the propagated freshnakes are lower than user expected
values then freshness can be guaranteed. If theagated freshness values are
greater than user expected values, we have to ireghe system design to enforce
freshness or negotiate with source data provideusers to relax constraints.

When freshness cannot be assured for a user gherg, exists at least one path
from a source relation where propagated freshiselsgher than expected freshness.
There are several alternatives to enfdreshness in a path:

— Negotiating with users to relax freshness expiects. It should be followed
when users expectations are too high for the detadan be effectively obtained
from sources.

— Negotiating with source data providers to relaMrse constraints. Sometimes
the system hardware can be powered to support fineqeient accesses to the
sources. Other times, this alternative implies detivy and eventually paying for a
better service, for example, receiving data witbveer actual freshness.

— Improving the design of the activities of thetpab order to reduce their
execution cost. This implies the design of theesysto reduce the execution cost of
the activities. Sometimes the changes can be ctated in the critical path that
slows the system. Other times a complete reengimgeef the whole system is
necessary, either changing the implementation efatttivities, the synchronization
policies, the decisions of which data to materebz even the hardware.



18 Bases de données avancéeg®piurnée, 2004

— Synchronizing the activities of the path in orderreduce the delay between
them. This implies finding the most appropriate aisn frequencies for some
activities respecting possible source access @ntr The main difficulty resides in
the synchronization of activities having severghuts, sometimes with different
policies and refresh frequencies.

4.5. lllustrating example

We summarize the proposal with an example. Consid#ata integration system
built for retrieving meteorological information, wh is illustrated in figure 4.
Freshness is evaluated with the timeliness factor.

There are three source relations; With real time satellite meteorological
predictions, Rwhichis a dissemination database updated once aaddyR with
information about climatic sensors which is pul#dhwith a three hours delay.
Source actual freshness is 0 (negligible), 24 ahd8s respectively.

The goal of the system is to provide fresh metegichl information to solve
four types of queries: QYhistorical information about climate alerts), (@etailed
data comparing predictions), ;Qaggregated data about predictions) ang Q
(aggregate data about climate measurements). ésgexct that the freshness of
retrieved data does not exceed 168, 72, 48 andi3 hespectively.

The DIS is composed of nine activities that prodéssinformation performing
the data extraction, filtering, integration and mggtion. Figure 4 shows the
relationship between activities and their cosfgressed in hours (inside each node,

Figure 4. Calculating freshness in a meteorological system



On the evaluation of data freshness in data intiegraystems 19

at the left). Activities execute when queries avsqul (output-synchronoug), when
new data is extracted (input-synchronotjsor asynchronously (execution period is
in indicated inside the nodes, at the right). Thkags are shown near the edges.

Freshness values are shown between square braeateach node. They are
calculated following definition 2, adding executioost and synchronization delay to
the freshness of predecessors.

Data for solving @has a freshness of 71 hours which satisfy usezaapons of
168 hours. This means that the system can be ek activities in the paths from
sources to Qcan be executed less frequently. Data for sol@ragloes not achieve
user expectations (68 versus 48 hours). Analyziagtitical path to @([R,, Ay, As,
Ae, Ag, Q]) some activities can be synchronized to redueedélays and attain
freshness expectations (for example executingimmediately after 4. The
execution cost of some activities can be reducedftr example replacing wrapper
A, for a more performing one). However, even neghecthe cost of the activities in
the paths to @ freshness expectations cannot be achieved bedhasactual
freshness of Ris too high. The solution should be a negotiatigth users and/or
source providers.

5. Conclusion

Data freshness represents a family of quality facémd metrics. In this paper we
have analyzed these factors and metrics and thardésathat influence the data
freshness evaluation, namely the type of applioatibe synchronization policy and
the nature of data. We presented a taxonomy difrfiesss factors and metrics and we
used it to classify existing works.

We have also presented our current investigatiorthe line of developing an
auditing tool for data freshness evaluation. Weppsed a framework for performing
such evaluation, which models the DIS integratiobcpss and its properties in terms
of a labeled calculation dag. We discussed datahfiess evaluation and
enforcement solutions as graph traversal mechanisms

Data freshness isfast classquality dimension which is more and more required
by end-users. Solving the problems of evaluatind) emforcing data quality opens a
door to consider data production as any other gezduction.

6. References

Bouzeghoub M., Fabret F., Matulovic-Broqué M., «ddbing Data Warehouse Refreshment
Process as a Workflow Application », in proc. oé tnt. Workshop on Design and
Management of Data Warehouses DMDW'@@rmany, 1999.

Bouzeghoub M., Peralta V., « A Framework for An@ysf Data Freshness », in proc. of the
Int. Workshop on Information Quality in Informati@ystems IQIS’2004rance, 2004.



20 Bases de données avancéed®*purnée, 2004

Bright L., Raschid L., « Using Latency-Recency Regffor Data Delivery on the Web », in
proc. of the28" Int. Conf. on Very Large Databases VLDB'@hina, 2002.

Cho J., Garcia-Molina H., « Synchronizing a databtasimprove freshness », in proc. of the
2000 ACM Int. Conf. on Management of Data SIGMODWSA, 2000.

Gal A., « Obsolescent materialized views in quergcpssing of enterprise information
systems », in proc. of th@999 ACM Int. Conf. on Information and Knowledge
Management CIKM'9QUSA, 1999.

Gancarski S., Le Pape C., Valduriez P., « Relakimghness to Improve Load Balancing in a
Cluster of Autonomous Replicated Databases », ioc.pof the 5" Workshop on
Distributed Data and Structures WDAGreece, 2003.

Gupta A., Mumick |., « Maintenance of Materializ&dews: Problems, Techniques, and
Applications »Data Engineering BulletinJune 1995.

Gupta H., « Selection of Views to Materialize ilData Warehouse », in proc. of 68 Int.
Conf. on Database Theory ICDT'9Greece, 1997.

Hull R., Zhou G., « A Framework for Supporting Détigegration Using the Materialized and
Virtual Approaches », in proc. of thE996 ACM Int. Conf. on Management of Data
SIGMOD'96 Canada, 1996.

Jarke M., Jeusfeld M., Quix C., Vassiliadis P., «chitecture and Quality in Data
Warehouses: An Extended Repository Approadhfe, Systemsvol.24(3): 229-253,1999

Labrinidis A., Roussopoulos N., « Balancing Perfante and Data Freshness in Web
Database Servers », in proc. of 2@ Int. Conf. on Very Large Data Bases VLDB'03
Germany, 2003.

Li W.S., Po O., Hsiung W.P., Selcuk Candan K., A@hD., « Freshness-driven adaptive
caching for dynamic content Web sitesData & Knowledge Engineering DKEvol.
47(2): 269-296, 2003.

Naumann F., Leser U., « Quality-driven IntegratidrHeterogeneous Information Systems »,
in proc. of the25" Int. Conf. on Very Large Databases VLDB'$otland, 1999.

Peralta V., Bouzeghoub M., Evaluating Data Freshire®ata Integration Systems, technical
report, Université de Versailles, France, 2004.

Segev A., Weiping F., « Currency-Based Updates igiributed Materialized Views », in
proc. of thes™ Int. Conf. on Data Engineering ICDE’9USA, 1990.

Shin B., « An exploratory Investigation of Systemc&ess Factors in Data Warehousing »,
Journal of the Association for Information Systewws. 4(2003), 141-170, 2003.

Theodoratos D., Bouzeghoub M., « Data Currency iughctors in Data Warehouse Design
», in proc. of thelnt. Workshop on Design and Management of Data Warses
DMDW'99 Germany, 1999.

Wang R., Strong D., « Beyond accuracy: What datalijumeans to data consumers »,
Journal on Management of Information Systewos. 12, 4:5-34, 1996.

Yang J., Karlapalem K., Li Q., « Algorithms for ragtlized view design in data warehousing
environment », in proc. of th€3rd Int. Conference on Very Large DataBases
VLDB’1997, Greece, 1997.

Zhuge Y., Garcia-Molina H., Wiener J., « Multipleiew Consistency for Data
Warehousing », in proc. of tH8" Int. Conf. on Data Engineering ICDE'9UK,1997.



