
Bases de données avancées. 20ème journée, 2004

On the evaluation of data freshness in data
integration systems

Verónika Peralta – Mokrane Bouzeghoub

Laboratoire PRiSM, Université de Versailles
45, avenue des Etats-Unis
78035 Versailles cedex, FRANCE
Veronika.Peralta@prism.uvsq.fr - Mokrane.Bouzeghoub@prism.uvsq.fr

ABSTRACT. Data freshness has been identified as one of the most important data quality
factors in information systems. This importance increases particularly in the context of
systems composed of a large set of autonomous data sources, where integrating data having
different freshness may lead to semantic problems. There are various definitions of data
freshness in the literature as well as different metrics to measure them, depending on the
applications where they are used. This paper presents an analysis of these definitions and
metrics and proposes a taxonomy to compare them. This taxonomy is useful for (i) analyzing
the way data freshness is defined and used in several types of systems and (ii) studying the
properties of the system that influence data freshness. We model the system and its properties
as a workflow and we present a mechanism for evaluating data freshness based on the
workflow representation.
RÉSUMÉ. La fraîcheur des données est l'un des facteurs de qualité les plus importants dans les
systèmes d'information. Cette importance est accrue dans le contexte des systèmes composés
d’un grand nombre de sources de données autonomes, où l’intégration des données
caractérisées par des fraîcheurs différentes peut mener à des problèmes sémantiques. Dans
la littérature, il existe différentes définitions de la fraîcheur des données ainsi que des
métriques permettant de la mesurer, et ce en fonction des applications où elles sont
employées. Cet article présente une analyse de ces définitions et ces métriques et propose une
taxonomie permettant de les comparer. Cette taxonomie servira à (1) analyser la manière
dont la fraîcheur des données est définie et utilisée dans différents types de systèmes, et (2)
étudier les propriétés du système qui influencent la fraîcheur des données. Nous représentons
le système et ses propriétés comme un workflow et nous présentons notre approche pour
l'évaluation de la fraîcheur basée dans cette représentation.

KEYWORDS: data freshness, quality evaluation, quality metrics.

MOTS-CLÉS : fraîcheur des données, évaluation de la qualité, métriques de la qualité.

2 Bases de données avancées. 20ème journée, 2004

1. Introduction

Data freshness has been identified as one of the most important attributes of data
quality for data consumers (Shin, 1996). Some surveys and empirical studies have
proved that data freshness is linked to information system success (Wang et al.,
1996)(Shin, 2003). Then, achieving required data freshness is a challenge for the
development of a large variety of applications. Furthermore, the increasing need to
access to information that is available in several data sources introduces the problem
of choosing between alternative data providers and of combining data with different
freshness values. This paper presents an analysis of data freshness and its various
underlying metrics in a system that integrates information of several data sources.

Examples of Data Integration Systems (DIS) are Mediation systems, where data
is extracted from several sources, integrated and presented to the user, commonly
using the wrapper-mediator architecture. Data Warehouse systems also extract,
transform and integrate information from various, possibly heterogeneous, sources and
make it available for strategic analysis to the decision makers. Other examples are
federations of databases, where a key characteristic is the preservation of source
autonomy and Web Portals which provide access to subject-oriented data acquired
and synthesized from web sources, generally caching important amounts of data.

Several freshness definitions have been proposed for different types of data
integration systems. The traditional freshness definition is called currency (Segev et
al., 1990) and describes how stale is data with respect to the sources. Recent
proposals incorporate another notion of freshness, called timeliness (Wang et al.,
1996), which describes how old is data. Then, freshness represents a family of
quality factors, or a quality dimension, with different associated metrics. Each factor
best suites a particular problem or type of system.

In this paper we analyze this quality dimension and we present a taxonomy of its
factors and metrics based upon the nature of the data, upon the type of application
and upon the synchronization policies of the underlying management system. We
analyze, in terms of the taxonomy, the way freshness is defined and used in several
types of systems.

Considering a freshness factor and a method to measure it at the sources, a
freshness value can be calculated for the data returned to the user. To calculate this
value we should combine the different source freshness values and take into account
the processes that extract, transform and convey the data to the user. We model the
calculation process as a workflow of calculation activities and we present an
evaluation process based on the workflow representation.

The contribution of this paper is twofold. Firstly, we analyze data freshness
factors and metrics within a taxonomy. Secondly, we propose a framework for data
freshness evaluation.

The rest of the document is organized as follows: Section 2 discusses the
different definitions and metrics of the freshness dimension and presents the

On the evaluation of data freshness in data integration systems 3

taxonomy. Section 3 presents the freshness evaluation problem, summarizing
existing works and our current investigations. Section 4 proposes a framework for
data freshness evaluation. Finally, section 5 concludes with our general remarks.

2. Analysis of data freshness

Intuitively, the concept of data freshness introduces the idea of how old is the
data: Is it fresh enough with respect to the user expectations? Has a given data
source the more recent data? Is the extracted data stale? When was data produced?
Data freshness has then not a unique definition in the literature. There are various
definitions concerning different concepts and metrics, which are mainly due to the
different objectives of the systems where they are used.

In this section we analyze data freshness definitions and metrics, we discuss the
dimensions that impact the evaluation and enforcement of data freshness and we
present a taxonomy that summarizes the discussion.

2.1. Freshness definitions and measurement

Data freshness comprises a family of quality factors each one representing some
freshness aspect and having its own metrics. For that reason freshness is commonly
mentioned as a quality dimension (Jarke et al., 1999). From a user point of view, we
distinguish two sub-dimensions of this quality dimension:

– Currency factor (Segev et al., 1990): It captures the gap between the extraction
of data from the sources and its delivery to the users. For example, currency
indicates how stale is the account balance presented to the user with respect to the
real balance at the bank.

– Timeliness factor (Wang et al, 1996): It captures how often data changes or how
often new data is created in a source. For example, timeliness indicates how often the
product prices change in a store or how often new books are added to a library.

Factor Metric Definition
Currency The time elapsed since data was extracted from the source (The

difference between query time and extraction time) (Segev et
al., 1990)

Obsolescence The number of updates transactions/ operations to a source since
data extraction time (Gal, 1999)

Currency

Freshness rate The percentage of tuples in the view that are up-to-date (have not
been updated since extraction time) (Cho et al., 2000).

Timeliness Timeliness The time elapsed from the last update to a source (the difference
between query and last update times) (Naumann et al., 1999).

Table 1. Summary of freshness factors and metrics

4 Bases de données avancées. 20ème journée, 2004

A metric is a specific instrument that can be used to measure a given quality
factor. There might be several metrics for the same quality factor. Table 1 describes
the metrics proposed in the literature for measuring data freshness, classified by
factor. A larger description of each one can be found in (Bouzeghoub et al., 2004).

2.2. Dimensions for freshness analysis

In this section we analyze some dimensions that impact the analysis and
enforcement of data freshness. We analyze the nature of data, the type of application
and the synchronization policies of the system.

2.2.1. Nature of data

According to its change frequency, we classify source data in three categories:

– Stable data: It is data that is improbable to change. Examples are scientific
publications; although new publications can be added to the source, older
publications remain unchanged. Other examples are person names, postal codes and
country names.

– Long-term-changing data: It is data that has a very low change frequency.
Examples are the addresses of employees, country currencies and hotel price lists in
a tourist center. The concept of “low frequency” is domain dependent; in an e-
commerce application, if the stock of a product changes once a week it is considered
to be low-frequency change while a cinema that changes its playbills weekly has a
high-frequency change for spectators.

– Frequently-changing data: It is data that has intensive change, such as real-time
traffic information, temperature sensor measures and sales quantities. The changes
can occur with a defined frequency or they can be random. For example, restaurant
menus which are updated every morning have a defined change frequency, but the
account balances which are updated with every account movement have not got a
defined frequency.

When working with frequently changing data, it is interesting to measure how
long data can remain unchanged and minimize the delivery of expired data.
However, when working with stable or long-term changing data, these questions
have no sense since data does not change very often. It is more interesting to
measure how often new data is created or how old is the data.

2.2.2. System features

The freshness of the data returned to the user depends on the freshness of
extracted data but also on the processes that extract, integrate and deliver this data.
These processes are very important because they can introduce additional delays.
We distinguish three main families of architectural techniques: those that calculate
data when a new query is posted, those that cache the data most frequently used, and
those that materialize the data needed to answer user queries. When using

On the evaluation of data freshness in data integration systems 5

materialization, data is stored for some time in the data integration system
repositories, which decreases its freshness. The features of these three categories of
systems are summarized below:

– Virtual systems: The system does not materialize any data so all queries are
calculated when they are posed. The users send their queries to the system and wait
the response. The system queries the relevant sources and merges their answers in a
global answer that is delivered to the user. Examples are pure virtual mediation
systems and query systems in database federations.

– Caching systems: The system caches some information, typically some source
relations that are frequently accessed or the result of some frequent queries. The
system estimates the time during which the data will be up to date and invalidates it
when passed this time. The users pose their queries to the system and if the
information required to answer the queries is stored in the cache, the system delivers
it to the user. If the information is not stored in the cache or it is invalidated, the
system queries the sources as in virtual systems and possibly refreshes cache data.
Examples are caching and replication systems.

– Materialized systems: The system materializes large volumes of data which is
refreshed with respect to a certain scenario. The users pose their queries and the
system answers them almost using the materialized data. Examples are data
warehousing systems and web portals that support materialization.

Virtual systems are conceived to retrieve data as current as possible, returning a
current state of the source data. In caching systems, some level of staleness is
allowed but the gap between source states and the integration system state should be
relatively small. In materialized systems that gap can be greater, but its magnitude
depends on the concrete applications.

2.2.3. Synchronization policies

The way the data integration system (DIS) is implemented influences the freshness
of the data delivered to the users. Particularly, the synchronization between the
sources, the DIS and the users has impact in data freshness because it introduces
delays. For example, a system that synchronizes updates each end of the day may
provide data which is not fresh enough for the expectations of a given user.

According to the interaction between the DIS and the sources, the extraction
processes can have pull or push policies. With pull policy, the DIS queries the
sources to obtain data and with push policy, the source sends data to the DIS. The
notification of new available data can come from an active source (e.g. using
triggers) or can be determined by the DIS continuously polling the source. Active
sources can have their own policies as sending each updated tuple, or sending sets of
tuples every regular periods of time or when changes surpass a threshold. Pull
policies can also be driven by temporal or non-temporal events.

According to the interaction between the DIS and the users, the query processes
can also have pull or push policies. With pull policy, users directly pose queries to

6 Bases de données avancées. 20ème journée, 2004

the DIS. With push policy, users subscribe to certain queries and the DIS regularly
conveys response data to the users. Push policies can also be driven by temporal or
non-temporal events.

Combining the previous interactions between users, DIS and data sources leads
to six possible configurations which are shown in figure 1. With synchronous
policies, the user directly accesses source data. With asynchronous policies, the DIS
answers user queries using materialized data and asynchronously, the materialized
data is refreshed from source data.

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

DIS

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

DIS

Configurations are named with the user-DIS
policy followed by the DIS-source policy, (/)
represent asynchronisms and (-) synchronisms.

Synchronous configurations:

- pull-pull: arrow (a)
- push-push: arrow (f)

Asynchronous configurations:

- pull / pull: arrows (b) and (c)
- pull / push: arrows (b) and (e)
- push / push: arrows (d) and (e)
- push / pull: arrows (d) and (c)

Figure 1. Synchronization policies

Asynchronous policies introduce delays. The refresh frequency of the DIS
repository is important to evaluate the freshness of retrieved data. When pushing
data to the user, the push frequency is also important.

In systems where there are heterogeneous data sources with different access
constraints and users with different freshness expectations, it is important to support
and combine several kinds of policies.

2.3. A taxonomy of freshness works

In this section we present a taxonomy that summarizes this discussion and allows
comparing different proposals for freshness evaluation. The taxonomy is composed
of the previously described dimensions: (i) nature of data, (ii) application type and
(iii) synchronization policies.

Nature of data is a user-oriented dimension which qualifies the properties of
source data from a user point of view. But not all the combinations of nature of data
and freshness factors are interesting. On the one hand, when data changes very
frequently, there is not interest in measuring timelines, which captures stable data

On the evaluation of data freshness in data integration systems 7

behaviour. On the other hand, there is no sense to evaluate the currency of long-term
and stable data because they are almost always current as they do not change very
often. In the latter case, the system can assure currency even without explicit
evaluation. The other combinations need evaluation to determine the freshness level.
For them, the development of evaluation tools is interesting. Table 2 shows the
relation, indicating when data freshness can be assured without evaluation and when
it is interesting to evaluate it (V) or not (X).

 Frequently changing Long-term changing Stable

Timeliness X V V

Currency V assured assured

Table 2. Interesting combinations of freshness factors and nature of data

System features and synchronization policies are system-oriented dimensions
which describe the system relation with data freshness. Not all the combinations
between system features and synchronization policies are valid. Table 3 shows the
interrelations between them, indicating the valid combinations.Virtual systems only
support the pull-pull configuration. Materialized systems support the configurations
having an internal repository to store materialized data. Caching systems support the
configurations that pull source data (synchronous and asynchronous). The push-push
configuration is not usually implemented in the three system types discussed.

 pull-pull pull/ pull pull/ push push/ pull push/ push

Materialized X V V V V

Caching V V X V X

Virtual V X X X X

Table 3. Valid combinations of system features and synchronization policies

The user-oriented and the system-oriented dimensions are orthogonal. Virtual,
caching or materialized systems (with their valid combinations of synchronization
policies) can be built to query different types of data.

The system-oriented dimensions are also orthogonal to the freshness factors,
because user interest in freshness is independent to the way the system is
implemented. However, the metrics for the currency factor are related to the system
implementation. In virtual systems the main interest is the response time, so the
currency metric is appropriate. In caching systems all the metrics have been
identified as interesting, as different existent applications evaluate them. In
materialized systems, currency and obsolescence have been used. Table 4 shows the
co-relation of all the taxonomy dimensions:

8 Bases de données avancées. 20ème journée, 2004

 Frequently changing Long-term changing Stable

Virtual

 Pull-pull
Currency Timeliness Timeliness

Caching

 Pull-pull
Pull/pull
Pull/push

Currency
Obsolescence
Freshness-rate

Timeliness Timeliness

Materialized

 Pull/pull
Pull/push
Push/pull
Push/push

Currency
Obsolescence

Timeliness Timeliness

Table 4. Co-relation of all the taxonomy dimensions

The technical problems to solve for each combination are quite different. For
example, enforcing currency in a materialized system implies developing efficient
update propagation algorithms to deal with consistency problems, while evaluating
timeliness in virtual systems is quite independent on the query rewriting algorithms
and is dominated by source data timeliness. In next section we discuss the freshness
evaluation problems.

3. The data freshness evaluation problems

In this section we analyze several types of systems that evaluate data freshness in
terms of the taxonomy. A larger description of the state of the art and research
problems is presented in (Bouzeghoub et al., 2004). We finally enounce our current
investigations in the line of data freshness evaluation, which are detailed in section 4.

3.1. Some systems that consider data freshness

In this section we analyze several types of systems that evaluate data freshness
and we describe the goals and problems that they present. Table 5 summarizes the
proposals in terms of the taxonomy presented before.

3.1.1. Data warehousing systems

In data warehousing systems, freshness is studied through the currency factor in
the context of view materialization. Traditional query optimization algorithms are
extended to take into account the materialized views. In (Gal, 1999), a cost model
has been proposed for balancing the query generation and data transmission cost on
the one hand, and the obsolescence cost on the other hand.

On the evaluation of data freshness in data integration systems 9

Materialization introduces potential inconsistencies with the sources and
warehouse data may become out-of-date (Zhuge et al., 1997). The view maintenance
problem consists in updating a materialized view in response to changes arisen at
source data. Most of the work concentrates in assuring DW consistency for different
types of views and refresh strategies (Gupta et al., 1995). A key problem in the last
years has been the selection of a set of views to materialize in order to optimize the
query evaluation and/or the maintenance cost, possibly in the presence of some
constraints (Gupta, 1997)(Yang et al, 1997). Data freshness is implicitly considered
when defining the update propagation processes. In most works, the update
propagation processes are triggered by sources when the amount of changes is
greater than a threshold or are executed periodically (pull/push and pull/pull
policies). In (Theodoratos et al., 1999), they propose an algorithm that takes as input
the user expectations for data currency and determines the minimal update
frequencies that allow achieving these values (pull/push policy).

3.1.2. Mediation systems

In classical mediation systems, freshness is also studied through the currency
factor. In (Hull et al., 1996), authors propose the construction of Squirrel mediators,
which combine virtual and materialized data, and formally proof that the freshness of
the returned data is bounded. They combine pull-pull and pull/pull policies.

New proposals take into account the timeliness factor. It is used as a quality
metric to compare among sources and to filter the data returned to the user. In
(Naumann et al., 1999), they study how to propagate a set of quality factors from
several heterogeneous sources to the mediator. They propose a virtual scenario with
pull-pull policy.

3.1.3. Caching systems

In caching systems, data is considered fresh when it is identical to data in the
sources, so freshness is represented by the currency factor and measured with its
metrics (currency, obsolescence, freshness-rate). An important problem is keeping
cache data up-to-date. Traditional cache proposals estimate the time-to-live (TTL) of
an object (Bright et al., 2002), so the cache can store frequently changing data as
well as long-term changing data. When the TTL has expired the object is invalidated
in the cache, so in the next access the object will be directly read from the source
(pull-pull and pull/pull policies). In (Cho et al., 2000), they study synchronization
policies for cache refreshment and experimentally verify their behavior. They
measure freshness with two metrics: currency (called age in the paper) and freshness-
rate. In (Li et al., 2003), they balance response time and invalidation cycles for
assuring data currency. In (Bright et al., 2002), they propose the use of latency-
recency profiles to adapt caching algorithms to user currency requirements.

Newer proposals combine caching and materialization techniques. In (Labrinidis
et al., 2003), they propose an algorithm to select which WebViews (html fragments
derived from a database) to materialize without exceeding a given currency threshold.

10 Bases de données avancées. 20ème journée, 2004

3.1.4. Replication systems

In a replication context, data at a slave node is totally fresh if it has the same
value as the same data at the master node, i.e. all the refresh transactions for that data
have been propagated to the slave node (Gancarski et al., 2003). Freshness is studied
by means of the currency factor for frequently changing data.

In (Gancarski et al., 2003), they determine the minimum set of refresh
transactions needed to guarantee that a replica is fresh enough with respect to the
user freshness requirements for a given query. They propose a load-balancing
algorithm that takes freshness into account to decide when to refresh a replica. They
follow pull-pull and pull/pull policies.

Works Measurement Nature of data
Application
type

Synchroniz
Policy

Materialization for
query processing

Obsolescence Frequently
changing

Virtual,
materialized

Pull-pull,
pull/pull

View maintenance Currency Frequently
changing

Materialized Pull/pull,
pull/push

View maintenance
policies

Currency Not specified Materialized Pull/pull

Selection of views to
materialize

Currency Frequently
changing

Materialized Pull/pull,
pull/push

Mediation design
(with materialization)

Currency Not specified Virtual,
materialized

Pull-pull,
pull/pull

Source selection in
mediation

Timeliness Not specified Virtual Pull-pull

Cache refreshment Currency,
obsolescence,
freshness-rate

Frequently
changing / long-
term changing

Caching Pull-pull,
pull/pull,
Pull/push

Cache refreshment
(with materialization)

Freshness-rate Frequently
changing

Caching,
materialized

Pull-pull,
pull/push

Replica refreshment Currency,
obsolescence

Frequently
changing

Caching Pull-pull,
pull/pull

Table 5. Summary of proposals

3.3. Our current investigations

The analysis of existing works in terms of the taxonomy (Bouzeghoub et al.,
2004) suggested open problems in the specification of user expectations, the
acquisition of source freshness measures and the formulation of cost models for the
query evaluation and update propagation processes of heterogeneous systems. This
knowledge can be used both for developing auditing tools that estimate the freshness
of an existing system and for designing a system driven by freshness expectations.

On the evaluation of data freshness in data integration systems 11

Among these problems, we are interested in the development of an auditing tool
for evaluating data quality, in particular data freshness, and deciding if user quality
expectations can be achieved. The auditing tool should take as input some metadata
describing the data integration system, the sources and the query classes, as well as
measures of the actual quality of source data and user quality requirements. The tool
should return a measure of the quality of the data returned to the user.

The tool can be used to verify if the data returned to the user fulfills its freshness
requirements and if not, the evaluation can aid for determining which parts of the
system should be improved. Furthermore, the tool can be used to compare alternative
processes which can implement the data integration system either accessing to
different sources or computing the resulting information following different
algorithms. The comparison can: (i) determine which processes achieve freshness
expectations, (ii) order the candidate processes by their freshness, or (iii) propose the
user only the most adequate process (or processes). Next section proposes a
framework to develop such tool.

4. A framework for data freshness evaluation

In this section we present a framework for data freshness evaluation. We
represent the DIS integration process as a workflow of possibly autonomous
calculation activities and we analyze how to measure data freshness within the
workflow. We also discuss how to compare freshness values with user freshness
expectations and how to use the comparison to enforce freshness.

4.1. A graph representation of a DIS

The DIS integration system can be viewed as a workflow where different
calculation activities perform the different tasks that extract, transform and convey
data to end-users. Each activity takes input data from sources or other activities and
produces result data that can be used as input for other activities. Then, data
traverses a path from sources to user queries where it is transformed and processed
according to the system logics. The data produced by an activity can be immediately
consumed by other activities or it can be materialized for being queried later. Note
that this notion of activity can represent processes of different complexities, from
simple SQL operations to complex transformation procedures that can execute
autonomously.

The workflow representation is general enough to represent different types of
systems. We mention some of them:

– In classical mediation systems the workflow activities are composed of
wrappers and mediators.

– In DW systems, the refreshment processes can also be seen as a workflow of
activities (Bouzeghoub et al., 1999). The activities can be complex processes that

12 Bases de données avancées. 20ème journée, 2004

produce the views of the different DW repositories, i.e. the operational data store,
the corporate DW and the data marts.

– In caching systems, the refreshment processes can be seen as simple workflow
processes which store data in the cache and ask the web for additional data.

Figure 2 sketches the workflow representation. On the bottom diagram there are
remote source relations (Ri). On the middle diagram there are the different activities
(A i) whose inputs are source data. The arrows indicate that the output node uses the
data returned by the input node. The activities that directly take input data from
source relations are the wrappers that perform the data extraction from sources. The
other activities take input data, direct or indirectly, from wrappers. On the top
diagram there are the user query classes (Qi) representing families of queries that can
be executed using the data produced by activities.

Source
Relations

DIS
Activities

Queries
Classes

Wrappers

R1 R2

A1 A2

A3

A5

Q1

A4

A6

Q2

Figure 2. A workflow representation of a DIS

4.1.1. The calculation dag

Formally, we represent the DIS workflow by means of a directed acyclic graph
(dag) that describes the involved activities, their inputs and outputs. The dag shows
the data paths from source relations to user queries within the different activities.

Definition 1. A calculation dag is a dag G defined as follows: The nodes of G
are of three types: source nodes (with no input edges) that represent the source
relations, target nodes (with no output edges) that represent query classes and activity
nodes (with both input and output edges) that represent the different activities that
calculate the set of target nodes from the source nodes. The edges of G represent that
a node is calculated from another (the data flows in the sense of the arrow). �

Example 1. Consider the calculation dag of figure 2 representing the refreshment
process of a simple DW system that integrates information of source relations R1 and

On the evaluation of data freshness in data integration systems 13

R2. Activities A1 and A2 are the wrappers, activities A3 and A4 perform the cleaning
and activity A5 integrates and materialize data to support user queries of class Q1.
Activity A 6 calculates a monthly summary and materializes it for other user queries
(Q2). The edges entering to A5, for example, indicate that data produced by A3 and
A4 is used as input in the integration process and the edges coming out A5 indicate
that integrated data is used as input for A6 and Q1. �

4.2. Labeling the calculation dag

The freshness of the data delivered to the user depends on the execution delay of
the system, that is the length of time from data extraction to data delivery. This
length of time is influenced not only for the execution cost of each activity (the time
the activity needs for executing) but also for the delays that can exist between the
executions of consecutive activities. These delays are determined by the execution
policies of the system and the access constraint of the sources.

In this section we define some properties that describe the execution delay of the
system. We will associate them as labels of the calculation dag.

4.2.1. Some properties

We analyze the properties that impact in the execution behavior of the system,
namely the execution policies, synchronization delays, access constraints and
execution costs.

Execution policy: We consider three possible execution policies for an activity
depending on the synchronization with predecessor and successor nodes:

– Input-synchronous: The activity is synchronized with its predecessor nodes. The
activity execution starts when it receives a notification about new available data in
one of its inputs. For wrapper activities, the notification comes from the source. For
the other activities, the notification comes from a predecessor node announcing that
it has finished its execution and has produced new data.

– Output-synchronous: The activity is synchronized with its successor nodes. The
activity execution starts when it receives a notification of some successor that needs
new data, then, the activity has to execute to provide this new data. For the activities
that directly answer user queries, the notification comes from the processes that
manage user queries. For the other activities, the notification comes from a successor
node announcing that it has to execute and needs new data as input.

– Asynchronous: The activity is not synchronized with predecessor nor successor
nodes. The activity execution starts when the activity receives a notification from the
system. We consider that the system sends periodic notifications, then there is a
fixed amount of time (period) between two consecutives executions.

In systems with homogeneous synchronization policies (see section 2.2.3) the
execution policies of its activities follow well-known patterns. For example, in a
pull-pull system all activities have output-synchronous policies and in a pull/pull

14 Bases de données avancées. 20ème journée, 2004

system, the activities that answer user queries from materialized data follow output-
synchronous policies while the activities that refresh the materialized data follow
asynchronous policies. In heterogeneous systems that combine several
synchronization policies the synchronization between every pair of activities should
be studied.

Synchronization delay: When two consecutive activities in a path have different
execution frequencies (due to different execution policies), the data produced by the
former must be materialized for being queried later by the latter. In this case, there is
a synchronization delay. The synchronization delay between two activities is the
amount of time passed between the end of the execution of one activity and the start
of the other. The synchronization delays are very important in the evaluation of data
freshness because they introduce extra waiting time for data and consequently they
decrease the data freshness.

If two consecutive activities are synchronized and the second activity executes
always a fixed amount of time after the first one, the synchronization delay is well-
known. If activities are not synchronized, the synchronization delay has to be
estimated in the worst case. The algorithms to determine the delays between two
activities (or estimate them in the worst case) are presented in (Peralta et al., 2004).

Example 2. Consider the evaluation of timeliness in the calculation dag of
previous example and suppose that wrappers (A1 and A2) execute weekly following
asynchronous policy, cleaning and integration processes (A3, A4 and A5) execute
after the data extraction (input-synchronous policy) and the monthly summary (A6)
executes at the end of each month (asynchronous policy). Imagine that source R2
materialize data, which is read by A2 two days later (delay is 2 days) and source R1
does not materialize data (no delay). As A3, A4 and A5 are input-synchronous there is
not delay with their predecessors. However, as A5 and A6 have different policies with
different periods (7 and 30 days) the data produced by A5 can have been materialized
for almost a week when read by A6, then the delay will be a week in the worst case.
The delays with target nodes are the refresh periods of the materialized data, in the
worst case. Figure 3a shows the calculation dag labeled with synchronization delays. �

Access constraint: In some situations, the sources do not allow the system to
continuously query them, or it is very expensive to query a source very often. We
can express such constraints giving a maximum access period for the data extraction.
The access period is the lowest time interval that a source allows between two
consecutive data extractions. Note that in the presence of access constraints, the
wrapper must periodically materialize data to assure the availability of source data
(asynchronous execution policy). The access constraint should be explicitly defined
by the source provider, the system designer or both.

Processing cost: The processing cost of an activity is the amount of time, in the
worst case, necessary for reading input data, executing and building result data. Each
activity needs some time for executing and obtaining a result; this amount of time is
the processing cost. There are several delays due to the execution of the activity. For

On the evaluation of data freshness in data integration systems 15

wrappers, it involves the time necessary for communicating with the source (sending
the request and waiting for the response), the time for computing the extraction
query and the time for materializing the changes (if needed). For the other activities,
it involves the time for reading input data, computing and the time for materializing
the result (if needed). Communication time can be estimated using statistics of
previous executions. Computation and materialization times can be estimated using
cost models. Our approach is independent of the cost model used but the estimation
depends on it. The determination of the appropriate cost model depends on the
freshness metric and on the three dimensions of the taxonomy.

Example 3. Consider the evaluation of timeliness in the calculation dag of
previous example. In such a system, the communication costs and the update
propagation costs are negligible compared to synchronization delays (week, month).
A cost model for this system can neglect the execution costs of the nodes. However,
if the cleaning activity A4 needs user interaction and the cleaning process can have a
duration of two days, this cost should be modeled. �

4.2.2. Labeling the calculation dag

We label each node of the calculation dag with a descriptive name. In addition,
we label activity nodes with the processing cost, execution policy and access
constraint (if there is one). We label each edge with the synchronization delay.

 (a)

0

R1 R2

A1 A2

A3

A5

Q1

A4

A6

Q2

2

00

00

30

7

7

 (b)

0

R1 R2

A1 A2

A3

A5

Q1

A4

A6

Q2

[30] [7]
2

00

00

30

7

7

[30] [9]

[30]

[30]

[11]

[37]

[37]

[67]

cost=2

Figure 3. (a) Synchronization delays, (b) Freshness propagation

4.3. Evaluating freshness within the graph

In this section we specify how to propagate freshness values within the graph,
calculating the freshness of the intermediate data produced by each node. We firstly
give an intuitive idea of the freshness calculation method and we present a recursive
definition. We also enunciate some lemmas that show another way to calculate
freshness in terms of the dag paths. Such calculation allows the definition of some
strategies to enforce freshness.

16 Bases de données avancées. 20ème journée, 2004

Intuitively, the freshness of the data produced by a node depends on the freshness
of data at the moment of reading it (the freshness of data produced by the
predecessor node plus the synchronization delay) and the time the node needs for
executing (the execution cost). To calculate the freshness of a node we add such
values. When the node reads data from several input nodes, input freshness values
should be combined. As we are interested in an upper bound of freshness we take the
worst case (the maximum). We recursively define the freshness of a node as follows:

Definition 2. The freshness of an activity or target node in a calculation dag G is
the maximum sum of the freshness of a predecessor node, plus the synchronization
delay between nodes, plus the processing cost of the node. The freshness of a source
node is its actual freshness.

– For a source node A: Freshness(A) = ActualFreshness(A)

– For an activity or target node A: Freshness(A) = max {Freshness(B) +
delay(B,A,G) /B ∈ predecessor(A,G)} + cost(A,G)

The ActualFreshness is a measure of the freshness of data in a source. The cost
and delay functions return the corresponding properties and the predecessor function
returns the predecessors of a node in the dag. �

Example 4. Figure 3b continues previous example, adding the freshness of each
node between square brackets. We suppose that the actual freshness of sources is 30
and 7 days respectively. Freshness of activities and queries is calculated using the
previous definition (remember that most activity costs have been neglected, except
A4 which cost is 2). For A5 values of both inputs are compared, 30 and 11
respectively, taking the maximum. �

Intuitively, if we consider a sequence of activities that execute one after the other
(a path in the calculation dag), the freshness of data after executing the last activity is
the sum of the freshness in the moment data was read by the first activity (initial
freshness), plus the cost of the path, i.e. the time to execute all the activities in the
path (execution cost) plus the time activities wait for start execution (synchronization
delay). We define the path cost as follows:

Definition 3. Given a path [A0,A1,… Ap] in the calculation dag G from a source
node A0, we define the path cost as the sum of processing costs (of nodes A1 to Ap)
plus the synchronization delays between all the nodes:

PathCost([A0,… Ap]) = Σx=1..p (cost(Ax,G)) + Σx=1..p (delay(Ax-1,Ax,G)) �

Observe that for each node, there is a path for which we add all synchronization
delays and processing costs to the source actual freshness and we obtain the
freshness of the node.

Exemple 5. In the previous example, the freshness of A6 can be calculated
adding the freshness of source R2 (7), plus the delays (2,0,0,7) and the costs (0,2,0,0)
in the path [R2, A2, A4, A5, A6]. �

On the evaluation of data freshness in data integration systems 17

Then, the freshness of a node can be calculated as the cost of the most expensive
path from a source relation plus the source actual freshness. The following lemmas
specify it:

Lemma 1. For a given node Ap, there exists a path [A0,A1,… Ap] from a source node
A0 that verifies:

Freshness(Ap) = Freshness(A0) + PathCost([A0,A1,… Ap]) �

Lemma 2. For a given activity node Ap, freshness is given by the cost of the most
expensive path:

Freshness(Ap) = max {Freshness(A0) + PathCost([A0,A1,… Ap]) / [A0,A1,… Ap]
is a path from a source node} �

Lemma 1 states that there exists a path in the dag that determines the freshness of
each node and lemma 2 states that this path is the most expensive one (the critical
path). Demonstration can be found in (Peralta et al., 2004). The existence of a critical
path allows the use of a large spectrum of algorithms for optimizing a workflow of
activities. Next section discusses its use when user requirements are not achieved.

4.4. Enforcing freshness

Our goal is to provide at the query level the data freshness expected by the users.
To know if user freshness expectations can be achieved by the system, we can
propagate freshness values (as defined in definition 2) and compare them with those
expected for queries. If the propagated freshness values are lower than user expected
values then freshness can be guaranteed. If the propagated freshness values are
greater than user expected values, we have to improve the system design to enforce
freshness or negotiate with source data providers or users to relax constraints.

When freshness cannot be assured for a user query, there exists at least one path
from a source relation where propagated freshness is higher than expected freshness.
There are several alternatives to enforce freshness in a path:

– Negotiating with users to relax freshness expectations. It should be followed
when users expectations are too high for the data that can be effectively obtained
from sources.

– Negotiating with source data providers to relax source constraints. Sometimes
the system hardware can be powered to support more frequent accesses to the
sources. Other times, this alternative implies demanding and eventually paying for a
better service, for example, receiving data with a lower actual freshness.

– Improving the design of the activities of the path in order to reduce their
execution cost. This implies the design of the system to reduce the execution cost of
the activities. Sometimes the changes can be concentrated in the critical path that
slows the system. Other times a complete reengineering of the whole system is
necessary, either changing the implementation of the activities, the synchronization
policies, the decisions of which data to materialize or even the hardware.

18 Bases de données avancées. 20ème journée, 2004

– Synchronizing the activities of the path in order to reduce the delay between
them. This implies finding the most appropriate execution frequencies for some
activities respecting possible source access constraints. The main difficulty resides in
the synchronization of activities having several inputs, sometimes with different
policies and refresh frequencies.

4.5. Illustrating example

We summarize the proposal with an example. Consider a data integration system
built for retrieving meteorological information, which is illustrated in figure 4.
Freshness is evaluated with the timeliness factor.

There are three source relations: R1 with real time satellite meteorological
predictions, R2 which is a dissemination database updated once a day, and R3 with
information about climatic sensors which is published with a three hours delay.
Source actual freshness is 0 (negligible), 24 and 3 hours respectively.

The goal of the system is to provide fresh meteorological information to solve
four types of queries: Q1 (historical information about climate alerts), Q2 (detailed
data comparing predictions), Q3 (aggregated data about predictions) and Q4
(aggregate data about climate measurements). Users expect that the freshness of
retrieved data does not exceed 168, 72, 48 and 2 hours respectively.

The DIS is composed of nine activities that process the information performing
the data extraction, filtering, integration and aggregation. Figure 4 shows the
relationship between activities and their costs expressed in hours (inside each node,

A7

2 4

A7

2 4

A8

1 �

A8

1 �

A6

1 10

A6

1 10

A4

1 �

A4

1 �

A3

1 �

A3

1 �

A2

5 24

A2

5 24

A1

2 12

A1

2 12

A5

3 �

A5

3 �

Q1 Q2 Q3

R3

0 00

00 0

024

10 108

4 0 0

A9

0 �

A9

0 �

Q4

0

0

[0] [24] [3]

[2] [29] [4]

[32] [5]

[57]

[67] [68] [5]

[71] [68] [68] [5]

R2R1

Figure 4. Calculating freshness in a meteorological system

On the evaluation of data freshness in data integration systems 19

at the left). Activities execute when queries are posed (output-synchronous:
↓
), when

new data is extracted (input-synchronous: ↑) or asynchronously (execution period is
in indicated inside the nodes, at the right). The delays are shown near the edges.

Freshness values are shown between square brackets near each node. They are
calculated following definition 2, adding execution cost and synchronization delay to
the freshness of predecessors.

Data for solving Q1 has a freshness of 71 hours which satisfy user expectations of
168 hours. This means that the system can be relaxed and activities in the paths from
sources to Q1 can be executed less frequently. Data for solving Q3 does not achieve
user expectations (68 versus 48 hours). Analyzing the critical path to Q3 ([R2, A2, A5,
A6, A8, Q3]) some activities can be synchronized to reduce the delays and attain
freshness expectations (for example executing A6 immediately after A5). The
execution cost of some activities can be reduced too (for example replacing wrapper
A2 for a more performing one). However, even neglecting the cost of the activities in
the paths to Q4, freshness expectations cannot be achieved because the actual
freshness of R3 is too high. The solution should be a negotiation with users and/or
source providers.

5. Conclusion

Data freshness represents a family of quality factors and metrics. In this paper we
have analyzed these factors and metrics and the features that influence the data
freshness evaluation, namely the type of application, the synchronization policy and
the nature of data. We presented a taxonomy of freshness factors and metrics and we
used it to classify existing works.

We have also presented our current investigations in the line of developing an
auditing tool for data freshness evaluation. We proposed a framework for performing
such evaluation, which models the DIS integration process and its properties in terms
of a labeled calculation dag. We discussed data freshness evaluation and
enforcement solutions as graph traversal mechanisms.

Data freshness is a first class quality dimension which is more and more required
by end-users. Solving the problems of evaluating and enforcing data quality opens a
door to consider data production as any other item production.

6. References

Bouzeghoub M., Fabret F., Matulovic-Broqué M., « Modeling Data Warehouse Refreshment
Process as a Workflow Application », in proc. of the Int. Workshop on Design and
Management of Data Warehouses DMDW’99, Germany, 1999.

Bouzeghoub M., Peralta V., « A Framework for Analysis of Data Freshness », in proc. of the
Int. Workshop on Information Quality in Information Systems IQIS’2004, France, 2004.

20 Bases de données avancées. 20ème journée, 2004

Bright L., Raschid L., « Using Latency-Recency Profiles for Data Delivery on the Web », in
proc. of the 28th Int. Conf. on Very Large Databases VLDB'02, China, 2002.

Cho J., Garcia-Molina H., « Synchronizing a database to improve freshness », in proc. of the
2000 ACM Int. Conf. on Management of Data SIGMOD'00, USA, 2000.

Gal A., « Obsolescent materialized views in query processing of enterprise information
systems », in proc. of the 1999 ACM Int. Conf. on Information and Knowledge
Management CIKM'99, USA, 1999.

Gancarski S., Le Pape C., Valduriez P., « Relaxing Freshness to Improve Load Balancing in a
Cluster of Autonomous Replicated Databases », in proc. of the 5th Workshop on
Distributed Data and Structures WDAS, Greece, 2003.

Gupta A., Mumick I., « Maintenance of Materialized Views: Problems, Techniques, and
Applications », Data Engineering Bulletin, June 1995.

Gupta H., « Selection of Views to Materialize in a Data Warehouse », in proc. of the 6th Int.
Conf. on Database Theory ICDT’97, Greece, 1997.

Hull R., Zhou G., « A Framework for Supporting Data Integration Using the Materialized and
Virtual Approaches », in proc. of the 1996 ACM Int. Conf. on Management of Data
SIGMOD'96, Canada, 1996.

Jarke M., Jeusfeld M., Quix C., Vassiliadis P., « Architecture and Quality in Data
Warehouses: An Extended Repository Approach », Info Systems, vol.24(3): 229-253,1999

Labrinidis A., Roussopoulos N., « Balancing Performance and Data Freshness in Web
Database Servers », in proc. of the 29th Int. Conf. on Very Large Data Bases VLDB’03,
Germany, 2003.

Li W.S., Po O., Hsiung W.P., Selçuk Candan K., Agrawal D., « Freshness-driven adaptive
caching for dynamic content Web sites », Data & Knowledge Engineering DKE, vol.
47(2): 269-296, 2003.

Naumann F., Leser U., « Quality-driven Integration of Heterogeneous Information Systems »,
in proc. of the 25th Int. Conf. on Very Large Databases VLDB'99, Scotland, 1999.

Peralta V., Bouzeghoub M., Evaluating Data Freshness in Data Integration Systems, technical
report, Université de Versailles, France, 2004.

Segev A., Weiping F., « Currency-Based Updates to Distributed Materialized Views », in
proc. of the 6th Int. Conf. on Data Engineering ICDE’90, USA, 1990.

Shin B., « An exploratory Investigation of System Success Factors in Data Warehousing »,
Journal of the Association for Information Systems, vol. 4(2003), 141-170, 2003.

Theodoratos D., Bouzeghoub M., « Data Currency Quality Factors in Data Warehouse Design
», in proc. of the Int. Workshop on Design and Management of Data Warehouses
DMDW'99, Germany, 1999.

Wang R., Strong D., « Beyond accuracy: What data quality means to data consumers »,
Journal on Management of Information Systems, vol. 12, 4:5-34, 1996.

Yang J., Karlapalem K., Li Q., « Algorithms for materialized view design in data warehousing
environment », in proc. of the 23rd Int. Conference on Very Large DataBases
VLDB’1997, Greece, 1997.

Zhuge Y., Garcia-Molina H., Wiener J., « Multiple View Consistency for Data
Warehousing », in proc. of the 13th Int. Conf. on Data Engineering ICDE'97, UK,1997.

