A Framework for Data Quality Evaluation in a Data I ntegration System

L - 12 , .2 . 1 1
Veronika Peralta - Raul Ruggia- Zoubida Kedad- Mokrane Bouzeghoub
! Laboratoire PRISM, Université de Versailles, FRANCE
? Instituto de Computacién, Universidad de la Republica, URUGUAY
e-mail: {vperalta, ruggia}@fing.edu.uy, {Zoubida.Kedad,
Mokrane.Bouzeghoub}@prism.uvsq.fr

Abstract

To solve complex user requirements the informasgatems need to integrate data from several, ggssib
autonomous data sources. One challenge in sucloemént is to provide the user with data meeting hi
requirements in terms of quality. These requiremané difficult to satisfy because of the strontetegeneity

of the sources. In this paper we address the probfedata quality evaluation in data integratiosteyns. We
present a framework which is a first attempt tanfalize the evaluation of data quality. It is baseda graph
model of the data integration system which allowdaidefine evaluation methods and demonstrateogitgns

in terms of graph properties. To illustrate ourraggh, we also present a first experiment withdé freshness
guality factor and we show how the framework isdueevaluate this factor according to differerdgrsarios.

1. Introduction

The needs of accessing in a uniform way to information availalvteuitiple data sources are
increasingly higher and generalized. Such information requiremam@ often solved by
implementing complex data manipulation processes, which involve wewsgeries on data
from heterogeneous and autonomous sources. As the potentially retri¢aegtales, users
are more and more concerned about the quality of these result§[[40][8e quality of the
resulting data depends mainly on the quality of the data sourcdébeanbaracteristics of the
manipulation process that builds the resulting data from the souroes.ddncretely, quality
depends on the internal quality of the sources (their coherendectimpleteness, their
freshness, etc.), on the confidence about the producers of thesessaumd also on the ways
of production of the information returned to the user. In a context whersformation is
produced by sophisticated aggregation algorithms, the quality meesureequires a fine
knowledge of the computing process of this information. Furthermore, thederteity of
the data sources (e.g. data formats and semantics) adds coynjaetkié evaluation of the
quality of the finally returned information.

For example, let us consider an Internet query asking for the popstar children videos.
The result may be different depending on which sources are quesiedell as on the
algorithm used to decide which videos are popular and which are not.dskvenly a few
sources that are specialized in Disney® videos, the resubevidlearly incomplete. If we ask
the most important video vendors’ sources, we risk at omitting somesvimig we can think
that the result is complete enough. We can search in the ktéireet or we can ask only the
sites we trust, having different results, too. Finally, we camp kbe intersection of such
recommendations or the union of all of them; we can selectsthef lvideos from the source
that has the most recent statistics or follow another strategy. All tbeselerations influence
the final result: the list of popular children videos.

To evaluate the quality of the data returned to the user inaalBtagration System (DIS), we
should consider the quality of the different data sources and als&etdnta account the
processes that extract, integrate and convey the data to the user.

This paper addresses the problems of evaluating the quality ofedattéing from a DIS. To
achieve this, the paper proposes a framework which is a firstgtte formalize the different
elements involved in data quality evaluation. Among these elembets fare source
databases, classes of user queries, processes that extrgciferd@d convey data, metadata
describing system features, quality measures and quality evaluatoithaits.

In our framework, Data Integration Systems are modeled as woskfl@wcalculation
activities, in order to enable the representation of complex datgumiation operations. The
quality evaluation algorithms are based on the workflow’s grapreseptation. They are
defined in terms of graph methods and graph properties can be usdiiabe propositions.
The idea behind the framework is to define a flexible context walldws to take into
account new quality factors, DIS metadata and evaluation algorithms.

To illustrate this approach we present a first experiment w&tayfreshness as a specific
quality factor, and we show how the framework is used to evaluatdatttor according to
different scenarios.

The rest of the document is organized as follows: Section 2 introduedsamework and
describes the quality evaluation basis using graph propertieors8chows the application
of the framework to the evaluation of data freshness. Finaltioset discusses related work
and section 5 concludes.

2. A Data Quality Evaluation Framework

In this section we present a framework for data qualitjuetian in the context of a DIS. The
framework models the DIS processes and properties, which agssaeg to evaluate data
quality.

Generally speaking, information systems can be viewed as iafiomm manufacturing
systems [1] in which the information returned to the user isrh@ugt, the source data is the
raw material and the algorithms or processes that compute thigngesnformation are the
manufacturing processes. Different manufacturing processelecatudied and compared in
order to select the best implementation for the system. Inctimtext, the quality of data
produced by each process becomes an important element for such sompéhne objectives
of the framework are: (i) model alternative processes, @lfutate the quality of the
information products built following each process, (iii) compare alternptiveesses, and (iv)
decide if information products meet user quality expectations.

The proposed framework performs the data quality evaluation thrtheglapplication of
different evaluation algorithms, each one specialized in theuraasnt of a quality factor.
The algorithms take as input a calculation process and evaluate the quidléylafa returned
to the user following that process.

We define the framework as follows:

Definition 1. Thequality evaluation framework is a n-uple:

<Sources, QueryClasses, CalculationDAGs, Properties, Algorithms>
where Sources is a set of available data sourc€sieryClasses is the set of classes of user
queries that the DIS must solv@alculationDAGs is a set of dags representing the alternative
processes that can implement the DPBgperties is a set of properties describing system
features and quality measures @hgorithms is a set of quality evaluation algorithms. [

The following subsections describe the framework and its components.

2.1. Modédling the Data I ntegration System

A Data Integration System is an information system thagégnates data of different
independent data sources and provides the users with a uniform adbesdata by the mean
of a global model. User queries are expressed in terms ofdba& gnodel. Examples of DIS
are Mediation systems, where data is extracted from sesaredes, integrated and presented
to the userwrapper-mediator architecture [21] is commonly used to perforsettaesks. Data
Warehouse (DW) systems [9] also extract, transform and ategrformation from various,
possibly heterogeneous, sources and make it available for &tratedysis to the decision
makers. Other examples are federations of databases [17] ahexe characteristic is the
preservation of data source autonomy and Web Portals which providssatte subject-
oriented information acquired and synthesized from Web sources, generhlhgdatportant
amounts of data [4].

The DIS can be viewed as a workflow in which the activitiefop@ the different tasks that
extract, transform and convey data to end-users. Each workflow yadtkies data from
sources or other activities and produces result data that can beasisagut for other
activities. Then, data traverses a path from sources to userg whertransformed and
processed according to the system logics. The data produced kacti@ity can be
immediately consumed by other activities or it can be maierthlifor being queried later.
Note that this notion of activity can represent processes ofeahtfeomplexity; from simple
SQL operations to complex transformation procedures that can execute autonomously.
Figure 1 sketches the workflow representation of a DIS pro@esthe bottom diagram there
are remote sources (Si). On the middle diagram there areftbeenli activities (Ai) whose
inputs are source data. The arrows indicate that the output nodéeskga returned by the
input node. The activities that directly take input data from seuate the wrappers that
perform the data extraction from sources. The other activitles itgout data, directly or
indirectly, from wrappers. On the top diagram there are the usey quasses (Qi)
representing families of queries that can be solved using the data produceditigsact

Query
Classes

DIS
Activities

Source
Relations

Figure 1 — A workflow representation of a DIS

Formally, we represent the DIS workflow by means of a dideetyclic graph (dag) that
describes the involved activities, their inputs and outputs. The dag shewata paths from
sources to user queries within the different activities.

Definition 2. A calculation dag is a dag G defined as follows: The nodes of G are of three
types: source nodes (with no input edges) that represent the soun@aeget nodes (with no
output edges) that represent query classesaatidty nodes (with both input and output

edges) that represent the different activities that calctit@eset of target nodes from the
source nodes. The edges of G represent that a node is calctdatemhbther (the data flows
in the sense of the arrow). 0

Example 1. Consider the DIS of Figure 1 which provides meteorological informalibare
are three sources:; Svith real time satellite meteorological predictions, ith official
meteorological predictions from a french dissemination databageSawith information
taken by climatic sensors. The goal of the system is to provdeonological information to
solve four classes of queries; (Distorical information about climate alerts); (@etailed data
comparing predictions), {Jaggregated data about predictions) andaQgregated data about
climate measurements). The DIS is composed of nine actii@ptocess the information
performing the data extraction, integration and aggregation. dthdtias A;, A, and A are
the wrappers, while Afilters information keeping only the data about the metropolitan
regions of France. Activity Aintegrates information extracted from sourcest®l $, adding
comparison indicators and checking some integrity constraig{gi#s information produced
by A, and A and materializes the result.; Aggregates information keeping historical
materialized data about drastic changes in climate alegtsalsh performs aggregations.
Finally, Ag reorganizes input information ordering it by region. The edgesiegt® As, for
example, indicate that data produced hyaAd A is used as input in the integration process
and the edges coming oug Adicate that integrated data is used as input for activitiesd

Ag and it supports user queries of class Q O

2.2. Quality Factorsand Properties

In this section we describe the quality factors and thedattanecessary to express system
quality.

To carry out data evaluation we firstly need to identify whicHityufactors to evaluate. The
choice of the most appropriate quality factors for a given DIS depends on tlappiseations
and the way the DIS is implemented. Several works study theygtediors that are more
relevant for different types of systems, for example [2QJl18 The selection of the
appropriate quality factors implies the selection of metrics #ed implementation of
evaluation algorithms that measure, estimate or bound such quality factors.

In order to calculate quality values corresponding to thogerfadhe algorithms need input
information describing system properties such as, for exampleintbeah activity needs to
execute or a descriptor stating if an activity materialdas or not. These properties can be
of two types: (i)descriptions, indicating some feature of the system (costs, delays, policies,
strategies, constraints, etc.), or (measures, indicating a quality value corresponding to a
quality factor, which can be an actual value acquired from a soarcajculated value
obtained executing an evaluation algorithm or an expected valuatindiche user desired
value for the quality factor. The selection of the adequate grepetepends on the quality
factors that are relevant for the system and on the calculation processes.

Example 2. Consider a system where users are interested in the evalufatiespanse time
and freshness. To calculate the response time, it is necessary to knowhwdmgtvities
materialize data and the execution cost of the activities dbahot materialize data. To
calculate the data freshness it is also necessary to knoefteghment frequencies and costs
as well as the actual freshness of the data in the sources.eQ#mples of properties can
include execution policies, source constraints and communication delays. O

We define a property as follows:

Definition 3. A property is a 3-uple<Name, Metric, DataType> where theName is a String that
identifies the propertyMetric is a description of the measurement semantics and units and
DataType describes the domain of the property values. O

The data types can be basic types as Integer, String ordDat@nplex ones, for example the
availability of a source can be represented as a sequence of time intervals.

A property is related to certain nodes or edges of the catmuldag. For example, we can
associate availability constraints to source nodes, availabdfigctations to target nodes and
communication delays to the edges between sources and wragparswe need to model
different types of nodes and edges in order to associate the diffeopetrties to such types
of nodes and edges. The following definition formalizes the asgwtiat properties to the
calculation dag.

Definition 4. A labeled calculation dag is a calculation dag whose nodes and edges have
associated a set of property values:

G =(V, E, VT, ET, type, P, prop, propvalue)
where:

- V and E are the set of nodes and edges of the calculation dag.

- VT and ET are types of nodes and edges.

— Thetype function assigns a set of types of nodes or edges to the nodes andetig
dag. It is defined asype: V O E-> P (VT) O P (ET), wherePis the potency set.

- P is a set of properties.
— The prop function assigns a subset of properties to each node and edget tigoe. |
defined asprop: VT O ET > P (P).

— The propvalue function assigns a value to each property of each node and edge of the
dag (The property must be associated to a type of node/edge wddbiedge). It is
defined aspropvalue: {x /I x O (VO E)} x{p/pOPO@@) ¢tO(NTUOET)OpO
prop(t) Ot O type(x))} = p.DataType 0

2.3. Evaluation Algorithms

The quality evaluation is performed by evaluation algorithms tideg as input a labeled
calculation dag, calculate the quality values corresponding to @yqgfedtor and return a
calculation dag with an additional property (corresponding to the egdlgatlity factor). In
this way, different evaluation algorithms can be successivelgutad over a calculation dag
in order to evaluate different quality factors.

The calculation dag must be labeled with certain properties i todexecute a certain
algorithm. For example, the activity nodes of a calculation dag bwrigabeled with their
execution cost in order to execute certain algorithm that eealube response time of the
system.

We characterize an algorithm as follows:

Definition 5. An evaluation algorithm is a n-uple:

A = <Name, Input, Precondition, QFactor, Types, Output>
where:

— Nameis a String that identifies the algorithm.

— Thelnput is a labeled calculation dag.

— Precondition is a set of pairs <property, type> indicating that pheperty must be
associated to thigpe of nodes or edges in the input calculation dag.

— QFactor is the quality factor that the algorithm evaluates.

— Typesis a set of types of nodes and edges to which the new propergsanding to
the quality factor) will be associated.

— TheOutput is a calculation dag labeled as the one given as input ancabked with
the evaluated quality factor. 0

Evaluation algorithms must satisfy Definition 5 but the framéwdwes not constraint the
way they can be implemented. For example déia freshness quality factor can be evaluated
in a bottom-up way, that is, calculating the freshness of tleeptatiuced by a node in terms
of the freshness of the data coming from input nodes and adding sasé@osxample the
execution costs of activities). Thesponse time quality factor can be evaluated in a top-down
way, starting at target nodes and adding execution and commanicasts of predecessor
nodes until arriving to a materialized activity node or a source node.

The proposed DAG representation facilitates the implementaticeubedt enables to use
graph primitives (predecessors, successors, get propertiesaretctjaversal methods (find
the shortest path, depth-first search, etc.). For examplegdbase time quality factor can be
expressed as the most expensive path from sources or madrinbdes, taking as cost
function some combination of nodes and edges properties.

The flexibility of Definition 5 and the facilities provided by tigeaph model are important
properties of the framework because they enable the extensibilihe global environment
with new algorithms. In the next section we present the evatuafi data freshness as an
example of how the evaluation algorithms can be defined.

3. Using the Framework to Evaluate Data Freshness Factor s

In this section we apply the framework to evaluate data freshiée first discuss freshness
definitions and metrics. Then we show how to define data freshness in termsaitthation
dag and discuss some ideas about using the framework to enforce data freshness.

3.1. Data Freshness

Intuitively, the concept of data freshness introduces the idea of hbis thle data: Is it fresh
enough with respect to the user expectations? Has a given date g®most recent data? Is
the extracted data stale? When was data produced? Dstadss has not a unique definition
in the literature. There are various definitions concerning @ifteconcepts and metrics,
which are mainly due to the different objectives of the systehere they are used. In this
section we analyze data freshness definitions and metrics.

Data freshness comprises a family of quality factors eachrepresenting some freshness
aspect and having its own metrics. For that reason freshnessnimonly mentioned as a
quality dimension [10].

From a user point of view, we distinguish two sub-dimensions of this quality dimension.

— Currency factor [16]: It captures the gap between the extraction of data from the sources
and its delivery to the users. For example, currency indicatesstadevis the account
balance presented to the user with respect to the real balance at the bank.

— Timeliness factor [20]: It captures how often data changes or how often new data i
created in a source. For example, timeliness indicates how digeproduct prices
change in a store or how often new books are added to a library.

Analogously, other sub-dimensions can be defined. For example, coasstenrce that is
frequently updated but continues having old data that is never updatedtirfsesneot

representing real-world phenomena). The oldest data may introduee remse on query
evaluation. A freshness factor that captures how old is the oldestimda source can be
useful.
A metric is a specific instrument that can be used to measwiven quality factor. There
might be several metrics for the same quality factor. Tadkestribes the metrics proposed in
the literature for measuring data freshness, classifieduibdisnension. In [3] we present a
larger description of each metric and we discuss how existingnsysdefine and evaluate

freshness.
Table 1 — Summary of freshness factors and metrics
Factor Metric Definition
Currency | Currency The time elapsed since data was extréaigdthe source (The difference
between query time and extraction time) [16][19]
Obsolescence | The number of updates transactioasdtogns to a source since data
extraction time [7]
Freshness rate] The percentage of tuples in theth@vare up-to-date (have not been updated
since extraction time) [5][11].
Timeliness | Timeliness The time elapsed from theupdate to a source (the difference between query
time and last update time) [14].

3.2. Properties Associated to Freshness

In this section we describe the properties that are important in the tewaloiadata freshness.
Along this section we will reference the labeled calculatiog dfFigure 2 which adds
properties to the calculation dag of Figure 1.

ey G2 213 4
ExpectedFreshness = 165 ExpectedFreshness = 72 ExpectedFreshness = 45 ExpectedFrezhness = 2
£ £
Delay = 4 Delay =0 Delay =0
: Delay =10 L L
A7 }.\ A5 A3
Cost=2 M Cost=1 Cost=0
" - AE ~
EPalicy = & Delay =8 — Delav =10 | EPolicy = OS EPdlicy = O
Period = 4 Cost =1 =
EPalicy = &
Period =10 Delay =0
¥ - .
Delavl= 24 Delay =0 ad
Cost =1
= EFolicy = OS
Cost=13
Delay =0 EPulicy = IS Delay =0
Delay =0
A9 AD 1
Cost=2 Cost=3 A3
EPaolicy = & EPalicy = & Cost =1
Petiod =12 Period = 24 EPaolicy = 03
£ £ £
Delay =0 Delay = 2 Delay =0
1 1 1
=3 52 53

AccessConstraint =12
ActualFreshness =0

AccessConstraint = 24
ActualFreshness = 24

Figure 2 — Labeled calculation dag

AccessConstraint = 0
ActualFreshness = 3

The freshness of the data delivered to the user depends on theaxdeldy of the system,
which is the amount of time from data extraction to data deglivehis length of time is
influenced not only for the processing cost of each activity (the the activity needs for
executing) but also for the delays that can exist between xtbeuteons of consecutive

activities. These delays are determined by the execution gotitithe system and the access
constraint of the sources. The following properties describe the executiorotithaysystem:

Execution policies. We consider three possible execution policies for an activity depgndi
on the synchronization with predecessor and successor nodes:

— Input-synchronous: The activity is synchronized with its predecessor nodes. Thetyact
starts its execution when it receives a notification about neilableadata in one of its
inputs.

— Output-synchronous. The activity is synchronized with its successor nodes. Thétgact
starts its execution when it receives a notification of someessor that needs new
data, then, the activity has to execute to provide this new data.

— Asynchronous. The activity is not synchronized with predecessor nor succassis.
The activity starts its execution when it receives a notiioafrom the system. We
consider that the system sends periodic notifications, then thardixed amount of
time (period) between two consecutives executions.

The execution policies of the activities depend on the type of systemexample, in a
mediation system all the activities have output-synchronous policies Auhaterialized data
warehouse the activities that answer user queries from nhztmtiadata follow output-
synchronous policies while the activities that refresh the nmbred data follow
asynchronous policies. In heterogeneous systems that combine ssuechfonization
policies the synchronization between every pair of activities should be studied.

In Figure 2 activity nodes are labeled with tBRolicy (execution policy) property, which
values are IS (input-synchronous), OS (output-synchronous) and A (asynchréwmbiug)es
with asynchronous policies have also associatedPteod (execution period) property,
expressed in hours.

Synchronization delays. When two consecutive activities in a path have different execution
frequencies (due to different execution policies) the data produgdte former must be
materialized for being queried later by the latter. In ¢hise, there is a synchronization delay.
The synchronization deldyetween two activities is the amount of time passed between the
end of the execution of one activity and the start of the other. yfehronization delays are
very important in the evaluation of data freshness because they cdgregtra waiting time

for data and consequently they decrease the data freshness.

The algorithms that determine the delays between two adiiydreestimate them in the worst
case) are presented in [15].

Figure 2 also shows edges labeled with Detay (synchronization delay) property. As
activities A, A4, Ag and A are output-synchronous there is not delay with their successors.
Analogously, there is no delay between activity ahd its predecessor because it is input-
synchronous. However, ag And A have different policies the data produced Rycan have
been materialized for almost 10 hours when read Hyhen the delay will be 10 hours in the
worst case. Imagine that sourcenfaterializes data once a day and the data is read twyoA
hours after materialization (delay is 2 hours) and sourcaads$ do not materialize data (no
delay). When there is materialization, the delays with targdes are the refresh periods of
the materialized data.

Access constraints. In some situations, the sources do not allow the DIS to continuously
qguery them, or it is very expensive to query a source very oftencaleexpress such
constraints giving a maximum access period for data eximacthe access period is the
lowest time interval that a source allows between two consecddéta extractions. Note that
in the presence of access constraints, the wrapper must pehodietérialize data to assure

the availability of source data (asynchronous execution policy). @tess constraint should
be explicitly defined by the source provider, the system designer or both.

Following the example, as, $naterializes data once a day it has no sense to queryet mor
frequently (constraint of 24 hours). Also consider that souyde 8xpensive, so the system
administrator has contracted to query it every 12 hoyrsa$no access constraint and can be
gueried at every moment (constraint is 0). Figure 2 also showg&dtbssConstraint property.

Processing costs. The processing cosff an activity is the amount of time, in the worst case,
necessary for reading input data, executing and building resaltEmath activity needs some
time for executing and obtaining a result; this amount of tintleeigprocessing cost. There are
several delays due to the execution of the activity. For wrapjteiavolves the time
necessary for communicating with the source (sending the requesivatidg for the
response), the time for computing the extraction query and thefeimeaterializing the
changes (if needed). For the other activities, it involves the fn reading input data,
computing and materializing the result (if needed). Communicatine tan be estimated
using statistics of previous executions. Computation and matatiahiztimes can be
estimated using cost models. Our approach is independent of the costuseddbut the
estimation depends on it. The determination of the appropriate cost oekrids on the
freshness metric. For example, consider the evaluation of tireglinea system where the
communication costs and the update propagation costs are negligible abntpare
synchronization delays (days, months). A cost model for that systemneglect the
processing costs of the nodes. However, if the activities angplex or require user
interaction needing a considerable amount of time to execute ctistishould be modeled.
Figure 2 shows th€ost (processing cost) property labeling activity nodes.

Actual and Expected Freshness. The actual freshness is a measure of the freshness ofi data i
a source, which can be provided by the source or can be estimated ordbbyride system.
Expected freshness is the desired freshness for the dataetetoy queries, which can be
directly set by users or obtained from user profiles. Both aetulexpected freshness must
be expressed using the same freshness metric.

Figure 2 shows the actual freshness of sources (with values 8d2Ztteours for sources,S

S, and S respectively) and user expected freshness (with values 168, 72, 4&hands Zor
query classes QQ,, Qs and Q respectively).

3.3. Freshness Evaluation

In this section we specify how to propagate freshness values whihigraph calculating the
freshness of the intermediate data produced by each node. Wegiwe an intuitive idea of
the freshness calculation method and we present a recursiveiaefiiite also enunciate
some lemmas that show another way to calculate freshnessns aérthe dag paths. Such
calculation allows the definition of some strategies to enforce freshness.

Intuitively, the freshness of the data produced by a node depends orstived® of data at
the moment of reading it (the freshness of data produced by tecpesor node plus the
synchronization delay) and the time the node needs for executingr@tbessing cost). To
calculate the freshness of a node we add such values. When theadsldat from several
input nodes, input freshness values should be combined. As we are interestedpper
bound of freshness we take the worst case (the maximum). We iveurdefine the
freshness of a node as follows:

Definition 6. The freshness of an activity or target node in a calculation dag G is the
maximum sum of the freshness of a predecessor node, plus theosyration delay between
nodes, plus the processing cost of the node. fidshness of a source node is its actual
freshness.
— For a source node A:
Freshness(A) = ActualFreshness(A)

— For an activity or target node A:
Freshness(A)= max {Freshness(B) + delay(B,A,G) /B O predecessor(A,G) } + cost(A,G)

The ActualFreshness, cost and delay functions return the respective properties. The
predecessor function returns the predecessors of a node in a dag. 0

Example 3. Figure 3 shows the Freshngweeperty, calculated using the previous definition.
For example, for A both inputs are compared, 57 (32+24+1) and 6 (5+0+1) respectively,

taking the maximum. O
o &2 8] (k)
ExpectedFreshness = 165 ExpectedFreshness = 72 ExpectedFreshness = 45 ExpectedFrezhness = 2
Freshhess = 71 Freshhess = 67 Freshhess = 65 Freshhess =5
£ 4 4
Delay =4 Delay =0 Delay =0
1 1 1
Delay =10
A7 .. ') o~ A8 A3
Cozst=2 Delay = & 25 Delay =10 Cozt =1 Cozt=0
Freshhess = 67 Freshhess = 65 Freshhesz =5
"] Cost=1 L ry
Freshniss =a7 ‘___h“‘xh____ Delay = 0
1
Delay = 24 Delay=0 — | A4
Cozt =1
o '&35 Freshhesz =5
ozt =
Delay =0 Freshness = 32 Delay = 0 Dela$= 0
1
A A2 A5
Cozst=2 Cozt=3 Cozt =1
Freshhess = 2 Freshhess = 29 Freshhess = 4
£ x £
Delay =0 Delay = 2 Delay =0
1 1 1
=1 52 53
ActualFreshness =0 ActualFreshness = 24 ActualFreshness = 3
Freshhess =0 Freshhess = 24 Freshhess =3

Figure 3 — Calculating freshness (Some properties have been omitted for readability)

Intuitively, if we consider a sequence of activities that ateeone after the other (a path in
the calculation dag), the freshness of data after executinggheadtivity is the sum of the
freshness at the time data was read by the first acinitial freshness), plus the cost of the
path, i.e. the time needed for executing all the activitieeenpaith (execution cost) plus the
delays between the activities in the path (synchronization JdéMs define the path cost as
follows:

Definition 7. Given a path [8A1,... Ap] in the calculation dag G from a source nodg wWe
define thepath cost as the sum of the execution costs (of nodestd A, plus the
synchronization delays between all the nodes:

PathCost([Ao, ... Ap]) = Zy=1.p (COSt(ALG)) + Zy=1 p (delay(Ax1,AG)) 0

Observe that for each node, there is a path for which we addnalreyization delays and
processing costs to the source actual freshness and we obtestimess of the node. In the

previous example, the freshness of @an be calculated adding the freshness of source S
(24), plus the delays (2,0,24,8) and the costs (3,3,1,2) in the patkp[Bs, As, A7.

Then, the freshness of a node can be calculated as the cost asthexpensive path from a
source plus the source actual freshness. The following lemmas specify it:

Lemma 1.
For any node f there exists a path pA1,... Ag] from a source nodefhat verifies:
Freshness(A;) = Freshness(Ag) + PathCost([Ag,Aq,... Ag])

Lemma 2.
For any activity node 4 freshness is given by the cost of the most expensive path:

Freshness(A;) = max {Freshness(Ay) + PathCost([Ag,Aq,... Ap]) /
[Ag,Ay,... Ap] is a path from a source node}

Lemma 1 states that there exists a path in the dag thaindets the freshness of each node,
and Lemma 2 states that this path is the most expensive oribe catical path (taking as
costs the processing costs and execution delays). Demonstrations can be found in [15]
The existence of a critical path allows the use of a largerspectf algorithms for optimizing

a workflow of activities. Next section discusses their use wissr requirements are not
achieved.

3.4. Enforcing Freshness

The system should provide at the query level the data freshnesstek by the users. To
know if user freshness expectations can be achieved by the systeroan propagate
freshness values (as defined in Definition 6) and compare them hatle texpected for
queries. If the propagated freshness values are lower thaexypseted values then freshness
can be guaranteed. If the propagated freshness values are tir@ataser expected values,
we have to improve the system design to enforce freshness orateguth source data
providers or users to relax constraints.

When freshness cannot be assured for a user query, there ebdatt ahe path from a source
where propagated freshness is higher than expected freshness.

There are several alternatives to enfdreshness in a path:

— Negotiating with users to relax freshness expectations. It shmultbllowed when
user's expectations are too high for the data that can betiwdfgcobtained from
sources.

- Negotiating with source data providers to relax source constr&oisetimes the
system hardware can be powered to support more frequent acaegbhessburces.
Other times, this alternative implies demanding and eventyaliyng for a better
service, for example, receiving data with a lower actual freshness.

— Improving the design of the activities of the path in order to retheieexecution cost.
This implies the design of the system to reduce the executidnotdke activities.
Sometimes the changes can be concentrated in the critical pa8iotha the system.
Other times a complete reengineering of the whole systestessary, either changing
the algorithms that implement the activities, the synchronizgmdisies, the decisions
of which data to materialize or even the hardware.

— Synchronizing the activities of the path in order to reduce the telayeen them. This
implies finding the most appropriate execution frequencies for saniwities
respecting possible source access constraints. The mainulthffiesides in the
synchronization of activities having several inputs, sometimes diffiérent execution
policies and refresh frequencies.

Example 4. In the example of Figure 3, data for solvingl@s a freshness of 71 hours which
satisfy user expectations of 168 hours. This means that the sygsienbe relaxed and
activities in the paths from sources tp €an be executed less frequently. Data for solviag Q
does not meet user expectations (68 versus 48 hours). Analyzingtitted path to Q ([Sp,

A, As, As, Ag, Q]) some activities can be synchronized to reduce the delayanaet
freshness expectations (for example executiggnfnediately after A). The execution cost
of some activities can be reduced too (for example replacingpera’, by a more
performing one). However, even neglecting the cost of the activitighe paths to @
freshness expectations cannot be achieved because the actuakfrespes too high. The
solution should be a negotiation with users and/or source providers. O

3.5. Experiments

Most of the functions of the previously described framework have ibeglemented in a
Data Quality Evaluation tool. The prototype was implemented in (J&4& 1.4) and manages
persistence via XML files [6]. Figures 2 and 3 are taken ftoenstreens of the tool. The tool
allows the selection of the quality factors that are mosvaatefor a given application, the
dynamic incorporation of new evaluation algorithms and new properties degdhbi system
metadata.

The tool has been used to perform some experiences with esiadss metrics in different
scenarios. The first experience was the evaluation of timelimess virtual scenario,
neglecting processing costs and execution delays, i.e. progpgateliness as the
combination of source actual timeliness, as in [14]. We have aesd the tool with
materialized scenarios, initially with asynchronous executioncipsliand progressively
generalizing the scenarios to represent hybrid environmentdrarhework helped us to test
the performance and appropriateness of the different evaluationttatg®rin the future, our
goal is to confront the results with user quality profiles.

4. Related Work

There are a variety of approaches to study the quality ofnirafiion systems. Some works
concentrate on the definition of quality properties, other proposeajdreaneworks to deal
with quality features during the system design and otherstireachievement or balance of
specific quality factors.

Some works study data quality from a user point of view. In [20], VéacgStrong develop a
framework that captures the data quality attributes thatgrertant to data consumers based
in two surveys. They present a classification of quality batteés in some dimensions
identifying patterns of quality problems. In [1], Ballow et abdel an information system as
a manufacturing system and present a set of concepts and pesctxdetermine the quality
of information products and to analyze the potential improvements toftmmation system.
They present some relevant quality attributes such as timgliaesuracy and cost. In [10],
Jarke et al. study quality factors in DW design. They group qualdyrs in categories and
dimensions and study the relationship between them. They presental fomodel for
representing quality goal formulation and quality measurement. 7 §l8n also studies
success factors in data warehouse design. In this line, Maninno and Waltehstundgact of
data warehouse refreshment policies in the quality of the DW [12].

Considering the design of an information system taking into accounidatiy, there are
some general proposals. In [14], Naumann and Leser introduce qualdysfax drive the
design of virtual mediation systems. They study how to propagaed quality factors from
several heterogeneous sources to the mediator. The propagationscoasisally of merge

functions that combine source actual values of two sources througlat@emal operator
(maximum, minimum, sum, product...). The propagated values for differentygfaaitors
are aggregated in a weighted sum. Our work differences from [14)vera points: Firstly,
they consider only JSP views in a virtual context. As we alsbvd#éa materialization and
complex calculation activities (which represent a bigger spactifisystems) we need to
consider and balance other system properties in the propagation of gakies. In addition,
they do not consider the notion of user preferences or profile, so they daetors are only
evaluated and compared to other plans. In [13], Marotta and Ruggia psesantpractical
experience with the definition and classification of quality progerin mediation systems.
They distinguish between user-viewpoint and system-viewpoint qualibpepies and
propose a methodology to convert from a viewpoint to the other. The conversamesl out
by propagating user quality requirements to the mediator, patipggource actual quality to
the mediator and applying conversion formulas. In [19], Theodoratos and Bouzegtaiub
the propagation aflata currency values in a DW of materialized views. They consider a DW
architecture where source images are refreshed periodicdliyre propagation of changes to
the other views follows input-synchronous policies. The proposed algdatten as input the
user expected values for data currency, and determines theabppate frequencies for
source images that allow achieving these values. In [8], @ealz discuss different problems
related to data quality evaluation and enforcement. In partichky,dgromise an algebra for
combining source actual quality values in order to calculate thityyaof the data returned in
response to a query.

5. Conclusion

This paper presented a framework for data quality evaluatiorDii® aontext and explained
the approach with a concrete quality factor (data freshness)stlidg of a quality factor
implies the analysis of metrics and properties needed for itga¢ia. Our framework allows
representing such properties and the evaluation algorithms in térentabeled calculation
dag.

This work is a first attempt towards the formalization of ttemework. We are currently
studying other quality factors (response time, confidence and liligi)a within the
framework in order to validate it. We are also extending the pymdb take into account the
new quality factors.

As future work, we plan to study the correlations between suchr$adtVe also plan to
confront the results with user satisfaction, in order to improveetfladuation algorithms.
These results will be re-injected into the framework definition.

References

1. Ballow, D.; Wang, R.; Pazer, H.; Tayi, G.: “Modelling Information rMéacturing
Systems to Determine Information Product Quality”. Managememn8ej Vol. 44 (4),
April 1998.

2. Bouzeghoub, M.; Fabret, F.; Matulovic-Broqué, M.: “Modeling Data Warehouse
Refreshment Process as a Workflow Application”. In Proc. of theWmrkshop on
Design and Management of Data Warehouses (DMDW’99), Germany, 1999.

3. Bouzeghoub, M.; Peralta, V.: “A Framework for Analysis of Dataskness” To appear
in Int. Workshop on Information Quality in Information Systems (IQIS’2004ance,
2004.

4. Bright, L.; Raschid, L.: "Using Latency-Recency Profiles fat@Delivery on the Web".
In Proc. of the 28 Int. Conf. on Very Large Databases (VLDB'02), China, 2002.

5. Cho, J.; Garcia-Molina, H.: "Synchronizing a database to improsgarfess”. In Proc. of
the 2000 ACM Int. Conf. on Management of Data (SIGMOD'00), USA, 2000.

6. Fajardo, F.; Crispino, I.; Peralta, V.: “DWD: Una Herramientaaavaluar la Calidad de
los Datos en un Sistema de Integracién”. Technical Report, InCo. Sidiadrde la
Republica, Uruguay, 2004.

7. Gal, A.: "Obsolescent materialized views in query processingntérprise information
systems”. In Proc. of the 1999 ACM Int. Conf. on Information and Knowledge
Management (CIKM'99), USA, 1999.

8. Gertz, M.; Tamer Ozsu, M.; Saake, G.; Sattler, iRegbrt on the Dagstuhl Seminar:
Data Quality on the Web”. SIGMOD Record Vol. 33(1), March 2004.

9. Inmon, W.: “Building the Data Warehouse”. John Wiley & Sons, Inc. 1996.

10.Jarke, M.; Jeusfeld, M.; Quix, C.; Vassiliadis, P.: “Architectarel Quality in Data
Warehouses An Extended Repository Approach”. Info Systems, Vol. 2249)253,
1999.

11.Labrinidis, A.; Roussopoulos, N.: “Balancmg Performance and DaegshRess in Web
Database Servers” In Proc. of thé"2at. Conf. on Very Large Data Bases (VLDB'03),
Germany, 2003.

12.Mannino, M.; Walter, Z.: “A Framework for Data Warehouse Refr&silicies”.
Technical report CSIS-2004-001, University of Colorado at Denver, 2004.

13.Marotta, A.; Ruggia, R.: “Quality Management in Multi-Source InfdioraSystems”. %
Workshop on Databases of the Chilean Computer Week (JCC'2003), Chile, 2003.

14.Naumann, F.; Leser, U.. "Quality-driven Integration of Heterogendafmmation
Systems". In Proc. of the 98nt. Conf. on Very Large Databases (VLDB'99), Scotland,
1999.

15. Peralta, V.; Bouzeghoub, M.: “Evaluating Data Freshness in Dé&gration Systems”.
Technical report, Université de Versailles, France, 2004.

16.Segev, A.; Weiping, F.: “Currency-Based Updates to Distributectfiddized Views”. In
Proc. of the@ Int. Conf. on Data Engineering (ICDE’90), USA, 1990.

17.Sheth, A.; Larson, J.. “Federated Database Systems for Mandgistgbuted,
Heterogeneous and Autonomous Databases”. ACM Computing Surveys, \B)l. 234-
236, September 1990.

18.Shin, B.: “An exploratory Investigation of System Success Fattddsita Warehousing”.
Journal of the Association for Information Systems, Vol. 4(2003), 141-170, 2003.

19.Theodoratos, D.; Bouzeghoub, M.: "Data Currency Quality Factors in \Watehouse
Design". In Proc. of the Int. Workshop on Design and Management of Datehduses
(DMDW'99), Germany, 1999.

20.Wang, R.; Strong, D.: "Beyond accuracy: What data quality meadata consumers".
Journal on Management of Information Systems, Vol. 12, 4:5-34, 1996.

21.Wiederhold, G.: “Mediators in the architecture of future informatigstesns”. IEEE
Computer, Vol. 25(3):38-49, 1992.

