Specification and Correctness of a
(small) Smart Card Operating System

Gustavo Betarte, Cristina Cornes, Nora Szasz, and Alvaro Tasistro

Instituto de Computacién
Universidad de la Repiblica
Montevideo, Uruguay

Abstract. This work reports an experiment on the specification and
formal verification of an operating system variant for smart cards.

1 Introduction

Programs embedded in micro-controllers constitute an important class of crit-
ical applications. In these applications the code is executed on a processor of
limited resources, the programs are small, critical, and they interact with an
external agent. The computational capacity of that agent can vary according to
the application in question. Depending on the application the agent can be con-
sidered inoffensive or a potential attacker. Implantable biomedical devices, like
pacemakers, and smart cards, like phone or purchasing cards, are respectively
examples of those applications.

The security problem of smart cards can be addressed at several levels: correct-
ness of the hardware, security of the communication protocol and encryption
algorithms, and correctness of the implementation of the smart card embedded
operating system. Several works have been done in the former two domains. Some
examples of hardware verification have been reported in [M0092,BWAH90]. Ex-
periences in the study of communication protocols and encryption algorithms
can be found in [Bol97a,Bol97b]. This article reports an experiment on the spec-
ification and formal verification of a variant of a smart card operating system.

The most significant results achieved are the following:

- We have developed a formal specification of the operating system. It is
written in a mathematical language based on Constructive Type Theory
[ML84,Coq85]. We shall call this specification the mathematical specifica-
tion.

- We have used the proof-assistant Coq [Bar97] to mechanically verify the
mathematical specification as well as the proofs of some interesting proper-
ties of the operating system.

The rest of the article proceeds as follows: in section 2 we give a concise de-
scription of smart cards and their operating systems. In section 3 we present a

detailed account of the specification. In section 4 we prove that the specification
satisfies a security property of the operating system. Finally, we conclude and
discuss possible further work.

2 Smart Cards

2.1 History

Plastic cards became popular in the beginning of the 50’s. Originally, the func-
tionality of these cards was quite simple: they were mainly used as data con-
tainers. The incorporation of a magnetic band on them made it possible to store
digital information that could be retrieved by means of reading devices. How-
ever, this technology has a serious drawback: the information stored in the card
can be read, written or even removed by anyone with access to an adequate
device. For this reason, magnetic cards are not the best device in which to store
confidential data. Extra precautions are needed to ensure confidentiality. It is
for this reason that most systems that use magnetic cards are connected on-line
to a host computer on which most of the critical information resides. This, in
turn, generates a cost related with information transmission.

A smart card is, in simple terms, a card with an embedded chip. This kind of
cards became the ideal device to provide a high level of security based on cryp-
tography. It is possible to store secret keys in them and to execute cryptographic
algorithms on those keys. In addition, the possibility of reprogramming a card
already on service to incorporate new functionalities allows to think of a range
of applications that go beyond the traditional magnetic cards.

2.2 The operating system of a smart card

The operating system of a smart card has as first goal the safe execution of pro-
grams and the protection of the information stored in the card. In contrast with
general purpose operating systems, these systems provide neither user interface
nor the possibility of retrieving externally stored information. The programs are
written as ROM code. This restricts the programming methodology and, in addi-
tion, does not allow to introduce modifications to the processor once the card has
been masked. Therefore, the correction of programming errors becomes rather
expensive. Then, a considerable amount of time must be invested in debugging
and certifying the code quality. The operating system must be at the same time
extremely reliable and robust.

An operating system for smart cards performs the following tasks:

data transmission to and from the card
manipulation of internal data

control of instruction execution

- execution of cryptographic algorithms

The operation mode of a smart card is basically an interactive request-answer
process with the user, which is usually a terminal. The terminal sends a request
(instruction) to the card, the card processes it, produces a result and then sends
it back to the terminal as the answer.

The persistent data of the card is stored in EPROM. The file system has a tree
structure with directories and files. Each object of the file system has a header,
which in turn contains information about the access permission and a body.
All the instructions concerned with file manipulation make reference to a current
file, the selected file. The basic operations are those of selection, reading, writing
and modification of files.

The memory space in a smart card is so restricted that usually, in contrast with
regular operating systems, not all the instructions and file structures can be
implemented.

It is for this reason that different profiles have been introduced for the most
relevant standards for operating systems.

In addition to the file manipulation instructions, there are, among others, in-
structions for identification, authentication, execution of cryptographic algo-
rithms and even special instructions for the programming of smart cards or
specific applications.

The security is implemented by means of request-answer protocols and a personal
identification number (PIN) associated to the card.

The operating system has an automaton that describes all the card’s possible
states, and for each state the instructions and access allowed.

The card can reach a blocked state. In this case no information can be com-
municated from the card to the exterior. This may happen, for instance, if the
maximum number of PIN verification failures is reached.

3 Formal Specification of a Smart Card operating System

In this section we present the specification of a variant of a smart card operat-
ing system. This specification aims at clarifying what a card is as a computing
device. We used as a basis a reference manual on the state of the art of smart
cards [RE97]. This book contains a general description of smart card operat-
ing systems. This description is very imprecise and is not enough to specify or
implement any of the operating system variants presented in it.

For our specification we chose a variant of the profile P, introduced in the oper-
ating systems standard ISO/IEC 7816-4. This profile contains the following in-
structions: READ BINARY, UPDATE BINARY, SELECT FILE using AID, VERIFY and
INTERNAL AUTHENTICATE.

We specify cards of profile P, minus the instruction INTERNAL AUTHENTICATE
plus an instruction SELECT CHILD. This specification is for cards of unique ap-
plication, this latter modelled by a state automaton.

A first sketch follows:

A card comes with a number of constants. These are:

- the structure of directories,
- the PIN,
- the maximum number of consecutive PIN verification failures.

The card has a memory formed by:

- the data in the files,
- the currently selected file,
- the counter of consecutive PIN verification failures.

The memory is the updatable data of the card. The instructions work on the
memory using the card constants. These affect the state of the memory and
produce responses.

The card also comes with a state automaton. For each state of the automaton
the following are defined:

- a set of permitted instructions,

- for each permitted instruction, a pair of successor states: one in case of
successful execution of the instruction and the other for the case of its failed
execution.

In the rest of the section we present the formal specification of the operating sys-
tem. First we discuss the language used to produce the specification. Section 3.2
is devoted to the constants and memory of the card. We start by specifying
what a directory structure is. Given this as a basis, we state in a straightfor-
ward manner what the constants and the memory are. We define a number of
relations on states of the memory that are needed for the specification of the
instructions. The instructions are presented in section 3.3. Their semantics is
specified in terms of pre- and post-conditions. In section 3.4 we specify what a
card automaton is and then define what it is to execute each individual instruc-
tion given states of the automaton and the memory. Finally, in section 3.5, the
specification of the workings of the whole card is that of a function receiving

- a state of the automaton,
- a state of the memory and
- a stream of instructions or reset messages

and producing a stream of memories and responses resulting from the sequential
execution of the input instructions.

3.1 The Language Used

Everything written below can be formalized in Constructive Type Theory [ML84,Coq85].
We have spent some effort to make the specification immediately accessible to
anyone used in classical set theory. This should work if only types and sets, as

used in the text, are uniformly interpreted as sets of the classical theory. There
remain, however, some (hopefully minor) mismatchings, on which we now pro-

ceed to comment.

- We sometimes use the symbol : instead of €. The distinction can be regarded
as totally immaterial.

- We use record types, just as in ordinary programming languages, as tuple
sets. The selection of a field F out of a record r will be written F..

- When specifying functions or records, we do not force ourselves to give names
to every set involved. We usually write f:(z:A | P(z)) = (y:B | Q(z,v)),
which should be read: f maps elements z of set A that verify P to objects y
of type B such that Q(z,vy).

- We use some predefined type (set) constructors. In general, these are un-
problematic given that we use common notation of programming languages.
One possible exception is that of the types of sequences (lists). We write [A]
for the type of lists (of arbitrary finite length) whose elements are of type A.
If the lists are all of a given length n then we write the corresponding type
[A],,. And, finally, if the lists are infinite (streams) we write [A].

- At one point we use a type called Prop of whom it is evident that must have
propositions as objects. The classical set theoretic minded reader can take
this as just an abuse of notation (as it were a escape into meta-language).

A specification of the kind that we are about to examine is ultimately a set
(type). It is satisfied (implemented) by any of its elements. In our case, the ob-
jects to be specified (cards) have a number of components, related in certain
ways. We shall describe this structure, giving specifications of the components
and of the relations they must satisfy.

We expect that no further clarification of our language will be necessary. Here
are, however, some supplementary comments. Some of the comments are directed
to the type theoretic minded reader. These are written in italics.

- In type theory, a sharp distinction is made between types and objects. This
is particularly noticeable when considering functions. Functions are not sets
but, rather, they are programs in the very concrete sense of functional pro-
gramming. Moreover, they are in all cases terminating, i.e. there are no
partial functions.

- We use one and the same symbol (the ordinary =) to denote equality of
elements of any type. In particular in the case of functions, we mean their
extensional equality. The extensional equalities on function types that we
need are unproblematic to define.

- At some points we rely on the validity of excluded middle for some proposi-
tions. This is perfectly right since, in all such cases, the predicates involved
can be shown to be decidable.

3.2 Constants and Memory

Directory structures Given a binary relation R on set A we write R[a] for the
image of a € A under R. We use the same notation when the objects involved
are subsets of A instead of elements, or functions instead of relations.

Let Aid be the type of application identifiers (AIDs) and Fid that of file identifiers
(FIDs). A directory structure (DS) consists of:

- A set A (of valid addresses of files),

- mfe A (the root or master file),

- a partition of 4 into three sets MF, DF and EF (the file types) such that
MF contains mf as its only member,

- an injective function AD : DF' — Aid (the unique AIDs of DFs),

- a function AF : A — Fid (the file names) and

- a binary relation F on A (the structure of directories)

such that: For any a € A and by, bs € F[a] if AF(b1)=AF(b2) then by=by (Unicity
of FID among brothers).
53 def

Given a directory structure, define Aid = AD[DF]. Then there is DA, the inverse
of AD, defined on Aid into A.

Let us also define ChCFidx.A such that f Cha holds whenever f is the name of

a child of a. In symbols: f Cha of f € AF[F[a]].

Then for any a € A and f:Fid such that f Cha there is a unique address b whose
name is f. Let us call FA the function we have just described. In symbols:

FA: (a€ A, f:Fid | fCha) — (b€ A | aFb AAF(b) = f)

Finally, we allow ourselves in the sequel to use MF, DF and EF either as sets or
as predicates on 4, according to convenience.

Constants of the card Let PIN be the type of personal identification numbers
(PINs, often sequences of four decimal digits). The constants of the card are:

- ds:DS (the directory structure),
- thePin:PIN (the PIN of the card) and
- maxEC:N (the maximum PIN verification failures allowed).

Memory of the card The memory of the card has as first component the file
data. The type of file data is as follows:

FD © A = (len:N; info: [Byte]jap) i-e. we have length and contents of each file.

1en>
We define now the type of the memory of the card:
M % (fd:FD; sekA; ec:[0..maxEC])

We refer in the text to the preceding components as follows:

- fd is the (card) file data,
- sel is (the address of) the selected file,
- ec is the counter of consecutive PIN verification failures or the error counter.

We define equivalences between memories that will be useful for specifying the
instructions of the card. These equivalences are just equality of memories up to
each of its components. More precisely, we introduce:

- ~gq, such that m~,q m' holds whenever m and m’' differ at most in the
contents of their (common) selected file. In symbols:
Mme~sa m' 2 (Ya: A)((a # sely, O fdpn(a) = fdm (a))

A sely,=sely, N\ ecp,=ecCy

- ~gel, Such that m~g m' holds whenever m and m' differ at most in (the
addresses of) their respective selected files.

- ~e¢c, such that m~¢. m' holds whenever m and m' differ at most in the value
of their respective error counters.

We omit the formal definition of the last two relations above, given that they
are just straightforward.

Finally, we define what it is for a card to be blocked. This is a predicate on the
memory defined simply as follows:

Blocked(m) def (ecrn= maxEC).

3.3 Instructions

The syntax of instructions is given by the set Ins, defined inductively by the
following constructors:

- SELa;p : Aid — Ins

- SELcurip : Fid — Ins

- READgn : (0,n:N) — Ins

- UPDgin : (0,n:N,upd:[Bytel],) — Ins
- VERIFY : PIN — Ins

The semantics of the instructions is specified by pre- and postconditions. For
each instruction, the precondition will be a predicate on the memory and the
postcondition a relation involving the states of the memory before and after
execution, as well as the data extracted from the card. This data will be always
a sequence of bytes. We define:

data % [Byte]
More precisely now, we will have families of propositions:

P : (i:Ins,m:M) — Prop and
Q : (i:Ins,m, m':M, d:data) — Prop.

The instances of these families corresponding to an instruction 7 will be written
P; and Q; and will be respectively the pre- and postcondition of . This means,
more precisely, that the card must come with an implementation of instructions
[| || that for any instruction i gives a function specified as follows:

2] :(mM | Pi(m)) = (m'M ;d:data| Q;(m,m',d))
For any instruction ¢ and memory m the proposition P;(m) is defined by

Pi(m) def ~Blocked(m) A P;(m)

where P is an auxiliary family of propositions of the same type as P.

The following table defines the families 73 and Q:

i Pi(m) Qi(m, m', d)
SELa1p(aid) aid € Aid Mergerm’

A sel,»=DA(aid)

A d=[]
SELcurp(fid) fidCh sel,, Mrgerm’

A sely =FA(seln, fid)

A d=[]
READgin(n,0) |EF(sely) m=m/

A o+n<lengy, (sel,) |\ d=infogy, (seln)do,n

UPDgi1n (0,1, upd)| EF(sel,,) M~gg M

A O+n§]enfdm (sel) A Ienfdm(selm):]enfdm:(selm:)
A jnfofdm (sel,y,) ;}o,n,updjnfofdm, (sel,,.1)
ANd=]]
VERIFY(p) Mrge M/
A (p = thePin D ecpy =0

A p # thePin D ecpr=ecy, + 1)
ANd=]]

The first two entries are understood straightforwardly. It is only necessary to
recall the definitions given when introducing directory structures.

In the third entry we use the function | which applies to a sequence and pa-
rameters o and n. It projects the sequence into the subsequence of length n at
offset o. It is just a matter of routine to give a formal description of this function
and hence we prefer to omit it. This function has as a particular case the one
that selects the element of the given sequence at offset o, i.e. with n = 1. We
shall denote this particular case in the same way as the general one, only that
omitting the second parameter.

Using the | functions we can define the relation — used to give the postcondition
of the UPDATE BINARY instructions. Let f and f' be sequences of the same
length m. Let further o and n be such that o+n < m and upd a sequence of length

n. Then f—, p upaf' holds whenever f' coincides with f everywhere except at
the subsequence of length n at offset o, which must be equal to upd. In symbols:

Fonupaf = (F'don=upd) A (Vj€[0.m —1])(j<oV jzo+n)D f'{;=fl;

Finally, the last entry ensures that the error counter is set to 0 after each suc-
cessful PIN verification and incremented otherwise.

3.4 Execution of Instructions
Automata An automaton A is determined by:

S (the set of states),

- 5o (the initial state),

- Valid(s)CZ for each s € S (the set of allowed instructions at each state),
- T :(s€S,i€ Valid(S)) — (ok, fail : S), the table of transitions.

The table of transitions specifies two successor states. The first one corresponds
to the case of successful execution of the instruction and the other one to that
of failed execution.

One Step Execution We now proceed to specify what the execution of an
instruction is. This notion shall be defined as a function ¢ that given a state
s, the memory m of the card and the instruction ¢ to be executed, returns a
new state s’ and a tuple composed by the (possibly) modified memory and the
corresponding answer, which is an object of type R. This latter type is defined
as follows:

R« (rc:RC, data:[Byte]),

where RC is a set of (return) codes and [Byte] is the type of sequences (or lists)
of elements of type Byte.

The set of return codes could be chosen in different ways. A a simple alternative

is just RC def {no file, not EF, boundary, invalid instruction, ack}.

For each instruction i, we specify a table that associates return codes to error
conditions on the instruction. This table is referred to below as a relation ErrMsg;
between states of the memory and return codes. It holds of memory m and return
code rc whenever an error condition on ¢ (i.e. one that negates the precondition
P;) holds at m and rc is a candidate return code for the case in question. Here
is one such table:

) Error Condition |Return Code
SELarp(aid) aid & Aid no file
SELcaLp(fid) =(fid Ch sel,,,) no file
READgin(n,0) |—EF(sely) not EF
ot+n>leng (se1,,)|boundary
UPDsz1n (0,1, upd)|—EF(sel,,) not EF
o+n>lengy, (sel,,)|boundary

The two return codes invalid instruction and ack will be employed later.
We specify the function & as follows:

£:(seS,m:M,ieI) - (s’ S;out:(m " M; R | xX(s,m,i,s,m',7))

This is the definition of the predicate x which describes the behaviour of &:

. def
X(s,m,z,s’,m’,r) =

i€ Valid(s) D Pi(m)D ({(m’,r) = ||i||mA s’ = okr,,3))
A =Pi(m) D (m’=mA ErrMsg;(m, rc,)
A 8’ = faily(s 3 A data, = [])

Ai¢g Valid(s) D (m’=mA r = invalid instruction A s’ = s A data, = [])
That is: it has to be checked first whether the instruction is allowed at the current
state of the automaton. If this is not the case, a corresponding return code is
produced and the sates of the memory and the automaton do not change. If
the instruction is allowed, then the result depends on whether its precondition
holds or not. If it doesn’t, then we have a failed execution: a corresponding
return code must be produced and the transition is made to the corresponding
successor state of the automaton. If the precondition holds, then the instruction
is executed and also the corresponding transition is effected.

3.5 A Card’s Life

Finally, we provide the specification of a process life, which is intended to repre-
sent the potentially infinite working period of the card. The input of this process,
from now on called In, consists of a state s, a memory m and a stream of ele-
ments of the set InpInst. This latter type, in turn, is defined as the disjoint union
of the set Ins and a special instruction that we shall call reset. Observe that reset
s not an instruction of the profile. Rather, it was introduced to formally reflect
the event that occurs when the card is activated by the terminal. The output
of the process, that we shall call Out, is a stream of tuples, each consisting of a
memory and a response. It should be understood as the (infinite) trace resulting
from executing the stream of instructions on certain state and memory. How the
process acts on the input, and therefore how this latter is related to the output
is described by a (coinductive) relation that shall be denoted by x.

We start by providing the definition of the types In and Out:

InpInst % [Ins + {reset}] oo

% (s € S;m:M;is € Inplnst)
def

Out = [(m:M;r:R)]so
Now we specify the process life by means of the following declaration:

life : (in:In) — (out:Out | in < out)

The relation <, in turn, is coinductively defined as follows:

(s, m, (reset :: iss)) < ({(m’, {ack,[])) :: 0s)
D Mg m' A sely, = mf A (s, m',iss) < os

(s,m, (i :: i88)) < ({(m',r) :: 08)
D &(s,m,1) = (s',(m/,7)) A (s',m' iss) < os

4 A property

4.1 An invariant of one step execution

The following proposition shows that any interpreter £ satisfying the specifica-
tion, when applied to a blocked memory yields a response containing no data
and a blocked memory.

For conciseness we abbreviate by Correct_Interp the type
(8:8)(m:M)(i:Ins) (o:ResExec | x(s,m,1,8%,m’,1’%))
where ResExec denotes (s’ € S;out:(m > M;r' : R))

Lemma Consider £ an interpreter of type Correct_Interp, m: M a memory such
that Blocked(m), s:S a state and i:Ins an instruction.
Then da,tar,outg(S i) =[] and Blocked(m’y; : (s’m’i)).

Proof.
The function ¢ is of type Correct_Interp, then £(s,m,) is a record of type ResExec and
the following proposition is satisfied

X85 8% (5, m, i) Woute (g)2 Toute (g)

Consider the abbreviations:

def
T S0 = S¢(s,myi)

def y
- Mo = Im Outg(s m,i)

def ,
T To = Touteymi

Unfolding the definition of X in X(s,m,%, So, Mo, 7o) yields the following conjunction
(call it 8) that must hold.

i € Valid(s) D Pi(m)D (mo,ro)=| i [[(m) A so=0ky (4 ;)
A =Pi(m)D mo=m A ErrMsg(i,m,rcr,) A so=faily(s 3 A datar,=[]
A i ¢ Valid(s) D mo=m A ro=invalid instruction A s,=s A data,, =[]

We are going to prove that § implies that data,, = [] and Blocked(m,).
We know that Valid is a decidable predicate. The proof proceeds by case analysis on
i € Valid(s).

- Assume i€ Valid(s). Then by the left part of the conjunction S the following
proposition (call it §”) holds:

Pi(m)D (mo,7o) = || i [[((m) A so = oks, ;)
A =Pi(m)D mo =m A ErrMsg(i,m,rcr,) A so = faily(s 3 A data,, =|]

We proceed by case analysis on the proposition P;(m).

- Assume P;(m) holds. Then unfolding the definition of P; in P;(m) yields
—Blocked(m) Aﬁi(m). In particular, - Blocked(m) must hold, but this is
absurd because by hypothesis we had Blocked(m). Hence, data,, = [] and
Blocked(m,) hold trivially.

- Assume =P;(m) holds. Then by the right part of the conjunction S’ we obtain
directly that data,, =[] and that m = m,. But as = is the identity relation
and we know Blocked(m), then Blocked(m,) holds.

- Assume ¢ ¢ Valid(s). Then by the right part of S we obtain data,, =[] and m =
mo. But as = is the identity relation and we know Blocked(m), then Blocked(m.)

O

4.2 An invariant of the card

The next proposition shows that no information can be extracted out from a
blocked card. More precisely it shows that the execution of a blocked card on
any stream of input instructions produces a stream of outputs whose responses
contain no data.
For the sake of clarity, we rewrite the definition of < in the following equivalent
way:

(s,m, (i ::18))<({M,To)::08) D

(1 = reset D m~ge; Mo A sely,, = mfAT, = (ack, []) A (so, Mo, 15)<0s)
A (Z # reset Dm, = m,g(s,m,i) NTo = r’.’;'(s,'m,z') A <S,§(s,m,i)am’§(s, m, i),iS)XOS)

We start with an auxiliary definition. We say that a stream of outputs “has
no data” if the response contained in each element of the stream is the empty
sequence of bytes. The predicate NoData : Out — Prop is coinductively defined
by:

NoData(({m,r) :: s)) D data,=[] A NoData(s)

Proposition Let in = (s,m, (i :: is)):In be such that Blocked(m) and o:Out
such that in<o. Then NoData(o).

Proof.

We have to prove that each element of the stream o has a response with no data. By
hypothesis we know that in<o, therefore by definition of < the object o must be of the
form ({mo,70)::08). The proof proceeds in two steps.

1. We prove that data,, = [] and Blocked(m,). We reason by case analysis on i.

(a) Assume ¢ = reset. Then, by definition of < we know that
- 7, must be of the form (ack,[]), therefore data,,=[].

- Mo~ger m. By definition of ~ger , ecn=€Cm,. We know Blocked(m) by hy-
pothesis, then necessarily Blocked(m,) holds.

(b) Assume i # reset. Then by definition of < mo = m’¢(5 1, 4) a0d 70 = I'¢(45 m, i)-

Thus, by the lemma we obtain Blocked(m’¢(s, 1, 1)) and data,’ outy =]

(87 m7 l)

Finally, by transitivity we have Blocked(m,) and data,, = [].

We have proved that r,.data =[] and that Blocked(m.).

2. To finish the proof of NoData(o) it remains to show that NoData(os). We proceed
by case analysis on i. If ¢ = reset (reasoning like in step la) this follows from
(s0, Mo, 1s)<o0s and the fact that m, is blocked. If ¢ # reset, (reasoning like in 1b)
this follows from (s’ (s, m, i), M¢(s, m, i), 15)<0s and the fact that m’¢(; 3 = Mo
is blocked.

O

5 Conclusion

We have produced a completely verified specification of a profile P variant for
smart cards. We have also constructed the proof of an important property that
must be satisfied by any implementation that fulfills the specification.

The mathematical setting provided by the language used to write down the spec-
ification allowed us to formalize the problem in a complete and rigorous manner.
The specification coding in terms of the language provided by Coq was straight-
forwardly written. The environment and tools provided by the editor were quite
helpful, specially when constructing the proof. The Coq sources of the specifica-
tion and proofs are available at http://www.fing.edu.uy/~mf/SmartCards.

In [Off95] different levels at which formal methods can be introduced in the
software development process are discussed and analyzed. Several works in the
literature study the verification of hardware and software components similar
to those embedded in smart cards. We are not aware, though, of previous work
on the application of formal methods to analyze smart card operating systems.
The specification of the operating system of a smart card in a formal language
would be useful to detect errors in the informal specification of instructions, to
have a formal counterpart to evaluate completeness and soundness of test plans
and to improve confidence in the code inspection steps of the operating system
implementation.

Regarding further work we are interested in detecting and proving some other
properties that must hold for any implementation that satisfies the specification.
We identify as a natural continuation of this work the use of the specification
obtained to derive and extract certified programs implementing the operating
system. In Coq it is possible to automatically extract functional code from the
proof that the specification is satisfiable. A more ambitious task would be to
write down and verify an imperative language implementation of the system

and prove it correct with respect to the specification. We think this could be
done using the tools described in [Fil99)].

We have started investigating a particular class of smart cards, those known
as Java Cards [Car99]. Those cards admit their applications being completely
written in the Java language [GJS96], which incorporates a wide range of func-
tionalities to smart card technology. We think that the results here reported
could be a good startpoint to formulate a specification of this family of cards.

References

[Bar97] B. Barras et al. The Coq Proof Assistant Reference Manual, Version 6.1.
Rapport de recherche 203, INRIA, 1997.

[Bol97a] D. Bolignano. Towards a Mechanization of Cryptographic Protocol Verifi-
cation. In 9th. International Computer-Aided Verification Conference, June
1997.

[Bol97b] D. Bolignano. Towards the Formal Verification of Electronic Comerce Pro-
tocols. In 10th. Computer Security Foundations Workshop, June 1997.

[BWAH90] B. Brock and Jr W. A. Hunt. Report on the Formal Specification and
Partial Verification of the VIPER Microprocessor. Technical Report 46,
Computational Logic, Inc., January 1990.

[Car99] Java Card. Java Card Technology. http://java.sun.com/products/javacard/,
1999.

[Cog85] T.Coquand. Une Théorie des Constructions. Thése de doctorat, Université
Paris 7, 1985.

[Fil99] J.C. Filliatre. Proof of Imperative Programs. In Chapter 18 of The Coq
Proof Assistant Reference Manual, Version 6.2.4, 1999.

[GJS96] J. Gosling, B. Joy, and G. J. Steele. The Java™ Language Specification.
Addison-Wesley, 1996.

[ML84] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

[Mo092] J.S. Moore. Mechanically Verified Hardware Implementing an 8-Bit Parallel
IO Byzantine Agreement Processor. Technical Report NASA Contractor
Report 189588, Computational Logic, Inc., 1992.

[Off95] Office of Safety and Mission Assurance. Formal Methods Specification
and Verification Guidebook for Software and Computer Systems. Volume
I: Planning and Technology Insertion. Technical Report NASA-GB-002-95,
Release 1.0, NASA, July 1995.

[RE97] W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, 1997.

