PROOF REUTILIZATION IN MARTIN-LOF’S LOGICAL
FRAMEWORK EXTENDED WITH RECORD TYPES AND
SUBTYPING &

GUSTAVO BETARTE

INSTITUTO DE COMPUTACION
UNIVERSIDAD DE LA REPUBLICA
MONTEVIDEO, URUGUAY

ABSTRACT. The extension of Martin-Lof’s theory of types with record types
and subtyping has elsewhere been presented. We give a concise description of
that theory and motivate its use for the formalization of systems of algebras.
We also give a short account of a proof checker that has been implemented on
machine. The logical heart of the checker is constituted by the procedures for
the mechanical verification of the forms of judgement of a particular formula-
tion of the extension. The case study that we put forward in this work has
been developed and mechanically verified using the implemented system. We
illustrate all the features of the extended theory that we consider relevant for
the task of formalizing algebraic constructions.

1. INTRODUCTION

The original formulation of Martin-Lof’s theory of types, from now on referred
to as the logical framework, has been presented in [NPS89, Tas93, CNSvS94]. The
system of types that this calculus embodies are the type Set (the type of inductively
defined sets), dependent function types and for each set A, the type of the elements
of A.

The extension of the logical framework with dependent record types and sub-
typing is presented in [BT98, Tas97]. Dependent record types are just sequences
of fields in which labels are declared as of certain types. These types, in turn, may
not only depend on objects but also on labels. How this dependency is obtained
is formally introduced in the rules for record types formation that we present in
section 2.1. The mechanism of subtyping or type inclusion introduced is, in the first
place, the one naturally induced by record types. However, once record inclusion is
formally stipulated it is also required that rules of subtyping have to be given for
the rest of the type formers.

In [Bet98] we have investigated an alternative formulation of the extended theory.
In that formulation we make use of parameters, in the sense of [Coq91, Pol94b], to
stand for generic objects of the various types. The introduction of the notion of
parameter allows us to give a solution to the problems posed by the manipulation
of “free names” in the presence of dependent types. We also present in [Bet98] the
procedures for the mechanical verification of the forms of judgement of that variant

Date: September 12, 2000.
& THIS PAPER IS AN ENHANCED VERSION OF [Bet97]

1

of the extension. In [Bet00] we make a detailed presentation of the investigations
concerned with the design, specification and correctness of those procedures.

In this paper we shall illustrate the use of record types and subtyping for the
formalization of systems of algebras. We focus on a simple example: We start
out from binary relations, and by successively enriching previously defined notions
with further structure, we finally define a Boolean algebra as a distributive lattice
with additional structure. Then, we develop a little piece of the theory of Boolean
algebras concerned with the proof of DeMorgan’s laws. This example will allow us
to illustrate what we consider to be the relevant features of the extended theory.

The plan for the rest of the article is as follows. In the next section we start
by giving a concise description of type theory and its use for carrying out con-
structive mathematics. Then we give a short account of dependent record types and
the mechanism of subtyping they induce, comment on the treatment of free names
in systems of dependent types and briefly describe the proof checker we have im-
plemented on machine. In section 3.1 we present the informal formulation of the
algebraic notions with which we are concerned. These are literally taken from text
books on lattice theory and universal algebra. We proceed then, in section 3.2,
presenting the formal constructions developed in order to formalize the case study.
We do not provide the whole code involved in the formalization. Rather we con-
centrate on the fragments that we consider most interesting, that is to say, those
that illustrate how algebraic constructions commonly used in the informal practice
are reflected in the formal language.

Finally, in the last section we discuss related work.

2. THE SYSTEM AND ITS IMPLEMENTATION

The system of types of the logical framework is constituted, in the first place, by
the type Set, the type of inductively defined sets. Then, any individual set A gives
rise to the type of its elements. Type families are expressions of the language that
when applied to an individual of the appropriate type yields a type. Moreover, it is
possible to introduce arbitrary families of types in the formal language. Families can
be constructed by an operation of abstraction, using the notation [z]a, which binds
the occurrences of the variable z in the type a. Finally, there exists a mechanism
for the formation of (dependent) function types: if « is a type, and (3 is a family of
types indexed by objects of type a then a—(is also a type. The application of an
object f of this latter type yields an object fa of type (a, if a is an object of type
a.

The understanding of propositions as inductively defined by their introduction
rules, as explained and justified in [Mar87], allows us to grasp propositions as sets,
and thereby, their proofs as elements of those sets. There is, in principle, no formal
distinction in the language of the theory between the type of sets and the type
of propositions. Further, in the presence of families of types, this interpretation
of propositions can be transferred to propositions about generic individuals. For
instance, given a set A, A—[z](A—[y]Set) is the type of binary relations on A.
Then, if R is such a relation, for each element z of A we have a set Rzz. Since each
set determines a type, we can form here a family of types over A, namely [z]Rzz.
Then A—[z]Rzz is the type of proofs that R is reflexive. This function type is
usually written as (z : A)Rzz, that can be read: “for any z in A, Rzxx”.

3

As another example, consider the type (z,y : A)Rzy—Ryz. A function of this
type will produce a proof of Ryz given any two elements z, y of A and a proof of
Rzy. In virtue of the given explanations, this is the same as proving that if Rxy
holds then so does Ryz, for arbitrary z, y in A, i.e. the symmetry of R.

2.1. Record types. Dependent record types are just sequences of fields in which
labels are declared as of certain types:

(L1t agy ey Ly s ap).

In dependent record types, the type a;;1 may depend on the preceding labels
Li,...,L;- More precisely, a; 11 has to be a family of types over the record type
(L1 : @1,y L : ;). This is formally expressed by the following two rules of record
type formation:

p ¢ record-type [3: p—type
() = record-type (p, L:B) : record-type

L fresh in p

We make use of the judgement 3 : p—type, which should be read “g is a family of
types over the type p”, to formally reflect that families of types are associated to
labels in the formation of record types.

In the case of record types generated by the second clause, L:8 is a field and
L a label, which we say to be declared in the field in question. Labels are just
identifiers, i.e. names. In the formal notation that we are introducing there will
actually arise no situation in which labels can be confused with either constants or
variables. Notice that labels may occur at most once in each record type. That a
label L is not declared in a record type p is referred to as L fresh in p. Finally, that
these are dependent record types is expressed in the second clause, in the following
way. The “type” declared to the new label is in fact a family 8 on p, i.e. it is
allowed to use the labels already present in p. In fact, what 3 is allowed to use is
a generic object (i.e. a variable) r of type p. Then the labels in p will appear in
0 as taking part in selections from r. Here below we show how the type of binary
relations on a given set, which we shall call BinRel, is written:

(S : Set,~ : S—S—Set)

Record objects are constructed as sequences of fields that are assignments of
objects of appropriate types to labels:

L rip a:fr
(=0 (r,L =a):(p,L:B)
For instance, if N is the set of natural numbers and I'dy the usual propositional
equality on IV, then the following is an object of type BinRel:

<S = N,N = IdN>.

L fresh in p

2.2. Subtyping. Dependent record types also induce inclusion polymorphism: given
a record type p;, it is possible to drop and permute fields of p; and still get a record
type p,. If that is the case, any object of type p, also satisfies the requirements
imposed by the type p,. That is, given r : p;, we are justified in asserting also
r t py. This is so because what is required to make the latter judgement is that the

selections of the labels declared in p, from r are defined as objects of the appropri-
ate types. And we have this, since every label declared in p, is also declared in p;
and with the same type.

In the formal language this idea is accomplished by introducing two new forms of
judgement, namely, a1 C a2 for types oy and g and 8; C 3, : a—type for families
B, and B, indexed by the type a. The reading of these forms of judgement is as
follows: aj is a subtype of as and B, is a subfamily of B,. We shall also refer to the
first one as type inclusion.

In the case of record types, the condition for p; C p, is in words as follows: for
each field L : B, in p, there must be a field L: 3; in p; with 8; C 3, : p; —type.
It is easy to see that if L : 3, is a field of a record type p; then, by the subtyping
induced on families of types, (3, can be considered to be a family over p; and thereby
the previous (informal) explanation makes sense.

The formal stipulation of this latter rule requires that rules of subtyping are
given for all the type formers of the language: Set is a subtype only of itself, and
if A and B are sets they are in the inclusion relation only if they are convertible.
The rule of subtyping for function types extends the one usually presented in the
literature in that it also takes care of the dependencies.

That two objects r and s of type (L; : a1, ..., L, : a,) are the same means that the
selection of the labels L;’s from r and s result in equal objects of the corresponding
types. Therefore, equality of record objects is based on a kind of extensionality
principle. That is, the two rules below can be understood as defining that two
objects of a given record type are equal if the selections of every label of the record
type in question from the objects are equal. Notice that the type in which two
record objects are compared is relevant: suppose namely that and s are of type
p, and that p; C p,. Then it may well be the case that r=s : p, but not r=s : p;.

re() s:() r=s:p r.L=s.L:fr
r=s: () r=s: {p, L:B).
To understand the second of these rules notice that the premisses that both » and s

are of type (p, L:3) have been omitted. We remark that these are rules of equality,
they must not be understood as reduction rules.

2.3. Parameters. The traditional formulation of the rule for the formation of a
function type, for instance as presented in [NPS89], says that if we know that a
is a type and that g is a type family under the assumption that a variable z is of
type a then we can form the function type (z : a)3, where all occurrences of z in 3
become bound. Abstraction then is introduced as an operation of object formation.
This is the corresponding rule

Iz:abb: 0
TkH[z]b: (z:a)B

The stipulation for the formation of a context I', z:o in [Mar87, NPS89, Mar92],
for instance, requires that T' is a context, a is a type under the context I" and,
further, that the variable z has not already been declared in T'. This last restriction

is proper of systems of proof rules where an assumption, z:a say, may be introduced
such that the type a depends on previous assumptions. Therefore, for the premiss
of the latter rule of abstraction to be correct it must be the case that z is not
already declared in the context I'.

In [Pol94b] Pollack discusses some consequences of having the restriction above
for context formation in the implementation of type checkers for languages with
binding operators, and more specifically, with systems of dependent types. The
system of proof rules on which the discussion is centered is what has elsewhere
been called Pure Type Systems (PTS), as originally presented in [Bar92]. What
is shown by Pollack is the impossibility of deriving, using the rules of PTS, the
judgement [z][z]z : (z : A)(y : Pz)Pz under the assumption that A is a type (an
object of %) and P has kind A—x. If one wants to understand the checking of the
correctness of instances of the judgement '+ [z]b: (z : a)8 as the upward read-
ing of the rule of abstraction one should proceed as follows: for checking that
[z][z]z : (z : A)(y : Pz)Pz check that z:A+ [z]z : (y : Pz)Pz. For this, in turn,
we should check that z : Pz after extending the context z:A with the declaration
z:Px, but we are restrained from doing this by the criterion for context formation
above.

Relatively recent works on the construction of proof-checkers for type theories
with dependent types have addressed (in a direct manner or not) the problems
presented above.

In [Coq91] Coquand investigates the question of checking the formal correctness
of judgements of type and object equality in a formulation of Martin-Lof’s set
theory with generalized cartesian product and one universe.

The notion of context in this theory is that of a list of assumptions of the form
p:a, where p is a parameter and o a type (possibly depending on other parameters).
In the formulation of the language of the theory, parameters are understood to play
the role of the free variables occurring in the expressions. Consequently, they are
used in the system to stand for generic objects of the various types. However,
they are defined to be syntactic constructions distinct from the bound variables of
the language. The distinction between parameters and bound variables allows to
define a simplified operation of substitution on expressions where no mechanism of
renaming has to be considered in order to avoid capture. Further, there is no need
for an a priori identification of a-convertible terms for the algorithm to be defined.
This latter is, we think, quite a relevant point if one wants to describe an actual
implementation.

In [Pol94a] Pollack adopts the use of parameters to implement a type checking
algorithm for a family of PTS [Bar92]. One of the motivations for introducing the
notion of parameter and consequently make use of them in the reformulation of the
rules of inference of the formal system is to provide a solution for problems similar
to the ones discussed above.

In [Bet98] we formulate a variant of the extended theory presented in [Tas97,
BT98]. A first difference is that we consider the rules of inference in their generalized
form. Further, we make use of parameters to stand for generic objects of the various
types. Thereby, as the stipulation of an assumption will correspond to declare a
parameter as of a certain type, the explanation of a relative judgement depends on
what are considered to be the permissible assignments of values to the parameters

involved in such judgement. These assignments, in turn, are defined in terms of a
particular notion of substitution which, in contrast to the one usually defined for
the language of type theory, behaves as the textual replacement of a parameter by
an expression.

The algorithms presented in [Bet98, Bet00] implement the mechanical verifica-
tion of the forms of judgement of the calculus we just described.

2.4. The implemented system. The proof checker has been implemented us-
ing the programming language Haskell 1.4 [Pet96] and compiled using Chalmers
Haskell-B [Aug97].

A very simple XEmacs interface has also been incorporated to the system.Even
though it is still in a very primitive stage, we have found its use to be of considerable
help to the task of proof construction®.

A script for the proof checker looks very much like one for a functional pro-
gramming language. The syntax of input expressions is given by the grammar in
Figure 1.

i u= x| c| [z]i] dria| ()| (41,L=142)]| 3.L
let z:4; =iy ini| useiy iz ini
il—)iz | <i1,L:i2>

FIGURE 1. Syntax of input expressions

The symbol x ranges over a denumerable set V, the set of variables. The symbol
¢ ranges over a countable set C of constants, which is defined to be disjoint with
V. There are three distinguished constants Set, type and record-type, from now on
called sorts. Only the first one may occur in a valid input expression.

Finally, the symbol L ranges over a denumerable set L of labels. This set is
defined to be disjoint with the sets V and C.

The expressions [z]i are abstractions, and therefore the occurrences of = are
bound in [z]s.

With (i1, L = i2) and (i1, L:i2) we denote (binary) record object and record type
formation.

The expression let x : i; = i in ¢ makes it possible to abbreviate the proof object
1o of type 41 as x, which in turn may occur in what is defined as its valid scope, the
expression %.

The effect of “using” the expression i; of type iz in the expression ¢ is almost
analogous to the one achieved by the Pascal command with, that is to say, all the
fields that constitute the object i; are made directly available in the expression 3.

From now on we use Greek letters «, a1, ... for expressions intended to denote
types and 3, (1, ... for families of types. We sometimes will use the more familiar
notation (z : a)oy instead of a—[z]az.

The type checker reads (non recursive) declarations of the following form:
LAt http://www.fing.edu.uy/~gustun/SUBREC/get.html it is available a gzipped tar directory

containing the source code of the proof checker as well as the instructions for installing both the
system and the interface

T:type =«
F(z:a):type =0
c(z1 2 01yeee Tt Q) =1

with 7', F' and ¢ constant names, z,z1,...,Z, variables and 7, @ and aq,... ,a,
belonging to the language of expressions above.

The first one is called a type declaration. It allows to give an explicit definition
for the type a.

The second form of declaration is called a type family declaration. It expresses
the definition of the constant F' as the type family [z]a; over the type . The index
type has to be made explicit in order for the declaration to be type checked.

The third form of declaration allows the explicit definition, with name ¢, of an
expression [z1][z2] . - . [zn]i of type ay —[z1](ae— ... (an—[zn]a) ...), with n > 0.

Any declaration is checked under a current environment. Once the declaration
D is checked to be correct, the environment is extended with it. Thereby, the
definiendum of D may occur in any declaration introduced after it.

3. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY

We now consider the formalization of a piece of the theory of Boolean algebras
in type theory extended with record types and subtyping. The definitions and
propositions introduced in the next section are taken from [BS81] and [Gra71].

3.1. Informal presentation. There are two standard ways of defining lattices:
one is to grasp them as an algebraic system and the other is based on the notion
of order. Here, we shall follow the first approach.

Definition 3.1. A nonempty set L, with an equivalence relation =~ defined on it,
together with two binary operations V and A (read join and meet respectively) on L
1s called a lattice if it satisfies the following identities:

L1: (V) zVy=myVz

(A) zAymyAz (commutative laws)
L2: (V) zV(yVe)=(zVy Vz

(AN zAyA2)=(zAYy) Az (associative laws)
L3: (V) zVzwmz

(AN zhz=cz (idempotent laws)
L4: (V) z=zV(zAy)

(A) z=zA(zVy) (absorption laws)

As is well known, it is in the very nature of the above definition that any property
® valid for all lattices is also valid if all occurrences of the operators V and A in
the formulation of the property are interchanged. The resulting property is called
the dual of ®. This observation can usually be found in text books enunciated as
follows

Duality Principle. If a statement ® is true in all lattices, then its dual is also
true in all lattices.

There is nothing profound in this principle, however it gives rise to one of the
most used methods of proof reutilization. Moreover, and particularly more conve-
nient for the task we have in mind, the above principle can be equivalently grasped
in terms of dual structures. That is to say, once we succeed in constructing a proof
¢ for a certain property ® of any lattice L it can also be read, if carried out on the
dual lattice of L, as a proof of the property dual of ®.

There are many properties that can be proved to be derivable from the postulates
(L1)-(L4). Here, however, we shall only enunciate one that will manifest itself to
be important in the development below.

Proposition 3.1. A lattice L satisfies the following property
Ifr~2xVyandx =2z Ay then z = y.
From now on, an algebraic system S, whose carrier is the set S and whose

(finite) set of operations (or operation symbols) is {f1, ... , fr} shall be denoted by
(S, f1,---, fr).- We shall also use |S| to stand for the carrier set of the algebra S.

We now introduce the following

Definition 3.2. A distributive lattice is a lattice which satisfies the following laws,
Di: zA(yV2)=(zAy)V(zA2)
D2: zV(ynz)=(zVy A(zVz2)
The theorem below makes explicit that it suffices to require one of the laws above
to be satisfied by a lattice L in order for it to be distributive.
Theorem 3.1. A lattice L satisfies D1 iff it satisfies D2

Definition 3.3. A Boolean algebra is an algebra (B,V, A, ~,0,1) with two binary
operations, one unary operation (called complementation), and two nullary opera-
tions which satisfies:

Bl: (B,V,A) is a distributive lattice

B2: (V) zvliwxl
(A) zA0=0

B3: (V) zV~zm1
(AN zA~z=0

3.1.1. DeMorgan’s laws. To begin with we enunciate some propositions that any
Boolean algebra satisfies. In what follows B is used to stand for a Boolean algebra
and z and y are arbitrary elements of the carrier |B| of that algebra.

Proposition 3.2.
i) f z Ay ~0then ~z ~ ~zVy

ii) if e Vy =~ 1then ~z m~z Ay

Observe that they are dual propositions.

The following proposition can easily be proved using Proposition 3.2 and Propo-
sition 3.1.

Proposition 3.3. IfzAyx~0andxzVy=1then~z =~y

Proof. We can use that z A y = 0 and the first property in Proposition 3.2 to obtain
that ~z &~ ~z Vy. In a similar manner, from z Vy ~ 1 and applying the second
part of that same lemma we get ~z =~ ~z A y. Thus, as B is a lattice, we can finally
use Proposition 3.1 to get the desired conclusion. O

It can readily be verified that using this latter proposition and the postulates
B3, any Boolean algebra B satisfies that ~(~z) = z, for all elements z of |B|.

One more proposition is introduced before we turn to the laws with which we
are concerned in this section

Proposition 3.4.
i) (zVy)A(~zA~y) =0
ii) (zVy)V(~zA~y) =1

Finally, then, we are ready to formulate and prove DeMorgan’s laws for Boolean
algebras

Theorem (DeMorgan). Let B be a Boolean algebra, then for all elements x and
y of |BJ,

i) ~(zVy) R~z A~y

i) ~(z Ay) & ~zV ~y

Proof. We show the proof of the first law. The second follows by duality.

Notice that we know, by Proposition 3.4, that B satisfies the following two propo-
sitions: (z Vy) A (~z A ~y) ~0and (zVy)V (~zA~y)~ 1. Therefore, Proposi-
tion 3.3 can directly be applied to get that ~(z Vy) & ~z A ~y. O

3.2. Formalization. We shall now proceed to give a formal account of the concepts
in section 3.1. Thus, we will have that the formulation of a property ® is represented
by a type T. Correspondingly, a particular proof ¢ of ®, then, is introduced as an
object of type T. Systems of algebras are formally introduced as record types.
The use of type definitions and record types extension allows to naturally reflect
the incremental definition of the various systems with which we were concerned in
section 3.1.

We do not intend to give a complete presentation of the formalization. Rather,
we shall illustrate the use of the extended type theory in the representation of
algebraic constructions. More accurately, what we here mean by type theory is a
particular implementation of the system described in section 2.4.

3.2.1. Preliminary definitions. For the sake of readability we shall deviate a little
from the syntax presented in section 2.4 for the forms of declaration and input
expressions that the type checker reads. In Figure 2 we show how we denote in this
section the definition of a type, a family of types and the abbreviation of an object

10

T : type F: a—type c:a
T=a« Fx=o c =e

FIGURE 2. Forms of declaration

binOp : Set—type
binOpA=A—-A— A

Rel : Set—type
RelA=A— A — Set

BinRel : type
BinRel = (A : Set,R : Rel A)

RelOp : type
RelOp = (BinRel, o : binOp A)

isTrans : BinRel—type
isTrans B = (z,y,2: BA) BRzy - BRyz—> B.Rzz

isCong : RelOp—type

isCong Rop = wuse Rop : RelOp
in (z,y,z,2w:A)Rzz—>Ryw— R(czy) (0 zw)

FI1GURE 3. Types and families of types

of a certain type. At some points, when there is no interest in showing the code
that a constant abbreviates, we make use of declarations of the form ¢ : a.

We consider now, in Figure 3, the definition of some useful types and families of
types intending, at the same time, to clarify the syntax of type expressions used in
what follows. To begin with, the constant binOp is a type family over the type Set,
whose intended meaning is that when applied to a certain set A it yields the type
of the binary operations on that set. Observe that we are using that every set A is
also a type. As propositions are identified with sets, the constant Rel, also a family
indexed by Set, results in the type of binary relations over the set A if applied to
this latter set. The definitions of BinRel and RelOp illustrate the two possible ways
of defining a record type. Labels of records are written using the font label. Notice,
particularly in the definition of RelOp, that when extending a given record type it
is possible to make reference to any of its labels in the fields that constitute the
extension proper. The definition of isTrans shows the use of (functional) dependent
types to express propositions. The type isTrans B can be read as follows: for all
elements z, y and z of A, if R relates z and y, and y and z, then it also relates z
and z. Finally, we show how a type can be defined by means of a use expression.

3.2.2. Lattices. We now turn to introduce the constructions corresponding to the
ones presented in section 3.1. Thus, we start by defining the type of lattices. For

11

isComm : RelOp—type
isComm Rop = use Rop : RelOp in (z,y: A)R(czy) (cyz)

isAssoc : RelOp—type
isAssoc Rop = use Rop: RelOp in (z,y,z:A) R(oz (oy 2)) (o (0o zy) 2)

isldemp : RelOp—type
isIdemp Rop = use Rop: RelOp in (z:A)R(ocz2z)zx

RelOps : type
RelOps = (RelOp, * : binOp A)

isAbsorb : RelOps—type
isAbsorb Rops = use Rops: RelOps in (z,y: A) Rz (o2 (x zy))

FIGURE 4. Axioms of lattices

the representation of this latter notion, and the other systems of algebras there
introduced, we adopt the following methodology: we define, first, a record type
that acts as the counterpart of the algebra — as defined in section 3.1 — that the
system embodies. Then, this latter record type is extended with fields that conform
to the axioms of the system in question. In the case of lattices, in particular, there
are two (dual) formulations of each law involved in the axiomatic part of the system.
In Figure 4 we give a definition of various families of types indexed by the types
RelOp and RelOps. They express respectively the different laws for lattices as types
parameterized by a set, a binary relation defined on it and, in the three first cases,
a binary operation over that same set. The last family is further parameterized by
a second binary operation.

Now we carry on commenting the definition of lattices we present in Figure 5.

As already anticipated, we first define a record type PreLatt as the formal coun-
terpart of the algebra (B,V,A). Notice that instead of asking just for a set to
stand for the carrier of the algebra we consider the structure Setoid, which is a set
S together with a binary equivalence relation ~ defined on that set. The labels
corresponding to the properties of ~ are refl, symm and trans respectively.

Then, we define a function on PreLatt, whose intended meaning is to construct
the dual out of an object of this latter type. This definition illustrates, on the
one hand, how to obtain a record object by extending a given one. Moreover, and
most significantly, notice that P! is already an object of type PreLatt, however its
extension is still considered to be an object of that type. This is correct because, in
the first place, as Pl is an object of type PreLatt it is also an object of type Setoid,
by record inclusion. Furthermore, the objects PI.A and PI.V are both objects of
the appropriate type, namely, binOp S. On the other hand, by field overriding, the
selection of the label V (resp. A) from the object resulting from the application of
dualPreLatt to any object Pl of type PreLatt yields the object PI.A (resp. Pl.V)
as intended.

12

PreLatt : type
PreLatt = (Setoid, V : binOp S, A : binOp S)

dualPreLatt : PreLatt— PreLatt
dualPreLatt Pl = (Pl,V = Pl.A,A = PL.V)

opOfLatt : RelOps—type

opOfLatt Rops = (cong: isCong Rops,
L1 : isComm Rops,
L2 : isAssoc Rops,
L3 : isldemp Rops,
L4 : isAbsorb Rops

Latt : type
Latt =
(PreLatt,
VProps : opOfLatt (A =S,
AProps : opOfLatt (A =S

)

dualLatt : Latt— Latt
dualLatt L = (dualPreLatt L,
VProps = L.AProps,
AProps = L.VProps
)

FIGURE 5. Lattice

We then introduce a family of record types opOfLatt over the type RelOps. This
family expresses, principally, the properties that any two binary operations must
satisfy in order to constitute, together with a given set, a particular lattice. Observe
that the families in the field declarations are all applied to the same variable Rops of
type RelOps. However, only isAbsorb was defined as a family over this latter type,
the rest being indexed by RelOp. Their application to Rops is correct nevertheless
due to the subtyping induced by record inclusion on families of types.

According to the observation made at the beginning of this section, the type of
lattices is defined as the record type obtained by extending PreLatt with two more
fields corresponding to the laws to be satisfied by the operators V and A respectively.
Thus, for instance, if L is an object of type Latt, the object L.VProps.L1 is the proof
that L.V is commutative.

As to the definition of the function dualLatt, besides having with dualPreLatt
in common the behaviour commented above, it also illustrates the use of subtyping
but now for function objects, namely, the application of dualPreLatt to the variable
L of type Latt.

13

From now on, we make use of % — formula — % to informally express the
property being proved.

% — VBVz,y,z€ BlyxzDdzVyx~zVz —%

congRV : (L : Latt) (z,y,2:LS) L~xy2z — L.~ (LV zy) (L.V z 2)
congRV = [Lzy zh]L.VProps.congzy z (L.refl z) h

%— VBVz,y,z€ BlzaxyDdzAzxmyAz —%

congLA : (L : Latt) (z,y,2: L.S) Lxzy — L.~ (L.Az z) (L.Ay 2)
congLA = [L zy z h] L.AProps.cong z y z h (L.refl z)

FI1GURE 6. Congruences

DistrLatt : type

DistrLatt = (Latt,

Di:~(Vz(Ay2)(A(Vzy) (Vz=2),
D2:~(Az(Vy2) (V(Azy) (Az2))

dualDistrLatt : DistrLatt— DistrLatt

)

FIGURE 7. Distributive lattice

The definitions of congRV and congLA in Figure 6 illustrate the abbreviation
of proof objects and the use of nested selection to access components of record
objects. The expression [L z y z h]e should be read as the abstraction of the
variables L, x, y, 2z and h in the expression e. The variable h corresponds to the
hypotheses L.~ y z and L.~ x y respectively.

The type of distributive lattices is shown in Figure 7. We declare as well the
function dualDistrLatt, which behaves as expected.

3.2.3. Boolean Algebra. The representation of the system of boolean algebras, the
type BoolAlg in Figure 8, is built up in a similar manner as done for lattices. In
order to make the code more legible, however, we chose not to group the axioms cor-
responding to the operators V and A. We illustrate use expressions in the definition
of the function dualBoolAlg.

3.2.4. Proof of propositions 3.2-3.4 and DeMorgan laws. We consider now the pre-
sentation of the proofs that were sketched in section 3.1 .

In Figure 9 we first declare the proof of the first part of Proposition 3.2.

Let us now consider the second part of Proposition 3.2. We made, on page 6
of section 3.1, the remark on the duality of the properties enunciated in this latter
proposition, and our intention of obtaining the proof of the dual of a given property

14

PreBoolAlg : type

PreBoolAlg = (DistrLatt,
~:5 =S,
0:S,
1:S)

dualPreBoolAlg : PreBoolAlg— PreBoolAlg
dualPreBoolAlg Pba = (dualDistrLatt Pba,

~ = Pba.~,
0 = Pba.l,
1= Pba.0)

BoolAlg : type

BoolAlg = (PreBoolAlg,
compCong: (z,y :S) Rz y = ~ ~x ~y,
Bl:(z:S)~(
B2:(z:S)~(
B3:(z:S)~(Vz~z)l,
B4:(z:S)~(

dualBoolAlg : BoolAlg— BoolAlg

dualBoolAlg Ba = wuse Ba : BoolAlg
in (dualPreBoolAlg Ba,
compCong = compCong,

B1 = B2,
B2 = B1,
B3 = B4,
B4 =B3)

FIGURE 8. Boolean algebra

% — VBVz,y€|BlzAy~0D~zx~zVy —%

prop3.2(i) : (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreLatt in =~ (Azy)0— = (~z) (V(~2)y)
%— VBVz,y€eBlzVyxlDd~zx~zAy —%

prop3.2(ii) : (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in ~(Vzy)l ==~ (~2) (A(~2)y)
prop3.2(ii) = [Ba]prop3.2(i) (dualBoolAlg Ba)

FIGURE 9. Proposition 3.2

® on a certain structure S in terms of a proof ¢ of ®. Accordingly, then, the proof
of the part 1) of the above proposition is constructed by applying —and with this

15

prop3.3: (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in ~ (Azy)0 >~ (Vzy)l>~x(~z)y

%— VBVz,y € |Bl.(zVy)A(~zA~y) =0 —%
prop3.4(i) : (Ba : BoolAlg) (z,y : Ba.S)

use Ba : PreBoolAlg in ~ (A (Vzy) (A(~z)(~y)))0
%— VBVz,y€ Bl.(zVy)A(~zV~y)rl —%

prop3.4(ii) :+ (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in ~ (A (Vzy) (V(~z)(~y)))1

FIGURE 10. Propositions 3.3 and 3.4

% — VBVz,y€ |Bl.~zVy)x(~zA~y) —%

DeMorgan(i) : (Ba : BoolAlg) (z,y : Ba.S)
use Ba: PreBoolAlg in =~ (~ (Vzy)) (A (~2z) (~y))
DeMorgan(i) =
[Ba z y]
use Ba : BoolAlg
in prop3.3 Ba (V z y) (A (~ z) (~ y)) (prop3.4(i) Ba z y) (prop3.4(ii) Ba z y)

%— VBVz,y € |Bl.~(zAy) = (~zVe~y) —%

DeMorgan(ii) : (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in ~ (~ (Azy)) (V(~z)(~y))
DeMorgan(ii) = [Ba] DeMorgan(i) (dualBoolAlg Ba)

FIGURE 11. DeMorgan laws

we mean function application— the object prop3.2(i) to the dual structure of Ba,
i.e. dualBoolAlg Ba. This construction is shown in that same figure.

In Figure 10 we declare the constants prop3.3, prop3.4(i) and prop3.4(ii) to stand
for the proofs of Proposition 3.3 and the two properties of Proposition 3.4. The
construction of those proofs is routine.

We end up presenting in Figure 11 the proof objects corresponding to DeMor-
gan’s laws. Again, the object abbreviated by DeMorgan(i) is a direct formaliza-
tion of the argument given in section 3.1 for showing the validity of this property.
As expected, the proof DeMorgan(ii) of the second law is obtained by applying
DeMorgan(i) to the object dualBoolAlg Ba.

16

4. RELATED WORK AND CONCLUSIONS

We have motivated the use of an extension of Martin-L6f’s logical framework with
dependent record types and subtyping for the formalization of algebraic construc-
tions. Dependent record types have been illustrated to constitute an appropriate
mechanism for the representation of types of algebraic structures. In addition, the
inclusion relation induced by record types allows to represent in a direct manner
incremental definition of types of structures. Moreover, the subtyping mechanism
made it possible to give a formal account of the fact that a system that conforms
to an extension of one previously introduced inherits the constructions associated
to the latter.

The experiment reported in this work was mechanically verified using the im-
plemented proof checker. We have, in addition, used the system for developing
formalizations concerning Group theory and the algebraic theory of Integral Do-
mains [Bet98].

The formalization of abstract algebra in type theory (in a wide sense) has lately
received an increasing amount of attention.

In [Acz94, Acz95], Aczel presents a notion of class and overloaded definitions for
predicative type theories. The motivations behind this proposal are mainly con-
cerned with the development of mathematical abstractions for the formalization of
algebra in type theory. The key notion that there arises is that of a system of alge-
bras. A crucial condition required from these systems is that they should determine
the type of algebras of the system. In accordance to this, thus, algebras should be
first class objects of the formal language. Furthermore, in order to naturally re-
flect the usual presentation of these notions in the informal language, it should be
feasible, on the one hand, for the systems to be defined in an incremental manner.
On the other hand, it is also desirable to be able to reuse notation introduced for
a given system S when it comes to consider a system T which has been defined as
an extension of it. In other words, T should inherit the proof constructions, for
instance, developed for S. In this work, the notion of system of algebra is identified
with that of a class for which methods can be defined that in turn may be reused
(overloaded) on elements of subclasses of the one for which they have been originally
defined.

In [Bar95], the ideas above are extended to consider in uniform way the notion
that two types are somewhat related in such a way that one can be considered a
subtype of the other. This relation is formally reflected by introducing a coercion
function that indicates how to get an object of the supertype out of one of the
subtype. But a mechanism, which is formulated for pure type systems, is introduced
that allows to leave the coercions implicit. Applications are then shown using the
extended calculus of constructions [Luo94], where the representation of systems of
algebras is formulated in terms of X types. The relation between types of algebraic
structures that we obtain in terms of record inclusion is partially achieved in terms
of (the transitive closure of) coercions.

Direct successors of this work are the mechanisms implemented by Bailey [Bai97]
and Saibi [Sai97] for defining coercions between types or classes of types developed
for the proof-assistants LEGO [Pol94a] and Coq [Bar97], respectively. They have
also formalized corresponding large-scale case studies on Galois theory and Cate-
gory theory.

17

In [Jac95] algebraic structures are formalized in Nuprl’s version of type theory
[Con86] using sets of unlabeled dependent pairs and subsets. No general solution is
given in this work to the problem of representing the inclusion of types of structures
that we have been considering.

In [Luo96], a calculus in the spirit of Martin-Lo6f’s theory of types is presented,
where forms of judgement are introduced, among others, that express the concept of
a kind K being a principal kind of an object k¥ and that of (proper) kind inclusion.
The meaning explanation of the relation of subkinding is given in terms of coercions.
This makes it possible to justify the various coercive rules of the calculus which are
expressed as judgemental equalities. As a particular example the author illustrates
the use of coercions in the formalization of algebraic constructions.

The mechanism of subtyping obtained in all these works is, on the one hand,
more limited than the one we have illustrated in this paper, since the inclusions
that can be verified to hold are only those induced from the explicitly declared
coercions. On the other hand, they all achieve forms of subtyping not coming from
record subtyping. We consider this an interesting topic for further research in the
framework of Martin-Lof’s type theory

REFERENCES

[Acz94] P. Aczel. A Notion of Class for Theory Development in Algebra (in a Predicative type
theory), 1994. Presented at Workshop of Types for Proofs and Programs, Bastad,

Sweden.
[Acz95] P. Aczel. Simple Overloading for Type Theories, 1995. Privately circulated notes.
[Aug97] L. Augustsson. HBC - The Chalmers Haskell Compiler.
http://www.cs.chalmers.se/~augustss/hbc/, 1997.
[Bai97] A. Bailey. Lego with implicit coercions, 1997. Documentation report, available at

ftp.cs.man.ac.uk/pub/baileya/Coercions.

[Bar92] H. Barendregt. Lambda Calculi with Types. In T. S. E. Maibaum D. M. Gabbay,
S. Abramsky, editor, Handbook of Logic in Computer Science, pages 117-309. Oxford
University Press, 1992.

[Bar95] G. Barthe. Implicit coercions in type systems. In Selected Papers from the Interna-
tional Workshop TYPES ’95, Torino, Italy, LNCS 1158., 1995.

[Bar97] B. Barras et al. The Coq Proof Assistant Reference Manual — Version V6.1. Technical
Report 0203, INRIA, 1997.

[Bet97] G. Betarte. Dependent record types, subtyping and proof reutilization. In Online Pro-
ceedings of the TYPES Workshop Subtyping, Inheritance and Modular Development
of Proofs, Durham, England, September 1997.

[Bet98] G. Betarte. Dependent Record Types and Algebraic Structures in Type Theory. PhD
thesis, PMG, Dept. of Computing Science, University of Goteborg and Chalmers Uni-
versity of Technology, 1998.

[Bet00] G. Betarte. Type Checking Dependent (Record) Types and Subtyping. Journal of
Functional Programming, 10(2):137-166, March 2000.

[BS81] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate Texts
in Mathematics, Springer-Verlag, 1981.
[BT98] G. Betarte and A. Tasistro. Extension of Martin-Ldf’s Type Theory with Record Types

and Subtyping, pages 21-39. In Sambin and Smith [SS98], 1998.

[CNSvS94] Th. Coquand, B. Nordstrém, J.M. Smith, and B. von Sydow. Type theory and pro-
gramming. In FATCS 52, 1994.

[Con86] R. Constable et al. Implementing mathematics with the Nuprl development sys tem.
Prentice-Hall, 1986.

[Coq91] Th. Coquand. An algorithm for testing conversion in type theory. In Logical Frame-
works, Huet G., Plotkin G. (eds.), pages 71-92. Cambridge University Press, 1991.

18

[GraTl]
[Jac95]

[Luo94]

[Luo96]
[Mar87]
[Mar92]
[NPS89]
[Pet96]

[Pol94a]

[Pol94b)]

[Sai97]
[SS98]

[Tas93]

[Tas97]

G. Grétzer. Lattice Theory. First concepts and Distributive Lattices. W. H. Freeman
and Company, 1971.

P. Jackson. Enhancing the Nuprl Proof Development System and Applying it to Com-
putational Abstract Algebra. PhD thesis, Cornell University, 1995.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Num-
ber 11 in International Series of Monographs on Computer Science. Oxford University
Press, 1994.

Z. Luo. Coercive subtyping in type theory. In CSL’96, the 1996 Annual Conference
of the European Association for Computer Science Logic, Utrech, 1996.

P. Martin-Lof. Philosophical Implications of Type Theory., 1987. Lectures given at
the Facolta de Lettere e Filosofia, Universitd degli Studi di Firenze, Florence, March
15th. - May 15th. Privately circulated notes.

P. Martin-L6f. Substitution calculus., 1992. Talks given in Goteborg.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Léf’s Type
Theory.An Introduction. Oxford University Press, 1989.

J. Peterson et al. Report on the Programming Language HASKELL. A Non-strict,
Purely Functional Language, May 1996.

R. Pollack. The Theory of LEGO: a proof checker for the Extended Calculus of Con-
structions. PhD thesis, University of Edinburgh, 1994.

R. Pollak. Closure under alpha-conversion. In Types for Proofs and Pro-
grams:International Workshop TYPES’93, Nijmegen, May 1993, Selected Papers,
volume 806 of LNCS, 1994.

A. Saibi. Typing algorithm in type theory with inheritance. In 24/th. Annual
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1997.

G. Sambin and J.M. Smith, editors. Twenty-Five Years of Constructive Type Theory.
Oxford University Press, 1998.

A. Tasistro. Formulation of Martin-Lo6f’s theory of types with explicit substitution,
1993. Licenciate thesis.Programming Methodology Group, Dept. of Computer Science,
University of Goteborg and Chalmers University of Technology.

A. Tasistro. Substitution, record types and subtyping in type theory, with applications
to the theory of programming. PhD thesis, PMG, Dept. of Computing Science, Uni-
versity of Géteborg and Chalmers University of Technology, 1997.

E-mail address: gustun@fing.edu.uy

