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Abstract. This paper details the method used to augment an epistemic
modality corpus (the Bioscope corpus), incorporating results from the
lexical and syntactic analysis of its sentences. The features resulting from
these analyses were consolidated in a single data structure, that can be
used for interactive experimentation on the corpus. Some visualization
aids developed for corpus browsing are also described.

1 Introduction

This work is part of a more general study of epistemic modality in unrestricted
texts, particularly in the molecular biology domain. Previous work on the Mi-
crobio project[1], a collaboration between biologists, computer scientists and
linguists, highlighted the need to identify different types of features (temporal,
modal, declarative) associated with information extracted from molecular biol-
ogy papers. In particular, the possibility of detecting epistemic modality markers
and connecting them to certain textual segments could be extremely useful in
the transition from unstructured text to a knowledge base.

We consider this work as the first step towards the study of the influence
of syntactic analysis information on detecting hedge cues and their scope. Our
hypothesis is that working out the constituent structure of sentences could help
to identify dependencies between hedge cues and their scope, which could be
subsequently used as features for learning. For example in the sentence “IFN-
alpha also sensitized T cells to IL-2-induced proliferation, further suggesting that
IFN-alpha may be involved in the regulation of T-cell mitogenesis”, the scope of
the cue may is the sentence “IFN-alpha may be involved in the regulation of T-
cell mitogenesis.”, syntactically constituted by the noun IFN-alpha, and the verb
phrase “may be involved in the regulation of T-cell mitogenesis.”. Based on this
observation, a linguist could hypothesize that when the term may appears in a
proposition as a modifier and is marked as a hedge cue, its hedging scope should
be the sentence that includes it, and further, that relations extracted from the



propositions (in the example, the relation between the protein IFN-alpha and
the regulation process), should be tagged as uncertain.

As far as we know, no previous work has been done in this direction: only
lexical features such as words, lemmas and POS tags have been used when try-
ing to classify modality aspects using machine learning methods. We think that
if information from different analysis sources (part-of-speech tagging, syntac-
tic analysis, hand-tagged hedge scope, named entity recognition, and chunking)
could be integrated, so as to build an integrated corpus and analysis environ-
ment, this would facilitate the analysis of hedging phenomena, and thus improve
hedge detection using standard machine learning methods.

In this work we show how we enriched the Bioscope corpus (a biological
corpus annotated with modality cues and their scope), by integrating syntactic
and lexical information resulting from different analysis tools, and building an
environment for its visualization and browsing. The next section briefly reviews
the concepts of epistemic modality and hedging, and summarizes previous work
on hedge classification, particularly in the biological domain. Then we describe
our work and the lines of investigation planned for the future.

2 Related Work

Palmer[7] defines epistemic modality as “any modal system that indicates the
degree of commitment by the speaker to what he says (...); this clearly includes
both his own judgements and the kind of warrant he has for what he says”.
Related to the concept of epistemic modality is the notion of hedge. The term
was first introduced by Lakoff[3],who studied the properties of words like rather
and their ability to “make things fuzzier or less fuzzy”. The Concise Oxford
Dictionary of Linguistics (cited by [8]) defines hedges as: “any linguistic device
by which a speaker avoids being compromised by a statement that turns out to
be wrong, a request that is not acceptable, and so on.”. It should be clear that
hedges are strong indicators about the epistemic modality of any assertion.

Sauŕı et al.[10] investigated the general modality of events, “which expresses
the speaker’s degree of commitment to the events being referred to in a text”,
and defined different modal types, including degrees of possibility, belief, evi-
dentiality, expectation, attempting and command. They remarked that modality
identification should be a layer of information in text analysis, to allow better
inferences from events.

This level of analysis seems very important when considering scientific writ-
ing: scientific assertions often include some degree of uncertainty or assessment of
possibilities[8]. Detecting epistemic modality features from identified assertions
could help with concept identification and relation extraction. The expression
“Here we show that the response of the HIV-1 LTR may be governed by two inde-
pendent sequences located 5’ to the site of transcription initiation sequences that
bind either NFAT-1 or NF kappa B” asserts a relation between “the response of
HIV-1 LTR” and two DNA sequences. An information extraction system that
skipped the modality analysis would miss the fact that the author includes the



relation under the scope of a hedge (in this case, may), showing he is not sure
about it, and so it should be presented with lower confidence.

In recent years, hedging has been the target of several studies, even deserv-
ing a shared task in the Tenth Conference on Computational Natural Language
Learning (CoNLL-2010). Medlock and Briscoe [5] showed that hedge classifica-
tion could be seen as a weakly supervised machine learning task. Using Support
Vector Machines, they achieved a recall/precision break even point of 0.76 on
a corpus they built and made publicly available, using a bag-of-words model
as features. Later work by Medlock [4] added POS tags, lemmas and bigrams
as learning features, achieving a maximum BEP of 0.82. Working on the same
corpus, Szarvas [11] achieved a of 0.85 using an external dictionary of hedge
keywords, a Maximum Entropy Markov Model classifier on trigrams, bigrams
and unigrams, and a weighting mechanism on hedge cues. Morante and Daele-
mans [6] not only tried to detect hedge cues but also their scope, learning on the
Bioscope corpus (see below). They used a metalearning approach based on three
supervised learning methods: memory-based learning, Support Vector Machines
and Conditional Random Fields. The features used were chain-of words, lemmas,
POS tags, chunk IOB tags, token location relative to the hedge cue, and a list
of cue candidate words. They achieved an F1 of 74.05 for hedge identification,
and 90.61 for scope finding (using gold-standard hedge signals).

As mentioned above, we are not aware of research that has used parsing
information as features for hedge detection and scope finding, nor do we know
of the existence of an epistemic modality corpus annotated with this type of
information.

3 Enriching a Modality Corpus

3.1 The Bioscope Corpus

The Bioscope corpus [13] is a freely available corpus of medical free texts, bio-
logical full papers and biological scientific abstracts, annotated at a token level
with negative and speculative keywords, and at sentence level with their linguis-
tic scope. It includes 20.000 sentences considered for annotation, 10% of them
actually containing one or more linguistic annotations suggesting negation or
uncertainty.

Related to hedge detection, uncertainty markers and their scopes were iden-
tified. Negation and uncertainty scopes can be nested, yielding results such as
the following annotated sentence:

<sentence>The induction of AP1 by okadaic acid

<xcope><cue type="speculation">suggests</cue>

that protein phosphatases 1 and 2A (PP1 and PP2A)

<xcope><cue type="speculation">may</cue> be involved in T cell

activation as important negative regulators of the transcription

factor AP1</xcope></xcope>.</sentence>



Table 3.1, extracted from [13], gives some statistics related to hedge cues and
sentences for the three sub corpora included in Bioscope.

Clinical Full paper Abstract

#Documents 954 9 1273
#Sentences 6383 2670 11871
Hedge Sentences 13.39% 19.44% 17.70%
#Hedge cues 1189 714 2769

Table 1. Bioscope corpus statistics about hedging

3.2 Added Information

As previously mentioned, we aimed at enriching the texts in the Bioscope corpus
with results from different analyses in order to obtain a new richer corpus, suit-
able for use on hedge detection tasks. We started with the original sentences of
the corpus, tokenized them and added lexical, syntactic and hedging information.

Lexical information To incorporate lexical information, each Bioscope sen-
tence was analysed with the GENIA tagger [12], a widely used part-of-speech
tagger, especially trained on the biological domain.This tagger was also used to
annotate named entities and chunking information at a token level.

Hedge information Hedge information (already present in the corpus) cannot
be directly represented at a token level: it has an arborescent structure, with
potentially nested scopes. However, browsing the corpus, we found that (as could
be expected) hedging scopes nesting was almost never deeper than two levels.
We therefore modelled hedging information with two scope attributes, allowing
at most one nested hedging scope. To tag speculative cues and scopes a standard
model used in Named Entity Recognition tasks was applied: as hedge cues could
extend for more than just a word, the first token of a hedge cue was tagged with
the tag B-SPECCUE, and the rest of the words in the cue with I-SPECCUE
. Tokens not included in a cue where given the tag O. A similar approach was
used for scope identification.

Table 3.2 shows the aforementioned sentence, including its hedging and lex-
ical attributes. As can be seen, the information included so far, represented as
a list of tokens with their attributes, following the standard of the 2006 CoNLL
Shared Task, can be used straightforwardly in machine learning tasks such as
classification.

Sentence constituents We also analysed the corpus searching for sentence
constituents, using the Sanford Parser[2]. We built a syntactic analysis tree for



each sentence of the corpus. As this parser was trained on a different domain
from ours, we tried to improve its performance using as inputs for the parser
the tokens that resulted from the GENIA tagger analysis, and their part-of-
speech tags. As the usual representation of token-per-token features did not
satisfactorily accommodate the parsing information (which is essentially tree-
shaped), we decided to start with the tree resulting from the syntactic analysis,
then decorating each of its leaves (containing sentence tokens), with the rest of
the features.

Figure 1 shows a small part of its analysis tree decorated with the part-of-
speech, chunk, NER and hedging features.

Token Lemma POS Chunk NE Hedge Cue 1 Scope Hedge Cue 2 Scope

The The DT B-NP O O O O O
induction induction NN I-NP O O O O O
of of IN B-PP O O O O O
AP1 AP1 NN B-NP B-protein O O O O
by by IN B-PP O O O O O
okadaic okadaic JJ B-NP O O O O O
acid acid NN I-NP O O O O O
suggests suggest VBZ B-VP O B-SPECCUE B-XCOPE O O
that that IN B-SBAR O O I-XCOPE O O
protein protein NN B-NP B-protein O I-XCOPE O O
phosphatases phosphatas NNS I-NP I-protein O I-XCOPE O O
1 1 CD B-NP I-protein O I-XCOPE O O
and and CC O I-protein O I-XCOPE O O
2A 2A NN B-NP I-protein O I-XCOPE O O
-LRB- ( -LRB- O O O I-XCOPE O O
PP1 PP1 NN B-NP B-protein O I-XCOPE O O
and and CC O O O I-XCOPE O O
PP2A PP2A NN B-NP B-protein O I-XCOPE O O
-RRB- ) -RRB- O O O I-XCOPE O O
may may MD B-VP O O I-XCOPE B SPECCUE B-XCOPE
be be VB I-VP O O I-XCOPE O I-XCOPE
involved involve VBN I-VP O O I-XCOPE O I-XCOPE
in in IN B-PP O O I-XCOPE O I-XCOPE
T T NN B-NP O O I-XCOPE O I-XCOPE
cell cell NN I-NP O O I-XCOPE O I-XCOPE
activation activation NN I-NP O O I-XCOPE O I-XCOPE
as as IN B-PP O O I-XCOPE O I-XCOPE
important important JJ B-NP O O I-XCOPE O I-XCOPE
negative negative JJ I-NP O O I-XCOPE O I-XCOPE
regulators regulator NNS I-NP O O I-XCOPE O I-XCOPE
of of IN B-PP O O I-XCOPE O I-XCOPE
the the DT B-NP O O I-XCOPE O I-XCOPE
transcription transcription NN I-NP B-protein O I-XCOPE O I-XCOPE
factor factor NN I-NP I-protein O I-XCOPE O I-XCOPE
AP1 AP1 NN I-NP O O I-XCOPE O I-XCOPE
. . . O O O O O O

Table 2. Lexical and hedging information

The main issue in synchronizing the three sources of information was tok-
enization and the selection of the tagset: if we could not manage to tokenise the
sentences in exactly the same way by the different analyses, integrating them
into one structure would not be possible. Fortunately, the tagger and parser
used the same tag-set (the PennTreebank) and its conventions for tokenization,
so we followed the same approach when tokenising the Bioscope sentences. Even
then, certain problems arose with GENIA incorrectly tokenising some sentences,
or not following exactly the tokenization conventions. The GENIA results were
post-processed to correct these situations.

As an automatic process, the addition of new information to the corpus
comes at the cost of introducing analysis errors. In this work, errors come from
two sources: tagging and syntactic analysis. Studying (and solving) errors that



Fig. 1. Parsing information augmented with lexical and hedging features



were introduced during the process is a pending and cost-consuming task (which
should include the work of linguists and domain specialists). To minimize these
errors, two decisions were taken: using a domain-specific tagger (the GENIA
tagger, trained on the same GENIA corpus the Bioscope corpus is partly built
on), and passing this tagging information to the parser. The GENIA tagger has
a reported accuracy of 0.96-0.98 on the domain [9,12], and the Stanford parser
presents a F-measure of 0.86 [2] (using their own tagging method). Based on this
information, we think the tagging and parsing errors introduced still allow for
the use of the tagged data to improve performance on supervised learning tasks.

4 An Environment for Corpus Browsing and Visualization

Besides adding information to the original corpus, we tried to provide mecha-
nisms for experts to easily browse the corpus content (including sentences and
associated features). When doing this, two distinct kind of users were considered:
linguists analysing hedging structures and their relation with lexical and syn-
tactic features, and computer scientists trying to automatically recognize those
structures.

For the first kind of users, we added visualization aids to the corpus: based on
the original corpus XML file, and using XSLT and CSS templates, the user can
browse the corpus, in which hedge and negations cues are highlighted, and their
scopes highlighted. Figure 2 shows an example of these visualization aids. A tree
visualization of the final structure was also included (built using the Graphviz3

package), as was a token-per-token visualization of the lexical and hedging fea-
tures (similar to the one showed in table 3.2). Preliminary user experiments
showed that this approach is indeed effective for easier corpus analysis.

Fig. 2. Corpus visualization aids

To allow computer scientists to test their methods and techniques on the
corpus, we selected the Python/NLTK environment for its modelling and im-

3 http://www.graphviz.org



plementation. The Python language presents several advantages: its dynamic
typing mechanisms allowed us to accommodate new information into the tree;
our aim is to use the corpus for interactive experimentation, an interpreted
language seemed a good choice; its serialization possibilities allowed us to easily
save and restore the full tree structure of the corpus sentences; finally, the NLTK
toolkit provided standard data structures for NLP tasks, and mechanisms for
their manipulation.

5 Conclusions and Future Work

As a result of this work, we have built an augmented version of the complete
Bioscope corpus, and an environment for its visualization and manipulation4.
Data integration problems (tokenization differences, tagging discrepancies, data
representation alternatives) have been completely solved. Even when the corpus
is the result of automatic analysis (and, for this reason, not error-free), we claim
that it can serve as a testbed for different analyses related to hedging. We hope
this environment will allow for a flexible and easy way to extract statistics and
rapidly evaluate the impact of different information extraction methods on the
corpus. Having ways to easily visualize data and its structure will also facilitate
the work of human experts on corpus analysis.

The ideas, methods and tools presented in this paper can be generalized. In-
corporating information from different sources is a common task in Natural Lan-
guage Processing. This integration not only assembles more features for learning
methods, but can also help to improve some of the tasks involved: we noted, for
example, that including GENIA-generated tags as an input for parsing seemed
to improve the parsing task, but also that the parser corrected some “impossi-
ble” tags, based on its own learned statistics. Representing corpus structure as
annotated trees is of course not new (compilers have used this representation for
years), but its use instead of sequential representations for relation extraction
and machine learning is not a common practice.

The next steps will be to model hedge cue identification and scope determi-
nation as a classification task on text tokens. To achieve this, we plan to build
hand-crafted functional rules that, given a sentence, return appropriate tags for
each token, based on features of the token and its neighbours in the sentence
analysis tree. Using the environment, we will test each rule for precision/recall
measures to assess its performance on the whole corpus. Coding rules as func-
tions allows maximum flexibility, while having a predefined environment facilities
the task of rule evaluation.

After this phase, we plan to include the results of these rules as new token
features. Working on this new data, we will apply machine learning methods to
generalize them. The kind of task and the size of the corpus suggest a sequential
discriminative method such as Conditional Random Fields may be useful, but
other approaches (Support Vector Machines, semi-supervised methods) should

4 A reduced version of the corpus can be browsed online at
http://www.fing.edu.uy/inco/grupos/pln/bioscope devel/abstracts devel.xml



also be considered. Finally, we intend combine these hedge classification tasks
with relation extraction methods to add confidence information to extracted
information.
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