
Exploiting algebra/coalgebra duality for program fusion
extensions

Facundo Domínguez
Intituto de Computación

Universidad de la República
Montevideo, Uruguay

fdomin@fing.edu.uy

Alberto Pardo
Intituto de Computación

Universidad de la República
Montevideo, Uruguay

pardo@fing.edu.uy

ABSTRACT
We reformulate algorithms for optimizing functional pro-
grams through a well known fusion technique. The reformu-
lation sheds a new perspective which simplifies significantly
the extensions to cope with programs involving mutually re-
cursive definitions and recursion over multiple arguments.
The presentation is based on a recursion scheme known as
hylomorphism but other related fusion techniques may ben-
efit from the results. Our algorithms are implemented as
part of a fusion tool called HFusion.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization; D.3.4 [Programming Languages]: Lan-
guage Classifications—Applicative (functional) languages; F.3.3
[Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Program and recursion schemes

General Terms
Languages, Algorithms, Theory

Keywords
Program Fusion, Program Transformation, Hylomorphism,
Functional Programming

1. INTRODUCTION
Most often, programs are written as a composition of mod-

ular components. This makes it possible to take advantage
of the well-known benefits of modular programming, such as
readability and maintainability. Consider, for example, the
following program written in Haskell

f p n = sum (filter p [1 . .n])

This program creates a list with the integers from 1 to n,
then creates another list by selecting the integers that satisfy
a given predicate p, and finally yields the sum of all of them.
This compositional style of programming is suitable from a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2011 Saarbrücken, Germany
Copyright 2011 ACM 978-1-4503-0665-2 ...$10.00.

design perspective, but it is not desirable from the runtime
standpoint because the intermediate lists imply extra work
for allocating, examining and deallocating their nodes.

Such intermediate data structures can be automatically
removed by using program transformation techniques, known
as deforestation or fusion, in which modular programs are
replaced by monolithic ones that compute the same without
generating intermediate structures (see e.g. [12, 20, 28]).

In this paper we present a reformulation and extension of
algorithms for a fusion tool which internally represents pro-
grams in terms of a recursive scheme called hylomorphism
and applies certain fusion laws known as acid rain [26].

Firstly, we offer in Section 4 a concise formulation of the
algorithms for deriving algebra/coalgebra transformers pre-
sented in [20]. Our formulation makes the fact evident that
both algorithms are each other’s dual, something not possi-
ble to be appreciated in previous formulations. In its original
statement, the algorithm for deriving coalgebra transformers
was unnecessarily complex as well as technically incorrect as
it will be discussed.

Secondly, to showcase the practicality of our formulation
beyond the cosmetics, we will extend our algorithms to han-
dle a broader class of functions, namely functions that re-
curse over multiple arguments (Section 5) and mutually re-
cursive functions (Section 6). Although previous work [14,
16] has already approached these extensions, as far as we
are aware the actual algorithms had not been presented be-
fore. Moreover, in the case of the extension for recursive
functions over multiple arguments addressed in [14], we for-
mulate a different solution which in our opinion solves the
same problem while being theoretically simpler.

While our formulation of the algorithms is based on our
work using hylomorphisms, we expect the ideas presented
herein to benefit the design and implementation of fusion
systems based on other approaches, mostly those related
to shortcut fusion [12] which could rely on the ability to
abstract constructors away from function definitions.

The reformulated algorithms and extensions are part of
the development of a fusion tool for Haskell programs called
HFusion [13], which started being a partial reimplementa-
tion of the hylo system [20, 24]. An extended presentation
of our contributions can be found in [5].

2. THEORETICAL FRAMEWORK
Systems intended to automatically fuse programs often

rely on laws expressed over particular representations of the
functions of a program. In our approach, the function rep-
resentation is a recursive scheme known as hylomorphism,

which can be automatically converted back and forth to the
textual source code representation of the functions. Our im-
plementation HFusion converts recursive functions from a
subset of Haskell to hylomorphisms,1 applies the fusion laws
and transforms the result back to Haskell. As all techniques
to be described assume that programs are represented in
terms of hylomorphisms, we will briefly present them here.

Hylomorphism is a program scheme that represents a func-
tion f :: a → b by splitting its definition into three compo-
nents, written as Jφ, ψKF , such that ψ describes how the
arguments to the recursive calls of f are computed from
the input value, φ describes how the results of the recur-
sive calls are combined to build the output value, and F
(called a functor) captures the essential structure of f . Fol-
lowing, we describe the main characteristics of each of these
components and how they play together in the definition of
hylomorphism. We also present the three fusion laws asso-
ciated with hylomorphisms which constitute the core of the
approach. Throughout we will assume a cpo semantics in
terms of pointed cpos.

Functors.
Both the structure of datatypes and functions can be de-

scribed using functors. A functor F is an operator that
applies to types and functions, and satisfies the following
properties: F f :: F a → F b, for all f :: a→ b, F id = id ,
and F (f ◦ g) = F f ◦ F g .

Sometimes it is necessary to consider functors on two vari-
ables: A bifunctor F is a binary operator that applies to
pairs of types and functions, such that: F (f, g) :: F (a, c) →
F (b, d), for all f :: a → b and g :: c → d, F (id , id) = id ,
and F (f ◦ g , h ◦ k) = F (f , h) ◦ F (g , k).

We write (a, b) to denote pairs of types in our meta-
language, whereas by a × b we denote the type of pairs that
can be written within programs.

Functors will be specified in compact notation as compo-
sitions of a set of elemental functors. The identity functor
is given by I a = a and I f = f , whereas for any type c the
constant functor c is such that c a = c and c f = id . The
product type constructor a×b can be treated as a bifunctor
by defining f ×g ::a×b → c×d as (f ×g) (a, b) = (f a, g b).

In our meta-language we introduce a sum type constructor
a + b which builds the disjoint sum of two types. Semanti-
cally, this means that a +b = ({1}×a)∪({2}×b)∪{⊥}. It
can be treated as a bifunctor by defining f +g ::a +b → c+d
as the strict function such that (f + g) (1, a) = (1, f a) and
(f + g) (2, b) = (2, g b). Associated with sums it can be
defined a case analysis operator f Og :: a + b → c given
by the strict function such that (f Og) (1, a) = f a and
(f Og) (2, b) = g b.

Products and sums can be generalized to n components
in the obvious way. We assume that application has greater
precedence than both product and sum, and product has
greater precedence than sum. By 1 we denote the unit type.
We will also use products and sums of functors, that is,
(F ∗ G) a = F a ∗ G a and (F ∗ G) f = F f ∗ G f , for
∗ ∈ {×,+}.

An example of a functor expressed in compact form is
F = 1 + Int × I . We call recursive positions of a functor
those positions where functor I occurs.

1Most notably, HFusion does not handle programs using the
seq operator yet.

Data types.
Given a functor F and any type a, a function of type

F a → a is called an F-algebra, whereas a function of type
a → F a is called an F-coalgebra. The type a is said to be
the carrier set of the algebra/coalgebra.

Semantically speaking, recursive datatypes correspond to
least fixed points of functors. Given a datatype declaration,
it is possible to derive a functor F such that the datatype
is the least solution to the equation x ∼= Fx and it is usu-
ally written µF . The isomorphism is provided by two strict
functions, called inF :: F µF → µF and outF ::µF → F µF ,
inverses of each other. The algebra inF packs the construc-
tors of the datatype (see [9] for further details).

A functor may be derived from a data type definition by
extracting the arity of its constructors. For instance, by
placing in a sum the signatures of the constructors of the
type of lists data [a] = [] | a : [a] we obtain the following
functor F = 1 + a × I ,2 algebra inF and coalgebra outF .

inF :: F [a]→ [a]
inF = nilOuncurry (:)

where nil = []
uncurry f (x , y) = f x y

outF :: [a]→ F [a]
outF [] = (1, ())
outF (x : xs) = (2, (x , xs))

Hylomorphisms.
Given a functor F , an algebra φ::F b → b, and a coalgebra

ψ :: a → F a, the hylomorphism Jφ, ψKF :: a → b is defined
as the least fixed point of the equation h = φ ◦ F h ◦ ψ.

Given an F -algebra of the form
φ1O · · ·Oφn

where φi (vi1, . . . , vini) = ti

we call vij a recursive variable if it corresponds to a recursive
position of functor F , attending the fact that the variable
holds the result of a recursive call.

The F -coalgebras we will manipulate are of the form:
λv0 → case t0 of

p1 → (1, (t11, . . . , t1n1))

...
pm → (m, (tm1, . . . , tmnm))

We will call tij a recursive term if it corresponds to a recur-
sive position of functor F , attending the fact that a recursive
tij is the argument of a recursive call.

The algebra inF and the coalgebra outF allow specializ-
ing hylomorphisms to get two well-known recursion schemes
called fold (L−MF) [2] and unfold (bd(−)ecF) [10]: LφMF = Jφ, outF KF
and bd(ψ)ecF = JinF , ψKF .

Fusion laws.
The following fusion laws are instantiations of the so-

called acid rain laws [26, 20] for hylomorphisms. Functions
τ :: ∀a. (F a → a) → (G a → a) and σ :: ∀a. (a → G a) →
(a → F a) are called transformers of algebras and coalge-
bras, respectively [7].

LφMF ◦ bd(ψ)ecF = Jφ, ψKF (fold-unfold)

LφMF is strict ⇒
LφMF ◦ Jτ(inF), ψKG = Jτ(φ), ψKG

(fold-hylo)

Jφ, σ(outG)KF ◦ bd(ψ)ecG = Jφ, σ(ψ)KF (hylo-unfold)

2Formally, when the data type has a type parameter a, the
functor is written as Fa. However, we avoid writing the type
parameter for the sake of simplicity in notation.

3. ABSTRACTING CONSTRUCTORS AWAY
To illustrate the fusion laws in action let us consider the

following program.

mi f e = map f ◦ intersp e intersp :: a → [a]→ [a]
map :: (a → b)→ [a]→ [b] intersp e [] = []
map f [] = [] intersp e (x : []) = x : []
map f (x : xs) = f x : map f xs intersp e (x : xs) =

x : e : intersp e xs

If we want to fuse map f ◦ intersp e, we first derive hylomor-
phisms with functors F = 1 + a × I and G = 1 + a + a × I .

map f = LγMF
where γ = nilO(λ(x , v)→ f x : v)

intersp e = Jφ, ψKG
where φ = nilO(:[])O(λ(x , v)→ x : e : v)

ψ = λv → case v of [] → (1, ())
x : [] → (2, x)
x : xs → (3, (x , xs))

In this case we are able to derive a τ transformer for intersp,
obtaining:

intersp e = Jτ(inF), ψKG
where τ :: ∀a. (F a → a)→ (G a → a)

τ(α) = τ1(α)Oτ2(α)Oτ3(α)
τ1(α1Oα2) () = α1

τ2(α1Oα2) x = α2 (x , α1 ())
τ3(α1Oα2) (x , v) = α2 (x , α2 (e, v))

Applying acid rain for the fold-hylo case we get mi f p =
Jτ(γ), ψKG , which converted back to a Haskell recursive def-
inition is:

mi f e [] = []
mi f e (x : []) = f x : []
mi f e (x : xs) = f x : f e : mi f e xs

As another example we could consider the composition

im e f = intersp e ◦map f

where we would need to write map f as an unfold and rewrite
the coalgebra of intersp using a σ transformer:

map f = bd(ψ′)ecF
where ψ′ = λv → case v of

[]→ (1, ())
x : xs → (2, (f x , xs))

intersp e = Jφ, σ(outF)KG
where σ :: ∀a. (a → F a)→ (a → G a)

σ(β) v = case β v of
(1, ()) → (1, ())
(2, (x , xs))→ case β xs of

(1, ())→ (2, x)
→ (3, (x , xs))

The result of applying acid rain for the hylo-unfold case
is Jφ, σ(ψ′)KG , which can be written in Haskell as:

im e f [] = []
im e f (x : []) = f x : []
im e f (x : xs) = f x : e : im e f xs

Both examples involve a step where transformers τ or σ
need to be derived. These derivations involve mostly ab-
stracting constructors away, so they can later be replaced
by changing the argument of the transformer. In the case
of the derivation of τ , constructors are abstracted on the
expressions of an algebra. In the case of the derivation of
σ, the constructors are abstracted from the patterns of a
coalgebra.

Despite the duality that relates transformers of algebras
and coalgebras, the treatment in these examples has been
quite asymmetrical. When writing a σ for the coalgebra of
intersp we had to rewrite the coalgebra into a cascade of
cases while no dual task was needed to derive τ . This is

more a nuance of Haskell rather than one of the theoretical
tools we are employing.

In order to improve the expression of coalgebra transform-
ers, we will resort to an idiom known as view patterns, an
idea first proposed by Wadler [27] which has been added
as an extension to the Glasgow Haskell Compiler.3 A view
pattern is a pattern written t ·p where t is a term and p
some other pattern. To match a value v against a pattern
(t ·p), first (t v) is evaluated, and then the result is matched
against p. Thus, having a function f x = x + 1, the expres-
sion case 1 of f ·2→ 0 evaluates to 0 because it is the same
as evaluating case f 1 of 2→ 0.

The convenience of view patterns can be appreciated in a
transformer of coalgebras.

intersp e = Jφ, σ(outF)KG
where σ :: ∀a. (a → F a)→ (a → G a)

σ(β) = λv → case v of
β·(1, ())→ (1, ())
β·(2, (x , β·(1, ())))→ (2, x)
β·(2, (x , xs)) → (3, (x , xs))

Note how this definition of σ resembles more closely the
definition of the original coalgebra ψ of intersp. In this
rewriting, the constructors in the patterns of ψ have been
literally replaced with a variable, much in the same way we
did with the constructors in the algebra of intersp when
deriving τ . The idiom of view patterns has allowed us to
skip the asymmetrical step of writing the cascade of cases.

One may wonder if using view patterns in successive al-
ternatives of a case as we are doing here may not evaluate
more than once the coalgebra β over the same value v . How-
ever, such redundancy can be automatically avoided when
writing hylomorphisms back to Haskell.

4. DERIVATION ALGORITHMS FOR TRANS-
FORMERS

We focus now on the derivation algorithms for algebra and
coalgebra transformers. We show a pair of algorithms for
deriving τ and σ, where one is the dual of the other. The
simplicity of the formulation will enable us to extend the
algorithms with a minimal effort to handle broader classes
of functions.

For the sake of this presentation, we will define our al-
gorithms over a simple sub-language comprised of lambda
abstractions, application, cases over constructors and view
patterns.

Derivation of τ
The derivation algorithm for τ is in essence the same given
by Onoue et al. [20]. We present it here only because it
is an interesting point of comparison with the algorithm we
propose in the next subsection for deriving σ transformers.
Given aG-algebra φ the goal of the algorithm is to determine
whether it can be written as τ(inF), for τ ::∀a.(F a → a)→
(G a → a). The algorithm requires that φ be given by
a case analysis φ1O · · ·Oφn such that each φi is a function
λ(v1, . . . , vki) → ti where the term ti satisfies the following
normal form:

1. it is a recursive variable; or

2. it is a constructor application Cj (t ′1, . . . , t
′
m) where

each t′k in a recursive position of constructor Cj is in

3http://www.haskell.org/ghc/.

T (F , φ :: G µF → µF) :: (F a → a)→ (G a → a)
T (F1 + · · ·+ Fm , φ1O · · ·Oφn) =

λ(α1O · · ·Oαm)→ T ′(φ1)O · · ·OT ′(φn)
where T ′(λbvs → t) = λbvs → A(t)

A(v) = v if v is a recursive variable
A(Cj (t1, . . . , tk)) = αj ((Fj A) (t1, . . . , tk))
A(t) = Lα1O · · ·Oαm MF t every other case

Figure 1: Derivation algorithm for τ

normal form. By recursive positions of a construc-
tor we mean those positions where the corresponding
datatype µF occurs recursively; they correspond to the
occurrences of the I functor in the expression of func-
tor F . Those t′k that are not in recursive positions of
Cj can be any term not referencing recursive variables;
or

3. it is any term not referencing recursive variables.

When there are if -then-else or case structures embed-
ded in φ, they sometimes can be moved out of the algebra
by restructuring the hylomorphism in order to obtain this
normal form.

The derivation algorithm for τ is shown in Figure 1. The
objective of algorithm A is to abstract constructors, sub-
stituting them for the corresponding operations of the F -
algebra α = α1O · · ·Oαm . This algorithm is applied recur-
sively to the recursive arguments only, which are indicated
by the functor F required as an input. The output of the
algorithm is such that T (F , φ) (inF) = φ.

Derivation of σ
The derivation algorithm for σ takes as input a G-coalgebra
to be rewritten as σ(outF) where σ :: ∀a.(a → F a) →
(a → G a). The input coalgebra must be in the form:
λv → case v of {p1 → t1; . . . ; pn → tn }, that is, the case
must be evaluated over the input variable. There are also
the following restrictions:

• Recursive terms must be variables, and non-recursive
terms must not contain variables appearing in recur-
sive terms.

• The patterns pi must satisfy the following normal form:

1. the pattern is a variable; or

2. the pattern is of the form Ci (p′1, . . . , p
′
ki

) and pat-
tern p′j appearing in a recursive position of Ci is
in normal form. A pattern p′j in a non-recursive
position can have any shape as far as it does not
reference variables appearing in recursive terms.
A pattern p′j is said to appear in a recursive po-
sition if the functor F (not G) tells so, being F
the functor characterizing the input datatype µF
of the coalgebra.

In Figure 2 we present our derivation algorithm for σ.
Algorithm B, which abstracts constructors inside patterns,
here plays the same role as algorithm A in the derivation
algorithm for τ . Duality can now be better appreciated from
the textual presentation of the algorithms, something that
was not evident in previous formulations [20, 24].

Initially, we intended to base our implementation on the
algorithm described by Onoue et al. [20] and that is used in

S(F , ψ :: µF → G µF) :: ∀a.(a → F a)→ (a → G a)
S(F , λv → case v of {p1 → t1; . . . ; pn → tn }) =
λβ → λv → case v of {B (p1)→ t1; . . . ;B(pn)→ tn }
where F1 + · · · + Fm = F

B(v) = v if v is a recursive variable
B(Cj (p1, . . . , pk)) = β·(j , (Fj B) (p1, . . . , pk))
B(p) = bd(β)ecF ·p every other case

Figure 2: Derivation algorithm for σ

the hylo system. But we realized later that this algorithm,
as originally formulated, is not correct since it changes the
semantics of the coalgebra. In Haskell, a pattern is a tree-
like structure whose nodes are matched in pre-order against
a value. We have been careful to preserve that order in our
proposal. In contrast, in [20] checks are reorganized in such a
way that they are performed in breadth-first order, changing
thus the behavior of the functions in the presence of partially
defined arguments. Consider for instance a coalgebra over
binary trees:

data Tree = Node Tree Tree | Empty

ψ (Node (Node (Node l r)) Empty) = (1, (l , r))
ψ = (2, ())

Calling ψ (Node (Node Empty) ⊥) yields (2, ()), but would
yield ⊥ if patterns are checked in breadth-first order.

5. RECURSION OVER MULTIPLE ARGU-
MENTS

The first extension we consider corresponds to composi-
tions that involve functions which recurse over multiple ar-
guments. Classical examples are functions like zip, zipWith
or equality for recursive datatypes [1]. Functions of this kind
can be represented as hylomorphisms. For example, let us
consider function zip :: [a]× [b]→ [a × b]:4

zip (x : xs, y : ys) = (x , y) : zip (xs, ys)
zip (,) = []

It can be written as the unfold bd(ψ)ecG where:

G = 1 + a × b × I
ψ :: [a]× [b]→ G ([a]× [b])

ψ (x : xs, y : ys) = (2, ((x , y), (xs, ys)))
ψ (,) = (1, ())

Whereas the fusion laws expect a single intermediate data
structure to eliminate, in a composition like zip◦(map f×id)
the intermediate structure comes as a component of the in-
put pair. This problem could be circumvented if we ex-
pressed zip as a higher-order fold LφM :: [a]→ ([b]→ [a×b])
that recurses on the first list and returns a function as re-
sult, and we then fuse LφM ◦map f . Similarly, we could fuse
zip ◦ (id ×map f) by considering a higher-order fold on the
second list. The problem with this approach is that the rep-
resentation of a function with multiple arguments may need
to be radically different depending on the compositions in
which it occurs.

Hu et al. [14] studied the problem of how to deal with
functions with multiple arguments. They proposed a special
operator to express coalgebras that take pairs of values as
input and extended the fusion laws to cope with it.

The solution we developed is different from the two above,
and can be considered similar in power to what Svenningsson

4For the sake of presentation, functions that recurse over
multiple arguments will be written in uncurried form for
compatibility with their representation as hylomorphisms.

proposed for the shortcut fusion approach [25]. We maintain
the hylomorphism corresponding to the function with multi-
ple arguments mostly unchanged and derive the appropriate
transformer σ for its coalgebra. Our approach is based on
the following law.

Lemma 1. σ :: ∀a. (a→ F a)→ (H a→ G (H a))

Jφ, σ(outF)KG ◦H bd(ψ)ecF = Jφ, σ(ψ)KG

The main difference with the hylo-unfold law is that
the intermediate structure generated by the producer comes
embedded in a structure described by the functor H . A
proof of this lemma can be found in [5].

Example 1. To see this law in action, let us consider
the composition zipmap f = zip ◦ (map f × id). Function
map can be written as an unfold bd(ψ′)ecF like we showed in
Section 3. By rewriting the hylomorphism for zip shown
above in terms of a transformer σ we obtain bd(σ(outF))ecG ,
where:

σ :: ∀z.(z → F z)→ (z × [b]→ G (z × [b]))
σ(β) (x , y) = case (x , y) of

(β·(2, (x , xs)), y : ys)→ (2, ((x , y), (xs, ys)))
(,)→ (1, ())

Applying Lemma 1 with H = I × [b], we obtain zipmap f =
bd(σ(ψ′))ecG . Inlining,

zipmap :: (c → a)→ [c]× [b]→ [a × b]
zipmap f (x : xs, y : ys) = (f x , y) : zipmap f (xs, ys)
zipmap f (,) = []

2

In [14], the focus was on how to apply fusion on all argu-
ments of a function simultaneously. In contrast, our solu-
tion is selective in the argument we want to fuse, and this
is crucial to enable fusion of functions with accumulating
parameters as we will see shortly. Nevertheless, in case the
consumer is composed with a product of several producers,
like e.g. zip◦(map f ×map g), we can simply proceed in mul-
tiple steps by splitting the product: zip ◦(map f × id)◦(id×
map g). Then, in our case, we first fuse zip ◦ (map f × id) as
in Example 1, and then we fuse the result with (id×map g).

Functions that use accumulators or recurse over parame-
ters of non-recursive types can also be represented as hylo-
morphisms over multiple arguments. Examples of them are
take, drop, and foldl [1]. Let us consider the case of foldl :

foldl :: (b → a → b)→ b × [a]→ b
foldl f (e, []) = e
foldl f (e, x : xs) = foldl f (f e x , xs)

It can be written as the hylomorphism foldl f = Jid , σ(outF)KG ,
where:

σ :: ∀z. (z → F z)→ (b × z → G (b × z))
σ β (e, l) = case l of β·(1, []) → (1, e)

β·(2, (x , xs))→ (2, (f e x , xs))

for G = b+I and F = 1+a×I , such that it can be fused with
another hylomorphism on the list argument. For instance, if
we fuse the composition fm f g = foldl f ◦ (id ×map g), we
obtain fm f g = Jid , σ(ψ′)KG , being ψ′ the same coalgebra
for map described in Section 3. Inlining,

fm f g (e, []) = e
fm f g (e, x : xs) = fm f g (f e (g x), xs)

Note that a transformer σ :: ∀z. (z → F z) → (z × a →
G (z × a)), for some functor F , cannot be derived from the
definition of foldl , which would be needed to fuse compo-
sitions on the argument e. This means that in this case
we cannot perform fusion on the accumulator position, so
the fact reinforces the importance of having a law that is
selective in the arguments considered for fusion.

Derivation of σ
For the sake of clarity we only discuss how to derive a trans-
former σ which enables fusion on the first argument of a defi-
nition having two arguments. Generalizing the algorithm to
any amount of arguments and to fusion over any of them
does not pose any substantial challenge.

Now, the input coalgebra is expected to be in the form:

ψ :: a × b → G (a × b)
ψ = λv → case v of

(p11, p12)→ (1, (t11, ..., t1k1))

...
(pm1, pm2)→ (m, (tm1, ..., tmkm))

Every term tij in a recursive position of G must be of the
form (v , t), where v is a variable being bound in a recursive
position of a constructor in pattern pi1, and t must not
reference any such variable. The patterns pi1 must conform
to the same normal form that we required for patterns in
our original derivation algorithm for σ. The coalgebras for
zip and foldl satisfy these restrictions.

The extended algorithm is the following:

S′(F , λv → case v of
{(p11, p12)→ t1; . . . ; (pm1, pm2)→ tm)}) =

λβ → λv → case v of
{(B(p11), p12) → t1; . . . ; (B(pm1), pm2)→ tm }

being B the same algorithm presented in Section 4. Algo-
rithm S ′ now returns a transformer σ :: ∀a.(a → F a) →
(a× b→ G (a× b)), such that ψ = σ(outF).

6. MUTUALLY RECURSIVE FUNCTIONS
The next extension we consider is the one that makes it

possible to deal with mutually recursive functions. As an
example, let us consider the function rmostR which extracts
the rightmost leave of a finitary tree.

data Rose a = Rose a [Rose a]

rmostR :: Rose a → a
rmostR (Rose a []) = a
rmostR (Rose a xs) = rmostL xs

rmostL :: [Rose a]→ a
rmostL (x : []) = rmostR x
rmostL (x : xs) = rmostL xs

Theoretically, the situation is handled by considering pairs
of functions [16]. We now need to consider functors that
take and return pairs. Those functors will be constructed
as the split 〈F ,G〉 of two bifunctors F and G such that
〈F ,G〉 (a, b) = (F (a, b),G (a, b)). It is also useful to
consider the projection functors: Π1 (a, b) = a, Π2 (a, b) =
b. Product, sum and constant functors will be overloaded to
work over pairs of types and functions. For instance, (a, b)×
(c, d) = (a × c, b × d). Also, it is necessary to generalize
hylomorphisms to express mutually recursive definitions.

Let H be a functor from pairs to pairs. Let φ :: H (c, d)→
(c, d) be an H -algebra and ψ :: (a, b) → H (a, b) be an
H -coalgebra. A mutual hylomorphism Jφ, ψKH is a pair of
functions (f :: a→ c, g :: b→ d) which is the least fix-point
of the equation (f , g) = φ ◦H (f , g) ◦ ψ.

Now we can write rmostR and rmostL as a mutual hylo-
morphism:

(rmostR, rmostL) = J(idOid , idOid), (ψ1, ψ2)K〈G1,G2〉
where G1 = a + Π2

G2 = Π1 + Π2

ψ1 :: Rose a → G1 (Rose a, [Rose a])
ψ2 :: Rose a → G2 (Rose a, [Rose a])

ψ1 (Rose a []) = (1, a) ψ2 (x : []) = (1, x)
ψ1 (Rose a xs) = (2, xs) ψ2 (x : xs) = (2, xs)

A nice characteristic of this generalization is that the prop-
erties of hylomorphism remain true, in particular the acid
rain laws, with the characteristic that now the ingredients
work on pairs.

In practice, one would have written rmostR without mu-
tual recursion:

rmostR (Rose a []) = a
rmostR (Rose a xs) = last (map rmostR xs)

This particular form of recursion cannot be treated with the
algorithms we present here, but provisions can be taken to
automatically derive the mutually recursive form from it:
fuse the composition of last ◦map rmostR and then special-
ize the result last map rmostR for the non-recursive param-
eter rmostR. Such manipulations are effective in general for
the functions that can be represented using hylomorphisms
which have regular functors and HFusion can perform the
needed steps [5]. Another function that could be subject to
the same treatment is, for example:

sumR :: Rose Int → Int
sumR (Rose a xs) = a + sum (map sumR xs)

sum :: [Int]→ Int
sum [] = 0
sum (x : xs) = x + sum xs

We could express this function with mutual recursion by first
fusing sum ◦map sumR,

sumR (Rose a xs) = a + sm sumR xs

sm f [] = 0
sm f (x : xs) = f x + sm f xs

and then specializing sm mapR for the argument mapR ob-
taining

sumR (Rose a xs) = a + sm sumR xs

sm sumR [] = 0
sm sumR (x : xs) = sumR x + sm sumR xs

One other motivation for fusing mutually recursive func-
tions is that the normal recursive functions which contain
nested constructor applications in either patterns or terms
can be usually expressed as mutual folds and unfolds. For
example, consider function intersp, shown in Section 3. The
function intersp could be written either as a mutual fold

intersp e = L(φ1, φ2)MF
where F = 〈1 + a ×Π2,1 + a ×Π2〉

φ1 (1, ()) = []
φ1 (2, (x , vs)) = x : vs
φ2 (1, ()) = []
φ2 (2, (x , vs)) = e : x : vs

which mimics the following definition of intersp:
intersp :: a → [a]→ [a]
intersp e [] = []
intersp e (x : xs) = x : intersp′ e xs

intersp′ e [] = []
intersp′ e (x : xs) = e : x : intersp′ e xs

or it could be written as a mutual unfold
intersp e = bd((ψ1, ψ2))ecF

where F = 〈1 + a ×Π2,1 + a ×Π1〉
ψ1 [] = (1, ())
ψ1 (x : xs) = (2, (x , xs))
ψ2 [] = (1, ())
ψ2 vs = (2, (e, vs))

which mimics this other definition:
intersp :: a → [a]→ [a]
intersp e [] = []
intersp e (x : xs) = x : intersp′ e xs

intersp′ e [] = []
intersp′ e xs = e : intersp e xs

The algorithms for rewriting a normal hylomorphism in terms
of a mutually recursive form is something we have not ad-
dressed yet, though.

T (h,F , φ :: Gh µF → µF)
:: (F (a1, a2)→ (a1, a2))→ Gh ah → ah

T (h, 〈F1,F2〉, φ1O · · ·Oφn) =
λ(α11O · · ·Oα1m1 , α21O · · ·Oα2m2)→ T ′(φ1)O · · ·OT ′(φn)
where Fi1 + · · ·+ Fimi = Fi

T ′(λbvs → t) = λbvs → Ah t
Ah (v) = v (if v is a recursive var. according to G)
A1(Cj (t1, . . . , tk)) = α1j ((F1j (A1,A2)) (t1, . . . , tk))
A2 (Cj (t1, . . . , tk)) = α2j ((F2j (A1,A2)) (t1, . . . , tk))
Ah (t) = Πh L(α1, α2)M〈F1,F2〉 t (all other cases)

Figure 3: Algorithm for deriving τ

S(h,F , ψ :: µF → Gh µF)
:: ((a1, a2)→ F (a1, a2))→ ah → Gh ah

S(h, 〈F1,F2〉, λv → case v of p1 → t1; . . . ; pn → tn) =
λ(β1, β2)→ λv → case v of

{Bh (p1)→ t1; . . . ;Bh (pn)→ tn }
where Fi1 + · · ·+ Fimi = Fi

Bh (v) = v if v is a recursive variable
Bh (Cj (p1, . . . , pk)) =

βh ·(j , (Fhj (B1,B2)) (p1, . . . , pk))
Bh (p) = Πh bd((β1, β2))ec〈F1,F2〉·p all other cases

Figure 4: Algorithm for deriving σ

Derivation of τ
Having a mutual hylomorphism J(φ1, φ2), ψK〈G1,G2〉, we might
want to derive an equivalent one of the form Jτ(inF), ψK〈G1,G2〉
when composed with a mutual fold Lφ′MF . Indeed, we will
be deriving a transformer τ that is also given as a pair:
τ(α) = (τ1 (α), τ2 (α)). This is how we obtain τ :

τ : ∀a. ∀b. (F (a, b)→ (a, b))→ 〈G1,G2〉 (a, b)→ (a, b)
τ(α) = (T (1,F , φ1)(α), T (2,F , φ2)(α))

where T is the algorithm presented in Figure 3. The aux-
iliary algorithm A must keep track of the datatype owning
the constructor whose arguments are being traversed. This
is necessary because the algebra of a mutual hylomorphism
may contain nested applications of constructors of mixed
types. For example, inside a value of type Rose we may find
the application of constructors of type [Rose a].

Derivation of σ
Having a mutual hylomorphism Jφ, (ψ1, ψ2)K〈G1,G2〉 we might
want to derive an equivalent one of the form Jφ, σ(outF)K〈G1,G2〉
when composed with a mutual unfold bd(ψ′)ecG . The trans-
former σ is calculated as follows:

σ : ∀a. ∀b. ((a, b)→ F (a, b))→ ((a, b)→ 〈G1,G2〉 (a, b))
σ(β) = (S(1,F , ψ1)(β),S(2,F , ψ2)(β))

where S is the algorithm presented in Figure 4. Once more,
algorithm S is the dual of the derivation algorithm for τ .
Through its sub-index, Bh keeps track of which type the
constructors being abstracted in the pattern belong to.

Example 2. Let’s suppose we want to fuse rm f = rmostR◦
mapR f where function mapR applies a function f to all the
elements in a tree of type Rose a:

mapR f = bd((ψ′1, ψ′2))ecF
where F = 〈a ×Π2,1 + Π1 ×Π2〉

ψ′1 (Rose a xs) = (f a, xs)
ψ′2 [] = (1, ())
ψ′2 (x : xs) = (2, (x , xs))

If we derive derive σ from the coalgebra of rmostR, we ob-
tain:

(rmostR, rmostL) = J(idOid , idOid), σ(outF)K〈G1,G2〉
where
σ(β) = (σ1(β), σ2(β))
σ1 :: ∀a. ∀b. ((a, b)→ F (a, b))→ ((a, b)→ G1 (a, b))
σ1(β1, β2) = λv → case v of

β1·(a, β2·(1, ()))→ (1, a)
β1·(a, xs) → (2, xs)

σ2 :: ∀a. ∀b. ((a, b)→ F (a, b))→ ((a, b)→ G2 (a, b))
σ2(β1, β2) v = case v of

β2·(2, (x , β2·(1, ()))) → (1, x)
β2·(2, (x , xs)) → (2, xs)

Applying the hylo-unfold law for mutual hylomorphisms
and inlining yields:

rm f = J(idOid , idOid), (σ1(ψ′1, ψ
′
2), σ2(ψ′1, ψ

′
2))K〈G1,G2〉

rm f (Rose a []) = f a rmL (x : []) = rm f x
rm f (Rose a xs) = rmL f xs rmL (x : xs) = rmL f xs

2

7. RELATED WORK
In this paper we have worked with fusion of hylomor-

phisms. There are other approaches to program fusion of
which we discuss the most related here.

Firstly, we have the work of Onoue et al. [20], who im-
plemented the HYLO system, and Schwartz [24], who reim-
plemented part of it in the pH [23] compiler. We are deeply
indebted to these developments, which helped sorting out
the workings of fusion systems based on hylomorphisms.

Shortcut fusion [11, 12, 26] is another approach that is
based on a more general statement of the acid rain laws.
As it is not constrained to work with hylomorphisms, it has
the potential to fuse a broader class of functions. The most
widespread used implementation is in the GHC compiler,
which is capable of fusing compositions if the programmer
takes the effort to write transformation rules for the involved
functions. Rules for definitions in standard libraries are pre-
defined. The ability to handle automatically programmer-
supplied definitions has been one of the key motivations of
the hylomorphism approach. Nonetheless, there exists work
on shortcut fusion to overcome this limitation [3, 17, 19, 29].
In fact, the potential of these approaches should be greater
than ours since the hylomorphism fusion laws we employ are
a special case of the acid rain laws on which these systems
are based:5

LφMF is strict
f :: ∀b.(F b→ b)→ a→ b

⇒ LφMF ◦ f inF = f φ

g :: ∀b.(b → F b)→ b → a ⇒ g outF ◦ bd(ψ)ecF = g ψ

Hylomorphisms, however, have offered a useful ground in
which to solve a problem common to all approaches, which
is automating derivation of folds and unfolds suitable for the
different kinds of recursion (mutual, primitive, over multi-
ple arguments, with regular functors), and there is a chance
that the algorithms for deriving transformers could be gen-
eralized to derive functions f and g in the laws above.

Another relevant approach is stream fusion [4]. Stream
fusion represents recursive functions as stream processors

5The laws as expressed here are only valid for programs
which do not use the seq operator[18].

which can be composed and merged into a single recursive
function thus achieving deforestation. In comparison to the
approach discussed in this article, stream fusion requires
functions to be written explicitly as stream processors, and
it is not clear yet how such a task should be automated.
Moreover, stream fusion has so far been proposed to deforest
lists, deforesting other data structures would require further
study. Regarding fusion of list functions, stream fusion is
similar to what the hylomorphism approach could achieve
with all of its extensions. For instance, stream fusion can
fuse rather directly zip ◦ filter p or last ◦ filter p. HFusion is
also capable of fusing such compositions, but an additional
trick is required in order to treat filter p as an unfold [5].

8. FUTURE WORK AND CONCLUSIONS
We have shown a reformulation of the algorithm for ab-

stracting constructors in coalgebras, being view patterns the
key for it. The new presentation simplifies the description
of the algorithms and stands out the duality of abstracting
constructors in algebras and coalgebras. By presenting our
simple extensions in Sections 5 and 6, we expect to have
made a strong case that our reformulation is not merely
aesthetic but one of practical benefits.

All the algorithms we have presented are implemented in
our experimental tool HFusion, which also implements some
other extensions like fusion of primitive recursive functions,
hylomorphisms with non-polynomial functors, and many ma-
nipulations of recursive definitions to squeeze the most from
the fusion laws [5, 6]. At the moment, HFusion does not find
compositions automatically, which prevents us from making
large scale performance tests to evaluate our extensions; we
are working on it. Some preliminary benchmark results for
HFusion can be found in the web page:
http://www.fing.edu.uy/inco/proyectos/fusion/benchm.html

There are many directions in which one may attempt to
extend a fusion system. Possible extensions may include
handling functions returning multiple results (like unzip)
by dualizing our law and algorithms for fusing recursive
functions over multiple arguments. An extension for fus-
ing monadic programs [8, 21, 22] could allow our approach
to optimize, for example, monadic parsers in conjunction
with the extensions for mutual recursion. Also, it could be
possible to integrate other transformations amenable to the
hylomorphism representation, like the case of tupling [15].

As our contributions offer a new perspective on how con-
structors are abstracted out of patterns, another line of re-
search would be porting this as well as other insights we have
gathered while working with hylomorphisms to the context
of shortcut fusion.

9. ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their valu-

able and helpful comments on an earlier version of this pa-
per.

10. REFERENCES
[1] R. Bird. Introduction to Functional Programming

using Haskell (2nd edition). Prentice-Hall, UK, 1998.

[2] R. Bird and O. de Moor. Algebra of Programming.
Prentice Hall, UK, 1997.

[3] O. Chitil. Type-Inference Based Deforestation of
Functional Programs. PhD thesis, RWTH Aachen,
October 2000.

[4] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream
fusion: from lists to streams to nothing at all. In Int.
Conf. on Func. Programming, pages 315–326. ACM,
2007.

[5] F. Domı́nguez. HFusion: a fusion tool based on Acid
Rain plus extensions. Master’s thesis, PEDECIBA
Informática, Universidad de la República, Uruguay,
2009.

[6] F. Domı́nguez and A. Pardo. Program fusion with
paramorphisms. In Mathematically Structured Func.
Programming, Electronic Workshops in Computing.
BCS, 2006.

[7] M.M. Fokkinga. Law and Order in Algorithmics. PhD
thesis, Universiteit Twente, The Netherlands, 1992.

[8] N. Ghani and P. Johann. Short Cut Fusion of
Recursive Programs with Computational Effects. In
Trends in Func. Programming, volume 9, pages
113–128, 2009.

[9] J. Gibbons. Calculating Functional Programs. In Alg.
and Coalgebraic Methods in the Mathematics of
Program Construction, LNCS vol. 2297. Springer,
2002.

[10] J. Gibbons and G. Jones. The Under-Appreciated
Unfold. In 3rd. ACM Int. Conf. on Func.
Programming, pages 273–279. ACM Press, 1998.

[11] A. Gill. Cheap Deforestation for Non-strict Functional
Languages. PhD thesis, Glasgow University, 1996.

[12] A. Gill, J. Launchbury, and S. Peyton Jones. A short
cut to deforestation. In Funct. Prog. Lang. and Comp.
Arch., pages 223–232. ACM Press, 1993.

[13] HFusion.
http://www.fing.edu.uy/inco/proyectos/fusion.

[14] Z. Hu, H. Iwasaki, and M. Takeichi. An Extension of
the Acid Rain Theorem. In Fuji Int. Workshop on
Func. and Logic Programming, pages 91–105. World
Scientific, 1996.

[15] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano.
Tupling calculation eliminates multiple data
traversals. In Int. Conf. on Func. Programming, pages
164–175. ACM Press, 1997.

[16] H. Iwasaki, Z. Hu, and M. Takeichi. Towards
manipulation of mutually recursive functions. In Fuji
Int. Symp. on Func. and Logic Programming, pages
61–79, 1998.

[17] P. Johann and E. Visser. Warm fusion in Stratego: A
case study in generation of program transformation
systems. Annals of Mathematics and A.I.,
29(1-4):1–34, 2000.

[18] P. Johann and J. Voigtländer. Free theorems in the
presence of seq. In 31st Symp. on Principles of Prog.
Lang, pages 99–110. ACM, 2004.

[19] L. Németh. Catamorphism-Based Program
Transformations for Non-Strict Functional Languages.
PhD thesis, Glasgow University, 2000.

[20] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A
calculational fusion system HYLO. In IFIP TC 2 WG
2.1 Int. Workshop on Algorithmic Languages and
Calculi, pages 76–106. Chapman & Hall, Ltd., 1997.

[21] A. Pardo. Fusion of recursive programs with
computational effects. Theoretical Compupter Science,
260(1-2):165–207, 2001.

[22] A. Pardo. Combining datatypes and effects. In
Advanced Functional Programming, volume 3622
(2005) of LNCS, pages 171–209. Springer, 2005.

[23] pH compiler.
http://csg.csail.mit.edu/projects/languages/

ph.shtml.

[24] J. Schwartz. Eliminating Intermediate Lists in pH.
Master’s thesis, MIT, 2000.

[25] J. Svenningsson. Shortcut fusion for accumulating
parameters & zip-like functions. In 7th ACM Int.
Conf. on Func. Programming, pages 124–132. ACM,
October 2002.

[26] A. Takano and E. Meijer. Shortcut to Deforestation in
Calculational Form. In Funct. Prog. Lang. and Comp.
Arch., pages 306–313. ACM Press, 1995.

[27] P. Wadler. Views: a way for pattern matching to
cohabit with data abstraction. In 14th Conf. on
Principles of Prog. Lang, pages 307–313. ACM Press,
1987.

[28] P. Wadler. Deforestation: transforming programs to
eliminate trees. Theoretical Computer Science,
73:231–248, 1990.

[29] T. Yokoyama, Z. Hu, and M. Takeichi. Calculation
rules for warming-up in fusion transformation. In
Trends in Func. Programming, pages 399–41, 2005.

