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Stochastic Vehicle Routing: an Overview      
and some Recent Advances 

Vehicle Routing Problems 

 Introduced by Dantzig and Ramser in 1959 

 One of the most studied problem in the area of 
logistics 

 The basic problem involves delivering given 
quantities of some product to a given set of 
customers using a fleet of vehicles with limited 
capacities. 

 The objective is to determine a set of minimum-
cost routes to satisfy customer demands. 
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Vehicle Routing Problems 

Many variants involving different constraints or 
parameters: 

 Introduction of travel and service times with route 
duration or time window constraints 

 Multiple depots 

 Multiple types of vehicles 

 ... 
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What is Stochastic Vehicle Routing? 

Basically, any vehicle routing problem in which one 
or several of the parameters are not deterministic: 

 Demands 

 Travel or service times 

 Presence of customers 

 … 



 VRP with stochastic demands (VRPSD) 
 A probability distribution is specified for the demand of 

each customer. 
 One usually assumes that demands are independent (this 

may not always be very realistic...). 

 VRP with stochastic customers (VRPSC) 
 Each customer has a given probability of requiring a visit. 

 VRP with stochastic travel times (VRPSTT) 
 The travel times required to move between vertices, as 

well as sometimes service times, are random variables. 

 
 

Main classes of stochastic VRPs 
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Basic Concepts in Stochastic 
Optimization 
 



Dealing with uncertainty in optimization 

 Very early in the development of operations 
research, some top contributors realized that : 
 In many problems there is very significant 

uncertainty in key parameters; 
 This uncertainty must be dealt with explicitly. 

 This led to the development of : 
 Stochastic programming with recourse (1955) 
 Dynamic programming (1958) 
 Chance-constrained programming (1959) 
 Robust optimization (more recently)  
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Information and decision-making 

In any stochastic optimization problem, a key 
issue is: 

 How do the revelation of information on the 
uncertain parameters and decision-making 
(optimization) interact? 
 When do the values taken by the uncertain 

parameters become known? 
 What changes can I (must I) make in my plans on 

the basis of new information that I obtain? 
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Stochastic programming with recourse 

 Proposed separately by Dantzig and by Beale in 
1955. 

 The key idea is to divide problems in different stages, 
between which information is revealed.  

 The simplest case is with only two stages. The 
second stage deals with recourse actions, which 
are undertaken to adapt plans to the realization of 
uncertainty. 

 Basic reference:  
 J.R. Birge and F. Louveaux,  Introduction to 

Stochastic Programming, 2nd edition, Springer, 2011. 
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Dynamic programming 
 Proposed by Bellman in 1958. 
 A method developed to tackle effectively sequential 

decision problems.  
 The solution method relies on a time decomposition 

of the problem according to stages. It exploits the 
so-called Principle of Optimality. 

 Good for problems with limited number of possible 
states and actions. 

 Basic reference:  
 D.P. Bertsekas, Dynamic Programming and Optimal 

Control, 3rd edition, Athena Scientific, 2005. 
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Chance-constrained programming 

 Proposed by Charnes and Cooper in 1959. 
 

 The key idea is to allow some constraints to be 
satisfied only with some probability. 

  
 E.g., in VRP with stochastic demands, 

Pr{total demand assigned to route r ≤ capacity } ≥ 1-α 
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 Here, uncertainty is represented by the fact that the 
uncertain parameter vector must belong to a given 
polyhedral set (without any probability defined) 
 E.g., in VRP with stochastic demands, 
  having set upper and lower bounds for each demand, 

 together with an upper bound on total demand. 

 Robust optimization looks in a minimax fashion for the 
solution that provides the best “worst case”. 
 
 

Robust optimization 
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Modelling paradigms 
 



Also called re-optimization 
 Based on the implicit assumption that information 

is revealed over time as the vehicles perform their 
assigned routes. 

 Relies on Dynamic programming and related 
approaches  (Secomandi et al.) 

 Routes are created piece by piece on the basis on 
the information currently available. 

 Not always practical (e.g., recurrent situations) 

Real-time optimization 
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A priori optimization 
 
 A solution must be determined beforehand; 

this solution is “confronted” to the realization of 
the stochastic parameters in a second step. 

 Approaches: 
 Chance-constrained programming 
 (Two-stage) stochastic programming with recourse 
 Robust optimization 
 [“Ad hoc” approaches] 
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Chance-constrained programming 
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 Probabilistic constraints can sometimes be transfor-
med into deterministic ones (e.g., in in VRP with 
stochastic demands, when one imposes that 

Pr{total demand assigned to route r ≤ cap. } ≥ 1-α,  
if customer demands are independent and Poisson). 

 
 This model completely ignores what happens when 

things do not “turn out correctly”. 



 Not used very much in stochastic VRP up to now. 
 Model may be overly pessimistic. 

 

Robust optimization 
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 Recourse is a key concept in a priori optimization 
 What must be done to “adjust” the a priori solution to the 

values observed for the stochastic parameters! 
 Another key issue is deciding when information on the 

uncertain parameters is provided to decision-makers. 
 Solution methods: 

 Integer L-shaped (Laporte and Louveaux) 
 Column generation (Branch & Price) 
 Heuristics (including metaheuristics) 

 Probably closer to actual industrial practices,              
if recourse actions are correctly defined! 

 
 

Stochastic programming with recourse 
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VRP with stochastic demands 
 



 A probability distribution is specified for the 
demand of each customer. 

 One usually assumes that demands are 
independent                                                       
(this may not always be very realistic...). 

 Probably, the most extensively studied SVRP: 
 Under the reoptimization approach (Secomandi) 
 Under the a priori approach (several authors) using 

both the chance-constrained and the recourse 
models. 

 

VRP with stochastic demands (VRPSD) 
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 Classical recourse strategy: 
 Return to depot to restore vehicle capacity 
 Does not always seem very appropriate or “intelligent” 
 

 Other recourse strategies are possible, however, 
and often closer to actual industrial practices. 
 Fixed threshold policies 
 Variable threshold policies 
 Preventive restocking (Yang, Ballou, Mathur, 2000) 
 Pairing routes (Erera et al., 2009)  

 
 

VRP with stochastic demands 
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 Approximate solutions can be obtained fairly 
easily using metaheuristics                              
(e.g., Tabu Search, as in Gendreau et al., 1996). 
 

 Computing effectively the value of the recourse 
function still remains a challenge. 

VRP with stochastic demands 
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VRP with stochastic customers 
 



 Each customer has a given probability of 
requiring a visit. 

 Problem grounded in the pioneering work of 
Jaillet (1985) on the Probabilistic Traveling 
Salesman Problem (PTSP). 

 At first sight, the VRPSC is of no interest under 
the reoptimization approach. 

VRP with stochastic customers (VPRSC) 
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 Recourse action: 
 “Skip” absent customers 

 Has been extensively studied by Gendreau, 
Laporte and Séguin in the 1990’s: 
 Exact and heuristic solution approaches 

 Can also be used to model the Consistent VRP 
(working paper with Ola Jabali and Walter Rei). 

 
 

VRP with stochastic customers (VPRSC) 
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VRP with stochastic service 
or travel times  



VRP with stochastic service or travel times  

 The travel times required to move between vertices 
and/or service times are random variables. 

 The least studied, but possibly the most interesting of 
all SVRP variants. 

 Reason: it is much more difficult than others, because 
delays “propagate” along a route. 

 Usual recourse: 
 Pay penalties for soft time windows or overtime. 

 All solution approaches seem relevant, but present 
significant implementation challenges. 
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VRP with stochastic service times: a 
chance-constrained formulation 

Following material from  
 F. Errico, G. Desaulniers, M. Gendreau, W. Rei, L.-M. 

Rousseau. The Vehicle Routing Problem with hard time 
windows and stochastic service times.  

 Forthcoming (hopefully…!) 
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The VRPTW-ST Context and related literature

Context

We consider a VRP with

Stochastic service times
Hard time windows
No demands, nor vehicle capacity
VRPTW-ST
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The VRPTW-ST Context and related literature

Context

We consider a VRP with

Stochastic service times
Hard time windows
No demands, nor vehicle capacity
VRPTW-ST

Several applications :

Dispatching of technicians or repairmen :

Perform specific services at the customers
Details of the service to perform are unknown beforehand

Energy production planning :

Several power plants are connected in a network
Maintenance operations (implying outage) must planned in specific
hard time windows (technicians are not available otherwise)
Duration of the operations is unknown beforehand
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The VRPTW-ST Context and related literature

Related literature

Several papers on VRP/m-TSP with stochastic travel times and
customer deadlines or soft time windows (see Adulyasak and Jaillet,
2014)
TSP with hard time windows and stochastic travel times in Jula et al.
(2006), Chang et al. (2009)

Heuristic methods

VRP with stochastic travel times, demand uncertainty and customer
deadlines in Lee et al. (2012)

Robust optimization approach

TSP with customers deadlines and stochastic customers in Campbell
and Thomas (2008)

Fausto Errico fausto.errico@cirrelt.ca 6



The VRPTW-ST Context and related literature

Related literature

Several papers on VRP/m-TSP with stochastic travel times and
customer deadlines or soft time windows (see Adulyasak and Jaillet,
2014)
TSP with hard time windows and stochastic travel times in Jula et al.
(2006), Chang et al. (2009)

Heuristic methods

VRP with stochastic travel times, demand uncertainty and customer
deadlines in Lee et al. (2012)

Robust optimization approach

TSP with customers deadlines and stochastic customers in Campbell
and Thomas (2008)
With respect to previous works, we aim to

1 Use chance-constrained stochastic model
2 Use two-stage stochastic programming with recourse

Develop an exact solution method
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Chance-constrained model

Presentation Outline

1 The VRPTW-ST

2 Chance-constrained model

3 Two-stage stochastic model

4 Conclusions
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Chance-constrained model Problem definition

Notation and assumptions

A directed graph G = (V ,A), where
V = {0, 1, . . . , n} is the node set

0 represents a depot
Vc = {1, . . . , n} the customer set,

A = {(i , j) | i , j ∈ V } is the arc set.

A non-negative travel cost cij and travel time tij are associated with
each arc (i , j) in A.
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Chance-constrained model Problem definition

Notation and assumptions

A directed graph G = (V ,A), where
V = {0, 1, . . . , n} is the node set

0 represents a depot
Vc = {1, . . . , n} the customer set,

A = {(i , j) | i , j ∈ V } is the arc set.

A non-negative travel cost cij and travel time tij are associated with
each arc (i , j) in A.

A hard time window [ai , bi ], i ∈ Vc

A stochastic service time si , i ∈ Vc .

Service time probability functions are supposed to be known and :

Discrete with finite support
Mutually independent
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Chance-constrained model Problem definition

The VRPTW-ST with Chance Constraint

Definition ( Successful Route )

Given a service time realization, a route is said Successful if :

(i) Route starts and ends in node 0 ;

(ii) Service at customers starts within the given time windows.

Vehicles may arrive before the beginning of a time window.
Late service time is not allowed

Fausto Errico fausto.errico@cirrelt.ca 9



Chance-constrained model Problem definition

The VRPTW-ST with Chance Constraint

Definition ( Successful Route )

Given a service time realization, a route is said Successful if :

(i) Route starts and ends in node 0 ;

(ii) Service at customers starts within the given time windows.

Vehicles may arrive before the beginning of a time window.
Late service time is not allowed

The VRPTW-ST finds a set of route such that :

1 Routes start and end in node 0 ;

2 Routes induce a proper partition of all customers

3 The global probability that the route plan is Successful is higher than
a given reliability threshold 0 < α < 1 ;

4 The travel cost is minimized.
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Chance-constrained model Problem definition

Formulation

R : set of all possible routes.

air = 1 prameter if route r visits customer i and 0 otherwise.

cr the cost associated with route r

xr = 1 binary variable if route r is chosen, 0 otherwise
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Chance-constrained model Problem definition

Formulation

R : set of all possible routes.

air = 1 prameter if route r visits customer i and 0 otherwise.

cr the cost associated with route r

xr = 1 binary variable if route r is chosen, 0 otherwise

Formulation :

min
∑

r∈R

crxr (1)

s.t.
∑

r∈R

airxr = 1 ∀i ∈ Vc (2)

Pr{All routes are Successful} ≥ α (3)

xr ∈ {0, 1} ∀r ∈ R, (4)
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.
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Proposition
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set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

Pr{ All routes are Successful} ≥ α
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∏

r∈R:xr=1

Pr{ Route r is Successful } ≥ α,
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∑

r∈R

xr ln(Pr{ Route r is Successful }) ≥ ln(α)
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Chance-constrained model Problem definition

Linearization

Mutually independent service time ⇒

Proposition

Let R′ denote a set of routes inducing a proper partition of the customers
set Vc . Given any two routes r1, r2 ∈ R′, the success probability of r1 is
independent from the success probability of r2.

This can be used to linearize constraint (3) :

∑

r∈R

βrxr ≤ β,

where

βr := − ln(Pr{ Route r is Successful })

β := −ln(α)
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Chance-constrained model Computing the route success probability

Computing the route success probability (1)

Observations :

Consider a route r = (v0, . . . , vq, vq+1) where v0 and vq+1 are 0

Consider t̄vi the random variable for the service starting time at
customer vi

r is successful ⇔ avi ≤ t̄vi ≤ bvi , for all customers in r

To compute the route success probability we need the probability
distributions of t̄vi
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Chance-constrained model Computing the route success probability

Computing the route success probability (1)

Observations :

Consider a route r = (v0, . . . , vq, vq+1) where v0 and vq+1 are 0

Consider t̄vi the random variable for the service starting time at
customer vi

r is successful ⇔ avi ≤ t̄vi ≤ bvi , for all customers in r

To compute the route success probability we need the probability
distributions of t̄vi
t̄vi are sums of independent random variables

Their distribution can be computed by convolution
Under certain hypothesis, convolutions have nice properties (closed
forms, etc )
Not in hour case : Time windows truncate/modify the distributions

⇒ We actually need to carry out computations
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Chance-constrained model Computing the route success probability

Computing the route success probability (2)

Starting service times t̄vi are linked to arrival times tvi :

t̄vi =

{

avi tvi < avi

tvi avi ≤ tvi ≤ bvi
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Chance-constrained model Computing the route success probability

Computing the route success probability (2)

Starting service times t̄vi are linked to arrival times tvi :

t̄vi =

{

avi tvi < avi

tvi avi ≤ tvi ≤ bvi

For the corresponding probability mass functions mt
vi
and m̄t

vi

m̄t
vi
(z) =























0 z < avi ,
∑

l≤avi
mt

vi
(l) z = avi ,

mt
vi
(z) avi < z ≤ bvi ,

0 z > bvi .
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Computing the route success probability (2)

Starting service times t̄vi are linked to arrival times tvi :

t̄vi =

{

avi tvi < avi

tvi avi ≤ tvi ≤ bvi

For the corresponding probability mass functions mt
vi
and m̄t

vi

m̄t
vi
(z) =























0 z < avi ,
∑

l≤avi
mt

vi
(l) z = avi ,

mt
vi
(z) avi < z ≤ bvi ,

0 z > bvi .

Observe that for a given vi :

Pr{r is Successful up to vi} =
∑

z∈N

m̄t
vi
(z)
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Chance-constrained model Computing the route success probability

Computing the route success probability (3)

Simple iterative procedure :
1 for (i = 1, . . . , q − 1) do

a Truncation Step : Starting from mt
vi
obtain m̄t

vi

b Convolution Step : Compute mt
vi+1

(z) = (m̄t
vi
∗ms

vi
)(z − tvi ,vi+1

), ∀z ∈ N

2 Compute : Pr{r is successful} =
∑

z∈N m̄t
vq
(z)
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Computing the route success probability (3)

Simple iterative procedure :
1 for (i = 1, . . . , q − 1) do

a Truncation Step : Starting from mt
vi
obtain m̄t

vi

b Convolution Step : Compute mt
vi+1

(z) = (m̄t
vi
∗ms

vi
)(z − tvi ,vi+1

), ∀z ∈ N

2 Compute : Pr{r is successful} =
∑

z∈N m̄t
vq
(z)

Critical point : algorithmic complexity depends on

The quality of the time discretization

The customer time windows widths

The amplitude of the distribution supports

Fausto Errico fausto.errico@cirrelt.ca 14



Chance-constrained model A Branch-and-Price-and-Cut Algorithm

A Branch-and-Price-and-Cut Algorithm

Method based on implicit enumeration

Linear relaxation are solved by column generation

If violated inequalities are found, new cuts are added and the precess
is iterated.

Integrality recovered by branching
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A Branch-and-Price-and-Cut Algorithm

Method based on implicit enumeration

Linear relaxation are solved by column generation

If violated inequalities are found, new cuts are added and the precess
is iterated.

Integrality recovered by branching

Column generation :

Restricted Master Problem : limited number of columns are considered

Subproblem : identify columns with negative reduced cost.

In VRP contexts : Elementary Shortest Path Problem with Resource
Constraints (ESPPRC)

Usually solved by labeling algorithms (dynamic programming)
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A Branch-and-Price-and-Cut Algorithm

Method based on implicit enumeration

Linear relaxation are solved by column generation

If violated inequalities are found, new cuts are added and the precess
is iterated.

Integrality recovered by branching

Column generation :

Restricted Master Problem : limited number of columns are considered

Subproblem : identify columns with negative reduced cost.

In VRP contexts : Elementary Shortest Path Problem with Resource
Constraints (ESPPRC)

Usually solved by labeling algorithms (dynamic programming)

ESPPRC required major modifications for the VRPTW-ST
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Chance-constrained model A Branch-and-Price-and-Cut Algorithm

Classic ESPPRC

Label setting algorithm minimizing the route reduced cost

Origin/destination graph

Nodes → clients, arcs → vehicle movements
Resource windows are associated with nodes (time windows, etc)
Costs and resource consumption are associated with arcs (time,
capacity consumption, etc)

Partial route are iteratively extended
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Chance-constrained model A Branch-and-Price-and-Cut Algorithm

Classic ESPPRC

Label setting algorithm minimizing the route reduced cost

Origin/destination graph

Nodes → clients, arcs → vehicle movements
Resource windows are associated with nodes (time windows, etc)
Costs and resource consumption are associated with arcs (time,
capacity consumption, etc)

Partial route are iteratively extended
Labels associated with node implicitly represent partial route
Typically for classic VRPTW : E = (C ,T , L,V 1, . . . ,V n)
Labels are extended according to Extension Functions : eg.
Tj = Ti + tij
Dominance rules are very important to eliminate suboptimal labels.
E 1 dominates E 2 if E 1 ≤ E 2, i.e. :

C 1 ≤ C 2

T 1 ≤ T 2

L1 ≤ L2

V 1
i ≤ V 2

i , for all customers i ∈ N
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Shortest path with probabilistic resource consumption

Find route minimizing the reduced cost : c̄r = cr −
∑

i∈Vc
airγi + βrδ

γi dual variables associated with set partitioning constraints
δ dual variable associated with chance constraint
Remind βr = − ln(Pr{r is successful })
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i∈Vc
airγi + βrδ

γi dual variables associated with set partitioning constraints
δ dual variable associated with chance constraint
Remind βr = − ln(Pr{r is successful })

Issues :
1 The consumption of the time resource is probabilistic
2 We have a probabilistic constraint on the route success probability

Possible answer : substitute Time resource with Route success
probability.
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Find route minimizing the reduced cost : c̄r = cr −
∑

i∈Vc
airγi + βrδ

γi dual variables associated with set partitioning constraints
δ dual variable associated with chance constraint
Remind βr = − ln(Pr{r is successful })

Issues :
1 The consumption of the time resource is probabilistic
2 We have a probabilistic constraint on the route success probability

Possible answer : substitute Time resource with Route success
probability.

Problem : the extension of the route success probability requires the
truncated arrival time probability distribution.

More label components are needed

For VRPTW-ST : Ei = (Ci , M̄
t
i (ai ), . . . , M̄

t
i (bi ),V

1
i , . . . ,V

n
i )

M̄ t
i (z) :=

∑

t≤z m̄
t
i (l)
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Extension functions : Reduced Cost

Proposition : Reduced cost decomposition

The reduced cost of a route r = (v0, . . . , vq, vq+1), can be expressed as

c̄r =

q+1
∑

i=1

c̄vi−1,vi ,

where

c̄vi−1,vi := cvi−1,vi − γvi + δpvi−1,vi , i = 1, . . . , q

c̄vq ,vq+1 := cvq ,0.

pvi−1,vi := − ln(M̄t
vi
(bvi )/M̄

t
vi−1

(bvi−1
)),
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Extension functions : Reduced Cost

Proposition : Reduced cost decomposition

The reduced cost of a route r = (v0, . . . , vq, vq+1), can be expressed as

c̄r =

q+1
∑

i=1

c̄vi−1,vi ,

where

c̄vi−1,vi := cvi−1,vi − γvi + δpvi−1,vi , i = 1, . . . , q

c̄vq ,vq+1 := cvq ,0.

pvi−1,vi := − ln(M̄t
vi
(bvi )/M̄

t
vi−1

(bvi−1
)),

Extension function : Cj = Ci + c̄ij
The Non-decreasing property does not hold ⇒ more difficult
dominance properties
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Other extension functions

Components M̄t(a), . . . , M̄t(b)

Derived from the previous algorithm to compute the route success
probability :

M̄ t
j (zj) =

∑

k∈N

ms
i (k)M̄

t
i (zj − tij − k)

for all zj ∈ [aj , bj ], where ms
i (·) is the service time probability mass

function
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Other extension functions

Components M̄t(a), . . . , M̄t(b)

Derived from the previous algorithm to compute the route success
probability :

M̄ t
j (zj) =

∑

k∈N

ms
i (k)M̄

t
i (zj − tij − k)

for all zj ∈ [aj , bj ], where ms
i (·) is the service time probability mass

function

Components V1, . . . ,Vn

Similar to Feillet(2004)
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Dominance for the VRPTW-ST

Definition ( Dominance )

Consider partial routes r1i , r
2
i ending in a generic node i . E 1

i dominates E 2
i

if :

i) Any feasible extension e of r2i ending at a given node j is also feasible
for r1i

ii) For any such extension e, C 1
j ≤ C 2

j
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Chance-constrained model Elementary shortest path with probabilistic resource consumption

Dominance for the VRPTW-ST

Definition ( Dominance )

Consider partial routes r1i , r
2
i ending in a generic node i . E 1

i dominates E 2
i

if :

i) Any feasible extension e of r2i ending at a given node j is also feasible
for r1i

ii) For any such extension e, C 1
j ≤ C 2

j

Proposition ( Dominance rule for the VRPTW-ST)

If r1 and r2 are such that

(i) c1i −
∑

h∈N (r1) γh ≤ c2i −
∑

h∈N (r2) γh,

(ii) V 1h
i ≤ V 2h

i for all h ∈ Vc ,

(iii) M̄1t
i (zi) ≥ M̄2t

i (zi ), for all zi ∈ [ai , bi ],

and at least one of the above inequalities is strict, then r1 dominates r2.
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Chance-constrained model Accelerating Strategies

Implementation details and accelerating strategies

1 Initial columns : feasible solution given by dedicated trips 0− i − 0 for
each customer i
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2 Decremental state space (Boland et al. 2006, Righini and Salani 2008)
3 ng -path relaxation (Baldacci et al. 2011).
4 Heuristic dynamic programming :

Temporarily elimination of arcs with high values of cij − γj
Aggressive dominance rules :

1 Consider and gradually extend subsets of the visit components
V1, . . . ,Vn

2 Consider and gradually extend subsets of cumulative distribution
components M̄ t(a), . . . , M̄ t(b)
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Chance-constrained model Accelerating Strategies

Implementation details and accelerating strategies

1 Initial columns : feasible solution given by dedicated trips 0− i − 0 for
each customer i

2 Decremental state space (Boland et al. 2006, Righini and Salani 2008)
3 ng -path relaxation (Baldacci et al. 2011).
4 Heuristic dynamic programming :

Temporarily elimination of arcs with high values of cij − γj
Aggressive dominance rules :

1 Consider and gradually extend subsets of the visit components
V1, . . . ,Vn

2 Consider and gradually extend subsets of cumulative distribution
components M̄ t(a), . . . , M̄ t(b)

5 Heuristic column generator : Multi-start Tabu search (Desaulniers et
al. 2008) :

Applied to columns in the current basis
Moves : insertion/deletion of individual customers
Adapted for the VRPTW-ST : search space restricted to solution
feasible w.r.t. the worst case scenario
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Chance-constrained model Accelerating Strategies

Cutting planes and branching strategies

Cutting planes : Subset-row inequalities (Jepsen et al. 2008) :

∑

r∈R

⌊1

k

∑

i∈S

air

⌋

xr ≤
⌊ |S |

k

⌋

, ∀S ⊆ Vc , 2 ≤ k ≤ |S |.

As Jepsen et al. we only consider |S | = 3 and k = 2 (easier to find) :

∑

r∈RS

xr ≤ 1, ∀S ∈ Vc : |S | = 3,

where RS is the subset of paths visiting at least two customers in S .
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Chance-constrained model Accelerating Strategies

Cutting planes and branching strategies

Cutting planes : Subset-row inequalities (Jepsen et al. 2008) :

∑

r∈R

⌊1

k

∑

i∈S

air

⌋

xr ≤
⌊ |S |

k

⌋

, ∀S ⊆ Vc , 2 ≤ k ≤ |S |.

As Jepsen et al. we only consider |S | = 3 and k = 2 (easier to find) :

∑

r∈RS

xr ≤ 1, ∀S ∈ Vc : |S | = 3,

where RS is the subset of paths visiting at least two customers in S .

Branching strategies :
Number of vehicles
On arc-flow variables :

Xij =
∑

r∈R

bijrxr , ∀(i , j) ∈ A,
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Computational Results

Experiments

Two experimental campaigns :

1 Test the algorithm on benchmark instances

2 Evaluate stochastic model behavior and compare with deterministic
models
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Computational Results

Instance set

Instances derived from the VRPTW database of Solomon (1987) :

We build 4 instance families :
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Minimum success probability : α = 95%
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Minimum success probability : α = 95%

2 Low-probability :

Similar to Basic case, but the minimum success probability is α = 85%

3 Large-support :

Similar to Basic case, but larger support : [50, 150] for R and RC,
[450, 1350] for C

4 Positive-skewed :

Similar to Large-support case, but different median values : 70 for R
and RC, 630 for C

Capacity and demand are disregarded
Number of customers : 25 and 50 for R1, RC1, C1 ; 25 for R2, RC2,
C2. (85 X 4 = 340 Total)
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Computational Results

Instance set

Instances derived from the VRPTW database of Solomon (1987) :

We build 4 instance families :
1 Basic :

Symmetric triangular distributions
Median corresponding to original values : 100 for R and RC, 900 for C
Support : [80, 120] for R and RC, [700, 1100] for C.
Minimum success probability : α = 95%

2 Low-probability :

Similar to Basic case, but the minimum success probability is α = 85%

3 Large-support :

Similar to Basic case, but larger support : [50, 150] for R and RC,
[450, 1350] for C

4 Positive-skewed :

Similar to Large-support case, but different median values : 70 for R
and RC, 630 for C

Capacity and demand are disregarded
Number of customers : 25 and 50 for R1, RC1, C1 ; 25 for R2, RC2,
C2. (85 X 4 = 340 Total)
Max CPU time : 5h on Intel i7-2600 3.40GHz, 16G RAM
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Computational Results

Algorithmic features

We performed a large amount of tests to evaluate several parameters
and accelerating techniques

Most important remarks :

ng -paths : best neighborhood cardinality : 10 ;
Heuristic dominance is very helpful
Heuristic column generation (tabu search) improves about 20% of
running times
Subset-row inequalities are very effective
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Computational Results

Performance on benchmark instances (1)

Number of optimally solved instances (over 85) :
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Number of optimally solved instances (over 85) :
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Instance families with larger support are more difficult
Approx. 80% of the instances are solved within the first hour
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Computational Results

Performance on benchmark instances (2)

Basic instance family

class fam dim CostAvg nVeh SuccProbAvg TimeAvg total count
1 C 25 207.8 3.2 98.3 2633.1 9 9
1 R 25 464.8 5.0 99.4 13.8 12 12
1 RC 25 351.4 3.3 99.3 41.7 8 8
1 25 353.8 4.0 99.0 834.4 29 29
1 C 50 390.6 5.6 97.4 8763.7 9 5
1 R 50 790.8 8.5 97.7 1123.0 12 11
1 RC 50 756.4 6.6 98.6 3008.9 8 7
1 50 693.3 7.3 97.9 3358.0 29 23
1 504.0 5.4 98.5 1950.6 58 52
2 C 25 214.6 2.0 99.8 3515.6 8 7
2 R 25 387.5 2.9 99.4 2580.4 11 10
2 RC 25 331.7 3.0 100.0 2594.9 8 5
2 25 319.8 2.6 99.7 2881.3 27 22

449.2 4.6 98.9 2227.3 85 74
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Computational Results

Performance on benchmark instances (2)

Basic instance family

class fam dim CostAvg nVeh SuccProbAvg TimeAvg total count
1 C 25 207.8 3.2 98.3 2633.1 9 9
1 R 25 464.8 5.0 99.4 13.8 12 12
1 RC 25 351.4 3.3 99.3 41.7 8 8
1 25 353.8 4.0 99.0 834.4 29 29
1 C 50 390.6 5.6 97.4 8763.7 9 5
1 R 50 790.8 8.5 97.7 1123.0 12 11
1 RC 50 756.4 6.6 98.6 3008.9 8 7
1 50 693.3 7.3 97.9 3358.0 29 23
1 504.0 5.4 98.5 1950.6 58 52
2 C 25 214.6 2.0 99.8 3515.6 8 7
2 R 25 387.5 2.9 99.4 2580.4 11 10
2 RC 25 331.7 3.0 100.0 2594.9 8 5
2 25 319.8 2.6 99.7 2881.3 27 22

449.2 4.6 98.9 2227.3 85 74

Efficiency of Stochastic B&P have common tendencies with
Deterministic B&P :

Complexity increase with number of customers
Family C is more difficult than R and RC
Class 2 is mode difficult that 1 (Larger time windows)
Higher number of customer per routes corresponds to difficult problems
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Computational Results

Deterministic VS Stochastic Model (1)

Deterministic (Median values ) VS Stochastic (Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 -6.8 -56.4 -44.91242 39
2 -0.1 0.0 -5.12083 15

-5.0 -40.7 -33.85920 54
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Computational Results

Deterministic VS Stochastic Model (1)

Deterministic (Median values ) VS Stochastic (Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 -6.8 -56.4 -44.91242 39
2 -0.1 0.0 -5.12083 15

-5.0 -40.7 -33.85920 54

General tendency : modest cost decrease ⇐⇒ consistent decrease of
success probability ( −5.0 ⇐⇒ −33.9%)

Some differences :

Family 1 : −6.8 ⇐⇒ −44.9%
Family 2 : 0.1 ⇐⇒ 5%

Stochastic model is convenient
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Computational Results

Deterministic VS Stochastic Model (2)

Deterministic (Worst-case values ) VS Stochastic ( Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 9.6 74.4 2.93339 39
2 1.7 0.0 0.06861 15

7.4 53.7 2.13762 54
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Computational Results

Deterministic VS Stochastic Model (2)

Deterministic (Worst-case values ) VS Stochastic ( Large-support)

class PercCostDAvg PercVehDAvg PercSuccDAvg count
1 9.6 74.4 2.93339 39
2 1.7 0.0 0.06861 15

7.4 53.7 2.13762 54

General tendency : relevant cost increase ⇐⇒ small increase of
success probability ( +7.4 ⇐⇒ +2.1%)

Some differences :

Family 1 : +9.6 ⇐⇒ +2.9%
Family 1 : +1.7 ⇐⇒ +0.07%

Stochastic model is still convenient
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Conclusions and perspectives 



Stochastic Vehicle Routing: an Overview      
and some Recent Advances 

Conclusion and perspectives 
 Stochastic vehicle routing is a rich and promising 

research area. 
 Much work remains to be done in the area of recourse 

definition. 
 SVRP models and solution techniques may also be useful 

for tackling problems that are not really stochastic, but 
which exhibit similar structures 

 Up to now, very little work on problems with stochastic 
travel and service times, while one may argue that travel 
or service times are uncertain in most routing problems! 

 Correlation between uncertain parameters is possibly a 
major stumbling block in many application areas, but 
almost no one seems to work on ways to deal with it. 
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