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Classic Forest Problems

• Linear Programming

• MIP’s

• Harvesting + Road Construction

• Adjacency

• Machine Location

• Uncertainty problems
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Linear Programming
• Traditional models appeared during

70’s (US Forest Service)

• Forest represented by basic units
(stands), sharing homogeneous forest
areas.

• Maximize Net return

• Main Decisions/Constraints:
• # of Ha of stands to Harvest each period
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Linear Programming
Maximize 

Subject to

Flow control
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Linear Programming
• All variables are continuos.

• Easy to solve in reasonable time by
any LP commercial solver.

• Does not consider spatial
relationships.

• Widely used .
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MIP: Road Construction
• Spatial relationships introduced during

70’s and 80’s.

• Road Building 0-1 decisions, to access
areas to be harvested , with an
associated cost.
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• Main Decisions

• Road  Building

• Amount of Timber Flow per road

• Harvest

• Main Constraints

• Flow Capacity

• Relation flows roads

• Flow Conservation at different nodes (production, 

intersection and demand)

• Demand bounds

MIP: Road Construction
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MIP: Road Construction
• Applied in

US Forest Service 1980’s

Weintraub, Kirby et al Operation Research
(1994)

Solution algorithm : LP and Heuristics
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• Chile

• Forestal Millalemu 1990’s

• Andalaft et al, Operation Research (1999)

MIP: Road Construction



10

Model
• Main Decisions

• Harvest stands per period (Three products, 17
independent forests), potential roads (two types),
road upgrade posibility.

• Stocking yards.

• Main Constraints
• Flow conservation within different nodes (Origin, Interse ction,

stocking and exit).

• Flow needs road building.

• Road and stocking capacities.

• Global Demand constraints .



Model
• Variables:
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Model
• Objective Function: Max net present profit

• Sales income

• Harvesting Cost

• Production Cost

• Transportation costs

• Road building and upgrading costs

• Stocking cost



Model
• Main Constraints

• Flow Conservation

• Flow and road construction/upgrading relation

• Demands
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Solution Approaches
• Strengthenings:

• Adjustment of Capacities: flow capacities,
tight bound using max production per arcs.

• Inequalities

• Road-to-Road triggers: This constraint
states that no isolated road should be
built.

N(ij) := set of potential roads connecting to (ij)
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Solution Approaches
• Inequalities

• Project-to-Road triggers: This constraint states

that no isolated stand can be entered.

N(s) := set of potential roads accessing stand s

• Liftings

• Road building and upgrading constraints can

be lifted with respect to time.



Solution Approaches
• Liftings

• Road building:

• Road upgrading:
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• Areas are linked through the demand constraints, each period.

• Forest company are geographically independent,
possible decomposition of the problem once demand
constraints are dualized.

• The problem splits into separate sub-problems, one per
area, plus one problem for the timber sales.

• These problems have a much simpler structure and
thus are easier to solve.

Lagrangean Relaxation



18

Lagrangean Heuristic
• The solutions obtained through the Lagrangean

relaxation may not satisfy the demand constraints.

• Two ways:

• Not enough roads built to carry timber to cover
demand

• Harvest excessive timber in some periods and not
enough in others

• The heuristic procedure builds a minimum number of
additional roads to carry enough timber to satisfy
demand, and readjusts production among periods



19

Test Data
Instances
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Computational Results

Results on real planning problems show that even as these
problems become more complex, the proposed solution strate gies
lead to very good solutions, reducing the residual gap for th e most
difficult data set from 162% to 1.6%, and for all data sets to 2.6% or
less.
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Adjacency Constraints
• Harvesting with environmental constraints.
• Main form of constraints
• Harvest with maximum opening size 

(adjacency)
• Blocks no larger than 40 Has.

Harvested Stands



First Approach: URM
� Forest planner forms cutting units by blocking 

basic cells together a priori using GIS (Barrett 
1997). 

• Max Area of 40 ha 
implies no 
adjacent blocks 
can be harvested 
at the same time

• For example if A 
is harvested B,C 
cannot
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t
iX  =1 if block i harvested in period t. 
tH  =0 Volume harvested in period t. 

 
URM model 

Max 
t
iXitC

ti
∑∑  

s.t.  1) 
t
iit

i

t XaH ∑=
 

2) 
115.11-tH  85.0 −≤≤ tHtH  

3) 1≤+ t
j

t
i XX    if  i, j adjacent 

4) 1,0=t
iX       0≥tH  

This is a weak formulation 

URM Formulation
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Heuristics:
� Tabu search (Murray and Church 1995) 
� Simulated annealing (Murray and Church 1995)
� Monte Carlo simulations (O’Hare et al. 1989, Nelson  and 

Brodie 1990 )
Exact techniques:
� Dynamic programming (Hoganson and Borges 1998)
� Column generation (Barahona et  al. 1992). Sub probl em is 

set packing.
� Formulation strengthening (Murray and Church 1996) 

Use cliques instead of pair wise relations

Solving URM like Problems
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URM: Column Generation
� Column generation (Barahona et al. 1992).
� 3 Periods problem .
� Sub-problem is set packing.
� The generation of columns is done by solving a

stable set problem .

� To preserve the adjacency properties, fractional
solutions in the master problem are rounded off to
integrality through a heuristic procedure.



URM: Column Generation - MP

where:

� is 1 if area i is managed with alternative j

� is total timber production of area I, period t ,und er choice j 

� Minimum number of acres of mature standing timber r equired 
for zone r in period t
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URM: Column Generation - SP
• Sub-problem consist in a stable set problem (NP-

HARD)
• Three stages to solve it:

1. Greedy Heuristic
2. If it does not produce a candidate to enter the

basis of MP, we solve a LP that represents
the stable set problem .

3. If these 2 phases are still not successful in 
finding new candidates, use B&B or B&C 
algorithm to make sure we do not miss any
candidate.
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URM: Column Generation
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URM: Column Generation
• Flowchart of procedure
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Computational Results
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� Incorporate block construction to model 
� Basic cells as small as one Ha.
� Considerable profit gains compared to URM (Murray a nd 

Weintraub (2002)). 
� Far more complex combinatorially
� Solving the ARM
� Mostly Heuristics: (Hokans 1983, Lockwood and Moore 1993, 

Barrett et al. 1998, Clark et al. 1999, Richards an d Gunn 2000, 
Boston and Bettinger 2001). 

� Few exact approaches (McDill and Braze (2000) and Ma rtins 
et al. (2001), Goycoolea et. al. (2003))

Second Approach: ARM 
(Murray 1999)



32

Modeling ARM: Forest Map
� Forest partitioned into basic cells
� Basic Cells:

� Known:  Area, Volume per Period, Net Profit per 
Period

� Graph G(V,E):
– V = {Basic Cells}
– (u,v) ∈ E if cells u 

and v are adjacent
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Feasible Cluster:
� Any set of 

contiguous 
collection of cells 

� Area does not 
exceed the given 
maximum area 
restriction 
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� Compatible Clusters
– Are not adjacent
– Do not share a common cell

Feasible Clusters
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Cluster Packing Problem

Maximize ∑
S

SS xc

1' ≤+ SS xx

{ }1,0∈Sx

for each pair S, S’ of 
incompatible clusters 

for each cluster S ∈ Λ.

Sc

subject to
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First Strengthened Formulation
(Martins et al. 2001) more compact formulation
� For each pair of incompatible cluster S,S’ there mu st exist an 

arc (u,v) in G such that u Є S and  v Є S’

Maximize 

   ( , )

1S
S u v

x
λ∈

≤∑

∑
S

SS xc

{ }1,0∈Sx

for each arc (u,v) in G(V,E)

for each cluster S ∈ Λ.
where:

� is Net Profit of cluster S

� is the set of all clusters S such that u Є S or  v Є S
Sc

subject to

( , )u vλ
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Second Strengthened 
Formulation : Cluster Graph
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Cliques Cluster Packing 
Formulation

Maximize

   

1S
S

x
∈Κ

≤∑

∑
S

SS xc

{ }1,0∈Sx

for each maximal clique 
K in G(^, Γ) 

for each cluster S ∈ Λ.
where:

� is Net Profit of cluster SSc

subject to

•These are stronger constraints.
•Note that each pair of incompatible Clusters (S, S’ ) defines an arc in 
G (^,Γ) and is contained in some maximal clique.
•Problem : Number of max cliques K in G (^, Γ) is too large 
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Third Strengthened Formulation

Use constraint projection to generate strong
inequalities valid for the cluster packing problem .



Projected Clique’s in G(V,E)
For each clique in G(V,E) generate a 
large set of incompatible clusters in 
G(^,Γ) 
Thus form a clique in G(^, Γ) 
Even if clique (1,2,3,4) in G(V,E). may 
be maximal not necessarily the case 
for projected clique.
Example cluster R defined by nodes 
(5,6,7,8,9,10) does not intersect clique 
{1,2,3,4} but is incompatible with 
S,T,U,V, W.
Thus (XR)+Xs+XT+Xu+Xw+Xw ≤ 1
In this form we can obtain facets of 
projected clique constraints 
associated with clique k.
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Projected Cliques Cluster Packing 
Formulation (Goycoolea et. al. (2003))

Maximize 

1
)(   

≤∑
ΚΛ∈S

Sx

∑
S

SS xc

{ }1,0∈Sx

for each maximal clique 
K in G(V, E)

for each cluster S ∈ Λ.
where:
� is Net Profit of cluster S
� is the set of all clusters that intersect maximal c lique 

Sc

subject to

)(ΚΛ

� This set packing formulation is solved to integrali ty at the  root 
node by CPLEX 8.1
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Fractional Properties of the LP 
Formulation

LP Relaxation fractional solution (Eldorado)
Generally few and local fractional cells
Generally solved in Node 0

Not harvested

Fully harvested

Harvested by more 
that one cluster

Partially harvested
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Butter Creek 351 units
El Dorado 1363 units
Random square problems 
Formulations
� ARM-ARC: Martins et al.’s arc based 

formulation
� ARM-PC: Goycoolea et. al.’s projected 

clique formulation 
� Another approach

� ARM-MB: add explicitly all constraints of 
minimal infeasible clusters.

Computational Results 



43

Instance ARM-MB 
Obj. Value 

ARM-
MB 
Sol. 

Time 

ARM-
ARC 

Obj. Value 

ARM-
ARC 

Sol. Time 

ARM-PC 
Obj. Value 

ARM-PC 
Sol. Time 

8x8  1,335,635.36 
(26.58% gap) 

14,400.00 1,352,200.90 
(16.27% gap) 

14,400.00 1,426,754.85 5.79 

12x12  2,392,595.65 
(45.02% 

gap) 

14,400.0
0 

2,671,223.
69 

(22.41% 
gap) 

14,400.00 2,883,748.
66 

134.58 
 

16x16  * * 3,305,557.
42 

(44.58% 
gap) 

14,400.00 4,887,757.
03 

2,557.07 

Butter 
Creek  

9,419.27 
(14.65% gap) 

14,400.00 9,928.73 
(3.48% gap) 

14,400.00 10,110.88 2.88 

El Dorado 1,672,065 
(3.39% gap) 

14,400.00 1,696,935 
(0.08% gap) 

14,400.00 1,697,695 6.12 

Computational Results 



Multi-period Formulation with Volume 
Restrictions

Maximize

1
)( S  

, ≤∑
ΚΛ∈

tSx

∑
tS

tStS xc
,

,,

{ }1,0, ∈tSx

∑
∈

≤
SutS

tSx
  ,

, 1

for each maximal clique K in 
G(V, E) and for each period t

for unit u in V 

∑∑ ≤−∆− −−
S

tStS
S

tStS xvxv 0        )1( ,,1,1,

0)(1  -    1,1,,, ≤∆+ ∑∑ −−
S

tStS
S

tStS xvxv

for each period 
t>1

for each period 
t>1

for each cluster S ∈ Λ and 
for each period t

subject to
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� Instances:
– Using ∆=0.1, 0.15   (±10%, ±15%) 

� Difficult to solve with  Volume Constraints 

Numerical Results for Multi-period 
Model

Map
Time 

Periods
∆ IP Time

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[% ]

1st sol 
under 1%  
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

eldorado15 12 0.10 28800 2133 18606 1.47 - 18606 1.47
eldorado15 15 0.10 28800 1575 18315 0.83 10839 10839 1.00
ran12by12 12 0.10 28800 388 - - - - -
ran12by12 15 0.10 28800 394 - - - - -
eldorado15 12 0.15 28800 2087 11211 0.50 10719 2323 1.51
eldorado15 15 0.15 28800 2067 20733 0.59 20274 20274 0.77
ran12by12 12 0.15 28800 634 - - - - -
ran12by12 15 0.15 28800 342 - - - - -
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Elastic Constraints

• What if we consider the volume requirements as more of a 

guide rather than hard constraints

If they are violated by a small amount, the solutions would 

likely be acceptable to forest managers

• Elastic Constraints

Permit small violations, but penalize violations in the 

objective

• Effects 

The volume constraints are “inactive” and do not generate 

new extreme points (good integrality properties)



Multi-period Model with Elastic Volume 
Restrictions

Maximize

∑∑ ≤−∆− −−
S

ttStS
S

tStSE lxvxv         )1( ,,1,1,

1
)(   

, ≤∑
ΚΛ∈S

tSx

∑∑∑
>>

−−
11,

,,
t

tt
t

tt
tS

tStS uplpxc

{ }1,0, ∈tSx

∑
∈

≤
SutS

tSx
  ,

, 1

t
S

tStS
S

EtStS uxvxv ≤∆+ ∑∑ −− 1,1,,, )(1  -    

0, ≥tt ul

for each maximal clique K in 
G(V, E) and for each period t

for unit u in V 

for each period t>1

for each period t>1

for each cluster S ∈ Λ and 
for each period t

Subject to
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Multi-period Formulation with Volume 
Restrictions

Use of:

� Elastic constraints
� Constraint Branching
� Integer Allocation

Heuristic
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Solving the Elastic Constraint Model

� Choosing independent elastic penalties still 
difficult.

� Branch & bound method
� Elastic Constraints help Integer allocation
� Constraint branching to resolve fractions

� Diversifies greedy nature of heuristic
� Integer allocation heuristic at each B&B node

� Volume violation corrections carried out in integer  
allocation
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Numerical Results for Elastic Model B&B Method

Instances:
� Using ∆= 0.1, 0.15 (±10%, ±15%), ∆E=0.09, 0.14 (±9%, ±14%)

GAP’s comparable to strict volume constraint table:
� GAP’s calculated with respect to strict volume constraint L P
� Solutions are feasible for strict volume constraint  model with the respective
∆

Map
Time 
Periods ∆ IP Time

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[% ]

1st sol 
under 1%  
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

eldorado15 12 0.10 14400 23 5555 0.41 1706 1706 0.43
eldorado15 15 0.10 14400 13 12541 0.44 4307 4307 0.45
ran12by12 12 0.10 14400 75 5059 3.43 - 663 8.70
ran12by12 15 0.10 14400 25 13856 4.52 - 614 14.42
eldorado15 12 0.15 14400 18 12216 0.30 1160 1160 0.33
eldorado15 15 0.15 14400 13 9916 0.29 2387 2387 0.34
ran12by12 12 0.15 14400 199 9684 2.29 - 312 5.07
ran12by12 15 0.15 14400 20 9124 4.97 - 504 7.99
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Conclusions for Elastic Model B&B 
Method

� Initial tests show elastic constraint method
generates good integer feasible solutions quickly.

� First integer feasible solutions are obtained
between 10 to 150 times faster than CPLEX and are
of higher quality.

� Other improvements in computacional capabilities
appear possible.
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Old growth: Tabu Search
• Caro et al 2003

• Multiperiod harvest-scheduling ARM model

with adjacency constraints + old growth

patch size and total old growth area

restrictions.

• Tabu search procedure with 2-Opt moves

(exchanging at most 2 units) was

developed.
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Algorithm
• Neighbors:

• OPT-1: change the harvesting period of

one node (or cutting unit) from period t1

to t2, or no harvest to harvest in period

t3, or from harvesting in period t4 to no

harvest.

• OPT-2: involves simultaneously changing

the harvesting period of two nodes

(including not harvesting)
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Algorithm Flowchart
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Computational Results
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Computational Results
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Old growth exact formulation 
• Carvajal et al 2011

• Harvest scheduling problem with both

maximum clear-cut constraint and old

growth conservation requirements.

• Objective: Maximize profit while preventing

large clear-cut areas, maintaining a

minimum average ending age of the forest

and a connected (contiguous) region of old

growth forest.



Old growth exact formulation
Extension of ARM model that considers old growth patches, 

with enough area to be a wildlife habitat.

Old-growth variable. Takes the value 1 if stand v belongs to the old-

growth forest and 0 otherwise.

Main Constraints:

• Stand selected at old growth can not be harvested

• Old growth forest has minimum area.
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• Problem is connectivity

• Two non-adjacent nodes, u and v belong to a

connected set if there is a path of nodes

connecting them.

• In any cut set separating u and v, there must be at

least one node connected to u and to v: “there

exists a path U between u and v, such that for

every node cut set S separating u and v, the

intersection of S and U is not empty.

Old growth exact formulation
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Old growth exact formulation
• This is represented by cut inequalities.

• Too many cut inequalities: Constraint

generation.



61

Instances and Results
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Instances and Results
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Instances and Results



Machine Location Problem

Main Decisions:

• Where to locate the machinery, Skidders and 
Towers to harvest the Forest.

• Road building

62



PLANEX: Harvesting Machinery 
Allocation

Need to harvest 300 to 1,000 ha in next 4 
months

Process:
� Fell trees
� Bring trees to roadside:

� Skidders for flat area
� Cable logging (towers) in steeper slopes

� Load on trucks
63



PLANEX- Main Decisions

Where to allocate tractors and towers

Which areas to assign to each machine

The road network

64



Flat area

Steep area

PLANEX

Harvesting Machinery Allocation

Roads

Skidders

Landing
Towers



Manual Approach:
Engineer w/topographic maps
Long, tedious work
Can only analyze one scenario
GIS for information on:
� Topography, standing timber, existing 

roads

Raster form 10x10m2 cells
Friendly graphic interface
Heuristic algorithm
Runs take about 15 minutes for large areas
Ability to test several scenarios 66



10 x 10 meter cells

PLANEX - Information



PLANEX - Reach of Harvesting 
Equipment



PLANEX - Feasible Turns for
Harvesting Equipment
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PLANEX Interface
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A Mathematical Model 
� Installation decision variables

� Road construction decision variables





 ∈=

otherwise      0,

kT  i cellin  located isk   typeofmachinery  if       ,1k
ix









=
∈

otherwise   0,

exist)already not  doesit  if dconstructe be  tohas r)(q,(i.e.,built  isA   r)(q,section  road if   1,

qrz
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� Variables associated with timber volume

harvested.

timber volume harvested in cell using machinery type k in cell i

∈ Tk

Y
i
: timber volume harvested through cell

: timber volume flowing through road section (q,r)

: timber volume flowing through exit

:k
ijw

qrf

sg

Model



Roads: 10% - 60% of the original network.

Almost US$ 500,000 per year of operational NPV, 
integrated with the Tactic System (1997)

Up to 40% of the planification time in “hard” 
problems.
15% of the cost I
n US$/m3 

Savings with PLANEX
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Lagrangian Relaxation Approach
(Vera et al, 2002)

Separates the problem into a Machine 
location + Road Construction
Two classes of machines: towers and 
skidders .
Roads Construction
Flow Conservation between different
nodes (origins , intersection and exits )
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Model

78



Model
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Solving Strategy
1. Defining additional constraints, in order to make

the original formulation stronger.
2. Partition of the problem using LR approach.
3. Strengthen the partitioned subproblems, if

possible.
4. Solve the LR using a pure subgradient algorithm,

or a combined hybrid approach, using
subgradient iterations followed by a Dantzig-
Wolfe method or by bundle method.

5. Obtain primal feasible solutions using
Lagrangian heuristic.
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Strengthenings

Location to road trigger

Road to road triggers

81

Where:

is 1 if we build the road (i,j).

is 1 if we locate machine of type k in cell i.



Obtaining feasible solutions
1. If the solution is feasible, keep it.
2. If not, road network is not compatible with the

locations defined by the subproblem, so
machine locations are not connected to the exit.

3. Auxiliary problem consisting of all machine
locations and an auxiliary road network
consisting of minimum spanning tree connecting
all possible machine locations to the exit.

4. Then solve the auxiliary linear problema to take
out all timber to the exits.

5. Delete all roads which are not taking any flow of
timber.

80



Computational Results
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Test Instances



84

Computational Results
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Conclusions
1. Hard Problem : B&B algorithm was not

able to solve the basic formulation in
reasonable time.

2. B&B leads to significantly lower gaps, but
at the cost of higher CPU times compared
to LR approach .

3. Significant improvemen is obtained by
strengthening the formulation of the
model.

4. The LR approach appears worse for
easier problems.
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Tabu Search (Andrés Diaz et al, 
2004)

• Objective: Selecting the locations for the
machines and design the access road
network connecting the existing network
with the points where machinery is
installed .

• Formulated as 2 problems: Plant location
and fixed charge network flow problems.

• Two types of machines (towers and
skidders)



Algorithm
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3. Run the Tabu Search



Algorithm

88

� At the end of Tabu Search, set of solutions is
available for the machine location sub problem .

� During the resolution of this sub-problem, we
use the road sections of the minimum spanning
tree covering the potential locations and the
exits of the forest to estimate the road network
construction cost and the transportation cost.

� To evaluate more exactly the cost of each
solution in the set of solutions, obtain the best
Steiner tree covering the opened locations.



Numerical Results
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� Instances



Numerical Results
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Conclusions

91

� Numerical results indicate that the heuristic
approach is very attractive and leads to better
solutions than those provided by “state-of-the-
art” integer programming codes in limited
computation times

� Solution times significantly smaller.

� The numerical results do not vary too much
when typical parameters such as the tabu tenure
are modified, except for the dimension of
neighborhood
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Stochastic Problems
• Scenario trees representing different

uncertainty sources.

• Future Prices and Timber Volumes.

• Non-Anticipativity Constraints.

• Starting point: Andalaft (2003) problem
from Millalemu instance, considering only
one forest (instead of the original 17,
linked by demand .



Scenario Trees
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Non-Anticipativity

“If two scenarios are indistinguishable up to some 
stage, then the decisions in those scenarios, until  that 

stage, must be identical”
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Scenario Trees
• Scenario w consists in a realization of a 

random parameter during an horizon
planning .

• Represent reality

• Black swans

• Scenario tree generation : very hard to
develop a general way to create them

• Expert judgement

• Random Walks converging long range average
93
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Uncertainty in Forest production
planning
� Escudero et al 2010
� Planning forest harvest and access to road

construction under uncertainty problem .
� Uncertainty is represented by scenario trees,

containing prices of timber and demand bounds.
� 18 Scenarios from los Copihues (Chile) real forest.
� MIP: Flow , Harvest, Road Build, 4 periods.
� Difficult to solve: Too many constraints, Non-

Anticipativity constraints do not allow to Split the
problem .
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Uncertainty in Forest production
planning : solving approach
� Branching: BFC approach due to the large scale of

the problem .
� Average Scenario Solution (AVSC) is solved by

simulating what happens in a given scenario (w)
when applying the average scenario solution.

� BFC approach led to better solutions than the
deterministic approach under most scenarios.

� Deterministic couldn’t find feasible solutions in
multiple scenarios, for all cases.
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Uncertainty in Forest production
planning : Results
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Stochastic Forest Planning: A 
Progressive Hedging Approach
� Badilla et al 2010
� Medium term (4 stages) forest planning with an

integrated approach considering both harvesting
and road construction decisions in the presence of
uncertainty.

� Price and growth uncertainties.
� Use of Strengthenings (Andalaft et al 1999)
� Many more scenarios than previously reported in

the literature.
� Scenario-based decomposition method- Progressive

Hedging
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Stochastic Forest Planning: A 
Progressive Hedging Approach
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Stochastic Forest Planning: A 
Progressive Hedging Approach
� Progressive Hedging:

� Separates problem per scenario
� Implicit non-anticipativity constraints.
� Natural parallel implementation
� Different Techniques to improve its performance

(hot starts, fixing variables, computing penalty
term, etc.)
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Instance

• Los Copihues Forest:

• 25 Stands

• 9 Origin nodes, 3 Intersection nodes and 1 Exit node

• 15 Existing and 11 Potencial Roads
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Computacional Results
Instances

Results



• Large number of scenarios lead to decomposition

• Need to parallelize

Future Improvements

Scenario 1

2 5 8

4 7

3 6 9

Scenarios

Solutions

102
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• Spatial characteristics in forest planning lead to MIP 

problems

• Most are difficult to solve

• Actual use mostly heuristics

• Algorithmic challenges

Conclusion
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