
 

CMU/SEI-2012-SR-015 | 3  

2 An Analysis of Code Defect Injection and Removal in PSP 
  Diego Vallespir, Universidad de la República 
  William Nichols 

2.1 Introduction 

A primary goal of software process improvement is to make software development more effective 
and efficient. Because defects require rework, one path to performance improvement is to 
quantitatively understand the role of defects in the process. We can then make informed decisions 
about preventing defect injection or committing the effort necessary to remove the injected 
defects. The PSP establishes a highly instrumented development process that includes a rigorous 
measurement framework for effort and defects. After examining a large amount of data generated 
during PSP classes, we can describe how many defects are injected during the PSP Code phase, 
the types of defects injected, when they are detected, and the effort required to remove them. We 
have found that even using a rigorous PSP development process, nearly a quarter of all defects 
injected will escape into unit test. Moreover, finding and removing defects in unit test required 
seven times as much effort as removing them in earlier phases. The purpose of this study is not to 
measure the effectiveness of PSP training, but rather to characterize the defects developers inject 
and must subsequently remove. By examining the characteristics of defect injections and escapes, 
we might teach developers how to define and improve their own processes and thus make the 
product development more effective and efficient.  

Watts Humphrey describes PSP as “a self-improvement process that helps you to control, manage, 
and improve the way you work” [Humphrey 2005]. This process includes phases that you 
complete while building the software. For each phase, the engineer collects data on the time spent 
in the development phase and data about the defects injected and removed. 

During the PSP course, the engineers build programs while they progressively learn the PSP. We 
analyzed eight exercises from this PSP course version. In this section, we present an analysis of 
defects injected during the Code phase of the last three PSP programs (6, 7, and 8). The engineers 
used the complete PSP when they built these programs.  

We focused on defects injected during the Code phase because these specific data had not been 
studied before. Recently we made a similar analysis but focused on the defects injected during the 
Design phase of PSP [Vallespir 2011]. Previous studies did not have all the defect data, such as 
defect types and individual defect times; they had only summaries.  

Our analysis of the complete data available from individual defect logs shows not only that the 
defects injected during Code are more expensive to remove in Test than in previous phases of the 
process, but also that they are easy to remove in the Code Review phase. The difference is 
striking: it costs seven times more to remove a defect in the PSP Unit Test than it does to remove 
a defect during code review. 

To show this, we observed how defects injected during Code escaped into each subsequent phase 
of the PSP and how the cost to remove them was affected by defect type and phase. We describe 
the different defect types injected during Code and how these defect types compare with respect 
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to the find-and-fix time. From this analysis, we show that “syntax” type of defects are the most 
common Code phase defect (around 40% of all the defects), that personal code review is an 
effective removal activity, and that finding and fixing Code defects in the Code Review phase is 
substantially less expensive than removing them in the Test phase. 

Other studies have examined software quality improvement using PSP [Paulk 2006, 2010; Wohlin 
1998; Rombach 2008; Hayes 1997; Ferguson 1997]. In the context of PSP, quality is measured as 
defect density (defects/KLOC). Our study differs from the other studies in that we focused on 
code defects, considered the defect type, and did not consider defect density. Instead, we 
concentrated on the characteristics of the defects introduced in Code. Our findings resulted from 
analyses of the defect types injected, how they proceeded through the process until they were 
found and removed, and the cost of removal in subsequent development phases. In the literature, 
we do not know of any other study that has the characteristics of our research. 

2.2 The Personal Software Process and the Collection of Data  

For each software development phase, the PSP has scripts that help the software engineer follow 
the process correctly. The phases include Planning, Detailed Design, Detailed Design Review, 
Code, Code Review, Compile, Unit Test, and Post Mortem. For each phase, the engineer collects 
data on the time spent in the phase and the defects injected and removed. The defect data include 
the defect type, the time to find and fix the defect, the phase in which the defect was injected, and 
the phase in which it was removed. Figure 1 shows the guidance, phases, and data collection used 
with the PSP. 

 

Figure 1: The PSP Phases, Scripts, Logs, and Project Summary 
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Some clarifications are needed to understand the measurement framework. The phases should not 
be confused with the activity being performed. Students are asked to write substantial amounts of 
code, on the scale of a small module, before proceeding through to reviewing, compiling, and 
testing. Once a block of code has passed into a phase, all time is logged in that phase, regardless 
of the developer activity. For example, a failure in test will require some coding and a compile, 
but the time will be logged in the “Unit Test” phase. If a personal review is performed prior to 
compiling, the compile can serve as an independent check of review effectiveness. We expect the 
compiler to remove the simple and inexpensive defects; however, if the review was effective the 
compile should be clean. When a defect is found, data recorded includes the phase of removal, the 
direct effort required to find and remove that defect, the phase in which it was injected, and the 
defect type and description.  

The PSP defines 10 types of defects to be used during the course [Humphrey 2005; Chillarege 
1996]. Table 1 presents these types of defects together with a brief description of which defects 
should be registered for each type. 

Table 1: Defect Types in PSP 

Defect Type Possible Defects for the Type 

Documentation Comments, messages 

Syntax Spelling, punctuation, typos, instruction formats 

Build/Package Change management, library, version control 

Assignment Declaration, duplicate names, scope, limits 

Interface Procedure calls and references, I/O, user formats 

Checking Error messages, inadequate checks 

Data Structure, content 

Function Logic, pointers, loops, recursion, computation, function defects 

System Configuration, timing, memory 

Environment Design, compile, test, or other support system problems 

The time to find and fix a defect is a direct measure of the time it takes to find it, correct it, and 
then verify that the correction made is right. In the Design Review and Code Review phases the 
time to find a defect is essentially zero, since finding a defect is direct in a review. However, the 
time to correct it and check that the correction is right depends on how complex the correction is. 
These variable costs are distinct from the predictable cost of performing a review. The point is 
that the variable cost of defects found in review can be directly measured and compared to similar 
costs in unit test.   

On the other hand, both in the Compile and the Unit Test phases, finding a defect is an indirect 
activity. First, there will be a compilation error or a test case that fails. If that failure is taken as a 
starting point (compilation or test), what causes it (the defect) must be found in order to make the 
correction and verify if it is right.    

During the PSP course, the engineers build programs while progressively learning PSP planning, 
development, and process assessment practices. For the first exercise, the engineer starts with a 
simple, defined process (the baseline process, called PSP 0); as the class progresses, new process 
steps and elements are added, from Estimation and Planning to Code Reviews, Design, and 
Design Review. As these elements are added, the process changes. The name of each process and 
which elements are added in each one are presented in Figure 2. The PSP 2.1 is the complete PSP 
process. 
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Figure 2: PSP Process Level Introduction During Course 

In this section, we present an analysis of defects injected during the Code phase of the PSP, in 
programs 6, 7, and 8 (all developed using PSP 2.1, the complete PSP). In PSP 2.1, students 
conceptualize program designs prior to coding and record the design decisions using functional, 
logical, operational, and state templates. Students then perform a checklist-based personal review 
of the design to identify and remove design defects before beginning to write code. After coding, 
students perform a checklist-based personal review of the code. After the review they compile the 
code, and finally they make unit testing.  

2.3 The Data Set 

We used data from the eight-program version of the PSP course (PSP for Engineers I and II) 
taught between October 2005 and January 2010. These courses were taught by the SEI at 
Carnegie Mellon University or by SEI partners, including a number of different instructors in 
multiple countries.   

This study is limited to considering only the final three programs of the PSP course (programs 6, 
7, and 8). In these programs, the students apply the complete PSP process, using all process 
elements and techniques. Of course, not all of these techniques are necessarily applied well 
because the students are in a learning process.  

This relative inexperience of the students constitutes a threat to the validity of this study, in the 
sense that different (and possibly better) results can be expected when the engineer continues 
using PSP in his or her working environment after taking the course. This is due to the fact that 
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the engineer continues to assimilate the techniques and the elements of the process after having 
finished learning the PSP. 

We began with the 133 students who completed all programming exercises of the courses 
mentioned above. From this we made several cuts to remove errors and questionable data and to 
select the data most likely to have comparable design and coding characteristics. 

Because of data errors, we removed data from three students. Johnson and Disney reviewed the 
quality of the PSP data [Johnson 1999]. Their analysis showed that 5% of the data were incorrect; 
however, many or most of those errors in their data were due to process calculations the students 
made. Process calculations are calculations made to obtain the values of certain derived measures 
the process uses to make estimates for the next program, such as the defects injected per hour in a 
certain phase or the alpha and beta parameters for a linear regression that relates the estimated size 
to the real size of the program. 

Because our data were collected with direct entry into a Microsoft Access tool, which then 
performed all process calculations automatically, the amount of data removed (2.3%) is lower 
than the percentage reported by Johnson and Disney; however, this amount seems reasonable. 

We next reduced the data set to separate programming languages with relatively common design 
and coding characteristics. As we analyze the code defects, it seems reasonable to consider only 
languages with similar characteristics that might affect code size, modularity, subroutine interfacing, 
and module logic. The students used a number of different program languages, as shown in Figure 3. 

 

Figure 3: Quantity of Students by Program Languages 

The most common language used was Java. To increase the size of the data set, we decided to 
include the data generated by students who used Java, C#, C++, and C. The languages in this 
group use similar syntax, subprogram, and data constructs. For the simple programs produced in 
the PSP course, we judged that these were most likely to have similar modularization, interface, 
and data design considerations. This cut reduced our data to 94 subjects. 
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Because our intent was to analyze defects, we removed from consideration any data for which 
defects were not recorded. From the 94 engineers remaining, two recorded no defects at all in the 
three programs considered. Our data set for this analysis was, therefore, reduced to 92 engineers. 
In the following sections we present the types of defects that were injected in the Code phase, 
when the defects were removed, and the effort required to find and fix these defects. 

Our analysis included the defect injection and removal performance of individuals and the 
performance range of variation among them. It should be noted that this is different from 
analyzing the behavior of a team. That is, we wanted to characterize the work of individual 
programmers, which is why we calculated individual performance for each one of the subjects. 
After obtaining the performance of each subject, we computed the mean and spread of individual 
averages (as opposed to the global average for all defects). We calculated an estimate of the mean 
percentage, the 95% confidence interval for that mean (to characterize the standard error on the 
mean), and the standard deviation of the distribution, to characterize the spread among 
individuals. For these calculations, as previously mentioned, only programs 6, 7, and 8 of the PSP 
course were used in order to consider the complete PSP.  

For this study we included the 92 engineers who recorded defects. In several cases, the number of 
engineers included varies, and in each of these cases the motive for varying is documented. 

2.4 Where the Defects Are Injected 

The first goal of our analysis was to better understand where defects were injected. We expected 
injections to be dominated by the Design and Code phases, because they are the construction 
phases in PSP. We began by explicitly documenting the phase injection percentages that occur 
during the PSP course.  

For each PSP phase and for each individual, we calculated the percentage of defects injected. The 
distribution statistics are shown in Table 2. 

Table 2: Mean Lower, Upper Confidence Interval Values and Standard Deviation of the Percentage of 
Defects Injected by Phase 

 DLD DLDR Code CR Comp UT

Mean 46.4 0.4 52.4 0.3 0.03 0.5 

Lower 40.8 0.2 46.7 0.0 0.00 0.2 

Upper 52.0 0.7 58.1 0.7 0.09 0.9 

Std. Dev. 27.2 1.7 27.4 1.8 0.30 1.8 

The Design and Code phases have similar injection percentages both on average and in the 
spread. Their mean of the percentage of defects injected is near 50% with lower and upper CI 
bounds between 40% and 58%. Both standard deviations are around 27%. So, in the average of 
this population, roughly half of the defects were injected in the Design phase and the other half 
were injected in the Code phase. On average, the defect potential of these phases appears to be 
very similar. The standard deviation shows, however, that the variability between individuals is 
substantial. Nonetheless, as we expected, in the average almost 99% of the defects were injected 
in the Design and Code phases with only around 1% of the defects injected in the other phases. 
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The Design Review, Code Review, Compile, and Unit Test phases also have similar average 
defect potentials. The average in all these cases is less than 0.5% and their standard deviations are 
small, the largest being 1.8% in Code Review and Unit Testing. This shows that during 
verification activities in PSP, the percentage of defects injected is low but not zero. From time to 
time, developers inject defects while correcting other defects. We will study these secondary 
injections in a later study. 

The variability between individuals and the similarity between the Code and Design phase is also 
presented in Figure 4. Note that the range in both phases is from 0% to 100% (all possible values). 
The 25th percentile is 26.34 for Design and 35.78 for Code, the median is 45.80 for Design and 
52.08 for Code, and the 75th percentile is 64.22 for Design and 71.56 for Code.  

Despite a high variability between individuals, this analysis shows that the great majority of 
defects are injected in the Design and Code phases. Slightly more defects are injected during 
Code than during Design, but the difference is not statistically significant. We could, therefore, 
focus on the defects injected in the Design and Code phases. In this article, we discuss only the 
defects injected in the Code phase. 

 

Figure 4: Percentage of Defects Injected by Phase (Box and Whisker Chart) 
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2.5 Analysis of CODE Defects 

From the 92 engineers in our data set there were four whose records of injected defects (injected 
during Code) were uncertain regarding their correctness; they were therefore dismissed for this 
analysis. Also, eight engineers did not record defects in the Code phase, so they were dismissed, 
as well. 

Our data set for analysis of the code defects was, therefore, reduced to 80 engineers. In the 
following sections we discuss the types of defects that are injected in the Code phase, when those 
defects are removed, and the effort required to find and fix the defects. 

2.5.1 Defect Types Injected During the Code Phase 

To improve the detection of code defects, we first wanted to know which types of defects were 
injected during the Code phase. Table 3 shows the mean of the percentage of the different defect 
types injected. It also presents the lower and upper bound of the 95% confidence interval for the 
mean (a measure of the standard error) and the standard deviation of the distribution.  

None of the engineers registered system type defects injected during the Code phase. The Mean 
D. line presents what was found in our previous work of analysis of the defects injected during the 
Design phase, so these results could be comparable. 

Table 3: Percentage of Defect Types Injected During Code 
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Mean 3.8 40.3 0.6 14.0 5.5 2.7 5.8 26.4 0 0.9 

Mean D. 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1 

Lower 1.5 33.7 0.0 9.9 3.1 1.0 3.1 19.9 0 0.0 

Upper 6.0 46.9 1.1 18.1 8.0 4.4 8.6 32.8 0 1.7 

Std. Dev. 10.1 29.5 2.5 18.4 11.1 7.4 12.4 29.1 0 3.9 

When seeking improvement opportunities, a Pareto sort can be used to identify the most frequent 
or most expensive types. These types can then be the focus for future improvement efforts. For 
the following analysis we sorted defects by frequency, and then segmented the defect types into 
three categories of increasing frequency. The first grouping is “very few” defects of this type. In 
the “very few” category we found system, build/package, and environment types of defects. In our 
previous work, in which we studied the defects injected in the Design phase, we found within this 
category the system and build/package defect types, but not the environment type of defect. 
Considering this work and the previous work, it is clear that, during the PSP course, the 
build/package and system types of defects were seldom injected. This may be due to the PSP 
course exercises rather than the PSP. Because the exercises are small, take only a few hours, 
contain few components, and make few external library references, build packages are usually 
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quite simple. We expect to find more defects of these types in the TSP [Humphrey 2000, 2006] in 
industrial-scale projects.  

A second grouping is “few defects”; most of the other defect types (all except syntax and function 
types) are in this category. The percentage of defects in this category ranged from 2.7% to 14.0%. In 
our previous work, both syntax and environment defect types were in this category. It is reasonable 
that, when analyzing the design defects mentioned, we find few syntax defects and that the 
percentage of these defects in relation to the rest of the other types of defects increases when the 
defects injected during the Code phase are analyzed. It is natural that when coding, more syntax 
defects are made than when designing, even if the design contains pseudocode, as in the case of the 
PSP. 

The third and final grouping, “many defects,” includes the syntax and function types of defects. 
The syntax defects injected during Code are around 40% of the total defects and the function 
defects are around 26%. Approximately two out of three injected defects during the Code phase 
are of one of these two types. 

As mentioned earlier, one out of four (26.4%) defects injected during the Code phase is a function 
type of defect. This is an opportunity for improvement for the PSP, since this type of defect 
should be injected (and as far as possible removed) before reaching Code phase. The fact that 
there is such a large percentage of this type of defect injected indicates problems in the Design 
and Design Review phases. PSP incorporates a detailed pseudocode in the Design phase using the 
Logic Template. Therefore, it is in this phase that the function type defects should be injected, and 
then they should be removed in the Design Review phase. 

The lower, upper, and standard deviation data show again the high variability between 
individuals. This can also be observed in Figure 5; the box and whisker chart shows many 
observations as outliers. The high variability among individuals is repeated in every analysis 
conducted, both in this work and in the previous work, which studied the defects injected in the 
Design phase. A detailed analysis of developer variability is beyond the scope of this paper.  
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Figure 5: Box and Whisker Plot of the Percentage of Defects Injected During Code 

2.5.2 When Are the Defects Injected During Code Removed? 

Our analysis indicated the subsequent phases during which the code defects were removed. While 
our data set was large, it remained too small for us to examine the removals based on defect type. 
Still, for each engineer who injected defects in the Code phase, we identified the phases in which 
the engineer found the defects; then, for every phase, we determined the percentage of the defects 
that were found in that phase.  

Table 4 shows the mean (with 95% confidence interval) and standard deviation for the different 
phases. As previously shown, the standard deviation was high, indicating the high variability 
between individuals. From this we learned that, on average, 62% of the defects injected during 
Code were found in the Code Review phase.  

Table 4: Phases Where the Code Defects are Found (Percentage) 

 CODE DEFECTS 

 CR Comp UT 

Mean 62.0 16.6 21.4 

Lower 55.0 11.7 15.4 

Upper 69.0 21.6 27.3 

Standard Deviation 31.3 22.4 26.9 

 



 

CMU/SEI-2012-SR-015 | 13  

In our previous analysis, we found that around 50% of the defects injected during the Design 
phase were detected in the Design Review phase. This indicates that for the defects injected in 
both the Design and Code phases, the following Review phases are highly effective. 

On the other hand, in the previous study we also found that around 25% of the defects injected in 
the Design phase are detected only in Unit Test. This happens in 21.4% of the cases, based on our 
analysis of defects injected in the Code phase. This indicates that a relatively high percentage of 
defects manage to escape from the different detection phases and reach Unit Test. 

We also know, of course, that not all the defects that escape into Unit Test are found in Unit Test. 
This phase will not have a 100% yield. (That is, we will not find all the defects that are in a given 
unit when it arrives at Unit Test.) Therefore the percentage of defects found in each of these 
phases is smaller than reported, while the actual percentage of escapes into Unit Test is a lower 
limit. An estimate or measurement of the Unit Test yield will be necessary to revise these phase 
estimates. 

Figure 6 shows the box and whisker charts displaying the percentage of defects found in the 
different phases. Figure 6also shows the high variability between individuals in the percentage of 
defects found during Code Review, Compile, and Unit Test phases. This variability among 
individuals was also found in the previous study. 

 

Figure 6: In Which Phase Are the Code Defects Found? – Variability Between Individuals 
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2.5.3 Cost to Remove the Defects Injected in Code 

What is the cost and variation in cost (in minutes) to find and fix the defects that are injected 
during Code? To determine this, we first analyze the differences in cost, segmented by the 
removal phase. Second, we study the differences in cost segmented by defect type. 

It also would be interesting to segment and analyze both the removal phase and the defect type 
jointly. Unfortunately, because of limited sample size after a two-dimensional segmentation, we 
cannot perform that analysis with statistical significance.  

2.5.3.1 Phase Removal Cost 

What is the cost, in each removal phase, to find and fix a defect injected in Code? Code defects 
can be removed in PSP in the Code Review (CR), Compile, and Unit Test phases. For each 
engineer, we calculated the average task time of removing a design defect in each of the different 
phases. Because some engineers did not remove code defects in one or more phases, our sample 
size varied by phase. We had data from 72 engineers for Code Review, 44 for Compile, and 51 for 
Unit Test.  

Table 5 shows the mean, lower, and upper 95% confidence intervals and the standard deviation 
for the find-and-fix time (in minutes) for code defects in each of the studied phases. 

Table 5: Cost of Find and Fix Defects Injected in Design Segmented by Phase Removed 

 CODE DEFECTS 

 CR Com UT 

Mean 1.9 1.5 14.4 

Lower 1.5 1.1 9.8 

Upper 2.3 1.9 19.0 

Standard Deviation 1.9 1.3 16.4 

As we expected, the average cost of finding code defects during Unit Test is much higher than in 
the other phases, by a factor of seven. We are not stating here that the cost of finding and fixing a 
particular code defect during Unit Test is seven times higher than finding and fixing the same 
particular code defect in Code Review or Compile. We are stating that with the use of PSP, the 
code defects that are removed during Unit Test cost seven times more than the ones that were 
removed in Code Review and Compile (these are different defects). 

In our previous study we also found that the Design injection defects find-and-fix times in Design 
Review and Code Review are a factor of five smaller than the find-and-fix times in Unit Test. We 
also found that the defects injected in Design and removed in Unit Test have an average find-and-
fix time of 23 minutes. Considering the two analyses, these are the defects that are most costly to 
remove. Defects injected in Code and removed in Unit Test follow with an average of 14.4 
minutes. Testing, even at the unit test level, is consistently a more expensive defect removal 
activity than alternative verification activities. 

We also found high variability among individual engineers. This variability can be seen in the box 
and whisker chart in Figure 7. We tested for normal distribution after log transformation of find-
and-fix times for Code Review, Compile, and Unit Test. Only Unit Test is consistent (p> 0.05 
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using Shapiro-Wilk test) with a log-normal distribution. The test for normality is primarily useful 
to verify that we can apply regression analysis to the transformed data; however, understanding 
the distribution also helped to characterize the asymmetry and long-tailed nature of the variation. 
The log-normality confirmed our intuition that some defects found in Unit Test required far more 
than the average effort to fix, making Unit Test times highly variable. We observe that both the 
mean and variation of rework cost in the Code Review and Compile phases were significantly 
lower than Unit Test in both the statistical sense and the practical sense.  

 

Figure 7: Box and Whisker Plot of the Cost to Find and Fix a Code Defect Segmented by Phase 
Removed 

2.5.3.2 Defect Removal by Type 

What is the find-and-fix cost, per defect type, of defects injected during Code? We did not have 
enough data for a statistically significant analysis of the cost of removing the build/package, 
checking, system, and environment types of defects. However, we were able to analyze the 
remaining defect types. 

Table 6 presents the mean, lower, and upper 95% confidence interval and the standard deviation 
categorized by defect type then sorted by the find-and-fix cost of code defects. For prioritization, 
the cost, in minutes, for “find-and-fix” fell into three groups:  

1. A group that has a mean around 2-3 minutes: documentation, syntax, assignment, and 
interface defects 

2. A group, composed only of function defects, that has a mean around 9 minutes 
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3. A group, composed only of data defects, that has a mean around 12 minutes 

Function type defects (injected during Code phase) take three times longer to find and fix than 
documentation, syntax, assignment, and interface defects. Data type defects take four times as 
much time.    

Table 6: Cost of Find-and-Fix Defects Injected in Code Segmented by Defect Type 
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Mean 3.4 1.9 2.7 2.3 12.2 9.4 

Lower 1.3 1.4 1.8 1.4 0.0 6.8 

Upper 5.4 2.3 3.7 3.3 27.2 12.1 

Standard Deviation 4.2 2.0 3.1 2.2 32.9 10.7 

As in the other cases, the variation among individual developers was high. This can be seen using 
the standard deviation, as well as the box and whisker chart that is presented in Figure 8. 
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Figure 8: Box and Whisker Plot of the Cost to Find and Fix a Defect Segmented by Defect Type 

2.6 Limitations of this Work 

There are several considerations that limit the ability to generalize this work: the limited life cycle 
of the PSP course, the lack of a production environment, that students are still learning process, 
the students perform the defect categorization, and the nature of the exercises. Because the PSP 
life cycle begins in Detailed Design and ends in Unit Test, we do not observe all types of defects 
and specifically do not observe requirements defects or those that would be found in the late 
testing such as Integration Test, System Test, and Acceptance Test. This also implies that finds in 
Unit Test are only a lower estimate of the actual escapes into Unit Test. Defects such as build and 
environment or requirements injections are not considered.  

The second consideration is that the PSP exercises do not build production code. Code is not 
intended to be “bullet proofed” or production ready. This is most likely to affect the rigor of Unit 
Test. Students often run only the minimum tests specified. This will likely lead to fewer defects 
being found and higher overall development rates. For example, coding rates are typically much 
higher than those found in industry. Also excluded is the production practice of peer inspections.  

A third consideration is that, students using PSP are still learning techniques of design and 
personal review. The results after gaining experience may differ from those found during this 
course. 

A fourth consideration is that precision of the student categorization of defect types has not been 
precisely measured. That is, students are learning how to categorize defects and should receive 
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guidance from the instructor. Nonetheless, there will certainly be some inconsistency among the 
students in how specific defects are categorized.  

Finally, the problems, though modestly challenging, do not represent a broad range of 
development problems.  

2.7 Conclusions and Future Work 

In this analysis, we considered the work of 92 software engineers who, during PSP course work, 
developed programs in the Java, C, C#, or C++ programming languages. In each of our analyses, 
we observed a high variation in range of performance among individuals; we show this variability 
using standard deviation and box and whisker charts to display the median, quartiles, and range.  

After considering this variation, we focused our analysis on the defects injected during Code. Our 
analysis showed that most common code defects (40%) are of syntax type. This type of defect is 
the cheapest to find and fix (1.9 minutes). The types of defects injected in Code that are most 
expensive to correct are the data (12.2 minutes) and function (9.4 minutes) defect types.  

In addition, the analysis showed that build/package, systems, and environment defects were 
seldom injected in the Code phase. We interpreted this as a consequence of the small programs 
developed during the course, rather than as a characteristic of PSP as a development discipline. 

We found that defects were injected roughly equally in the Design and Code phases; that is, 
around half of the defects were injected in code. 62% of the code defects were found early 
through appraisal during the Code Review phase. However, around 21% were discovered during 
Unit Test, where mean defect find-and-fix time is almost seven times greater than find-and-fix 
time in review.  

While this analysis provided insights into the injection and removal profile of code defects with 
greater specificity than previously possible, a larger data set would allow us to consider more 
detail, such as the costs of defects discriminated by defect type in addition to removal phase. A 
more complete analysis may enable us to analyze improvement opportunities to achieve better 
process yields. In future analysis, we will examine the relationship between Design and Code 
activities and the defects found in the downstream phases.  
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