
Whole Genome Alignment using a Multithreaded
Parallel Implementation

Wellington S. Martins1, Juan del Cuvillo1 Wenwu Cui2 and Guang R. Gao1 �

1 Department of Electrical and Computer Engineering, University of Delaware
Newark, DE 19716 USA

fmartins,jcuvillo,ggao@capsl.udel.edug
2 Department of Biological Sciences, University of Delaware

Newark, DE 19716 USA
fwcui@udel.edug

Abstract—
Alignment of long DNA sequences is a challenging task due to its

high demands for computational power and memory. We have devel-
oped a multithreaded parallel implementation of a sequence alignment
algorithm that is able to align whole genomes with reliable output and
reasonable cost. The implementation is based on a fine-grain multi-
threaded execution model, the EARTH model, which effectively toler-
ates latency through the overlapping of computation and communica-
tion. Human and mice mitochondrial genomes, human andDrosophila
mitochondrial genomes are aligned respectively to demonstrate that the
implementation can be used to align both closely related as well as less
similar genomes. Results fromMycoplasma genitaliumand Mycoplasma
pneumoniaegenomes, which are much larger than the tested mitochon-
drial genomes, are also presented. From the output, the homologous
regions can be easily detected. This tool should facilitate alignment of
syntenic regions, strain to strain comparisons, identification of regula-
tory elements and evolutionary comparisons as well.

Keywords—Multithreading, Parallelism, Alignment, Genome, DNA.

I. I NTRODUCTION

Over the past few years a number of genomes have been
completely sequenced by various research groups. A basic
operation that can be immediately applied to this massive se-
quence data is the alignment of whole genomes. This ap-
proach of comparative genomics has a great biological sig-
nificance. By aligning the DNA sequences of entire genomes
(i.e. including coding and non-coding regions), scientists will
be able to identify important matched and mismatched re-
gions. The “matches” may turn out to be functional ho-
molog pairs, conserved regulatory regions or long repeats.
Various sizes of “mismatches” can be easily detected in the
whole genome alignment. SNP (Single Nucleotide Poly-
morphism) is one base pair mismatch in the middle of two
matching regions. Large sized “mismatches” may be for-
eign fragments inserted into the genome by transposition,
sequence reversal or lateral transfer from another organism.
This information will help to detect important functional dif-

�This work was supported partially by the Delaware Biotechnology In-
stitute (DBI). The work on EARTH is partially supported by DARPA,
NSA, and NASA through the HTMT project; NSF (grants CISE-9726388,
MIPS-9707125, EIA-9972853, and CCR-9808522); and DARPA through
the DIVA project.

ferences between pathogenic and non-pathogenic strains of
the same species, figure out evolutionary distance between
organisms [LOO00], find out the regulatory regions of genes
that may be preserved during evolution, and discover point
mutations, deletions, reversions, insertions and duplications
that may lead to diseases or special phenotypes.

Whole genome alignment can not be accomplished un-
less computer programs for pair-wise sequence comparison
deal efficiently with both, execution time and memory re-
quirements for this large-scale comparison. Some tools, re-
quiring large amount of memory, have shown to achieve
good execution times, but only at expense of accuracy. To
find an alignment, they start by looking for perfect matches
that can be further extended and joined together using a dy-
namic programming algorithm [SMI81]. For example, Kun-
Mao et al. used a BLAST-like hashing scheme to identify
exact k-mer matches and extend them to maximal-length
matches [CHA95]. Delcher et al. applied a data structure
called suffix-tree to find out, in linear time, perfect matches
of a given length, also calledMUMs [DEL99]. Maximal-
length matches and MUMs are finally combined into local
alignment chains by a dynamic programming step. However,
neither of them apply the dynamic programming algorithm
along the entire sequences since it is computational intensive
— the algorithm’s complexity isO(n2). Thus these tools are
only applicable to closely related genomes.

We developed a parallel implementation of the dynamic
programming algorithm that, by using the collective memory
of several nodes, meets the computer memory requirements
of this kind of application and is able to align any related
genomes with reliable output in a reasonable time. The im-
plementation runs on top of parallel machines based on off-
the-shelf microprocessors, such as Beowulf installations (a
cluster of standard PCs running Linux), and takes advantage
of fine-grain multithreading to efficiently overlap computa-
tion and communication [THE99], producing impressive ab-
solute speedups on Beowulf systems.



The rest of the paper is organized as follows. In sec-
tion II, we review a pairwise sequence comparison algo-
rithm using the dynamic programming technique. Our mul-
tithreaded parallel implementation is described in section III.
We present results for real genomic sequences in section IV,
and our conclusions in section V.

II. PAIRWISE SEQUENCECOMPARISON USING

DYNAMIC PROGRAMMING

To compare two sequences we need to quantify the simi-
larity between the pairs of symbols, one from each sequence,
and associate a score for each possible arrangement. The
measure of similarity of the two sequences is then given by
the highest score. For example, let X = ATAAGT and Y =
ATGCAGT and assume a score of 1 to matches and -1 to
mismatches. By writing one sequence above the other we
have the following possible alignment of the sequences:

sequence X A T A A G T
sequence Y A T G C A G T
SCORE 1 1 -1 -1 -1 -1 -1 TOTAL = -3

To take the positions of the symbols into account we can
consider sliding one sequence along the other so as to allow
more symbols to match. In our example, shifting sequence X
one position to the right results in a better alignment, i.e. one
which produces a better score.

sequence X A T A A G T
sequence Y A T G C A G T
SCORE -1 -1 -1 -1 1 1 1 TOTAL = -1

However, these simple methods do not provide good mea-
sures of similarity when the sequences represent biological
data (proteins or nucleotides). This is because biological se-
quences are a result of an evolutionary process in which mu-
tations, i.e. substitutions, insertions or deletions, are bound to
occur. Such mutations can be modeled by the introduction of
gaps in the sequences. Assuming gaps score -2, our example
can be modified to:

sequence X A T A - A G T
sequence Y A T G C A G T
SCORE 1 1 -1 -2 1 1 1 TOTAL = 2

The introduction of a gap (-) indicates a possible evolution
from sequence X to sequence Y by the insertion of C. Al-
ternatively, sequence Y might have evolved into sequence X
by the deletion of C. Note that the third aligned pair, from
left to right, can be understood as a mutation of A into G or,
alternatively, of G into A.

When gaps are considered, the problem of sequence
comparison becomes complex. Waterman showed that,
given two sequences of lengthn, there are approximately
(1 +

p
2)2n+1 n�1=2 possible alignments between these

two [WAT89]. Now, if we consider real world genomic se-
quences whose size range from hundred thousands to hun-
dred billions of base pairs, it is hopeless to enumerate all
possible alignments. Thus, other methods must be used to
find a solution to the alignment problem in less time.

In 1970 Needleman and Wunsch [NEE70] introduced the
first algorithm for finding global alignments without enumer-
ating all possible solutions. Global alignment attempts to
match all of one sequence against all of the other. This algo-
rithm was later adapted, by Smith and Waterman [SMI81],
to the problem of local alignment, which finds alignments of
subsequences of the two sequences. These algorithms consist
of two parts: the calculation of scores indicating the similar-
ity between the two given sequences, and the identification
of the alignment(s) that lead to such score(s).

In order to avoid enumerating all possible alignments,
these algorithms use a technique calleddynamic program-
ming [HOR78]. The idea is to build up the solution by using
previous solutions for smaller subsequences. Thus, instead
of recalculating the same value several times, the algorithm
stores values, corresponding to partial results, in a data struc-
ture and reuses them as the new values are calculated. The
data structure used is a two dimensional array which is called
similarity matrix. This matrix is used to represent all possi-
ble alignments that can be constructed from the two inputed
sequences.

G

G

A

0

0

T G A

Se
qu

en
ce

X

T G A TGG

G

A

T

G

2

010

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

YSequence

Fig. 1. A few steps of the calculation of the similarity matrix

The comparison of two sequences, X and Y, using the dy-
namic programming technique is illustrated in Figure 1. The
sequences are placed along the left margin (X) and along
the top (Y). The matrix is initialized with zeros along the
first row and first column so that alignments between subse-
quences are not penalized by gaps on its left and right ends.

The other elements of the matrix are calculated by find-
ing the maximum value among the following four values:
left element plus gap penalization, upper-left element plus



the score of substituting the horizontal symbol for the ver-
tical symbol, upper element plus the gap penalization, and
zero (this condition forces the beginning of a new alignment
if the score was to drop to a negative value). For example,
the score 2 (3rd row and 4th column) is obtained by find-
ing maxf0 + (�2); 1 + (1); 0 + (�2); 0g = 2. Notice that
there are three possible alignments to be chosen from when
calculating one element: alignment of the symbol in the row
considered with a gap, alignment of the symbol in the row
considered with the symbol in the column considered (ei-
ther a match or a mismatch), and alignment of the symbol
in the column considered with a gap. This corresponds to a
horizontal move, diagonal move and vertical move between
elements of the similarity matrix.

For the general case where X =x1; : : : ; xi and Y =
y1; : : : ; yj , for i = 1; : : : ; n and j = 1; : : : ;m, the simi-
larity matrix SM(n;m) is built by applying the following
recurrence equation, wheregp is the gap penalization andss
is the substitution score (match of mismatch).

SM [i; j] = max

8>><
>>:

SM [i; j � 1] + gp

SM [i� 1; j � 1] + ss

SM [i� 1; j] + gp

0

Following this recurrence equation, the matrix is filled
from top left to bottom right with entry(i; j) requiring the
entries(i; j � 1), (i� 1; j � 1), and(i� 1; j). By choosing
the maximum value we make sure the best score is found and
stored, so that the next entries are build up based on that.

Once the similarity matrix is computed, the second part of
the algorithm identifies the local alignments. Since the num-
ber of alignments grows exponentially, only alignments with
score value above a given threshold are reported. Thus, for
each such matrix element a trace-back procedure is applied
to find out the actual base pairs that constitute the alignment.
Starting at the end of the alignment and moving backwards
to the beginning, this procedure follows a path like the ones
described by arrows in Figure 2. Such path is determined at
each cell considering its score and how it was produced. In
other words, the maximum term of the recurrence equation
determines which symbol (nucleotide) or gap are added to
the alignment.

Although able to report all possible alignments between
two sequences, sequence alignment algorithms based on
the dynamic programming technique present a serious chal-
lenge. They impose important requirements both on com-
puter memory and execution time. When dealing with long
input sequences such as whole genomes, meeting these re-
quirements is not a simple task. In the next section, we ex-
plain how our implementation meets the computer memory
requirements and complete the task in reasonable time by
means of parallelization.

T G A T G G A G G T
G A T A G G

T G A T G G A G G T
G A T A G G

T G A T G G A G G T
G A T A G G

T G A T - G G A G G T
G A T A G G

G

G

A

0

0

T G A

S
eq

ue
nc

e

X

T G A TGG

G

A

T

G

2

010

0

0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

YSequence

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

3

1

1

1

1

2

2

0

1

0

0

0

3

3

0

0

2

1

1

2

1

1

0

0

2

2

1

1

0

0

0

3

0

0

1

0

0

1

Fig. 2. Local alignments with score greater than 2

III. PARALLEL COMPUTATION OF SEQUENCE

ALIGNMENT

A parallel version of the sequence comparison algorithm
using dynamic programming must handle the data depen-
dences presented by this method, yet it should perform
as many operations as possible independently. Martins et
al. [MAR01] showed that an efficient parallel implementa-
tion of the similarity matrix calculation can be done using
multithreading. The implementation described in this pa-
per builds on that and further applies parallelism to report
the most significant local alignments of the input sequences.
Before presenting our implementation we briefly describe,
EARTH, the parallel execution model used.

A. The EARTH execution model

EARTH [HUM96, THE99] supports a multithreaded pro-
gram execution model in which a program is viewed as a col-
lection of threads whose execution ordering is determined by
data and control dependences explicitly identified in the pro-
gram. Threads, in turn, are further divided intofiberswhich
are non-preemptive and scheduled according to dataflow-like
firing rules, i.e., all needed data must be available before it
becomes ready for execution. Programs structured using this
two-level hierarchy can take advantage of both local synchro-
nization and communication between fibers within the same
thread, exploiting data locality. In addition, an effective over-
lapping of communication and computation is made possible
by providing a pool of ready-to-run fibers from which the
processor can fetch new work as soon as the current fiber
ends and the necessary communication is initiated.



IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

L
O

C
A

L
M

E
M

O
R

Y

SU

EU
node

EQ

node

node

...P
E

P
E

P
E

RQ

from RQ
to EQ

memory bus

Fig. 3. EARTH architecture

The EARTH model defines a common set of primitive op-
erations required for the management, synchronization and
data communication of threads. Each node in an EARTH
system consists of an execution unit (EU), a synchronization
unit (SU), queues linking the EU and SU, local memory, and
an interface to interconnection network, see Figure 3. While
the EU merely executes fibers, i.e., does the computation, the
SU is responsible for scheduling and synchronizing threads,
handling remote accesses and performing dynamic load bal-
ancing.

Although designed to deal with multiple threads per node,
the EARTH model does not require any support for rapid
context switching (since fibers are non-preemptive) and is
well-suited to running on off-the-shelf processors. EARTH
systems have been implemented on a number of platforms:
MANNA and PowerMANNA, IBM SP2, Sun SMP cluster
and Beowulf. EARTH programs are written using the pro-
gramming language Threaded-C [HUM96, THE99]. This is
an extension of the ANSI-C programming language which,
by incorporating EARTH operations, allows the user to indi-
cate parallelism explicitly.

B. A multithreaded parallel implementation

Our multithreaded implementation divides the scoring ma-
trix into strips and each of these, in turn, into rectangular
blocks. Generally speaking, it assigns the computation of
each strip to a thread, having 2 independent threads per node.
However, in order to better overlap computation and com-
munication, blocks on a strip are actually calculated by two
fibers within a thread. These fibers are repeatedly instanti-

* Non-preemptive fibers* 4 fibers per processor

* Asynchronous

* Local communication/synchronization* Event-driven

between fibers

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

Fibers Fibers

inactive fiber

active fiber

data
sync
ack

P1

P3

P2
OO

EE

Thread A Thread B

P4

P1

P3

P4

P2

P3

P2

P1

E

E

O

E

O

E

O

O

O

E

O

E

O

E

O

Fig. 4. Computation of the similarity matrix on EARTH

ated to compute one block at a time, and only one of the two
fibers of each thread can be active at a particular time.

The decision of having two alternating fibers within each
thread was based on the following reasoning. It would be
a waste of resources if we had one separate fiber for each
block, in each strip, since only one block can be calculated at
a time. Having just one fiber for all blocks is also not a good
idea because this fiber would get delayed due to the syn-
chronization signal coming from the fiber immediately be-
low. This signal acknowledges the receipt of data — without
it the fiber, re-instantiated, would be allowed to overwrite the
previous data. Thus, with just one fiber, computation would
not be allowed to proceed until this acknowledgment signal
is received. With the addition of an extra fiber we can further
overlap computation and communication since one of the
fibers can wait for the acknowledgment while the other starts
working on the following block. (This double-buffering and
acknowledgment scheme is used with other parallel applica-
tions on EARTH [THE00, THE99].)

A snapshot of the computation of the similarity matrix us-
ing our multithreaded implementation is illustrated in Fig-
ure 4. A thread is assigned to each horizontal strip and the ac-
tual computation is done by fibers labeled E(ven) and O(dd).
The figure shows the computation of the main anti-diagonal
of the matrix. The arrows indicate data and synchronization
signals. For example, processor 2 sends data (downward ar-



rows) to processor 3 and receives data from processor 1 —
i.e., fibers E of strips 2 and 6 send data to fibers E of strips 3
and 7, and fibers O of strips 1 and 5 send data to fibers O of
strips 2 and 6. Fibers within a same thread, that is, associated
with the same strip, send only a synchronization signal (hor-
izontal arrows) since they share data local to the thread to
which they belong. Finally, dotted upward arrows acknowl-
edge the receipt of data so that the fiber receiving this signal
can be re-instantiated to calculate another block of the same
strip.

During the initialization phase, each thread grabs a piece
of the input sequence X. This piece is all a thread needs
from that sequence so the whole sequence need not be stored.
Moreover, after computing a block, each fiber sends to the
fiber beneath a piece of the sequence Y being compared. By
doing so, we minimize the initialization delay that occurs
when the nodes are reading the sequences from the server.
Besides that piece of the sequence, a fiber also sends to the
fiber beneath the scores and other information for each cell
on the last row, data arrows in Figure 4. In this way, align-
ments that cross processors’ boundaries can be detected.

As seen in section II, the number of possible alignments
grows exponentially with the length of the sequences com-
pared. Therefore, we cannot simple report all the alignments,
instead we are interested in selecting only alignments with
high scores. On each node, as each strip of the scoring ma-
trix is calculated, when a score above the given threshold is
found, it is compared with the previous highest scores stored
in an table. The number of entries in the table corresponds to
the maximum number of alignments that a node can report.
Among other information, the table stores the cells’ position
where an alignment starts and ends. This feature allows us to
produce a plot of the alignments found. A point worth notic-
ing is that high score alignments are selected as the similarity
matrix is calculated, row by row, thus the whole matrix needs
not be stored.

C. The computational platform used

The experiments described in this paper were carried out
using the Beowulf implementation of EARTH and a Be-
owulf machine consisting of 64 nodes, each containing two
200MHz Pentium Pro processors — total of 128 processors
— and 128MB of memory. The interconnection network for
the nodes is switched 100Mbps ethernet.

Initially, experiments using sequences ranging from 30K
to 900K nucleotides long were carried out to test the scala-
bility of the implementation part that calculates the similarity
matrix. The absolute speedups are reported in Figure 5. The
lack of speedup for the 30kx30k run is simply because there
is not enough work to keep all 64 nodes (128 processors)
busy. However as the sequence sizes increase, the speedup
approaches the optimal linear speedup. A sequential com-

32 64 96 120

32

64

96

120

# of processors

S
p

e
e

d
u

p

30kx30k
50kx50k
100kx100k
300kx300k
900kx900k
Linear

Fig. 5. Absolute speedup

TABLE I
EXECUTION TIME FOR THEM. PNEUMONIAE (816,394NUCLEOTIDES)
AND M. GENITALIUM (580,074NUCLEOTIDES) GENOME COMPARISON

Implementation Time
Seq. Smith-Waterman 53 hours
ATGC on 16 nodes 3.3 hours
ATGC on 32 nodes 2.1 hours
ATGC on 64 nodes 1.3 hours

putation of the 900kx900k run takes days to complete but
the same result can be obtained in a few hours in the Be-
owulf cluster. Memory usage is also a limiting factor for a
sequential computation. In contrast, a parallel implementa-
tion evenly distributes the data across the nodes.

In order to measure the performance and accuracy of our
multithreaded implementation, further tests using genome
sequences were conducted. Table I shows the execution
times for both a sequential implementation of the Smith-
Waterman algorithm and our parallel implementation run-
ning on the mentioned Beowulf system for theMycoplasma
genome comparison described in the following section.

IV. RESULTS

Our multithreaded parallel implementation, named
ATGC — Another Tool for Genome Comparison, suc-
cessfully aligned human and mice mitochondrial genomes
and human andDrosophila mitochondrial genomes.
It was also able to alignMycoplasma genitaliumand



0 2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

14000

16000

Human

M
o

u
se

Human and Mice Mitochondrial Genomes

ATGC

Fig. 6. Alignment of human and mice mitochondrial genomes generated by
ATGC

Mycoplasma pneumoniaegenomes, which are much
larger than the tested mitochondrial genomes, in a
reasonable amount of time. All alignments were con-
firmed by MUMmer — a whole genome alignment tool
(www.tigr.org/tigr-scripts/CMR2/webmum/mumplot),
and Blast2 — a tool for pairwise sequence comparison
(www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html).

We used human, mice andDrosophila mitochondrial
genomes to test the reliability of our Smith-Waterman par-
allel implementation, because first and second are somewhat
related, and second and third are far related organisms. The
alignments of these relatively small genomes can be eas-
ily verified by other tools. Further experiments were con-
ducted by comparing larger genomes such asMycoplasma
genitalium(580,074 nucleotides) andMycoplasma pneumo-
niae(816,394 nucleotides) genomes.

Alignment of human and mice mitochondrial genomes

The alignment of human and mice mitochondrial genomes
generated by ATGC is showed in Figure 6. The straight line1

confirms the similarity between these two genomes. This is
also confirmed by MUMmer’s alignment showed in Figure 7.
However, MUMmer’s alignment contains a gap between nu-
cleotides 8,000 and 12,000 of human and mice mitochondrial
genomes, whereas ATGC generates a single aligned segment.
To investigate this discrepancy, we used Blast2 to align the
aforesaid region. The alignment generated by Blast2, see
Figure 8, showed that an important homolog pair, human and
mice ATP synthaseF0 subunit was ignored by MUMmer but

1A dot plot basically shows the similarity matrix computed during the
first stage of the algorithm. The names of the sequences are placed along
the X and Y axis. Each line/dot in the plot represents an actual alignment
reported by the second phase of the algorithm

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

14000

16000

Human

M
ic

e

Human and Mice Mitochondrial Genomes

MUMmer

Fig. 7. Alignment of human and mice mitochondrial genomes generated by
MUMmer

detected by ATGC. MUMmer missed that because there is
no exact match equal or longer than 20 (MUM’s — Maximal
Unique Match, default size) in this region.

Alignment of human and Drosophila mitochondrial genomes

The mitochondrial genomes of Human andDrosophilaare
not as closely related as those of human and mouse. How-
ever, ATGC revealed some interesting similarity between
these genomes (Fig. 9). Unfortunately, MUMmer could not
confirm the alignment since only one exact match (MUM’s
size� 20) is present, see Figure 10.

To confirm the alignment generated by ATGC is meaning-
ful and reliable, Blast2 was used to search for similarity in
human andDrosophilamitochondrial genomes. Between nu-
cleotides 14,000 and 16,000 of human mitochondrial genome
and 11,000 to 13,000 ofDrosophilamitochondrial genome,
which were aligned by ATGC, Blast2 found the Cytochrome
B homolog pair in human andDrosophila(Fig. 11). In the
region between base pairs 11,000 to 14,000 of human mi-
tochondrial genome and 7,000 to 10,000 ofDrosophilami-
tochondrial genome, where a gap was reported by ATGC,
Blast2 did not find any significant similarity either (data not
shown).

Alignment of Mycoplasma pneumoniae and Mycoplasma
genitalium genomes

ATGC was applied to compareMycoplasma pneumoniae
and Mycoplasma genitaliumgenomes which are far more
larger than mitochondrial genomes. This task is over 1,200
times more computational intensive than comparing the mi-
tochondrial genomes we used above.



Query: human mitochondrial genome
Subject: mouse mitochondrial genome

8716 aaaggacgaacctgatctcttatactagta 8745
64 K G R T W S L M L V

||||||||||| ||| | || ||| | ||
8116 aaaggacgaacatgaaccctaataattgtt 8145
64 K G R T W T L M I V

8746 tccttaatcatttttattgccacaactaac 8775
74 S L I I F I A T T N

||| ||||||| ||||||| |||| ||
8146 tccctaatcatatttattggatcaacaaat 8175
74 S L I M F I G S T N

8776 ctcctcggactcctgcctcactcatttaca 8805
84 L L G L L P H S F T

||||| || || | || || ||||||||
8176 ctcctaggccttttaccacatacatttaca 8205
84 L L G L L P H T F T

8806 ccaaccacccaactatctataaacctagcc 8835
94 P T T Q L S M N L A

|| || ||||||||||| ||||| |||
8206 cctactacccaactatccataaatctaagt 8235
94 P T T Q L S M N L S

Fig. 8. Part of the alignment of human and mice ATP synthaseFo subunit
found by Blast2

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

ATGC

Fig. 9. Alignment of human and Drosophila mitochondrial genomes
generated by ATGC

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Human

D
ro

s
o

p
h

ila

Human and Drosophila Mitochondrial Genomes

MUMmer

Fig. 10. Alignment of human and Drosophila mitochondrial genomes
generated by MUMmer

Query: human mitochondrial genome
Subject: drosophila mitochondrial genome

15116 atagcaacagccttcataggctatgtcctc 15145
124 M A T A F M G Y V L

|||| |||||| || ||||| || || |
10870 ataggaacagcttttataggatacgtatta 10899
125 M G T A F M G Y V L

15146 ccgtgaggccaaatatcattctgaggggcc 15175
134 P W G Q M S F W G A

|| ||||| ||||||||||| |||| ||
10900 ccttgaggacaaatatcattttgagtagct 10929
135 P W G Q M S F W V A

15176 acagtaattacaaacttactatccgccatc 15205
144 T V I T N L L S A I

|| || ||||| || ||| ||| ||| |||
10930 actgttattactaatttattatacgctatc 10959
145 T V I T N L L Y A I

15206 ccatacattgggacagacctagttcaatga 15235
154 P Y I G T D L V Q W

|| ||| | || | ||| |||||||||||
10960 ccttacttaggtatagatttagttcaatga 10989
155 P Y L G M D L V Q W

Fig. 11. Part of the alignment of human and Drosophila Cytochrome B
found by Blast2



0 1 2 3 4 5 6 7 8

x 10
5

0

1

2

3

4

5

x 10
5

M. pneumoniae

M
. 

g
e

n
it
a

liu
m

M. pneumoniae and M. genitalium Genomes

ATGC
MUMmer

Fig. 12. Alignments of M. genitalium and M. pneumoniae genomes
generated by MUMmer and ATGC

M. pneumoniaeand M. genitalium, which belong to the
same genus, are very closed related. Both ATGC and
MUMmer generated similar results, see Figure 12. They
aligned the two genomes successfully and clearly showed
five translocations ofM. pneumoniaewith respect toM. gen-
italium, which is consistent with the results of Himmelreich
et al. [HIM97].

V. CONCLUSIONS

Comparison of whole genome sequences can be done us-
ing traditional pair-wise sequence comparison algorithms
based on dynamic programming, but doing so requires high
computational and memory demands. We have developed a
multithreaded parallel implementation of such algorithm that
runs on cluster of PCs (Beowulf systems) and meet these re-
quirements. The implementation produces accurate results in
a reasonable amount of time, and uses the collective memory
of the cluster to evenly distribute data, obviating the need for
a machine with non-standard amount of memory.

The experimental results showed that our implementation
aligns closely related and less similar genomes as well. Other
genome comparison tools, based on different kinds of heuris-
tics, complete the task fairly quickly, but at the expense of
accuracy, as we have seen for the human andDrosophila
mitochondrial genome comparison. So we believe our im-
plementation can be an important complementary tool when
higher accuracy is required on whole genome comparisons.

VI. A CKNOWLEDGEMENTS

We thank Michigan Technological University and Prof.
Phil Merkey for providing us access to Ecgtheow, the Be-
owulf cluster used in this study. This paper benefited from
many discussions with Sun Kim, from DuPont Central Re-
search and Development (Experimental Station, Wilming-
ton). We also would like to thank Chris Morrone for helping
us with the EARTH Beowulf runtime system.

REFERENCES

[CHA95] Kun-Mao Chao, Jinghui Zhang, James Ostell, and Webb
Miller. A local alignment tool for very long DNA sequences.
Computer Applications in the Biosciences, 11(2):147–153,
1995.

[DEL99] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann,
Jeremy Peterson, Owen White, and Steven L. Salzberg.
Alignment of whole genomes.Nucleic Acids Research,
27(11):2369–2376, 1999.

[HIM97] Ralf Himmelreich, Helga Plagens, Helmut Hilbert, Berta
Reiner, and Richard Herrmann. Comparative analysis of the
genomes of the bacteriamycoplasma pneumoniaeandmy-
coplasma genitalium. Nucleic Acids Research, 25(4):701–
712, 1997.

[HOR78] E. Horowitz and S. Sahni.Fundamentals of Computer Al-
gorithms. Computer Science Press, 1978.

[HUM96] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald,
Xinmin Tian, Guang R. Gao, and Laurie J. Hendren. A
study of the EARTH-MANNA multithreaded system.Inter-
national Journal of Parallel Programming, 24(4):319–347,
August 1996.

[LOO00] G. G. Loots, R. M. Locksley, C. M. Blankespoor, Z. E.
Wang, W. Miller, E. M. Rubin, and K. A. Frazer. Iden-
tification of a coordinate regulator ofinterleukins 4, 13,
and 5 by cross-species sequence comparisons.Science,
288(5463):136–140, April 2000.

[MAR01] Wellington S. Martins, Juan B. del Cuvillo, Francisco J.
Useche, Kevin B. Theobald, and Guang R. Gao. A mul-
tithreaded parallel implementation of a dynamic program-
ming algorithm for sequence comparison. InProceedings
of the Pacific Symposium on Biocomputing, pages 311–322,
Mauna Lani, Hawaii, January 3–7, 2001. World Scientific.

[NEE70] Saul B. Needleman and Christian D. Wunsch. A general
method applicable to the search for similarities in the amino
acid sequence of two proteins.Journal of Molecular Biol-
ogy, 48:443–453, 1970.

[SMI81] Temple F. Smith and Michael S. Waterman. Identification
of common molecular subsequences.Journal of Molecular
Biology, 147:195–197, 1981.

[THE00] Kevin B. Theobald, Rishi Kumar, Gagan Agrawal, Gerd
Heber, Ruppa K. Thulasiram, and Guang R. Gao. Develop-
ing a communication intensive application on the EARTH
multithreaded architecture. InProceedings of the 6th In-
ternational Euro-Par Conference, number 1900 in Lecture
Notes in Computer Science, pages 625–637, Munich, Ger-
many, August–September 2000. Springer-Verlag.

[THE99] Kevin Bryan Theobald. EARTH: An Efficient Architec-
ture for Running Threads. PhD thesis, McGill University,
Montréal, Québec, May 1999.

[WAT89] Michael S. Waterman.Mathematical Methods for DNA Se-
quences. CRC Press Inc, Boca Rat´on, Florida, 1989.


