
The Design, Implementation, and Evaluation of
mpiBLAST

Aaron E. Darling1,3, Lucas Carey2, Wu-chun Feng3

1 Dept. of Computer Science, University of Wisconsin, Madison WI 53703, USA,
darling@cs.wisc.edu,

2 Center for Developmental Genetics, SUNY Stony Brook, USA
lcarey@odd.bio.sunysb.edu

3 Advanced Computing Laboratory, Los Alamos National Laboratory, USA
feng@lanl.gov

Abstract. mpiBLAST is an open-source parallelization of BLAST that
achieves superlinear speed-up by segmenting a BLAST database and
then having each node in a computational cluster search a unique por-
tion of the database. Database segmentation permits each node to search
a smaller portion of the database, eliminating disk I/O and vastly im-
proving BLAST performance. Because database segmentation does not
create heavy communication demands, BLAST users can take advantage
of low-cost and efficient Linux cluster architectures such as the bladed
Beowulf [8, 16]. In addition to presenting the software architecture of
mpiBLAST, we present a detailed performance analysis of mpiBLAST
to demonstrate its scalability.

1 Introduction

The BLAST family of sequence database-search algorithms serves as the founda-
tion for much biological research. The BLAST algorithms search for similarities
between a short query sequence and a large, infrequently changing database of
DNA or amino acid sequences [1, 2]. Newly discovered sequences are commonly
searched against a database of known DNA or amino-acid sequences. Similari-
ties between the new sequence and a gene of known function can help identify
the function of the new sequence. Other uses of BLAST searches include phy-
logenetic profiling and pairwise genome alignment. Unfortunately, traditional
approaches to sequence homology searches using BLAST have proven to be too
slow to keep up with the current rate of sequence acquisition [12].

Because BLAST is both computationally intensive and embarrassingly par-
allel, many approaches to parallelizing its algorithms have been investigated [4,
5, 7, 10, 13–15]. We present an open-source parallelization of BLAST that seg-
ments and distributes a BLAST database among cluster nodes such that each
node searches a unique portion of the database.

Database segmentation in BLAST offers two primary advantages over other
parallel BLAST algorithms. First, database segmentation can eliminate the high
overhead of disk I/O. The sizes of bioinformatic databases are now larger than

core memory on most computers, forcing BLAST searches to page to disk.
Database segmentation permits each node to search a smaller portion of the
database, thus reducing (or even eliminating) extraneous disk I/O, and hence,
vastly improving BLAST performance. With sequence databases doubling in size
each year, the problem of extraneous disk I/O is expected to persist. The ad-
verse effects of disk I/O are so significant that BLAST searches using database
segmentation can exhibit super-linear speedup versus searches on a single node.

Second, database segmentation in mpiBLAST does not produce heavy in-
tercommunication between nodes, allowing it to continue achieving super-linear
speedup over hundreds of nodes. Consequently, scientists using BLAST with
database segmentation can take advantage of low-cost and highly efficient Linux
clusters such as Green Destiny [8, 16]

mpiBLAST, an open-source parallelization of BLAST, uses the Message Pass-
ing Interface [11] (version 1) to implement database segmentation, allowing it to
work on diverse system architectures. mpiBLAST has been designed to run on
clusters with job-scheduling software such as PBS (Portable Batch System). In
such environments, it adapts to resource changes by dynamically re-distributing
database fragments.

2 The BLAST Algorithm

BLAST searches a query sequence consisting of nucleotides (DNA) or peptides
(amino acids) against a database of nucleotide or peptide sequences. Because
peptide sequences result from ribosomal translation of nucleotides, comparisons
can be made between nucleotide sequences and peptide sequences. BLAST pro-
vides functionality for comparing all possible combinations of query and database
sequence types by translating the sequences on the fly. Table 1 lists the names
used to refer to searches on each possible combination of query versus database
type.

Table 1. BLAST search types

Search Name Query Type Database Type Translation

blastn Nucleotide Nucleotide None

tblastn Peptide Nucleotide Database

blastx Nucleotide Peptide Query

blastp Peptide Peptide None

tblastx Nucleotide Nucleotide Query and Database

The algorithms for each type of search operate nearly identically. The BLAST
search heuristic [1] indexes both the query and target (database) sequence into
words of a chosen size (11 nucleotides or 3 residues by default). It then searches
for matching word pairs (hits) with a score of at least T and extends the match
along the diagonal. Gapped BLAST [2] consists of several modifications to the

previous algorithm that result in both increased sensitivity and decreased ex-
ecution time. Gapped BLAST (hereafter referred to simply as BLAST) moves
down the sequences until it has found two hits, each with a score of at least
T, within A letters of each other. An ungapped extension is performed on the
second hit, generating a ’high-scoring segment pair’ (HSP). If the HSP score
exceeds a second cutoff, a gapped extension is triggered simultaneously forward
and backward. Standard BLAST output consists of a set of local gapped align-
ments found within each query sequence, the alignment’s score, an alignment
of the query and database sequences, and a measure of the likelihood that the
alignment is a random match between the query and database (e-value).

3 Related Work

3.1 BLAST Hardware Parallelization

Parallelization at the hardware level takes place during the sequence alignment
itself. Such techniques are capable of parallelizing the comparison of a single
query sequence to a single database entry, but require custom hardware with
a greater degree of parallelization than is present in symmetric multi-processor
(SMP) or symmetric multi-threaded (SMT) systems. The first hardware BLAST
accelerator was reported by R.K. Singh [15]. More recently, TimeLogic [14] has
commercialized an FPGA-based accelerator called the DeCypher BLAST hard-
ware accelerator.

3.2 Query Segmentation

Query segmentation splits up a set of query sequences such that each node in a
cluster or CPU on an SMP system searches a fraction of the query sequences.
By doing so, several BLAST searches can execute in parallel on different queries.
BLAST searches using query segmentation on a cluster typically replicate the
entire database on each node’s local storage system [4, 5]. If the database is larger
than core memory, query-segmented searches suffer the same adverse effects of
disk I/O as traditional BLAST. When the database fits in core memory, however,
query segmentation can achieve near linear scalability for all BLAST search
types, even on SMP architectures [7].

3.3 Database Segmentation

In database segmentation, independent segments of the database are searched
on each processor or node, and results are collated into a single output file.
Several implementations of database segmentation exist, the first of which was
within NCBI’s BLAST itself. NCBI-BLAST implements database segmentation
by multithreading the search such that each processor in an SMP system is
assigned a distinct portion of the database.

Database segmentation has also been implemented in a closed-source com-
mercial product by TurboWorx, Inc. called TurboBLAST [3, 6]. TurboBLAST

provides a database segmentation and distribution mechanism explicitly de-
signed for use on networks of workstations. By using TurboWorx’s proprietary
TurboHub scheduling and load balancing software, TurboBLAST dynamically
adapts to the current cluster environment. However, its proprietary implementa-
tion only results in linear speed-up (see http://www.turboworx.com/products/
turboblast_overview.html). Furthermore, a recent survey on bioinformatics
and Linux clusters (see http://bioinformatics.org/pipermail/bioclusters/
2002-October/000432.html) shows that none of the sample population uses
this distribution, primarily because of its exorbitant cost and its proprietary
nature, which makes it difficult to integrate with other bioinformatics codes.

Recently another implementation of database segmentation was released at
ftp://saf.bio.caltech.edu/pub/software/molbio/parallelblast.tar.
parallelblast is composed of a set of scripts that operate in the Sun Grid
Engine/PVM environment. Aside from requiring the SGE/PVM environment,
it also differs from mpiBLAST in that it is not directly integrated with the NCBI
toolkit and does not explicitly provide a load-balancing mechanism.

4 mpiBLAST Algorithm

The mpiBLAST algorithm consists of two primary steps. First, the database is
segmented and placed on a shared storage device. Second, mpiBLAST queries
are run on each node. If a node does not yet have a database fragment to search,
it copies a fragment from shared storage. Fragment assignments to each node
are determined by an algorithm that minimizes the number of fragment copies
during each search.

4.1 Formatting and Querying the Database

Database formatting is done by a wrapper for the standard NCBI formatdb

called mpiformatdb. mpiformatdb formulates the correct command line argu-
ments to cause NCBI formatdb to format and divide the database into many
small fragments of approximately equal size. Additional command line param-
eters to mpiformatdb allow the user to specify the number of fragments or the
fragment size. Upon successful completion of formatdb, the formatted fragments
are placed on shared storage.

Querying the database is accomplished by directly executing the BLAST al-
gorithm as implemented in the NCBI development library available at
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/. Upon startup, each worker
process reports to the master process which database fragments it already has
on local storage. Next, the master process (that with rank 0), reads the query
sequences from disk and broadcasts them to all processes in the communication
group. When the query broadcast has completed, each process reports to the
master that it is idle. The master, upon receiving an idle message, assigns the
idle worker a database fragment to either search or copy. The worker copies or

Algorithm 1 mpiBLAST master

Let results be the current set of BLAST results
Let F = {f1, f2, ...} be the set of database fragments
Let Unsearched ⊆ F be the set of unsearched database fragments
Let Unassigned ⊆ F be the set of unassigned database fragments
Let W = {w1, w2, ...} be the set of participating workers
Let Di ⊆W be the set of workers that have fragment fi on local storage
Let Distributed= {D1,D2, ...} be the set of D for each fragment

Require: |W| 6= 0
Ensure: |Unsearched| = 0

Unsearched← F
Unassigned← F
results← ∅
Broadcast queries to workers
while |Unsearched| 6= 0 do

Receive a message from a worker wj
if message is a state request then

if |Unassigned| = 0 then
Send worker wj the state SEARCH COMPLETE

else
Send worker wj the state SEARCH FRAGMENT

end if
else if message is a fragment request then

Find fi such that minDi∈Distributed |Di| and fi ∈ Unassigned

if |Di| = 0 then
Add wj to Di

end if
Remove fi from Unassigned
Send fragment assignment fi to worker wj

else if message is a set of search results for fragment fi then
Merge message with results
Remove fi from Unsearched

end if
end while
Print results

searches its assigned fragment and reports to the master that it is idle when com-
plete. This process is repeated until all database fragments have been searched.

The master process uses a greedy algorithm to determine which fragments
to assign each worker. First, if the idle worker has any unsearched fragments
that no other worker has on local storage, the worker is assigned to search the
unique fragment. If a worker has no unique fragment, the worker is assigned
the unsearched fragment which exists on the smallest number of other work-
ers. Finally, if an idle worker has no unsearched fragments, it is told to copy
the unsearched fragment existing on the fewest other workers. The set of frag-
ments currently being copied is tracked by the master to prevent duplicate copy
assignments to different workers.

Algorithm 2 mpiBLAST worker

queries← Receive the queries from the master
currentState← Receive the state from the master
while currentState 6= SEARCH COMPLETE do
currentFragment← Receive a fragment assignment from the master
if currentFragment is not on local storage then

Copy currentFragment to local storage
end if
results← BLAST (queries, currentFragment)
Send results to master
currentState← Receive the state from the master

end while

When each worker completes a fragment search, it reports the results to the
master. The master merges the results from each worker and sorts them accord-
ing to their score. Once all results have been received, they are written to a
user-specified output file using the BLAST output functions of the NCBI devel-
opment library. This approach to generating merged results permits mpiBLAST
to directly produce results in any format supported by NCBI-BLAST, including
XML, HTML, tab delimited text, and ASN.1.

5 mpiBLAST Performance

NCBI-BLAST and mpiBLAST have been benchmarked on several systems in
an effort to characterize their performance and scalability. We first present the
performance of NCBI-BLAST when the database is larger than core memory,
demonstrating a significant decrease in performance caused by additional disk
I/O. Next, we show that mpiBLAST (with its database-segmenting technique)
achieves superlinear speed-up on multiple nodes when the database is larger
than the core memory of a single node. We continue by assessing the scala-
bility of mpiBLAST to many nodes. Then, we present the additional running
time incurred by various components of the mpiBLAST algorithm as it scales.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

E
xe

cu
tio

n
T

im
e

(s
)

A
ve

ra
ge

 b
lo

ck
s

re
ad

/s

Database size in MBytes

NCBI-BLAST execution time
Average blocks read/s

Fig. 1. (left) The performance of a blastn search using NCBI-BLAST when run on a
system with 128MB RAM. As the database size grows larger than core system memory
total running time increases rapidly. A sharp increase in disk I/O is also observed when
the database is large and can no longer fit in memory.

Our benchmarking methods have been carefully designed to accurately reflect a
typical usage pattern by molecular biologists.

5.1 Benchmarking Methods

When benchmarking BLAST search performance, decisions about the type of
search to perform can significantly influence timing results. Factors such as query
length, number of queries, total database size, length of database entries, and
sequence similarity between the query and database entries affect the amount
of time consumed by the BLAST algorithm [7]. Each factor must be carefully
considered if the benchmarks are to accurately reflect typical BLAST usage
patterns by molecular biologists.

We have endeavored to perform benchmarks that model the typical usage of
BLAST when integrated into a high throughput genome sequencing and annota-
tion pipeline. When used in this context, each BLAST query is a predicted gene
in a newly sequenced organism. The BLAST search results are used to assist
human annotators in determining the biological role of each predicted gene [9].
Because many organisms have thousands of genes, the large number of search
queries generated by genome sequencing and annotation projects demand heavy
computation. We have chosen to model this scenario because sequencing and an-
notation projects can benefit from mpiBLAST’s improved BLAST performance.

The benchmarks described in the following sections utilize predicted genes
from a newly sequenced bacterial genome as BLAST queries. The query gene
lengths are approximately exponentially distributed with a mean θ = 747.2 base
pairs and standard deviation σ = 684.2. The database sequences are taken from

the GenBank nt database, a large public repository of non-redundant nucleotide
sequences. Ignoring a small number of outliers whose length is greater than
25,000 bp, the length of the nt database entries can also be reasonably approx-
imated by an exponential distribution where θ = 1370.

5.2 Low Memory Performance

NCBI-BLAST was benchmarked on a system with 128MB memory using in-
creasingly large database sizes to determine the effect of databases that do not
fit in core memory. Each run measured the total running time of a blastn search
using the same set of query sequences against a larger database. We utilized
Linux’s BSD process-accounting facilities to collect system-activity statistics.

Figure 1 shows total BLAST run times alongside the average blocks read per
second from the disk for each database size tested. Formatted BLAST databases
are compressed versions of the raw sequence databases. A formatted nucleotide
database consumes approximately 25% as much space as a text file containing the
sequences. As the database size exceeds the total system memory size, BLAST
running times and average blocks read per second increase sharply. Because the
operating system cannot cache the entire database BLAST must wait for it to
be re-read from disk when processing each query sequence.

Like NCBI-BLAST, the performance of mpiBLAST suffers when confronted
with low memory conditions. However, because mpiBLAST effectively uses the
aggregate memory of all worker nodes, the database can grow much larger before
causing extra disk I/O.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

S
pe

ed
up

Number of processors

Linear Speedup
mpiBLAST, Green Destiny

Fig. 2. Speedup of mpiBLAST on Green Destiny. 300 KB of query sequences were
searched against a 5.1-GB database. The size of the formatted database is approx-
imately 1.2 GB, much larger than the 640-MB core memory per node. The search
causes heavy disk I/O when a single node is used.

To get an overview of scalability when the database is larger than a sin-
gle node’s core memory, we benchmarked mpiBLAST on Green Destiny [8, 16].
Green Destiny is a 240-node bladed Beowulf cluster based on the Transmeta
Crusoe processor. Each compute node consists of a 667-MHz TM5600, 640MB
RAM, 100-Mb/s Ethernet, and a 20-GB hard drive running under Linux 2.4.

Figure 2 shows mpiBLAST performance measurements taken on Green Des-
tiny. Fragments of a 5.1-GB uncompressed database were pre-distributed to each
worker and a short query was executed to prime the buffer-cache. By priming
the cache, we hope to simulate the case when the cluster is processing many
BLAST queries in quick succession. Each timed run used 300 KB of predicted
gene sequences.

The single worker search consumed 22.4 hours whereas 128 workers completed
the search in under 8 minutes. Relative to this single-worker case, mpiBLAST
achieved super-linear speedup in all cases tested. However, as the number of
workers increases the efficiency of mpiBLAST decreases.

5.3 Where does the time go?

The decrease in efficiency observed when scaling mpiBLAST to many nodes leads
us to ask “What is mpiBLAST doing with the extra time?” mpiBLAST’s running
time can be decomposed into five primary components: (1) MPI and mpiBLAST
initialization, (2) database-fragment copying time, (3) BLAST search time, (4)
communication time, and (5) result merging and printing time. In order to de-
termine how each component contributes to the total execution time, we profiled
mpiBLAST with the MPE library to collect wall-clock timing statistics and used
gprof to measure CPU usage.

Measurements were taken on systems located in the Galaxy cluster at SUNY
Stony Brook. Each node contains dual 700-MHz Pentium III processors with 1-
GB PC133 SDRAM, 100-Mb/s Ethernet connected to a Foundry Networks Big
Iron 8000 switch, and a 20-GB hard drive.

Two gigabytes of the nt database were formatted into 25 fragments. Each run
measured the components of execution time on 1 through 25 workers using the
same set of database fragments and an 10-KB query of predicted ORF sequences.
Figure 3 shows the contribution of each component to the total running time of
mpiBLAST. Based on these measurements, we conclude that for small numbers
of workers, execution time is dominated by BLAST searches. As more workers
are utilized, the time spent formatting and writing results grows relative to total
execution time. Communication consistently accounts for less than 1% of the
total execution time.

Although some workers may finish before others during the search phase,
the master waits until all workers have completed before formatting the results.
Thus, the total execution time is dependent on the longest running worker.
Each bar in Figure 3 shows the execution time of components of the longest
running worker in addition to the time spent formatting by the master in order
to accurately reflect the components of the total execution time.

Fig. 3. How time is spent in mpiBLAST. Each bar is a composite that shows how time
was spent on the longest running worker node in addition to the time spent merging
results by the master node. Total execution time is largely dominated by BLAST search
time.

The measurements discussed here were taken by searching the same 25 frag-
ment database with a variable number of workers. In a search using a single
worker, all 25 fragments would be assigned to the same worker. When searching
with 25 workers, each worker searches a single fragment. However, when search-
ing with some number of workers that is not an even divisor of the number of
fragments, an imbalance in the number of fragments searched by each worker
occurs. In such a scenario, some workers complete early while the other work-
ers search the remaining fragments. Also, some database fragments may take
much longer to search than others because the query sequence is very similar
to that fragment. Since result formatting proceeds after all workers have com-
pleted searching, an imbalance in the ratio of workers to fragments can result in
execution time beyond what would be observed in the balanced case.

One potential solution to the problems of imbalance in the worker/fragment
ratio and variable fragment-search times would be segmenting the database into
a large number of small fragments. The expectation is that a small fragment
would get searched quickly. In the case of imbalance, workers that must search
an additional fragment would not delay result formatting by much. In the case
of highly variable fragment-search times, the large number of fragments would
allow mpiBLAST to balance the load among the workers, assigning additional
database fragments to workers as they complete fragment searches.

However, a tradeoff exists when segmenting the database into many small
fragments because there is significant overhead in searching extra fragments.
Figure 4 shows the total execution time of mpiBLAST when searching the same
database broken into a variable number of fragments. Searching a 422 frag-
ment versus a 105 fragment database incurs an additional 140% wall clock time.
The time required to format and output results increases with the number of

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

m
pi

B
LA

S
T

 e
xe

cu
tio

n
tim

e
(s

)

Number of processors

422 DB fragments
351 DB fragments
263 DB fragments
234 DB fragments
191 DB fragments
150 DB fragments
105 DB fragments
57 DB fragments

Fig. 4. The overhead of performing the same mpiBLAST search increases with the
number of database fragments used. Each measurement of running time (y-axis) was
taken by formatting an identical database with a varying number of fragments. The
unusual numbers of database fragments arise because NCBI formatdb’s segmentation
method tries to guarantee a maximum fragment size, not a particular number of frag-
ments.

fragments used, but is independent of the number of processors used. Figure 5
shows measurements of the result formatting and output component times for
mpiBLAST when searching a database broken into a variable number of frag-
ments.

The measurements suggest that by varying the number of database frag-
ments, an mpiBLAST user can trade additional CPU overhead and some wall
clock execution time for less variability in the execution time over different
queries. Increasing the number of processors reliably shortens the execution time
but may also require increasing the number of database fragments, which in-
creases the cost of the serial result format and output component of execution
time. The optimal balance between number of processors and number of frag-
ments will depend on the priorities of the individual user.

Finally, it is important to note that in many cases fragment copy time will be
negligible or non-existent because the database will have already been distributed
during a previous search.

6 Future Work

There are several directions for future work on mpiBLAST’s algorithms. First,
mpiBLAST does not provide transparent fault tolerance when a node goes down.
A transparent fault-tolerance mechanism could be easily integrated into the cur-
rent mpiBLAST algorithm. Each node would periodically send a message to the

0

20

40

60

80

100

120

5 10 15 20 25 30 35
0

20

40

60

80

100

120

F
or

m
at

 a
nd

 o
ut

pu
t r

es
ul

ts
 ti

m
e

(s
)

Number of processors

422 DB fragments
351 DB fragments
263 DB fragments
234 DB fragments
191 DB fragments
150 DB fragments
105 DB fragments
57 DB fragments

Fig. 5. The overhead of formatting and outputting results for the same mpiBLAST
search increases with the number of database fragments used. The time spent format-
ting and outputting results is independent of the number of processors used because it
is a serial component of the algorithm executed on the master node.

master that it is still alive and searching. If the master does not receive a mes-
sage from a particular node before a timeout occurs, that node’s work would
be reassigned to another node. Fragment searching would continue as normal
without the downed node.

A second potential improvement to the mpiBLAST algorithm is the integra-
tion of database updates. To implement such a scheme, each node could check
a central repository of versioning information for the database fragments. If a
fragment has been updated the node responsible for processing that fragment
can retrieve an updated copy of the fragment. The master node would also check
the database for new fragments that should be searched.

A third improvement to the mpiBLAST algorithm would be providing ad-
ditional parallelization with query segmentation. To do so, a scheduler would
determine the optimal number of nodes to use for a particular set of queries.
Large query sets are split among subsets of the nodes such that each subset
searches the entire database. However, predicting the optimal division of the
query set may be difficult due to the high variability in search time across dif-
ferent queries.

Because mpiBLAST spends the majority of its time executing NCBI Toolbox
code, improvements to the Toolbox could signficantly influence performance. Our
measurements indicate that there is high overhead for using additional database
fragments. Further profiling to reduce the fragment overhead would allow mpi-
BLAST to more efficiently load-balance the search and reduce total search time.

7 Conclusion

We have described mpiBLAST, an open-source, MPI-based implementation of
database segmentation for parallel BLAST searches. Database segmentation
yields near linear speedup of BLAST in most cases and super-linear speedup
in low memory conditions. mpiBLAST directly interfaces with the NCBI de-
velopment library to provide BLAST users with interface and output formats
identical to NCBI-BLAST.

Finally, analyzing the components of mpiBLAST’s running time shows that
the bulk of execution time is spent performing BLAST searches. Communication
consumes a relatively small portion of time. Merging and printing BLAST results
also represents a relatively small amount of the total execution time. Our findings
indicate that mpiBLAST scales well to at least one hundred nodes.

8 Acknowledgements

The authors would like to thank Eric Weigle and Adam Engelhart of Los Alamos
National Laboratory for their support and insightful comments. We also thank
the referees for their suggestions.

This work was supported by the U.S. Department of Energy through LANL
contract W-7405-ENG-36 and is also available as a technical report: LA-UR-03-
2486. In addition, Aaron E. Darling was supported in part by NLM Training
Grant 1T15LM007359-01.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

2. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI–BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

3. R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing. Turboblast: A
parallel implementation of blast based on the turbohub process integration archi-
tecture. In IPDPS 2002 Workshops, April 2002.

4. R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and C. Roberts. Par-
allelization of local BLAST service on workstation clusters. Future Generation
Computer Systems, 17(6):745–754, April 2001.

5. N. Camp, H. Cofer, and R. Gomperts. High-throughput BLAST, September 1998.
6. R. Chen, C. Taaffe-Hedglin, N. Willard, and A. H. Sherman. Benchmark and

performance analysis of TurboBLAST on IBM xSeries server cluster, 2002.
7. E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl. Efficiency of shared-memory

multiprocessors for a genetic sequence similarity search algorithm, 1997.
8. W. Feng, M. Warren, and E. Weigle. The bladed beowulf: A cost-effective alter-

native to traditional beowulfs. In Proceedings of IEEE Cluster 2002, 2002.
9. J. D. Glasner, G. P. III, P. Liss, A. Darling, T. Prasad, M. Rusch, A. Byrnes,

M. Gilson, B. Biehl, F. R. Blattner, and N. T. Perna. ASAP, a systematic an-
notation package for community analysis of genomes. Nucleic Acids Research,
31(1):147–151, January 2003.

10. E. Glemet and J. Codani. LASSAP, a LArge Scale Sequence compArison Package.
Computer Applications In The Biosciences, 13(2):137–143, April 1997.

11. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable parallel programming
with the Message Passing Interface, 1999.

12. W. J. Kent. Blat – the BLAST-like alignment tool. Genome Research, 12:656–664,
April 2002.

13. K. Pedretti, T. Casavant, R. Braun, T. Scheetz, C. Birkett, and C. Roberts. Three
complementary approaches to parallelization of local BLAST service on worksta-
tion clusters. Lecture Notes In Computer Science, 1662:271–282, 1999.

14. A. Shpuntof and C. Hoover. Personal communication, August 2002.
15. R. K. Singh, W. D. Dettloff, V. L. Chi, D. L. Hoffman, S. G. Tell, C. T. White, S. F.

Altschul, and B. W. Erickson. BioSCAN: A dynamically reconfigurable systolic
array for biosequence analysis.

16. M. Warren, E. Weigle, and W. Feng. High-density computing: A 240-node beowulf
in one cubic meter. In Proceedings of SC2002, 2002.

