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The assembly of a multiple sequence alignment (MSA) has become one of the most 
common tasks when dealing with sequence analysis. Unfortunately, the wide range of 
available methods and the differences in the results given by these methods makes it hard 
for a non-specialist to decide which program is best suited for a given purpose. In this 
review we briefly describe existing techniques and expose the potential strengths and 
weaknesses of the most widely used multiple alignment packages
Introduction
Sequence alignment is by far the most common
task in bioinformatics. Procedures relying on
sequence comparison are diverse and range from
database searches [1] to secondary structure predic-
tion [2]. Sequences can be compared two by two to
scour databases for homologues, or they can be
multiply aligned to visualize the effect of evolu-
tion across a whole protein family. In this study
we will focus on the later methods, dedicated to
the global simultaneous comparison of more than
two sequences. Special emphasis will be given to
the most recently described techniques.

The many uses of MSAs
Multiple alignments constitute an extremely pow-
erful means of revealing the constraints imposed
by structure and function on the evolution of a
protein family. They make it possible to ask a wide
range of important biological questions and they
will each be discussed in turn.

Phylogenetic analyses 
Phylogenetic trees are instrumental in elucidating
the evolutionary relationships that exist among
various organisms. Nowadays, highly accurate
phylogenetic trees rely on molecular data. Their
computation typically involves four steps: 

• collection of a set of orthologous sequences in
a database 

• multiple alignment of the sequences 
• measure of pair-wise phylogenetic distances

on the multiple alignment and computation
of a distance matrix

• computation of the tree by applying a cluster-
ing algorithm [3] to the distance matrix

As an alternative to the last two bullets the tree
may also be computed using maximum likelihood
[4]. In both cases, the role of multiple alignment is

to provide a very accurate estimation of pair-wise
distances and to make it possible to estimate the
reliability of each branch by bootstrapping [5].

Identification of conserved motifs and 
domains
MSAs make it possible to identify motifs pre-
served by evolution that play an important role
in the structure and function of a group of
related proteins. Within a multiple alignment,
these elements often appear as columns with a
lower level of variation than their surroundings.
When coupled with experimental data, these
motifs constitute a very powerful means of char-
acterizing sequences of unknown function.
Important databases like PROSITE [6] or
PRINTS [7] rely on this principle. When a motif
is too subtle to be defined with a standard pat-
tern, one may use another type of descriptor
known as a profile [8] or a hidden Markov model
(HMM) [9]. These are meant to exhaustively
summarize (column by column) the properties
of a protein family or a domain. Profiles and
HMMs make it possible to identify very distant
members of a protein family when searching a
database. Their sensitivity and specificity is
much higher than that provided by a single
sequence or a pattern. In practice, one can derive
their own profile from multiple alignments using
packages such as: the PFTOOLS [10], pre-estab-
lished collections like Pfam [11], or compute the
profiles on the fly with PSI-BLAST [12] the posi-
tion specific version of BLAST. The specificity
and sensitivity of a profile are tightly correlated
to the biological quality of the multiple align-
ment it was derived from.

Structure prediction
Structure prediction is another important use of
multiple alignments. Secondary and tertiary
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structure prediction aim at predicting the role a
residue plays in a protein structure (buried or
exposed, helix or strand etc.). Secondary struc-
ture predictions based on a single sequence yield
a low accuracy (in the order of 60%) [13], while
predictions based on a MSA go much higher (in
the order of 75%) [2,14,15]. The rationale behind
such improvements is that the pattern of substi-
tutions observed in a column directly reflects the
type of constraints imposed on that position in
the course of evolution. In the context of tertiary
structure determination or when predicting non-
local contacts, multiple alignments can also help
to identify correlated mutations. This approach
has only given limited results when applied to
proteins [16], it has been much more successful in
RNA analysis where it allows highly accurate
predictions [17] well confirmed by structural
analysis.

Altogether, these very important applications
explain the amount of attention dedicated to the
MSA problem and any biologist should be aware
that very few bioinformatics protocols bypass the
multiple alignment stage. Unfortunately, availa-
ble tools are only heuristics providing an approx-
imate solution to a problem that remains largely
open. These many heuristics are based on differ-
ent paradigms, each well suited to a limited
range of situations.

A complicated problem.
MSA is a complicated problem. It stands at the-
cross road of three distinct technical difficulties: 

• the choice of the sequences
• the choice of an objective function (i.e., a

comparison model) 
• the optimization of that function 

Altogether, properly solving these three problems
would require an understanding of statistics,
biology and computer science that lies far
beyond our grasp.

The choice of the sequences
The methods reviewed here (i.e., global MSA
methods) only make sense if they are assumed to
be dealing with a set of homologous sequences
i.e., sequences sharing a common ancestor. Fur-
thermore, with the exception of DiAlign [18],
global methods require the sequences to be
related over their whole length (or at least most
of it). When that condition is not met, one
should consider the use of local MSA methods
such as the Gibbs sampler [19], Match-Box [20] or
MACAW [21]. In any case, one should always be

aware that given inappropriate sequences, most
multiple alignment routines will nonetheless
produce an alignment. It will be the responsibil-
ity of the biologist to realize that this alignment
is meaningless. This is not an easy task, and a few
years ago Henikoff reviewed a series of problems
that can occur when one forces multiple align-
ments with unrelated sequences [22]. In order to
recruit a set of homologous sequences, it is com-
mon practice to use one of the BLAST programs
(WU-BLAST, PSI-BLAST, GAPPED BLAST
etc.) [12], for searching within a database all the
sequences similar to some query sequence.
When doing so, an observed similarity is consid-
ered good when it is unlikely to arise by chance
(given the database and the amino-acid frequen-
cies). To make this estimation, BLAST uses pow-
erful statistical models developed by Altschul
and Karlin [23]. Of course, these statistical mod-
els merely approximate the biological reality, and
homology may be misrepresented by similarity,
leading to the incorporation of improper
sequences within a multiple alignment.

The choice of an objective function
This is purely a biological problem that lies in
the definition of correctness. What should a bio-
logically correct alignment look like? Can we
define its expected properties and will we recog-
nize it when we see it? These intricate questions
can only be answered by means of a mathemati-
cal function able to measure an alignment bio-
logical quality. We name this function an
Objective Function (OF) because it defines the
mathematical objective of the search. Given a
perfect function, the mathematically optimal
alignment will also be biologically optimal. Yet
this is rarely the case, and while the function
defines a mathematical optimum, we rarely have
an argument that this optimum will also be bio-
logically optimal.

Defining a proper objective function is a
highly non-trivial task and an active research
field of its own right. In theory, an OF should
incorporate everything that is known about the
sequences, including their structure, function
and evolutionary history. This information is
rarely at hand and is hard to use, so it is usually
replaced with sequence similarity. Thus, a very
simple general function is often used: the
weighted sums-of-pairs with affine gap penalties
[24]. Under this model, each sequence receives a
weight proportional to the amount of independ-
ent information it contains [25] and the cost of
the multiple alignment is equal to the sum of the
Pharmacogenomics (2002)  3 (1)
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cost of all the weighted pair-wise substitutions.
The substitution costs are evaluated using a pre-
defined evolutionary model known as a substitu-
tion matrix [26], in which a score is assigned to
every possible substitution or conservation
according to its biological likeliness (i.e., rarely
observed mutations receive a negative score
while mutations observed more often would be
expected by chance receive to a positive score).
Insertions or deletions are scored using affine gap
penalties that penalize a gap once for opening
and then proportionally to its length. This pen-
alty scheme is a major source of concern because
it requires two parameters:

• The gap opening
• The gap extension penalty

whose adequate values can only be set empiri-
cally and may vary from one set of sequences to
the next [27]. Although this function is clearly
wrong from an evolutionary point of view [24],

because it assumes every sequence within the set
to be an ancestor of every other sequence, the
ease of its implementation has made it popular
with the most widely used MSA packages [28-30].
This validation was recently confirmed by a
more thorough benchmarking [31] indicating
that packages that rely on the sums-of-pairs are
reasonable performers as judged by the biological
quality of the alignments they produce. Very
recently, a new variant of the sum-of-pairs func-
tion has been introduced that seems less likely to
over-estimate evolutionary events [32].

Over the last years, new OFs were described
that seem to be less sensitive to gap penalty esti-
mation thanks to the incorporation of local
information. These include the segment-based
evaluation of DiAlign [33] and the consistency
objective function of T-Coffee [34]. HMMs [9,35]

constitute another line of thought recently
explored. HMMs describe the multiple align-
ment in a statistical context, using a Bayesian
approach. Although from a formal point of view
they provide us with the most attractive solution,
their performances for ab initio alignments have
so far been disappointing and recent work shows
that carefully tuned HMM packages barely out-
perform ClustalW [36]. Other statistically-based
methods that attempt to associate a P-value to
the multiple alignment have been described
[19,37]. Unfortunately, these measures are
restricted to ungapped MSAs.

All things considered, one should be well
aware that there is no such thing as the ideal OF
and every available scheme suffers from major

drawbacks. In an ideal world, a perfect OF
would be available for every situation. In prac-
tice, this is not the case and the user is always left
to make a decision when choosing the method
that is most suitable to the problem.

Computational
The third problem associated with MSAs is com-
putational. Assuming we have at our disposal an
adequate set of sequences and a biologically per-
fect objective function, the computation of a
mathematically optimal alignment is too com-
plex a task for an exact method to be used [38].
Even if the function we are interested in was as
simple as a maximization of the number of per-
fect identities within each column, the problem
would already be out of reach for more than
three sequences. This is why all the current
implementations of multiple alignment algo-
rithms are heuristics and that none of them guar-
antee a full optimization. Considering their most
obvious properties, it is convenient to classify
existing algorithms in three main categories:
exact, progressive and iterative. Exact algorithms
are high quality heuristics that deliver an align-
ment usually very close to optimality [28,39],
sometimes but not always within well-defined
boundaries. They can only handle a small
number of sequences (< 20) and are limited to
the sums-of-pairs objective function. Progressive
alignments are by far the most widely used
[34,40,41]. They depend on a progressive assembly
of the multiple alignment [42-44] where sequences
or alignments are added one by one so that never
more than two sequences (or multiple align-
ments) are simultaneously aligned using
dynamic programming [45]. This approach has
the great advantage of speed and simplicity com-
bined with reasonable sensitivity, even if it is by
nature a heuristic that does not guarantee any
level of optimization. Other progressive align-
ment methods exist such as DiAlign [18] or
Match-Box [20], which assemble the alignment in
a sequence-independent manner by combining
segment pairs in an order dictated by their score,
until every residue of every sequence has been
incorporated in the multiple alignment. Iterative
alignment methods depend on algorithms able to
produce an alignment and to refine it through a
series of cycles (iterations) until no more
improvements can be made. Iterative methods
can be deterministic or stochastic, depending on
the strategy used to improve the alignment. The
simplest iterative strategies are deterministic.
They involve extracting sequences one by one
3
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from a multiple alignment and realigning them
to the remaining sequences [46,47], some of these
methods can even be a mixture of progressive
and iterative strategies [48]. The procedure is ter-
minated when no more improvement can be
made (convergence). Stochastic iterative meth-
ods include HMM training [49] and simulated
annealing or genetic algorithms [50-56]. The main
advantage is to allow for a good conceptual sepa-
ration between optimization processes and OF.
Recent examples of algorithms belonging to
these three categories are reviewed in the next
section.

Review
The number of available MSA methods has
steadily increased over the last 20 years. Being
exhaustive on these will not be possible within
the scope of this work, and this review should be
seen as complementary with another recent
review [57]. Furthermore, it should be pointed
out that only a minority of the methods
described in the literature have found their way
towards regular usage. There are many reasons
for failure, but the main one stems from a simple
fact: there is no satisfactory theoretical frame-
work in sequence analysis, in this context an
algorithm is only as good as it is useful. Improve-
ments are driven by results and not theory, so
that programs with badly designed interfaces or
poor portability have been disgarded by natural
selection, leaving their algorithms to be re-
invented by later generations.

Over the last few years, the field of MSA has
undergone drastic evolutionary changes with the
introduction of several new algorithms and new
evaluation methods. Some of the methods used
for mutiple sequence alignments are listed in
Table 1. Among all this, two new trends have
emerged: 

• the increasing use of iterative optimisation
strategies (stochastic or non-stochastic) 

• the use of consistency-based scoring schemes 

In this section, we review some of these new
algorithms, their main characteristics and poten-
tial shortcomings. Another major trend, that will
not be extensively covered here, has been the
introduction of HMMs methods [9,35]. A very
detailed account on HMM-based methods for
MSAs may be found in [58].

The progressive algorithms.
Progressive alignment constitutes one of the sim-
plest and most effective ways of multiply align-

ing a set of sequences in little time and with little
memory. This algorithm was initially described
by Hogeweg [42] and later re-invented by Feng
[43] and Taylor [44]. The most widely used MSA
packages are based on an implementation of this
algorithm, which include: Pileup, a part of the
GCG package [59], MultAlign [41] and ClustalW
[29] that has become the standard method for
multiple alignments.

ClustalW is a non-iterative, deterministic
algorithm that attempts to optimize the
weighted sums-of-pairs with affine gap penalties.
It is a straightforward progressive alignment
strategy where sequences are added one by one to
the multiple alignment according to the order
indicated by a pre-computed dendrogram.
Sequence addition is made using a pair-wise
sequence alignment algorithm [45]. The main
shortcoming of this strategy is that once a
sequence has been aligned, that alignment will
never be modified even if it conflicts with
sequences added later in the process as shown in
Figure 1. ClustalW also includes many highly spe-
cialized heuristics meant to maximally exploit
sequence information: 

• local gap penalties 
• automatic substitution matrix choice
• automatic gap penalty adjustment
• the delaying of the alignment of distantly

related sequences 

Benchmarking tests, carried out on BAliBASE
[31], a database of reference multiple sequence
alignments.  In general, ClustalW performs bet-
ter when the Phylogenetic tree is relatively dense
without any obvious outlier. It does not matter
how widely the sequences are spread just as long
as every sequence remains close enough (a bit
like crossing a river stepping from stone to
stone). Long insertions or deletions also cause
trouble, due to the intrinsic limitation of the aff-
ine penalty scheme used by ClustalW.

The latest improvement to the progressive
alignment algorithm is T-Coffee, a novel strategy
where sequences are aligned in a progressive
manner but using a consistency-based objective
function that makes it possible to minimize
potential errors, especially in the early stages of
the alignment assembly. T-Coffee is reviewed in
more detail in the consistency-based algorithm
section.

Exact algorithms
As mentioned earlier, progressive alignment is
only an approximate solution. In order to use the
Pharmacogenomics (2002)  3 (1)
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Table 1. Some recen

Name

MSA

DCA

OMA

ClustalW, ClustalX

MultAlin

DiAlign

ComAlign

T-Coffee

Praline

IterAlign

Prrp

SAM

HMMER 

SAGA

GA 
signal contained in the sequences properly, one
would like to simultaneously align them, rather
than adding them one by one to a multiple
alignment. This would be especially useful when
dealing with sets of extremly divergent sequences
whose pair-wise alignments are all likely to be
incorrect. Unfortunately, to align several
sequences, one would need to generalize the
Needlman and Wunsch algorithm [45] to a multi-
dimensional space and for practical reasons (time
and memory) this is only possible for a maxi-
mum of three sequences. That limit can be
pushed a bit further if one finds a way to identify
in advance the portion of the hyperspace that
does not contribute to the solution and exclude
it from computation. This is achieved in the
MSA program, an implementation of the Car-
rillo and Lipman algorithm [60] that makes it
possible to align up to ten closely related
sequences [28]. It should be stressed here that,
contrary to a widespread belief, the MSA pro-
gram is only a heuristic implementation of the
Carillo and Lipman algorithm, that is not guar-
anteed to reach the mathematical optimum.
MSA  uses lower and upper bounds tighter than
the guaranteed ones (Altschul, personal commu-
nication). Even so, the high memory require-
ment, the lengthy computational time and the
limitation on the number of sequences explain
why the MSA program quickly gave way to
ClustalW. Yet, MSA met again with popularity
when Stoye described a new divide and conquer
algorithmDCA [39] that sits on the top of MSA

and extends its capabilities. The DCA algorithm
cuts the sequences in subsets of segments that are
small enough to be fed to MSA. The sub-align-
ments are later reassembled by DCA. The trick is
to cut the sequences at the right points so that
the produced alignment remains as close as pos-
sible to optimality. The way it is done in DCA is
slightly heuristic albeit fairly accurate. Bench-
marking on BAliBASE indicated that the DCA
strategy does slightly better that ClustalW, even
if the four largest BAliBASE test sets could not
be computed with DCA (Notredame, unpub-
lished results). Even when MSA is coupled to
DCA, strong limitations remain on the number
of sequences that can be handled (20–30) and on
their phylogenetic spread. Recently, an iterative
implementation of DCA [61], optimal multiple
alignment (OMA) was described that is meant to
speed up the DCA strategy and decreases its
memory requirements.

Iterative algorithms
Iterative algorithms are based on the idea that
the solution to a given problem can be computed
by modifying an already existing sub-optimal
solution. Each ‘modification’ step is an iteration.
In the examples considered here, modifications
can be made using dynamic programming or
various random protocols. While the dynamic
programming-based protocols can also include
elements of randomization, we distinguish them
from more traditional stochastic iterative meth-

t and less recent available methods for MSAs.

Algorithm URL Ref.

Exact http://www.ibc.wustl.edu/ibc/msa.html [28]

Exact (requires MSA) http://bibiserv.techfak.uni-biefield.de/dca [39]

Iterative DCA http://bibiserv.techfak.uni-biefield.de/oma [61]

Progressive ftp://ftp-igbmc.u-strasbg.fr/pub/clustalW or clustalX [29]

Progressive http://www.toulouse.inra.fr/multalin.html [41]

Consistency-based http://www.gsf.de/biodv/dialign.html [18]

Consistency-based http://www.daimi.au.df/~ ocaprani [75]

Consistency-based/progressive http://igs-server.cnrs-mrs.fr/~ cnotred [66]

Iterative/progressive jhering@nimr.mrc.ac.uk [48]

Iterative http://giotto.Stanford.edu/~ luciano/iteralign.html [70]

Iterative/Stochastic ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/ [47]

Iterative/Stochastic/HMM rph@cse.ucsc.edu [84]

Iterative/Stochastic/HMM http://hmmer.wustl.edu/ [68]

Iterative/Stochastic/GA http://igs-server.cnrs-mrs.fr/~ cnotred [51]

Iterative/Stochastic/GA czhang@watnow.uwaterloo.ca [52]
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Figure 1. Limits of t

This example shows how
choice between aligning
Since terminal gaps are 
extra sequence is added,
of-pairs multiple alignme

THE FAT CAT GAR
ods such as simulated annealing (SA) [62] or
genetic algorithms (GA) [63].

Stochastic iterative algorithms
SA was the first stochastic iterative method
described for simultaneously aligning a set of
sequences. Various schemes have been published
[50,64], which all involve the same chain of proc-
esses: an alignment is randomly modified, its
score assessed, it is kept or discarded according to
an acceptance function that gets more stringent
while the iteration number increases (by analogy
with a decreasing temperature during crystalliza-
tion), the process goes on until a finishing crite-
ria such as convergence is met. In practice,
despite being intellectually very attractive, SA is
too slow for making ab initio alignment and it
can only be used as an alignment improver. GAs
constitute an interesting alternative to SA as
shown in SAGA [51], a GA dedicated to MSA.
Like SA, SAGA is an optimization black box in
which any OF invented can be tested. The prin-
ciple of SAGA is very straightforward and fol-
lows closely the ‘simple GA’ [65]: randomly

generated multiple alignments of a given set of
sequences evolve under some selection pressure.

These alignments are in competition with
each other for survival (survival of the fittest)
and reproduction. Within SAGA, fitness
depends on the score measured by the objective
function (the better the score, the fitter the
multiple alignment). Over a series of cycles
known as generations, alignments will die or
survive, depending on their fitness. They can
also improve and reproduce through some sto-
chastic modifications known as mutations and
crossovers. Mutations randomly insert or shift
gaps while crossovers combine the content of
two alignments (Figure 2). Overall, 20 operators
co-exist in SAGA and compete for usage. The
program does not guarantee optimality but has
been shown to equal or outperform MSA from
a mathematical point of view on 13 test sets
(using exactly the same OF in both programs).
The complete disconnection between the oper-
ators and the original OF made it possible to
seamlessly modify the original OF in order to
test SAGA with a new OF named COFFEE
(Consistency Objective Function For align-

he progressive strategy.

 a progressive alignment strategy can be misled. In the initial alignment of sequences 1 and 2, ClustalW has a 
 CAT with CAT and making an internal gap or making a mismatch between C and F and having a terminal gap. 
much cheaper than internals, the ClustalW scoring schemes prefers the former. In the next stage, when the 
 it turns out that properly aligning the two CATs in the previous stage would have led to a better scori ng sums-
nt.

GARFIELD THE LAST FAT CAT GARFIELD THE FAST CAT 

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT ---

 

FIELD THE VERY FAST CAT 

GARFIELD THE LAST FA-T CAT

GARFIELD THE FAST CA-T ---

GARFIELD THE VERY FAST CAT

 

GARFIELD THE LAST FA-T CAT

GARFIELD THE FAST CA-T ---

GARFIELD THE VERY FAST CAT

-------- THE ---- FA-T CAT
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Figure 2. One point
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one in SAGA, a genetic a
toward optimality. The pr
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Parent Align

N---VDE
NEEE---
G--AHAG
GGHA--G

W G KV
W D KV
W G KV
W S KV

--NVDEVG-G E
--NEEEVG-G E
GA-HAGEYGA E
GGHAGEY-GA E

W G KV
W D KV
W G KV
W S KV

Child Alignment 1
mEnt Evaluation) [66]. This series of studies
revealed the suitability of GAs to become inves-
tigation tools but also made it clear that GAs
were too slow a strategy for large-scale projects
or everyday use. Another similar MSA GA was
later introduced by Zhang and Wong [52]. The
authors report a very high efficiency for their
GA but these results must be considered with
care since their strategy (especially the muta-
tions) is driven by the presence of completely
conserved segments that guide the assembly of
the alignments. The assumption that such seg-
ments will always exist when aligning proteins
is not realistic. This method appears to be
appropriate when comparing very long highly
similar sequences (such as portions of
genomes). SAGA was later parallelized by two
independent groups [67,53], in order to improve
its efficiency. The model described in SAGA
has been met with considerable interest in the

evolutionary programming community and, in
recent years, at least three algorithms based on
the SAGA principle have been published [54-56].

The Gibbs sampler is another interesting sto-
chastic iterative strategy [19]. It is a local multiple
alignment method that finds ungapped motifs
among a set of unaligned sequences. From a
multiple alignment perspective, the most inter-
esting feature of the Gibbs sampler is its OF. The
algorithm aims to build an alignment with a
good P-value (i.e., a low probability of having
been generated by chance). At each iteration,
segments are removed or added according to the
probability that the current model (the rest of
the alignment) could have generated them. If
that probability is high enough, the model is
then updated with the new segments and the
algorithm proceeds toward the next iteration.
The overall result is an alignment that has a good
P-value and maximizes the probability of the
data it contains (i.e., each sequence fits well
within the alignment). This Bayesian idea of
simultaneously maximizing the data and the
model is also central to HMMs [9,35], thus it is
not surprising to find that HMMs can also be
trained by expected maximization [49,68]. How-
ever, like GAs, HMMs proved rather disappoint-
ing when it came to ab initio alignments. Today,
HMMs such as those found in Pfam [11] are no
longer generated from unaligned sequences.
State of the art protocols are much more inclined
toward turning a pre-computed alignment into
an HMM and further refining it using HMMER
[49] or SAM [68].

Non stochastic iterative algorithms.
The first non-stochastic iterative algorithms date
back to the origins of MSAs [46]. The idea is sim-
ple and attractive: since mistakes may arise in the
early stages of a progressive alignment, why not
correct them later by re-aligning each sequence
in turn to the multiple alignment using standard
dynamic programming algorithms [45]. The pro-
cedure terminates when iterations consistently
fail to improve the alignment. This very simple
algorithm constitutes most of the iterative strate-
gies described in the early 1990s. The main
scope for variation is the way sequences are
divided into two groups before being re-aligned.
In AMPS [46], sequences are chosen according to
their input order and re-aligned one by one. In
the algorithm of Berger and Munsen [69], the
choice is made in a random manner and
sequences are divided into two groups that can
contain more than one sequence. The element of

 crossover in SAGA.

 manner in which two alignments are combined into 
lgorithm that evolves a population of alignments 
inciple is to cut straight one of the alignments and to 
at compatible ends are generated.

ment 1 Parent Alignment 2

VGGEAL-
VGGEAL-
EYGAEAL
EYGAEAL

--WGKV
WD--KV
WGKV
WSKV

  NVDEVG-G EAL
  NEEEVG-G EAL
GA-HAGEYGA EAL
GGHAGEY-GA EAL

AL
AL
AL
AL

N---VDEVGGEAL-
NEEE---VGGEAL-
G--AHAGEYGAEAL
GGHA--GEYGAEAL

--WGKV
WD--KV
WGKV--
WSKV--

Child Alignment 2

W G KV
W D KV
W G KV
W S KV

--NVDEVG-G EAL
--NEEEVG-G EAL
GA-HAGEYGA EAL
GGHAGEY-GA EAL

Chosen Child Alignment
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randomization makes the algorithm more robust
and improves its accuracy. Few of these early iter-
ative methods have been properly bench-
marked, making it hard to estimate their true
biological significance.

The most sophisticated DP-based iterative
algorithm available was recently described by
Gotoh [47]. It is a double nested iterative strategy
with randomization that optimizes the weighted
sums-of-pairs with affine gap penalties (Figure 3).
The originality of this algorithm is that the
weights and the alignment are simultaneously
optimised. The inner iteration optimizes the
weighted sums of pairs while the outer iteration
optimizes the weights that are calculated on a
phylogenetic tree estimated from the current
alignment [25]. The algorithm terminates when
the weights have converged. Prrp was the first
multiple alignment program to be extensively
benchmarked, using JOY, a database of struc-
tural alignments. The results were confirmed on
BAliBASE [31,34]. Prrp significantly out-performs
most of the traditional progressive methods as
well as some of the most recent iterative strate-
gies (Table 2).

Two other iterative alignment methods were
recently described: Praline [48] and IterAlign [70].
These two methods share very similar protocols.
They both start with a preprocessing of the
sequences to align. In IterAlign, sequences are
‘ameliorated’(sic), this means that each sequence
is locally compared to others and that every seg-
ment that shows high similarity with other pro-
teins is replaced by a consensus. One round of
‘amelioration’ constitutes one iteration. Other
iterations are run on the new set of ‘ameliorated’
sequences, until the collection of consensus con-
verges. Consistent blocks are then extracted from
the consensus collection and these blocks are
chained in order to produce the final alignment.
Praline uses a very similar protocol: sequences
are replaced with a complete profile made from a
multiple alignment that only includes their clos-
est relatives. That profile step is iterated until the
collection of profiles converges. This collection
of profiles is conceptually similar to the ‘amelio-
rated’ set of sequences used by IterAlign. The
multiple alignment is then assembled by using a
straightforward progressive algorithm where
sequences are replaced with profiles. One of the
most interesting consequences of the protocol
used in Praline is the possibility of measuring the
consistency between the final alignment and the
collection of profiles used for its assembly. There

may be some correlation between this measure
and the true accuracy of the alignment.

Regardless of the potential performances of
these two methods (neither have been properly
bench marked), some emphasis should be given
to the novel concepts they incorporate: 

• the first one is the use of local information in
IterAlign, in order to decrease sensitivity to
the gap penalty parameterization

• the second key concept is consistency 

Sequences are preprocessed so that the regions
consistently conserved across the family see their
signal enhanced and become more likely to drive
the alignment. This search for consistency has
been one of the strongest trend in recent devel-
opments of MSA. It is also central to the non-
iterative methods.

Consistency-based algorithm
The first consistency-based MSA method was
described by Kececioglu in the 80s [71]. Given a
set of sequences, the optimal MSA is defined as
the one that agrees the most with all the possible
optimal pair-wise alignments. Computing that
alignment is an NP complete problem that can
only be solved for a small number of related
sequences, using an MSA-like algorithm. None-
theless, there are at least three good reasons that
make consistency-based OFs very attractive: 

• firstly, they do not depend on a specific substi-
tution matrix but rather on any method or
collection of methods able to align two
sequences at a time

• secondly, the consistency-based scheme is
position dependant, given the collection of
pair-wise alignments. This means that the
score associated with the alignment of two res-
idues depends on their indexes (position
within the protein sequence) rather than their
individual nature

• the third reason is more general and has to do
with consistency. Experience shows that given
a set of independent observations, the most
consistent are often closer to the truth 

This principle generally holds well in biology
and can be loosely connected to the observation
that, given a series of measurements, noise
spreads while signal accumulates.

Although the first consistency-based OF was
described in 1983, it took several more years to
develop heuristic algorithms able to deal with
optimization and it is only recently that a GA,
(SAGA [51]) was used to show the biological
Pharmacogenomics (2002)  3 (1)
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Table 2. Some elem

Method Ref1

DiAlign 71.0

ClustalW 78.5

Prrp 78.6

T-Coffee 80.7

Each method in the Metho
BAliBASE. The alignments 
alignment using aln_comp
Results obtained in each ca
statistically significant, as a
contains a homogenous se
sequences and an outlayer
Ref4 contains sequences th
ref5 contains sequences th
is the average of ref1–5.
advantages of such a function, COFFEE [66],

which emulates the maximum weight trace
problem. In SAGA-COFFEE, the collection of
weighted pair-wise alignments is named a library
and SAGA is used to compute the alignment
that has the highest level of consistency with the
library. In practice, the library may contain more
than one alignment for each pair of sequences,
the information it contains may be redundant,
conflicting and may originate from sources as
various as one wishes (structure analysis,

sequence comparison, database search, experi-
mental knowledge etc.). Although SAGA-COF-
FEE yielded interesting results, the GA was too
slow for everyday use. This prompted the devel-
opment of a new heuristic algorithm to optimize
the COFFEE function in a time efficient man-
ner: T-Coffee (Figure 4). In T-Coffee, the COF-
FEE library is turned into a so-called ‘extended
library’, a position-specific substitution matrix
where the score associated with each pair of resi-
dues depends on the compatibility of that pair
with the rest of the library. T-Coffee uses a pro-
cedure reminiscent of Vingron’s Dot matrix mul-
tiplication [72] and Morgenstern overlapping
weights [73]. The multiple alignment is assem-
bled using a progressive alignment algorithm
similar to the one used in ClustalW: 

• pair-wise distances are computed
• a neighbour joining tree is estimated [3]

• the sequences are aligned one by one follow-
ing the topology of the tree  

The main difference between T-Coffee and
ClustalW is that in T-Coffee, the extended
library replaces a substitution matrix. Another
important characteristic of T-Coffee is that its
primary library is made of a mixture of global
alignments (produced with ClustalW) and local

Figure 3. Layout of Prrp.

This figure shows the layout of Prrp, a double-nested strategy for optimizing multiple alignments. When the 
inner iteration has converged, new sequence weights are estimated. The convergence of these weights is the 
criteria for the outer iteration to stop.

Initial alignment

Tree and weights computation

Alignment converged

End

Realign two sub-groups

Weights converged

Outer iteration

Yes

No

Yes No

Inner iteration

ents of validation on BAliBASE.

Ref2 Ref3 Ref4 Ref5 Total

25.2 35.1 74.7 80.4 57.3

32.2 42.5 65.7 74.3 58.7

32.5 50.2 51.1 82.7 59.0

37.3 52.9 83.2 88.7 68.7

d column was used to align the 141 test-sets contained in 
were then compared with the reference BAliBASE 
are [34]. Ref1–5 indicates the five BAliBASE categories. 
tegory were averaged. All the observed differences are 
ssessed by the Wilcoxon rank-based test [34,47]. Ref1 
t of sequences, ref2 contains a homogenous group of 
, ref3 contains two distantly related groups of sequences. 
at require long internal gaps to be properly aligned and 
at require long-terminal gaps to be properly aligned. Total 
9
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alignments (produced with Lalign [74]). The
bench-marking carried out on BAliBASE shows
that this combination of local and global infor-
mation makes the T-Coffee implementation able
to outperform Prrp, ClustalW and DiAlign on
the five categories of test-sets contained in this
reference database [34]. These results were
obtained without tuning, since T-Coffee does
not have any parameters of its own. Due to the
library extension, T-Coffee does more than sim-
ply compute a consensus alignment. Nonethe-
less, given a collection of multiple alignments, it
can be interesting to combine them into a single
consensus multiple alignment. This is what the
ComAlign program does [75] by combining sev-
eral multiple alignments into a single, often
improved, multiple alignment.

Although the details differ, T-Coffee bears
some similarity to DiAlign [73], another consist-
ency-based algorithm that attempts to use local
information in order to guide a global multiple
alignment. DiAlign starts with an identification
of highly homologous segment-pairs. The
weight of each of these pairs is defined by a P-
value comparable to the P-values used in BLAST.
Each of these segment-pairs receives another
score proportional to its compatibility with the
complete set of segment-pairs. This score is
named an overlapping weight and segment-pairs
weighted this way are very reminiscent of the
extended library. The multiple alignment is then
progressively assembled by adding the pairs of
segments according to their weight. Assembly is
made in a sequence independent order, as
opposed to the ClustalW-style progressive align-
ment strategy. Non-compatible segment-pairs
are discarded, hence the importance of the order
induced by the weights. According to the
authors, DiAlign is especially good at properly
aligning sequences where local homology is the
driving signal. This has been confirmed by BAli-
BASE benchmarking [31,34]. Overall, DiAlign is
not as accurate as ClustalW or Prrp but it does
very well in categories 4 and 5 of BAliBASE,
which require very long insertions to be properly
aligned. Over the past few years, the DiAlign
algorithm has been modified on numerous occa-
sions for improved efficiency [76].

Conclusion and expert opinion
Ten years ago, when schemes such as MSA were
developed, there was very little data available and
the main problem was to use every bit of availa-
ble information properly. Today the situation has
dramatically changed. We are overwhelmed by

‘relevant’ information and in fact there is so
much of it that by choosing the data, one can
suit the needs of almost any method (progres-
sive, iterative etc.). Ironically, one could be
tempted to say that data has improved faster
than mutiple aligment methods.

As a consequence, the real challenge is not so
much the multiple alignment itself but rather the
choice of a subset of sequences that will yield the
most biologically correct and informative align-
ment, given one method or another. There are
two good reasons for not using all the available
sequences:

• Alignments with a large number of sequences
are slow to compute and hard to analyze.
Whenever possible, an alignment should fit
on a single sheet of A4 paper.

• Limitations of existing programs. Although
they all use weighting schemes meant to mini-
mize the effect of similar or highly correlated
sequences, none of these schemes are entirely
satisfactory, and over-represented sub-groups
always end up dominating the alignment or
the profile.

This can prevent the proper alignment of less
well represented sequence sub-groups that may
be just as important. Careful user’s trimming is
still the best available way around that effect.
Unfortunately, the increased sensitivity of data-
base search tools coupled with the increase in
database size has rendered this process very tedi-
ous.

The second major change that has occurred
over the last years is the increasing number of
available 3D structures. Although the proportion
of protein sequences with a known 3D structure
is getting smaller and smaller, the situation is
very different from a protein family perspective
and the proportion of protein families where at
least one member has a known 3D structure
increases regularly. This means that in most
cases, multiple alignment modelling could bene-
fit from the incorporation of 3D structural infor-
mation, in order to enhance very remote
homologies, or to guide the choice of local pen-
alties [77]. Very few of the packages avaliable are
able to mix structure and sequences within a
multiple alignment. While ClustalW is able to
use SwissProt secondary structure information
for gap penalty estimation, a proper tool is still
lacking for the simultaneous alignment of
sequences and structures. Two of the methods
introduced here are good candidates for such a
combination. The consistency-based algorithms
Pharmacogenomics (2002)  3 (1)
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Figure 4. Layout of
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have the advantage of having few requirements
on the origin of their libraries. For instance,
DALI, the database of structural multiple align-
ments [78] relies on T-Coffee to assemble the col-
lection of pair-wise alignments produced by the
DALI algorithm into a multiple alignment. The
double dynamic programming algorithm intro-
duced by Taylor [79] is also a good candidate for
that purpose. While it has been shown that this
algorithm is suitable for structure-to-structure
alignments [80], recent results indicate that it
could also be used in the context of MSA and
possibly as a means to mix sequences and struc-
tures [81].

The third major obstacle on the road that
leads toward an informative multiple alignment
is the processing of repeats. Repeated sequences
(in tandem or not) are renowned for confusing
all the existing MSA methods. When dealing
with sequences that contain such repeats, the
only solution is to pre-process the sequences,
extract the repeats and only align homologous
regions. This extraction can be made using any
local multiple alignment tool such as the Gibbs

sampler [19], Mocca [82] or Repro [83]. Unfortu-
nately, none of these tools are well integrated
within a global multiple alignment procedure.
The Gibbs sampler and Mocca have the advan-
tage of providing the user with some estimation
of the biological relevance of their output.

The fourth point that needs to be raised here
is computation. While elegant solutions have
been found to parallelize database searches, the
parallelization of a MSA algorithm remains a dif-
ficult task. The operations involved in the imple-
mentation of these algorithms require complex
schemes of memory sharing that are not suitable
to Linux-farms and other clusters. When dealing
with large sets of data of long sequences, super-
computers are still required for multiple align-
ment programs.

The last important point is the estimation of
local accuracy. The common property of all the
methods introduced here is that no one in par-
ticular is the best. They may all be out-per-
formed by the others on one protein family or
another. For that reason, we feel that it is more
important to be able to assess the exact level of

 T-Coffee.

layout of T-Coffee. Local and global pairwise alignments are first computed and then combined into a primary 
n order to be used for computing the multiple sequence alignment in a progressive manner.

Users library

Primary library
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accuracy of an alignment, rather than improving
the average performances of each method. To
our knowledge, only four packages, incorporate
an estimation of the alignment local quality:
ClustalX (the X-Window interface of ClustalW),
Praline [48], T-Coffee [34] and Match-Box [20].
None of these methods for estimating local accu-
racy have been thoroughly benchmarked and
properly validated for estimation.

To conclude, a multiple alignment is merely a
very constrained model. It is a powerful way to
spot inconsistencies amongst a data set and to
visualize relationships that may exist among
seemingly independent pieces of information.
Multiple alignment may be driven by any availa-
ble source of information for instance structure,
sequence, experimental knowledge and so on.

Outlook
Are multiple sequence alignments here to stay?
The answer is yes, without any doubt. While we
enter the area of comparative genomics, the
simultaneous comparison of a large number of
homologous biological objects will become more

and more important in our understanding of
biology and there is no doubt than in 5 to 10
years, multiple alignments will be as central to
the biological analysis as they are now. There is
no doubt in my mind that MSA will remain cen-
tral to sequence-based biology.

This being said, MSA methods will also need
to evolve. They will need to integrate heteroge-
neous information such as structures, results of
database searches, experimental data and in gen-
eral, anything that may come from expression
data and proteomic analysis, including regula-
tory information. Integrating such heterogene-
ous information is a complex task. When the
data is heterogeneous, knowing who is right and
who is wrong becomes an art. Addressing that
type of questions will be difficult and essential.
The appropriate method will have to do this in a
transparent way, letting the user control every bit
of extra information that goes into his align-
ment. This ideal method should also allow the
user to inject into his model some of his own
knowledge. Doing so should be made an easy
task. These ideas have been central to develop-
ment of the underlying philosophy in the T-Cof-
fee package [34]. 

In any case, these future methods are bound
to be memory and CPU hungry. Compared with
database searches, multiple sequence alignment
protocols are hard to optimize. Special hardware
may need to be adapted and the code may have
to be redesigned. Several computer manufactur-
ers are currently looking at this problem. One
can easily imagine that a powerful multiple
sequence alignment server will soon be a feature
of most laboratories, just like PCR machines
made their appearance in the 90s.
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