
BIOINFORMATICS APPLICATIONS NOTE Vol. 16 no. 6 2000
Pages 564–565

Disperse: a simple and efficient approach to
parallel database searching

Raphaël Clifford 1 and Aaron J. Mackey 2

1Department of Computing, Imperial College of Science, Technology and Medicine,
London, UK and 2Department of Microbiology, University of Virginia, Charlottesville,
Virginia, USA

Received on October 18, 1999; revised on December 14, 1999; accepted on February 3, 2000

Abstract
Summary: A general system for performing multiple
independent database searches in parallel is presented.
Run-time addition and removal of clients, robust failure
and error trapping and near 100% efficiency with very
large numbers of clients are achieved by a flexible
asynchronous, client-driven approach.
Availability: Disperse software is freely available. Please
visit http://www.doc.ic.ac.uk/∼rc5/Disperse/ for further
details.
Contact: r.clifford@ic.ac.uk, amackey@virginia.edu

We present a customizable task-distribution system,
denoted Disperse, which accomplishes parallelization by
distributed serial execution of existing programs, which
require no modification themselves.

Large-scale comparison of databases comprising the
nucleotide or amino acid sequences of entire organisms
is a common goal of current comparative genomics
projects. These many-to-many comparisons are often
computationally expensive and time-consuming, but
the results obtained are extremely valuable, allowing,
for instance, the clustering of evolutionarily related
genes. Our method allows these kinds of analyses to be
performed with greater ease and speed than previously
possible.

Disperse requires any UNIX-like operating system,
supporting Internet communication, and a modern Perl
interpreter. Two Perl scripts, a ‘server’ and a ‘client’ are
used. The server script is initiated through a command
line which specifies search program parameters. If the
database to be searched is not commonly available to
all the clients, it may be copied to each client machine.
The server then executes clients on each of the remote
machines. These remote copy and execution steps are
accomplished with the standard UNIX utilities rcp and
rsh, or their secure counterparts scp and ssh. Each
client then contacts the server using standard Internet
communication to request a query sequence. Once the

query is received, the connection is closed and the client
provides the query to the specified search program.

The output of the executed search program is captured
by the Disperse client and returned to the server via a new
Internet connection, at which time a new query sequence
is obtained. The client is able to recognize any errors
generated by the search program, reporting them to the
server for handling. If a client itself hangs or crashes, it
does not affect the rest of system; the server keeps track of
which queries have generated results, and resubmits any
queries whose results are missing. If at least one client
remains functional, complete results will be obtained. The
ability to monitor the progress of the job via a server-
maintained log file allows the addition of more clients and
easy recovery from a server crash. When all the results
have been obtained, or when no clients have connected
after a specified timeout period, the server exits, writing a
full description of its finishing state to the logfile.

This combination of Perl, standard UNIX utilities and
internet protocols means that the system is able to run
seamlessly across heterogeneous computing platforms in
differing locations. For example, we performed multiple
parallel database searches across the sites of the University
of Virginia and Imperial College, London with Disperse.
Although several different operating systems and architec-
tures were involved, no extra configuration was needed ex-
cept a UNIX account on each computer.

Performance did not differ significantly when clients
searched a locally mounted (non-NFS) database, com-
pared with searching an NFS-shared database. Disperse
maintains an efficiency above 98% with 16 processors,
above 90% with 64 and above 85% with 96. We are
not aware of efficiencies of this size being published
in similar work. The individual search times on these
machines was about one query per 2 s, meaning that
with 96 clients, the server was handling approximately
48 clients every second. At these rates, latency problems
inevitably start to become significant. With greater than
64 processors, efficiency was increased slightly by using

564 c© Oxford University Press 2000



Disperse

Number of processors

Q
ue

rie
s 

pr
oc

es
se

d 
pe

r 
se

co
nd

0

0

10

20

30

40

50

60

20 40 60 80 100 120

Fig. 1. Performance of the Disperse system using FASTA to
search a client-local (non-NFS) database of 4289 Escherichia
coli proteins, executing either one threaded client/machine (�) or
two clients/machine (♦). The straight line at 45◦ corresponds to
100% efficiency. Ninety-six dual-processor Pentium II computers
(450 MHz, 256 MB RAM), connected by a 100-baseT, fully
switched, Ethernet network, were used for these timings.

threaded FASTA (Pearson and Lipman, 1988); this is a
subject of further investigation. At 192 clients, Disperse
exhibited only 50% efficiency, but an otherwise identical
run using the SSEARCH (Smith–Waterman) program
exhibited 70% efficiency, completing the entire database-
to-database comparison in less than 15 min. It is expected
that with larger computations, efficiency would be further
increased.

Versions of FASTA and HMMER (Eddy, 1995) using
parallel code development library PVM (Geist et al.,
1995) exist, allowing individual queries to be performed
across distributed resources. Previous efforts to incor-
porate parallelism into FASTA and BLAST (Altschul et
al., 1990) have also been published (Miller et al., 1991;
Barton, 1991; Julich, 1995). These implementations divide

the database to be searched amongst workers, and tally the
results obtained when all the workers are finished. This
approach requires the successful, synchronous completion
of each worker to be maximally efficient. As a result, the
efficiencies achieved are much lower than those shown
here for Disperse. A comparison of the performance of
Disperse with the PVM version of FASTA revealed that
Disperse outperformed PVM-FASTA at all client numbers
tested.

Acknowledgements
R.C. is supported by an EPSRC studentship. A.J.M. is sup-
ported by a grant from the National Library of Medicine
(LM04969). We would like to thank Dr William R. Pear-
son for his insightful and challenging comments and ques-
tions. Also many thanks to Marek Sergot for his constant
support.

References
Altschul,S., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.

(1990) A basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Barton,G.J. (1991) Scanning protein sequence databanks using
a distributed processing workstation network. Comput. Appl.
Biosci., 7, 85–88.

Eddy,S. (1995) Multiple alignment using hidden Markov models.
Third International Conference on Intelligent Systems for Molec-
ular Biology. AAAI Press, pp. 114–120.

Geist,A., Beguelin,A., Dongarra,J., Jiang,W., Manchek,R. and Sun-
deram,V. (1995) PVM: Parallel Virtual Machine, A Users’ Guide
and Tutorial for Network Parallel Computing. M.I.T. Press.

Julich,A. (1995) Implementations of BLAST for parallel computers.
Comput. Appl. Biosci., 11, 3–6.

Miller,P.L., Nadkarni,P.M. and Carriero,N.M. (1991) Parallel com-
putation and FASTA: confronting the problem of parallel
database search for a fast sequence comparison algorithm. Com-
put. Appl. Biosci., 7, 71–78.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444–
2448.

565


