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Abstract gapped pairwise alignment scores can be calculated analyti-
Summary: The recent literature on profile hidden Markov cally, and the significance of gapped alignment scores can be

model (profile HMM) methods and software is reviewedc@lculated by simple empirical procedures (Altschul and

Profile HMMs turn a multiple sequence alignment into &iSh. 1996; Altschulet al, 1997). In contrast, profile
position-specific scoring system suitable for searchingi€thods have historically used ad hoc scoring systems.

databases for remotely homologous sequences. ProffiePMe mathematical theory was desirable for the meaning
HMM analyses complement standard pairwise comparisoﬁ”d derivation of the scores in a model as complex as a pro-
methods for large-scale sequence analysis. Several softwdt§ (Henikoff, 1996). _
implementations and two large libraries of profile HMMs of _Hidden Markov models (HMMs) now provide a coherent
common protein domains are available. HMM method&heory for profile methods. HMMs are a class of probabilistic

performed comparably to threading methods in the CcAspPPodels that are generally applicable to time series or linear
structure prediction exercise sequences. HMMs have been most widely applied to recog-

Contact: eddy@genetics.wustl.edu nizing words in digitized sequences of thg acoustics_ of
human speech (Rabiner, 1989). HMMs were introduced into
_ computational biology in the late 1980s (Churchill, 1989),
Introduction and for use as profile models just a few years ago (Keogh
. . %I., 1994a).
Proteins, RNAs and other features in genomes can usually bgyqe the recent literature on profile HMM methods and
classified into families of related sequences and structurg§isted methods for modeling sequence families is reviewed
(Henikoffet al, 1997). Different residues in a functional Sé-pretarance is given to papers appearing in the past 2 years,
quence are subject to d|fferent_select|ve Pressures. Multiplg, o my last review of the field (Eddy, 1996). There seem
alignments of a sequence family reveal this in their pattery, 1o hree principal advances. First, motif-based HMMs
of conservation. Som_e positions are more conserved thﬂﬁve been introduced as an alternative to the original Krogh/
others, and some regions of a multiple alignment seem f@, ,qjor profile HMM architecture (Grunay al, 1997;
tolerate insertions and deletions more than other regions. \jo,wald et al 1997). Second, large libraries of profile
Intuitively, it seems desirable to use position-specific ingy\1pms and multiple alignments have become available, as
formation from multiple alignments when searching datay e a5 compute servers to search query sequences against
bases for homologous sequences. ‘Profile’ methods ffeqe resources (Sonnhamreeal, 1998). Third, there has
building position-specific scoring models from multiple been an increasing incursion of profile HMM methods into

alignments were introduced for this purpose (Taylor, 1986, area of protein structure prediction by fold recognition
Gribskovet al, 1987; Barton, 1990; Henikoff, 1996). How- Levitt 1995 N structure predict y recognit

ever, profiles have been less used than pairwise methods li
BLAST (Altschulet al, 1990, 1997) and FASTA (Pearson
and Lipman, 1988), with the most notable exceptions bei bilistic models is be : : .

) yond the scope of this review. Tutorial
tEe pg[ﬁuljlr BLOfCKngIIatagase (He“'ﬁeﬁ%l’ %998]2 a”,d introductions to HMMs are available (Rabiner, 1989), in-
the s«i g us_e(r)] profiles yka s(;na_b and or protessiongy,qing introductions that specifically include profile HMM
protein domain hunters (Bork and Gibson, 1996). ethods (Krogh, 1998). Two recent books describe proba-

pai?nzizg’ ;Tgsr:fn Ziiﬁthg]&riid:ﬁ ;;gggg al/sftie;?gsnlﬁs:% stic modeling methods for biological sequence analysis in
2 X tail (Baldi and Brunak, 1998; Durbéh al, 1998).
body of statistical theory (Altschul and Gish, 1996). The pro- ( )

babilistic ‘meaning’ of position-independent pairwise align-

ment scoring matrices is well understood (Altschul, 1991)',_|Idden Markov models

allowing powerful scoring matrices to be derived (HenikoffThere are now various kinds of profile HMMs and related
and Henikoff, 1992). The statistical significance of un-inodels, all based on HMM theory. It is useful to understand

ecause of space limitations, some of the background |
ive is terse. A satisfactory introduction to HMMs and pro-
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the generality and relative simplicity of HMM theory before  t, | to

considering the special case of profile HMMs. An HMM de- E g

scribes a probability distribution over a potentially infinite t, t on HMM

number of sequences. Because a probability distribution

must sum to one, the ‘scores’ that an HMM assigns to se-P:(@) P(2)

quences are constrained. The probability of one sequence™ ) P,(b)

cannot be increased without decreasing the probability of

one or more other sequences. Itis this fundamental constraintt = =1 =2 — end hidden state sequence, n

of probabilistic modeling (Jaynes, 1998) that allows the ‘¢‘ i A “% ———————————————————————
parameters in an HMM to have non-trivial optima. a b a observed symbol sequence, x

An example of a simple HMM that models sequence
composed of two letters,(b) is shown in Figuré. This toy
HMM would be an appropriate model for a problem in which

V;i:ﬂ? UQQ:hS:qSue?;:s zﬁiideglgmggiorzsggzrc(;(r);[nrrt)eosslg:%l?g 1.A toy HMM, modeling sequences of as and bs as two regions

( ’ p P )_' . gf potentially different residue composition. The model is drawn
composition (b-rich, perhaps). The HMM consists of tWO 1) with circles for states and arrows for state transitions. A
States_connec'[ed_ by state transitions. Each state has a Sy sible state sequence generated from the model is shown, followed
emission probability distribution for generating (matching) by a possible symbol sequence. The joint probatiyr{HMM)

a symbol in the alphabet. It is convenient to think of an HMMof the symbol sequence and the state sequence is a product of all the
as a model that generates sequences. Starting in an initiggnsition and emission probabilities. Notice that another state
state, we choose a new state with some transition probabiligpauence %‘2[;'2) Co_tuh'd ha(;/_; ge”terf‘tte‘i' the same Sy?ﬁo' seduence.
(either staying in state 1 with transition probabitity, or lough ‘probably with a diferent total probability. This IS the
moving to state 2 with transition probabiltay): then we distinction between HMMs and a standard Markov model with

id ith . babili ii nothing to hide: in an HMM, the state sequence (e.qg. the biologically
generate a residue with an emission probability specitic t?neaningful alignment) is not uniquely determined by the observed

that state [e.g. choosingawith py(a)]. We repeat the transi- - symbol sequence, but must be inferred probabilistically from it.
tion/emission process until we reach an end state. At the end
of this process, we have a hidden state sequence that we do
not observe, and a symbol sequence that we do observe.

The name ‘hidden Markov model’ comes from the fact that )
the state sequence is a first-order Markov chain, but only tif¢a"d can also be implemented (Hughey and Krogh, 1996;
symbol sequence is directly observed. The states of tH&'Nas and Hughey, 1998). :
HMM are often associated with meaningful biological la- Paramete_rs can be set fc_)r an HMM in two ways. An HMM
bels, such as ‘structural position 42’. In our toy HMM, forcan be trained fr_om initially unaligned (unllabeled) Se-
instance, states 1 and 2 correspond to a biological notion fences. Alternatively, &n HMM can be built from pre-

two sequence regions with differing residue composition. e 'gned (pre-labeled) sequences (i.e. where the state paths are

ferring the alignment of the observed protein or DNA Seassumed to be known). In the latter case, the parameter es-

o the hidd tat ic like labeling th timation problem is simply a matter of converting observed
quence 1o the hidden state sequence IS Tike 1abeling e 3Gy nts of symbol emissions and state transitions into prob-
guence with relevant biological information.

. X ) abilities. In building a profile HMM, an existing multiple
Once an HMM is drawn, regardless of its complexity, th

; X X Qlignment is given as input. In contrast, training a profile
same standard dynamic programming algorithms can M is analogous to running a multiple alignment program

used for aligning and scoring sequences with the modgkfore puilding the model, and thus is a harder problem.
(Durbinet al, 1998). These algorithms, called Forward (for Training algorithms are of interest because we may not yet
scoring) and Viterbi (for alignment), have a worst-case algqnow a plausible alignment for the sequences in question.
rithmic complexity ofO(NM?) in time andO(NM) in space  The standard HMM training algorithms are Baum—Welch
for a sequence of length and an HMM ofM states. For expectation maximization or gradient descent algorithms.
profile HMMs that have a constant number of state transibbs sampling, simulated annealing and genetic algorithm
tions per state rather than the vectdvigfansitions per state training methods seem better at avoiding spurious local opti-
in fully connected HMMs, both algorithms run @NM)  ma in training HMMs and HMM-like models (Eddy, 1996;
time and O(NM) space—not coincidentally, identical to Neuwaldet al, 1997; Durbiret al, 1998). Most training al-
other sequence alignment dynamic programming algaorithms seek relatively simple maximum likelihood (or
rithms. For a modest (constant) penalty in time, very menmmaximum a posteriori) optimization targets. More sophisti-
ory-efficientO(M) andO(M*-9) versions of Viterbi and For- cated optimization targets are used to compensate for non-

sfm Yo bena P1(8) P4(B) Py(8)  P(xm 1 HMM)
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independence of example sequences (e.g. biased representa-

tion) (Eddy, 1996; Bruno, 1996; Durkihal, 1998; Karchin 8
and Hughey, 1998; Sunyaewal, 1998), or to maximize the O
ability of a model to discriminate a set of true positive
example sequences from a set of true negative trainin
examples (Mamitsuka, 1996).

However, since HMM training algorithms are local optim-
izers, it pays to build HMMs on pre-aligned data wheneverc 0 >
possible. Especially for complicated HMMs, the parametef K ¥ NN NN
space may be complex, with many spurious local optima that ' @ @
can trap a training algorithm.

In contrast to parameter estimation, a suitable HMM archi-_
tecture (the number of states, and how they are connected b
state transitions) must usually be designed by hand. A max?—
mum ”ke"hpOd arChiteCt.ur.e ConSt.rUCtion algorithm e?(is'ts'labeled m1, m2 and m3), each of which has 20 residue emission
fqr the special case of building profile HMMs from multiple probabilities, shown with black bars. Insert states (diamonds labeled
alignments (Durbiret al, 1998). Efforts have been made 10 jo_i3) also have 20 emission probabilities each. Delete states (circles
develop architecture learning algorithms for general HMMSapeled d1-d3) are ‘mute’ states that have no emission probabilities.
(Yada et al, 1996). One can also train fully connected A begin and end state are included (b,e). State transition probabilities
HMMs and prune low-probability transitions at the end of are shown as arrows.
training (Mamitsuka, 1996).

. More orlless_ fo”‘."a' probab_ilistic ”.‘Ode's are incregsingl;gtate at each column allow for insertion of one or more resi-
important in biological analysis, particularly in complicated dues between that column and the next, or for deleting the

analysis problems with many mOd‘?' parameters. Becau%%nsensus residue. Profile HMMs are strongly linear, left—
many problems in computational biology reduce to somg

sort of linear ‘sequence’ analysis, probabilistic models baset'nght models, unlike the general HMM case. Fighishows
q ysis, p a small profile HMM corresponding to a short multiple se-

on HMMs have been applied to many problems. Other bios i
logical applications of HMMs include gene finding (Krogh J4c"¢€ & ignment. : '
et%l 19§fb_ Kulget al, 1996: Burge ang Karlin 1987(_ He%- The probability parameters in a profile HMM are usually

. converted to additive log-odds scores before aligning and
dersoret al, 1997; Krogh, 1997; Lukashin and Borodovsky, .
1998), radiation hybrid mapping (Sloninal, 1997), gen- scoring a query sequence (Baregtil, 1997). The scores for

etic linkage mapping (Kruglyast al, 1996), phylogenetic aligning a residue to a profile match state are therefore com-
analysis g(FeIseIerzte?n an dg éhurch’ill 199’6!3 '%/hogneal parable to the derivation of BLAST or FASTA scores: if the

1996) and protein secondary structure prediction (@sai probability of the match state emitting resicugpy, and the

! expected background frequency of resixlirethe sequence
1993; Goldma}ret al, 1996). In generaj, the more a.pmblemdatabase ify, the score for residueat this match state is log
resembles a linear sequence analysis problem—i.e. the les

it depends on correlations between ‘observables’ (e.g. resr ' .
dues)—the more useful HMM approaches will be. Profile For other scores, profile HMM treatment diverges from

i standard sequence alignment scoring. In traditional gapped
HMMs and HMM-based gene finders have probably beenIignment, an insert ofresidues is typically scored with an

the most successful applications of HMMs in computational .- _ .
biology. On the other hand, protein secondary structure pr](efflne gap penaltya +b(x - 1), whera is the score for the

diction is an area in which the state of the art is neural n irst residue and is the score for each subsequent residue in
methods that outperform HMM methods by using extensiv%e insertion. In & profile HMM, for an insertion of length

local correlation information that is not necessarily easy t ere is a state transition into an insert state which costs log
model in an HMM (Rost and Sander, 1993). R/” (wherety is the state transition probability for moving

from the match state to the insert state); () state transi-
tions for each subsequent insert state that cod Jand a
Profile HMMs state transition for leaving the insert state that costijog
This is akin to the traditional affine gap penalty, with the gap
Krogh et al (1994a) introduced an HMM architecture thatopen cost aa = logty; + logtiy, and the gap extend cost as
was well suited for representing profiles of multiple seb =logt.
guence alignments. For each consensus column of the mulHowever, in a profile HMM, these gap costs are not arbit-
tiple alignment, a ‘match’ state models the distribution ofary numbers. This is an example of why probabilistic mo-
residues allowed in the column. An ‘insert’ state and ‘deletalels have useful and non-trivial optima. Imagine that we
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. 2. A small profile HMM (right) representing a short multiple
ignment of five sequences (left) with three consensus columns.
he three columns are modeled by three match states (squares
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were trying to optimize the gap parameters of a model by O [T-E-EHE-EHEO BLOCKS
maximizing the score of the model on a training set of

example sequences. In a profile with ad hoc gap costs, we

could trivially maximize the scores just by setting all gap & @ﬁ

costs to zero, but the alignments produced by a profile with META-MEME
no gap penalties would be terrible. In the profile HMM, in © Oty O
contrast, the probability of a transition to an insert is linked
to the probability of transition to a match and not inserting;
profile HMMs have a cost for the match state to match state
transition that has no counterpart in standard alignment. As
we lower the gap cost by raising the transition probaljty
towards 1.0, the probability of the match—match transition
tmm falls towards zero, and thus the cost for sequences with-
out an insertion approaches negative infinity. There is, there-
fore, a trade-off point in choosing the state transition prob-
abilities where the cost for the sequences that do have an iny.&
sertion is balanced against the cost for the sequences that do
not.

Additionally, the inserted residues are associated with in-
sert state emission probabilities in the HMM. If these
emission probabilities are the same as the background amino
acid frequency, then the score of inserted residues is logg. 3. Different model architectures used in current methods. State
f/fx = 0. In traditional alignment, inserted residues also havéansitions are shown as arrows and emission distributions are not
no cost besides the affine gap penalty. The profile HMM for+epresented. Numbered squares indicate ‘match states’. Diamonds
malism forces us to see that this zero cost Corresponds to Eﬁi({ate.‘insert states’. Match and insert .States e.aCh haVe emission
assumption that unconserved insertions in protein structurebstributions over 4 or 20 possible nucleic or amino acid symbols.
have the same residue distribution as proteins in gener _|r(_:|(_as indicate non-emlttlng delete states and other special non-
However, the assumption is usually wrong. Insertions ten mitting states such as begin fand end states. From top to bottom:

’ . . LOCKS-style ungapped motifs, represented as an HMM; the
to be seen most O_ﬁen in surface loops ,O_f pmt?m Strucmrfeﬁmltiple motif model in META-MEME; the original profile HMM
and so have a bias towards hydrophilic residues. Profilg i;ogn et al; and the ‘Plan 7' architecture of HMMER 2,
HMMs can capture this information in the insert staterepresentative of the new generation of profile HMM software in
emission distributions. SAM, HMMER and PFTOOLS.

profile HMM

HMMER2 "Plan 7"

Profile HMM software

augmented that simple model to deal with multiple domains,

Several available software packages implement profilsequence fragments and local alignments, as illustrated by
HMMs or HMM-like models (Tabld). One important dif- the HMMER 2.0 ‘Plan 7' model architecture in Figuge
ference between these packages is the model architectiiteus, local versus global alignment is not necessarily in-
they adopt (Figur&). The philosophical divide is between trinsic to the algorithm (as is usually thought, for instance, in
‘profile’ models and ‘motif’ models. By ‘profile’ models, | the distinction between the global ‘Needleman/Wunsch’ and
mean models with an insert and delete state associated wahal ‘Smith/Waterman’ algorithms), but can be dealt with
each match state, allowing insertion and deletion anywhepeobabilistically as part of the model architecture. Local
in a target sequence. By ‘motif’ models, | mean modelalignments with respect to the model are allowed by non-
dominated by strings of match states (modeling ungappee@ro state transition probabilities from a begin state to inter-
blocks of sequence consensus) separated by a small numi&r match states, and from internal match states to an end
of insert states modeling the spaces between ungappsdte (dotted lines in FiguB®. Local alignments with respect
blocks. to the sequence are allowed by non-zero state transitions on

SAM (Hughey, 1996), HMMER (S.R.Eddy, unpublished),the flanking insert states (shaded in the Plan 7 architecture in
PFTOOLS (Bucheet al, 1996) and HMMpro (Baldét al,  Figure3). More than one hit to the HMM per sequence is
1994) implement models based at least in part on the origir@lowed by a cycle of non-zero transitions through a third
profile HMMs of Kroghet al (1994a). These packages havespecial insert state.
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Table 1.Internet sources for obtaining some of the existing profile HMM  the current protein database Starting with sing|e random|y

and HMM-like software packages selected query sequences, with impressive results (Neuwald
et al, 1997).
Software URL ! . L . , L
: GENEWISE is a sophisticated ‘framesearch’ application
SAM http:/Aww.cse.ucsc.edu/research/compbio/sam.html that can take a HMMER protein model and search it against
HMMER http:/hmmer.wustl.edu/ EST or genomic DNA, allowing for frameshifts, introns and
PFTOOLS http://ulrec3.unil.ch:80/profile/ sequencing errors (Birney and Durbin, 1997).

PSI-BLAST (Altschulet al, 1997) is not an HMM ap-
plicationper sebut it uses some principles of full probabilis-
tic modeling to build HMM-like models from multiple align-

HMMpro http:/Aww.netid.com/
GENEWISE http:/mww.sanger.ac.uk/Software/Wise2/

PROBE ftp:/Incbi.nim.nih.gov/pub/neuwald/probel.0/ ments. Like the use of PROBE (Neuwatdal, 1997)1 PSI-
META-MEME  http:/Avww.cse.ucsd.edu/users/bgrundy/metameme.1.0.html BLAST starts from a single query sequence and collects
BLOCKS http:/Avww.blocks. fherc.org/ homologous sequences by BLAST search. These homo-

logues are aligned to the query. An HMM-like search model
is built from the multiple alignment. The model is searched

These profile HMMs are rather general, allowing inserfslgalnst the database, new homologues are discovered and

tions and deletions anywhere in a sequence relative to tﬁgded tothe alignment, and anew model is built. The process

consensus model. Intuitively, they should be more sensitivd iterated until no new homologues are discovered. PROBE

than ungapped models. However, in practice, there is atracﬂan—d PSI-BLAST both illustrate the power of automating it-

; : _ fative profile searches. The remarkable speed of PSI-
off between increasing the descriptive power of the mod .
and the difficulty in determining an increasingly large LAST also demonstrates that the fast BLAST algorithm

number of free parameters. A complex model is more pronce"jln be applied to position-specific scoring systems and

to overfitting the training data and failing to generalize t&%ﬁﬁiﬂ%&rgsn&z’:gf |Dh§|rj|(?:,i:\05;$r0ﬂr|§fil|lMHM|\/TM search
other sequences. SAM and HMMER use mixture Dirichlet P ' P

priors on most distributions to help avoid overfitting and '[o""k‘:]omhmS are computationally demanding. Fast hardware

limit the effective number of free parameters (Sjolande'lmplementatlons (.)f Gribskov profile searches (anstgbv
%I., 1987) are available from several manufacturers, includ-

1996). It is possible to reduce the effective number of freIlng Compugen and Time Logic. These systems are currently

parameters even further by adopting hybrid HMM/neurabeing revised to accommodate profile HMMs and the exist-

network techniques (Baldi and Chauvin, 1996). Nonethe= P
less, this relatively unconstrained freedom to insert and ded PROSITE and PFAM HMM libraries. HMM approaches

lete anywhere makes these models somewhat difficult fe also readily paralleliz_ed (Grundyal, 1996; Hth?y’
train from initially unaligned sequences. HMMER and; 96). Even more esoteric speed-ups are also possible. For

PFTOOLS are used primarily to build database search mg]_star_]ce, Intel Corporatio_n has ”_“ade a white paper available
on using MMX assembly instructions to parallelize the Viter-

dels from pre-existing alignments, such as those in the Pfabl algorithm and get about a 2-fold speed increase on Intel

and PROSITE Profiles databases (see below). ) .
PROBE (Neuwaldt al, 1997), META-MEME (with its hardware (http./_/developer.|n_tel._c_om/drg(mmx/AppNotes/
brethren MEME and MAST) (Grundgt al, 1997) and AP569.HTM). This could be significant, since some of the
! WWW:-based HMM servers are backed by Intel processor

%cgi%}jnso éginrﬁo{;g; eatﬁ 01 dgjg) ae?izs;]unr:] eitgu(;[)en SC:ISer(;l?glt’]ﬁa\{ms running Linux or FreeBSD, such as the ISREC/Prosite

or more ungapped blocks, separated by intervening s NSECT farm (Jongeneel al, 1998).

guences that are assumed to be random (Figuréhe

handling of these gaps in BLOCKS is ad hoc. PROBE androfile HMM libraries

META-MEME adopt probabilistic models for the gaps.

META-MEME, interestingly, fits its models into HMMER Profile HMM software is well suited for modeling a particular
format. The motif models can therefore be viewed as specisgquence family of interest and finding additional remote homo-
cases of profile HMMs; indeed, HMMER, SAM and logues in a sequence database. Suppose instead that | have a
PFTOOLS have various options for creating motif-like mo-query sequence of interest, and | am interested in whether this
dels. The strength here is that by limiting the freedom of theequence contains one or more known domains. This problem
model a priori, the HMM training problem is made morearises especially in high-throughput genome sequence analysis,
tractable. These approaches can be very powerful for dighere standard ‘top hit' BLAST analyses can be confused by
covering conserved motifs in initially unaligned sets of seproteins with several distinct domains. Now | need to search the
guences. PROBE, for instance, has been turned loose osirgle query sequence against a library of profile HMMs, rather
fully automated exercise in identifying domain families inthan a single profile HMM against a database of sequences.

PSI-BLAST http:/Avww.ncbi.nim.nih.gov/BLAST/newblast.html
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Building a library of profile HMMSs in turn requires a large 806 models in Pfam 3.0 recogniz&% (S.R.E. unpublished
number of multiple alignments of common protein domaingdata). Thus, ahb-fold increase in Pfam database size (175 to
A database of annotated multiple alignments and pre-bu06) resulted in only about a 50% increase in the number of
profile HMMs becomes desirable. sequences recognized with significant scores. On the bright
Two large collections of annotated profile HMMs are cur-side, the number &.elegansequences annotated by one or
rently available: the Pfam database (Sonnharetatr 1997, more Pfam models is starting to approach the number that is
1998) and the PROSITE Profiles database (Baistchl, hit by one or more informative BLAST similarities to the non-
1997). The PROSITE Profiles database is a supplement to figglundant sequence database (42% compaféibi).
widely used PROSITE motifs database; for families that can- None of the profile servers is mature. Both profile software
not be recognized by simple PROSITE motif patterns (regul@nd profile databases are rapidly improving and changing. In
expressions which either match a sequence or do not), m@@ticular, profile databases typically include domain models
sensitive profile HMMs are developed. Both databases afeat other databases may not yet have. Users are well advised
available via WWW servers, including on-line analysisio search several domain annotation servers. The Interpro col-
servers for submitting protein sequence queries (Bblk laboration is expectegl to b_e extreme_ly val_uable as the various
new European Union funded initiative, called Interpro, hag_atabase teams begin actively sharing alignment and annota-
established a collaboration among several sites interestedifn data.
effective protein domain annotation, including the Pfam, N
PROSITE and PRINTS development teams as well as tté&VMs for fold recognition

SWISS-PROT/TREMBL team. , Profile HMMs are sometimes viewed as ‘mere sequence mo-
The current pre-release of the PROSITE Profiles databagg|s’ However, profile scores can be calculated from struc-
contains profiles for 290 protein domains, and the curregt,a| data instead of sequences, e.g. ‘3D/1D profiles’ (Bowie
Pfam 3.1 release contains 1313 profiles. There is substantigly| 1991: Luthyet al, 1992). These structural profile ap-
overlap between the two collections. It is not meaningful to NBroaches can readily be put into a full probabilistic, HMM-
to estimate how complete these databases are, becausepisad framework (Stulet al, 1993; Whiteet al, 1994). Di
number of protein families in nature is unknown and probablgyancesco and colleagues have used profile HMMs to model
very large. Although there is much discussion of how ManYecondary structure symbol sequences by modifying the
protein families there are—the number 1000 is often citedAM code to emit an alphabet of protein secondary structure
(Chothia, 1992)—such estimates typically make a false agymbols, training models on known secondary structures,
sumption that all families have approximately equal numbetgnd aligning these models to secondary structure predictions
of members (Orenget al, 1994). However, a small number of new protein sequences (Di Francestal, 1997a,b).
of families (such as protein kinases, G-protein coupled recep-The pejorative appellation of ‘mere sequence models’
tors and immunoglobulin superfamily domains) account foseems to be applied to HMMs based on a misunderstanding
a disproportionate number of sequences. The two databaggsthe central assumption of position independence in
are therefore seeing diminishing returns as models of lesfMMs. Obviously, neighboring three-dimensional struc-
populous families are developed. For example, the 175 mtural contacts influence the types of residue that will be ac-
dels in Pfam 1.0 recognize one or more domai®#% of  cepted at any given position in a protein structure. How can
predicted proteins from thH@aenorhabditis elegargenome HMMs that explicitly assume position independence hope to
project, the 527 models in Pfam 2.0 recoghiz&% and the be a realistic model of protein structure?

Table 2. WWW analysis servers for analyzing protein sequences for known domains

Profile HMM libraries:

Pfam (Sonnhammaeat al, 1998) http://www.sanger.ac.uk/Pfam/

PROSITE profiles (Bairockt al, 1997) http://ulrec3.unil.ch/software/PFSCAN_form.html
HMM:-like methods:

BLOCKS (Henikoffet al, 1998) http:/iwww.blocks.thcrc.org/
Other protein domain family classification servers:

PRINTS (Attwoodet al, 1998) http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/

ProClass (Wt al, 1996) http://diana.uthct.edu/proclass.html

PRODOM (Corpett al, 1998) http://www.toulouse.inra.fr/prodom.html

SBASE (Fabiaret al, 1997) http://base.icgeb.trieste.it/sbase/
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The assumption of position independence only means thgiience annotation is so difficult that some people almost
when an HMM state scores a residue in a sequence, it deaeem ready to give up on it (Wheelan and Boguski, 1998).
so independently of the rest of that sequence’s alignmerithe development of robust methods for automated sequence
However, nothing says that the emission probability distribuelassification and annotation is imperative. Our hope in de-
tion at that state cannot be determined in the first place fromeloping profile HMM methods is that we can provide a sec-
complex three-dimensional structural knowledge of thend tier of solid, sensitive, statistically based analysis tools
training set. If | know that a residue is buried by spatiallfhat complement current BLAST and FASTA analyses. The
neighboring hydrophobic residues, and this environment ombination of powerful new HMM software and large se-
approximately constant among related structures in the prquence alignment databases of conserved protein domains
tein family, | can build that knowledge into my model. Whatshould help make this hope a reality.

HMMs cannot deal with efficiently are long-distance cor-
relations between residues, as is seen in RNA structurg
alignments, where the complementarity of a pair of distant
sequence positions is more important than the identity &fjork on profile HMMs and Pfam in my laboratory is sup-
either position by itself (Durbiet al, 1998). (Short-distance ported by NIH/NHGRI R01 HG01363, Monsanto and Eli
correlation can be built into HMMs without much difficulty; Lilly. | thank D.States for pointing out the Intel paper on
for example, gene-finding HMMs typically model the prob-MMX Viterbi implementations; K.Karplus, R.Hughey and
ability of coding hexamers instead of probabilities of singlez Neuwald for providing pre-publication results; and
residues.) C.Eddy, S.Johnson, my research group and three anonymous

Many current fold recognition methods are not cast agviewers for their useful criticism of the manuscript. | also
HMMs, but instead as sequence/structure ‘threading’ alg@hank the many people in the HMM community with whom
rithms with relatively ad hoc scores. However, any threadinghave discussed these issues, especially A.Krogh, P.Bucher,
scoring system for which a dynamic programming algorithna Neuwald, B.Grundy, G.Mitchison, the other members of
can be used to find optimal sequence/structure alignments a@é Pfam consortium (the R.Durbin and E.Sonnhammer

be recast as a full probabilistic HMM. This includes ‘frozergroups), and the remarkable UC Santa Cruz HMM group.
approximation’ methods (Godzé al, 1992), for instance.
The fold recognition section of the CASP (Current Asses-
sment of Structure Prediction) exercise (Matlal, 1997) References
is one of the most interesting anecdotal benchmarks of how ) ) o _
HMM techniques perform. In CASP, the sequences of proA-'t_s‘f:h“'fSt'_F- Erlmggl)t' Amino a‘t?'i i/‘ljblsgf‘t[ogléngggcessesﬁom an
F Fe ’ INformation theoretic perspectivé. ivViol. blol, — .
tein ‘prediction targets’ whose structures are soon o b/ﬁtschul,S.F. and Gish,V?/. (1%96) Local alignment statiskitethods
solved by crystallography or N_MR are made available to Enzymal 266 460480,
computational StrL_JCture prediction groups. After the_ S,trUCAItschul,S.F., Gish,W.,, Miller,W., Myers,E.W. and Lipman,D.J. (1990)
tures become available, the success of the fold predictions iasc Iocal alignment search todl.Mol. Biol, 215, 403—410.
evaluated. Ranking the performance of different methods iftschul,S.F., MaddenT.L., Schaffer,AA., ZhangJ., ZhangZ.,
CASP is difficult and somewhat subjective (Levitt, 1997). wMiller,w. and Lipman,D.J. (1997) Gapped BLAST and PSI-
Also, there is usually a variable and sometimes substantiaBLAST: A new generation of protein database search programs.
degree of expert human interpretation added to the auto-Nucleic Acids Res25, 3389-3402.
mated methods (Murzin and Bateman, 1997). Nonetheledssai K., Hayamizu,S. and Handa,K. (1993) Prediction of protein
CASP has been a lively venue to explore the strengths andgecondary structure by the hidden Markov mademput. Applic.
weaknesses of fold recognition methods. At CASP2 last Bioscl, 9, 141-146. _
year, HMM-based methods were among the techniques u ood,T.K., Beck,M.E., Flower,D.R., Scordis,P. and Selley,J.N.

. o . (1998) The PRINTS protein fingerprint database in its fifth year.
by several of the most successful prediction groups (Di Fran Nucleic Acids Res26, 304308

cesceet al, 1997; Karplugt al, 1997; ,Lev'tt' 1997; Murzin Bairoch,A., Bucher,P. and Hofmann,K. (1997) The PROSITE data-

and Bateman,. 1997). Indeed, Murzin .and Ba'Feman (1997)pase, its status in 199Mucleic Acids Res25, 217—221.

correctly predicted the folds of all six proteins they at-gaidip. and Brunak,S. (199Bjoinformatics: The Machine Learning

tempted, using a combination of profile HMMs, secondary Approach MIT Press, Boston.

structure prediction and expert knowledge. Baldi,P. and Chauvin,Y. (1996) Hybrid modeling, HMM/NN architec-
tures and protein applicatiorideural Comput 8, 1541-1565.

) Baldi,P., Chauvin,Y., Hunkapiller,T. and McClure,M.A. (1994)

Conclusion Hidden Markov models of biological primary sequence informa-
tion. Proc. Natl Acad. Sci. USA1, 1059-1063.

The human genome project threatens to overwhelm us insarrett,C., Hughey,R. and Karplus,K. (1997) Scoring hidden Markov

deluge of raw sequence data. Successful large-scale semodels.Comput. Applic. Biosgil3, 191-199.
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