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Hidden Markov Models (HMMs) are applied to the problems of statistical modeling,
database searching and multiple sequence alignment of protein families and protein
domains. These methods are demonstrated on the globin family, the protein kinase catalytic
domain, and the EF-hand calcium binding motif. In each case the parameters of an HMM
are estimated from a training set of unaligned sequences. After the HMM is built, it is used
to obtain a multiple alignment of all the training sequences. It is also used to search the
SWISS-PROT 22 database for other sequences. that are members of the given protein
family, or contain the given domain. The HMM produces multiple alignments of good
quality that agree closely with the alignments produced by programs that incorporate three-
dimensional structural information. When employed in discrimination tests (by examining
how closely the sequences in a database fit the globin, kinase and EF-hand HMMs), the
HMM is able to distinguish members of these families from non-members with a high degree -
of accuracy. Both the HMM and PROFILESEARCH (a technique used to search for
relationships between a protein sequenice and multiply aligned sequences) perform better in
these tests than PROSITE (a dictionary of sites and patterns in proteins). The HMM
appears to have a slight advantage over PROFILESEARCH in terms of lower rates of false
negatives and false positives, even though the HMM is trained using only unaligned
sequences, whereas PROFILESEARCH requires aligned training sequences. Our results
suggest the presence of an EF-hand calcium binding motif in a highly conserved and
evolutionary preserved putative intracellular region of 155 residues in the a-1 subunit of
L-type caleium channels which play an important role in excitation-contraction coupling.
This region has been suggested to contain the functional domains that are typical or
essential for all L-type calcium channels regardless of whether they ecouple to ryanodine
receptors, conduct ions or both.
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1. Introduction

The rate of generation of sequence data in recent
years provides abundant opportunities for the
development of new approaches to problems in
computational biology. In this paper, we apply
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___§ Abbreviations used: HMM, hidden Markov models;

EM, Expectation-Maximization; ML. maximum
likelihood; MAP, maximum a posteriori; NLL-score,
negative log likelihood score.

hidden Markov models {HMMs§) to the problems of
statistical modeling, database searching, and
multiple alignment of protein families and protein
domains. To demonstrate the method, we examine
three protein families. Each family consists of a set
of proteins that have the same overall three-dimen-
sional structure but widely divergent sequences.
Features of the sequences that are determinants of
folding, structure and function should be present as
conserved elements in the family of sequences. We
consider the globins, whole proteins ranging in
length from 130 to 170 residues (with few excep-
tions) and two domains, the protein kinase catalytic
domain (250 to 300 residues) and the EF-hand
calcium-binding motif (29 residuesy. The same
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approach can be used to model families of nueleic
acid sequences as well (Krogh et al., 1993b).

A hidden Markov model {(Rabiner, 1989) describes
a series of observations by a “‘hidden’ stochastic
process, a Markov process. In speech recognition,
where HMMs have been used extensively, the
observations are sounds forming a word, and a
model is one that by its hidden random process
generates these sounds with high probability. Every
possible sound sequence can be generated by the
model with some probability. Thus, the model
defines a probability distribution over possible
sound sequences. A good word model would assign
high probability to all sound sequences that are
likely utterances of the word it modeis. and low
probability to any other sequence. In this paper we
propose an HMM similar to the ones used in speech
recognition to model protein families such as globins
and kinases. In speech recognition. the “alphabet™
from which words are constructed could be the set
of phonemes valid for a particular language: in
protein modeling. the alphabet we use is the 20
amino acids from which protein molecules are
constructed. Where the observations in speech
recognition are words. or strings of phonemes. in
protein modeling the observations are strings of
amino acids forming the primary sequence of a
protein. A model for a set of proteins is one that
assigns high probability to the sequences in that
particular set.

The HMM we build identifies a set of positions
that describe the (more or less) conserved first-order
structure in the sequences from a given family of
proteins. In biological terms, this corresponds to
identifving the core elements of homologous
molecules. The model provides additional informa-
tion, such as the probability of initiating an inser-
tion at any position in the model and the
probability of extending it. The structure of the
modei is similar to that of a profile (Waterman &
Perlwitz, 1986: Barton & Sternberg, 1990: Gribskov
et al., 1990: Bowie ef al.. 1991: Liithy et al.. 1991).
but slightly more general. Once we have built the
model from unaligned sequences. we can generate a
multiple alignment of the sequences using a
dynamic programming method. By employing it for
database searching. the model can be used to dis-
criminate sequences that belong to a given family
from non-members. Finally, we can study the model
we have found directly, and see what it reveals
about the common structure underlying the various
sequences in the family.

Our method of multiple alignment differs quite
markedly from conventional techniques. which are
usually based on pairwise alignments generated by
dyramic programming. schemes (Waterman, 1989:
Feng & Doclittle, 1987; Barton, 1990: Subbiah &
Harrison, 1989). The zlignments produced by these
methods often depend strongly on the particular
values of the parameters required by the method. in
particular the gap penalties (Vingron & Argos.
1991). Furthermore. a given set of sequences is
likely to possess both fairly conserved regions and

highly variable regions, vet conventional global
methods assign identical penalties for all regions of
the sequences. Substitutions, insertions, or deletions
in a region of high conservation should ideally be
penalized more than in a variable region, and some -
kinds of substitutions should be penalized differ-
ently in one position compared to another. That is
one of the motivations for the present work. The
statistical model we propose corresponds to multiple
alignment with variable, position-dependent gap
penalties, Furthermore, these penalties are in large
part learned from the data itself. Essentially, we
build a statistical model during the process of
multiple alignment. rather than leaving this as a
separate task to be done after the alignment is
completed. We believe the model should guide the
alignment as much as the alignment determines the
model.

We are not the first group to employ hidden
Markov models in computational biology. Lander &
Green (1987) used hidden Markov models in the
construction of genetic linkage maps. Other work
emploved HMMs to distinguish coding from non-
coding regions in DNA (Churchill, 1989). Later,
simple HMMs were used in conjunction with the EM
algorithm to model certain protein-binding sites in
DNA (Lawrence & Reilly, 1990; Cardon & Stormeo,
1992) and. more recently. to model the N-caps and
C-caps of alpha helices in proteins (D. Morris,
unpublished resuits). These applications of HMMs
and the EM (Expectation-Maximization) algorithm,
including our own. presage a more widespread use of
this technique in computational biology. During the
time that we have been developing this approach.

‘several related efforts have come to our attention.

One is that of White. Stultz and Smith (White et al..
1991: Stultz ef al.. 1993), who use HMMs to model
protein superfamilies. This work is more ambitious
than our own. since superfamilies are harder to
characterize than families. Tt is not yet clear how
successful their work has been since no results are
reported for sequences not in the training set. If
there are weaknesses in their method. it is possible
that these are due to the use of handerafted models
and reliance on prealigned data for parameter esti-
mation. Tn contrast. our models have a simple
regular structure. and we are able to estimate all the
parameters of these models. including the size of the
model directly from unaligned training sequences.
Interestingly enough. they independently propose
an alternate HMM state structure similar to ourst
in section 6.3 of their paper (White et al.. 1991).
where they discuss the relationship of their work to
Bowie and co-workers (Bowie et al., 1991), but they
do not pursue this further. It is possible that the
type of models we use may work better for charac-
terizing superfamilies than those investigated by
White et al. However. it is more likely that they are
too simple. and that richer and more varied state

t Instead of using delete states. they have direct
transitions between each pair of match states m; and m;
with § {j.
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Figure 1. The model.

structure along the lines they propose is required for
this problem. We recently found that Asai et al.
{1993} have applied HMMs to the problem of
predicting the secondary structure of proteins,
obtaining prediction rates that are competitive with
previous methods in some cases. In addition,
Tanaka et al. (1993) also discuss the relationship
between the: HMM method for obtaining multiple
alignments and previous methods. Finally. in work
most closely related to our own, since the time we
presented a preliminary report on this work
(Haussler & Krogh, 1992; see also Haussler ef al..
1992), Baldi ¢! al. (1993) have further demonstrated
the usefulness of this technique by producing
multiple alignments for immunoglobins and
protease as well as globins and kinasest.

2. Methods
(a) HMM architecture

Consider a family of protein sequences that all have a
common three-dimensional structure. for example the
globins. The common structure in these sequences can be
defined as a sequence of positions in space where amino
acids oceur. In the case of globins. whose structure
contains principally z-helices. the 150 or so helical posi-
tions have been named Al. A2, .... Al6. Bl. ... etc..
where the letter denotes the x-helix. and the number
indicates the location within that x-helix (see for example
Bashford et al.. 1987). For each of these positions there is
a (distinct) probability distribution over the 20 amino
acids that measures the likelihood of each amino acid
oceurring in that position in a typical globin. as well as
the probability that there is no amino acid in that posi-
tion (i.e. that a sequence belonging to this family may
have a gap at that position in a multiple alignment).
These have been called profiles (Waterman & Perlwitz,
1986; Barton & Sternberg, 1990: Gribskov «f al.. 1990;
Bowie et al.. 1991; Liithy et al.. 1991). A profile of globins
can be thought of as a statistical model for the family of
- globins, in that for any sequence of amino acids. it defines
a probability for that sequence. in such a way that globin
sequences tend to have much higher probabilities than
non-globin sequences.

The type of hidden Markov model we use as a statistical
model for a protein family can be viewed as a generalized
prefile. However, instead of describing the HMM directly

t They have developed a variant of the method
descr.lbed here that employs a gradient descent training
algorithm in place of the EM algorithm.

in terms of the probability it assigns to each protein
sequence. we find that it is easier to first think of an HMM
as a structure that generates protein sequences by a
random process. This structure and corresponding
random process is illustrated in Figure ] and can be
described as follows.

The main line of the HMM contains a sequence of M
states. which we call match states, corresponding to posi-
tions in a protein or columns in a multiple alignment (M
equals 4+ in Fig. 1). Each of these states can generate a-
letter x from the 20-letter amino acid alphabet according
to a distribution 2 (xjm,). k=1 ... M. The notation
2 (x)m;) means that each of the match statesm,. 1 £k <
M. have distinct distributions. For each match state m,,
there is a delete state d, that does not produce any amino
acid but is a “dummy’’ state used to skip m,. Finally,
there are a total of M + | insert states to either side of the
match states which generate amino acids in exactly the
same way as the match states. but use probability distri-
butions 2 (a}i;). In Figure 1. match. delete and insert
states are shown as boxes. circles and diamonds, respec-
tivelv. For convenience, we have added a dummy
~BEGIN™ state and a dummy *END" state, denoted m,
and m,,_,. respectively. which do not produce any amino
acid.

From each state. there are three possible transitions to
other states, also shown in Figure 1. Transitions into
matceh or delete states always move forward in the model,
whereas transitions into insert states do not. Note that
multiple insertions between match states can oceur, since
the self-loop on the insert state allows a transition from
the insert state to itself. The transition probability from
state g to state r is called 7 (r|g). Our notation is summar-
ized in Table 1.

A sequence can be generated by a “random walk”™
through the model as follows: Commencing at state mg
(BEGIN). choose a transition to m,. d,. or i, random!y

Table 1
Notation
x Amino acid
3 Sequence of amino acids (s=ux,...7.)
L Length of sequence
g.r State in HMM
path A sequence of states. ¢,...g9x
N Number of states in a path
M Length of model
m.i.d Match. insert and delete states

my. My, Begin and end states

2(x|q) Probability distribution of amino aeids in
state q

T riq) Probability of a transition from state g to r
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according to the probabilities I (m,[m,). 7 (d,Im,), and
F (iglmg). If m, is chosen, generate the first amino acid z,
from the probability distribution 2 (zjm,), and choose a
transition to the next state according to probabilities

G (-]m,), where - indicates any possible next state. If this

next state is the insert state i,, then generate amino acid
z, from 2 (z}i,) and select the next state from J (-|i,). If
delete {d,) is chosen next, generate no amino acid, and
choose the next state from J (-|d,). Continue in this
manner all the way to the END state, generating a
sequence of amino acids z,, z; ... r, by following a path
of states go, ¢; ... gx» Gn.q through the model, where
go =My, (the BEGIN state) and gy, =m,,,; (the END
state). Because the delete states do not produce any
amino acid, N is larger than or equal to L. If g; is 2 match

or insert state, we define /(i) to be the index in the .

sequence z; ... zy of the amino acid produced in state g;.
The probability of the event that the path g5 ... gy, is
taken and the sequence z; ... x; is generated is

Probiz, ...z, go - .- gu.1imodel)
N
= (my,lgy) x _I_II-T(Q:|Q.--1)9(’-’I(:)|Q:)» ¢))]

where we set 2 (zy,lg)=1 if ¢; is a delete state. The
probability of any sequence z, ... x, of amino acids is a
sum over all possible paths that could produce that
sequence, which we write as follows:

Prob(z; ... z,|model)

= ¥ Probiz; ... %, o .. - gy.1|model). (2)
Paths g0- .. q¥+1
In this way a probability distribution on the space of
\sequences is defined. The goal is to find a model (i.e. a
proper model length and probability parameters) that
accuretely describes a family of proteins by assigning
large probabilities to sequences in that family.

This particular structure for the HMM was chosen
because it is the simplest model that captures the struc-
tural intuition of & protein: () a sequence of positions.
each with its own distribution over the amino acids: (b)
the possibility for either skipping a position or inserting
extra amino acids between consecutive positions; and (c)
allowing for the possibility that continuing an insertion or
deletion is more likely than starting one. This choice
appears to have worked well for modeling the protein
families that we have examined, but other types of HMMs
may be better at other tasks (e.g. the more elaborate
models for protein superfamilies used by White el ol.,
1991; Stultz el al., 1993). The important feature of the
HMM method is its generality. One can choose any strue-
ture for the states and transitions that is appropriate for
the problem at hand. Examples of more general HMM
architectures are given in sections (d) and (e). below.

(b) Estimating the parameters of an HM M from
fraining sequences

All the parameters in the HMM (i.e. the transition
probabilities and the amino acid distributions) could in
principle be chosen by hand from an existing alignment of
protein sequences, as in Gribskov et al. (1990}, White et al.
(1991}, Stultz et al. {1993), or from information about the
three-dimensional structure of proteins, as in Bowie
el al. (1991), White et al. (1991), Stultz et al. (1993). The
novel approach we take is to *“learn” the parameters
entirely sutomatically from a set of unaligned primary
sequences, using an EM algorithm. This approach can in

principle find the model that best describes a given set of
sequences.

Given a set of training sequences s(1), ..., £(n), one can
see how well a model fits them by calculating the prob-
ability that it generates them. This probability is simply a,
product of terms of the form given by equation (2), i.e.

Prob(sequences|model) = ﬁ Prob(s(j){model), (3)
=1

where each term Prob(s{j}| model) is calculated by substi-
tuting z; ... , =3(j) in equation (2). This is called the
likelihood of the model. One would’ like this value to be
high. The maximum likelihood (ML) method of model
estimation is to find the model that maximizes the likeli-
hood (3).

An alternate approach to ML estimation is the maxi-
mum’ a posteriori (MAP) approach. Here, we assume a
prior probability distribution over all possible parameters
of the model embodying prior beliefs on what a mode!
should be like. This can then be used to ‘‘penalize’’ models
that are known to be bad or uninteresting. We discuss this
further in Krogh et al. (1993a). In MAP estimation, we try
to maximize the posterior probability of the model given
the sequences. Using Bayes rule, the posterior probability
can be calculated as

Prob(model|sequences)

- Prob(sequences|model) Prob(model)

Prob(sequences) “)

Here Prob(model) is the prior probability distribution,
and Prob(sequences) can be viewed as a normalizing
constant. Since this normalizing constant is independent
of the model, MAP estimation is equivalent to
maximizing

Prob(sequence| model) Prob{model). {5)

over all possible models. The MAP approach is closely
related to minimum description length (Jurka &
Milosavljevie. 1991) and minimum message length

‘(Allison et al.. 1992) methods.

There is no known efficient way to directly calculate the
best HMM model either in the ML or MAP sense.
However. thére are algorithms that given an arbitrary
starting point find a local maximum by iteratively
re-estimating the model in such a2 way that the likelihood
(or the posterior probability) increases in each iteration.
The most common one is the Baum-Welch or forward-
backward algorithm (Rabiner, 1989; Lawrence & Reilly,
1990), which is a version of the general EM method often
used in statistics (Dempster ef al., 1977). The process of
the EM algorithm can be viewed as an iterative adap-
tation of the model to fit the training sequences. The steps
in this process can be summarized as follows:

(1) An initial model is created by assigning values to
the transition probability & (r|l¢) and the amino acid
generation probability 2 (x|g) for each z, g and r, where x
is one of the 20 amino acids and ¢ and r are states in the
HMM connected by a transition are. If one already knows
some features present in the sequences, or constraints on
the sequences, these may sometimes be encoded in the

- initial model. The current model is set to this initial

model.

(2) Using the current model, all possible paths for each
training sequence are considered in order to get a new
estimate J (r|q) of the transition probability J (r|¢) and
a new estimate 2 (z|g) of the amino acid generation
probability 2 (z|q) for each z, ¢ and r. The transition
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probability estimate & {r|q) is obtained by counting the
number of times a transition is made from state g to r, for
all paths of all training sequences, weighted by the prob-
ability of the path. The estimate &£ (z|q) is made in a
similar manner, by counting the number of times the
amino acid z is aligned to the state q.

{8} In the next step of ML estimation, a new cgrrent
mode! is created by simply replacing J (riq) by & (rlg)
and & (z|q} by .‘?(rlq) for each z, g and r. In MAP EM
estimation, the parameters g (rlq) and # (z]g) are further
modified by considering the prior probability of the model
before they are used to replace the old parameters.

(4) Steps (2) and ({3) are repeated until the parameters
of the current model change only insignificantly.

Since the quality of the current model (as measured by
equations (3} or (5}} increases in each iteration. and no
mode! is arbitrarily good, the process eventually termi-
nates and produces a model] that is, at least locally, the
best model for the training sequences to within some
specified precision of the parameters (Dempster ef al..
1977). Typically. this occurs very rapidly (e.g. in less than
10 iterations) even for large models and large sets of
training sequences.

The main computdtional bottleneck in the algorithm is
step (2), since individually examining each possible path
for every training sequence would generally take time
exponential in the length of the longest training sequence.
However, it is possible to use a2 dynamic programming
technique known as the forward-backward procedure to
speed up this step. Using this method, the new parameter
estimates can be calculated in time proportional to the
number of states in the model muitiplied by the total
length of all the training sequences. Details are given in
"the excellent tutorial article on HMMs by Rabiner (1989).

The forward part of the forward-backward procedure
can also be used to efficiently compute- —log
Prob(sequence[model), the negative logarithm of the
probability of a sequence.given the model (as defined in
equation (2)). without summing over all possible paths for
the sequence (Rabiner, 1989). We call this the negative
log likelihood (NLL)-score of the sequence. The average
NLL-score of a training sequence is inversely related to
the likelihood of the model, given by equation (3). and
hence serves as a numerical measure of progress for each
iteration of the EM procedure. The NLL-score can also be
used to evaluate how well the model fits a novel “test”
sequence not present in the training set, as described in
section (c) below.

{c) The Viterbi algorithm and mulliple alignment
Jrom an HMM

The forward-backward procedure is related to the
dynamic programming technique used to align one
sequence. to another, or more generally to align a sequence
to a profile. A variant of the forward-backward procedure
known as the Viterbi algorithm is similar to the standard
profile alignment algorithm (Waterman & Perlwitz, 1986;
Bearton & Sternberg, 1990; Gribskov et al., 1990). Instead
of calculating the NLL-score for a sequence, which impli-
citly involves all possible paths for that sequence through
the model, the Viterbi algorithm computes the negative
logarithm of the probability of the single most likely path
for the sequence. We can write this as

— log max Prob(s, pathli‘nodel), (6)
patks

where Prob(s. pathjmodel) is given in equation (1), with

8=1xy...x;, and path=g,...gy,,. Instead of first maxi-

mizing the probability of the path and then taking the
negative logarithm. it is convenient (and equivalent) to
simply minimize the negative logarithm of the probability
over all paths. This minimum we will call the distance
from the sequence to the model,

dist(s, model) = min {—log Prob(s path|model)}

paths

= min Z [—log T {g:lg; .}~ log P (2y}9.)]
paths im |

This distance from a sequence to & mode! is analogous
to the standard ‘‘edit distance” from one sequence to
another (with gap penalties), see e.g. Waterman (1989),
but is perhaps more related to the distance from a
sequence to'a profile. The term —log 2 (z,;1g;} represents
a penalty for aligning the amino acid zy, to the position
represented by state g¢; in the model. The term
—log J (g;|lg;-,) corresponds to a penalty for using the
transition from g¢,_, to ¢; in the model. If this is a
transition from a match state to a delete state, then this
represents a gap-initiation penalty; if it is from a delete
state to a delete state it represents a gap-extension
penalty; if it is from a mateh state to an insert state, it
represents an insertion-initiation penalty; and if it is a
transition from an insertion state to itself (a “‘self-loop™),
then it represents an insertion extension penalty. One of
the main features of this distance measure is that all these
penalties depend on the position in the model, whereas
they would be fixed in most standard pairwise alignment
methods. Often the most likely path has a signiﬁeantly
higher probability than all other paths, and in that case
the distance defined here will be approximately equal to
the NLL-score defined earlier.

The computation time for the Viterbi algorithm ig
proportional to the number of states in the model multi-
plied by the length of the sequence being aligned, i.e. the
same as the time for the forward-backward algorithm. In
addition, with a simple extension to the algorithm, the
most probable path itself ean be found using the usual
backtracking technique (Rabiner, 1989). This is the
method we use to obtain our multiple alignments: each
sequence is aligned to the model by the Viterbi algorithm,
after which the mutual alignment of the sequences among
themselves is then determined.t

(d) Using the HMM to cluster sequences and
discover subfamilies

When a relatively large number of sequences are avail-
able, it is sometimes possible to obtain improved results
by dividing these sequences into clusters of similar
sequences and training a different HMM for each cluster-
/subfamily. The results of this are illustrated in more
detail in Resuits section (a). Given & large set of unlabeled
and unaligned sequences, a simple extension of the hidden
Markov model enables us to use the EM training algo-
rithm to automatically partition the sequences into
clusters of similar sequences. By iteratively splitting
clusters, this method might be useful for building phylo-
genetic trees in a ‘‘top-down’ manner. However, when
the clusters become too small there will be an insufficient
number of sequences in each cluster to construct an
accurate model, so some “bottom-up’’ processing may
still be necessary.

In order to discover w clusters in the data, we make w
copies of the HMM, one for each cluster. We call these

t We make no attempt to s;!ign portions of the
sequence that use the insert states of the model.
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Figure 2. HMM architecture for discovering sub-
families.

components of the {composite) HMM. Presently. the
number z of clusters and the initial lengths of the models
for these clusters are determined empiricaliy. We then
add a new begin state with « outgoing transitions. one to
each of the begin states of the component HMMs (see
Fig. 2).

This new begin state is analogous to the other begin
states in that it generates no amino acid. We then train
this composite model with the EM algorithm as described
in section (b). above. The EM re-estimation of a com-
ponent model is the same as the re-estimation of a single
model, except that the weight that a sequence has in the
re-estimation of a component is proportional to the prob-
ability of the sequence given that component model.

\, Thus, sequences that have better NLL-scores for a parti-
‘cular HMM component have greater influence in re-esti-
mating the parameters of that component. and this causes
the parameters of that component to change in such a
way that the component further “specializes”™ in modeling
those sequences. The “surgery™ procedure described
below in section (g) is used to adapt the length of that
component to further specialize it. In this manner. the
individual components evolve during training to represent
clusters in the training sequences. This way of using EM is
called mixture modeling in the statistics literature (Duda
& Hart, 1973: Everitt & Hand. 1981). and is known ax
-(soft} competitive learning’” in the neural network litera-

ture (Nowlan. 1999). )

When the model is trained, the probability of a
sequence given any of the submodels can be calculated.
i.e. the probability that the sequence belongs to the
corresponding cluster/subclass. The negative logarithm of
this probability corresponds to the NLIl.-score calculated
for & simple HMM. As with the standard HMM we use.
this yields a quantitative measure of how well the model
fits the data. The clusters found can also be compared to

known subfamilies of the sequences. Experiments with
the clustering of globin sequences are described in Results
section (a).

(e) Modeling protein domains with an HMM

There are many cases when one does not want to build
a statistical model of a family of whole proteins like
globins, but instead to build a model of a structural motif
or domain that occurs as a subsequence in many different
kinds of proteins. such as the EF-hand motif (Nakayama
el al., 1992) or the kinase catalytic domain {Hanks &
Quinn, 1991). Here we expect our model to only match a
relatively small subsequence of any given protein, with
many other unmatched amino acids appearing before and
after this subsequence. One approach to this problem is to
alter the dynamic programming method used to align a-
sequence to a model so that it tries all possible ways of
aligning each subsequence of the sequence to a model
(Waterman. 1989). We use a simpler {(but almost equiva-
lent) method in which only the HMM model is altered. so
that the same standard procedures (forward-backward
and Viterbi) which we use for models of whole proteins
can be used without modification for models of domains.

(‘onsider a training set of many unaligned sequences
consisting not of complete proteins. but of a specitic
domain. Our first step is to train an HMM for these
sequences exactly as deseribed earlier. As shown in Figure
1. this HMM will have initial and final “"dummy’ match
states my and my_, (where N +1=35 in Fig. 1) that do
not match any amino acid. To alter the HMM to represent
a protein domain. we create 2 new insert states iz and ig.
adding ig to the model before the state m, and i, at the
end of the model after m,_, (see Fig. 3).

We then add a new dummy BEGIX state before ig and
a new dummy EXD state after i;. Eight new transitions
are also added to the model. The first 4 are from BEGIN
to ig. from my_; to iz and the self-loops from iz to itself
and from ig to itself. These all have the same probability
p. for some p between © and 1. The second 4 transitions
are from ig to me. from BEGIN to mg. from ig to END.
and from my_, to ENID). These all have probability 1 — p.
The new states added before and after the model. along
with these transitions. form 2 new modules. 1 for
matching the extra amino acids that oceur in the
sequence-before the domain, and the other for matching
the amino acids after the domain.

The choice of the parameter p does affect the way that
the overall model aligns with a given sequence. To see
how. it is convenient to think of the negative logarithm of
the probability of a transition as a penalty for using that
transition. as described in section {¢). above. In the modi-
fied model. all sequences must suffer a penalty of
—log (1 — p) to enter and again to exit the domain part of
the model. no matter which path thev take. Hence this
penalty is a fixed cost. which can be ignored when

BEGIN

1-p)
e END

(1-p)

(1-p}

Figure 3. HMM architecture for modeling domains.
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comparing the distances or NLL-scores of 2 sequences
with respect to the model. In addition to this penalty. all
sequences will suffer a penalty of K (—logp + log 20).
where K > 0 is the number of amino acids that are not
matched to the original domain model. but are instead
matched in the states iy and ip. The —log20 term arises
because we set the probabilities of each amino acid to 1/20
in the insertion states iy and ig (see Krogh e «l.. 1993a).
Thus p will determine the “‘pressure” on the sequence to
align something to the domain model. i.e. if p is low it is
advantageous to squeeze many amino acids into the
domain model. using the insert states in this part of the
model. If it is high. it is possible that most sequences
.would prefer to pass through the delete states in the
domain model. aligning everything instead to the new
modules before and after it. Tt is straightforward to
estimate p the same way as all the other parameters. the
only additional problem is that the xame value must be
used in all the transitions that use this value. “tying”
these parameters to each other. Otherwise the model
might become biased towards aligning the domain either
near the beginning of the sequence or near the end of the
sequence. We have not attempted to estimate p. Rather.
we have used a fixed p =1 with good results. (This should
be thought of as a limit of p approaching 1. otherwise
~log {1 — p) is infinite.)

Using this construction. it may also he possible to
discover interesting domains by training on whole protein
sequences, and letting EM determine which part of the
proteins to model. Furthermore. if more than one oceur-
rence of the same domain is expected in some sequences.
then this model can be further modified to find all oceur-
rences. This is accomplished by simply adding a transition
from the END state back to the BEGIN state.

(f) Searching a database with an HM M

Once an HMM is built for a family of proteins. it can be
used to search a database such as PIR or SWISS-PROT
for other proteins in this family. Similarly. if an HMM is
built for a protein domain or motif. then it can be used to
search for occurrences of this domain or motif in the
database. much like a PROSITE expression (Bairoch.
1992). a commonly used method for searching for patterns
found in protein sequences. Like a profile (\Waterman &
Perlwitz. 1986: Barton & Sternberg. 1990: Gribskov et al..
1990; Bowie ef al.. 1991: Liithy e al.. 1991). an HMM has
an advantage over a PROSITE expression for database
searches. It takes into account a large amount of statis-
ticel information in matching a sequence. and weighs this
information appropriately, rather than relying on rela-
tively rigid matching rules. .

As deseribed in section (b). above. the forward part of
the forward-backward® dynamic programming method
calculates a NLL-score for any test sequence that
measures how well it fits the model. This NLL-score is the
negative logarithm of the probability of the sequence

given the model. It turns out that this raw NLL-score is-

too dependent on the length of the test sequence to be
used directly to decide if the sequence is in the family
modeled by the HMM or not. However. we can over-
come this problem by normalizing this NLL-score
appropriately.

Whenever we build an HMM for a family of proteins or
for a protein domain. we run all the proteins in a standard
database (for instance. SWISS-PROT) through this HMM
and compute the NLL-score for each sequence. A scatter
plot of sequence length rersus NLL-score for our kinase
catalytic domain model is given in Figure 9.

Most proteins tend to lie on a fairly straight line
(towards the top of the plot) indicating that the
NLL-score for these proteins is proportional to their
lengths. These proteins are the ones that do not contain
the kinase catalytic domain and thus look like “‘random
proteins” to the kinase catalvtic domain model. In
contrast. the proteins that do contain the kinase catalytic
domain tend to have NLL-scores that are much lower
than expected for proteins of their length. and hence
appear below the Jinear band of non-kinase proteins.

We can quantify the difference between NLL-scores for
proteins containing the kinase catalytic domain and
NLL-scores for proteins not containing the domain by 2
simple statistical method, as follows. Using a local
windowing technique.} we first caleulate a smooth
average curve for the roughly linear band of the
XLL-score versus length plot. The standard deviation
around this average curve is also calculated. Using this,
we calculate the difference between the NLL-score of a
sequence and the average NLL-score of typical sequences
of that same length. measured in standard deviations.
This number is called the Z-score for the sequence. We
then choose a Z-score cut-off. either e priori or by looking
at the histogram of Z-scores for sequences in the database
(see Fig. 10). and use it to decide if a given sequence fits
the model or not. We have found that a Z-score of
approximately 5 appears a good choice in most cases we
have examined. but we suggest carefully checking the
histogram by eve before deciding on a cut-off. For
example. for our HMM of the kinase catalytic domain.
sequences with Z-scores below 5 are classified as not
containing the kinase catalytic domain, and sequences
with Z-scores above 5 are classified as containing the
catalytic domain. If the Z-score of a sequence indicates
that it contains the catalytic domain. we can align the
sequence to the catalytic domain HM)MI to find out where
this domain occurs in the sequence. The time it takes to
do a database search is proportional to the number of
residues in the database times the length of the model.
For our globin model (length 147) we can search the
SWISS-PROT database (about 8.375.000 residues) in
approximately 2 CPU hours on a Sun Sparcstation 1.
Using the shorter EF-hand model (length 29) it takes only
18 ('PU seconds (11 user min) on a Sun Sparestation 2. A
parallel implementation of the search procedure (not vet
implemented) will speed up these searches substantially,
as it has the EM training procedure.

While the statistical technigues we have used to deter-
mine Z-scores are still quite crude, we have found that the
HMMs are sufficiently good models that these techniques
work well enough in practice. However. it may be that
more sophisticated techniques are needed in certain cases.

1 The average curve is calculated as follows. For each
length i starting at i = 1. the length {; is computed such
that there are at least 500 proteins of lengths i to /; and
less than 500 proteins of lengths i to /; — 1. The length
interval i to [; is called 2 window. The average curve is
piecewise linear through the points corresponding to the
average length and average NLL-score for each window.
The first and last parts of the curve are calculated by
linear regression in the first and last window.
respectively. The standard deviation of the points from
the smooth curve is also calculated for each window.
The estimate of the average curve can be improved by
eliminating outliers. i.e. NLL-scores that lie many
standard deviations from the average. We iterate the
provess of removing outliers and re-estimating the
average curve until no more outliers remain.
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(g) Initial model, local minima, and choice of model length

As mentioned in section {b), above, when estimating
the model from the training sequences, the EM salgorithm
does not guarantee convergence to the best model. It is
besically a steepest-descent-type algorithm that climbs
the nearest peak (local maximum) of the likelihood func-
tion (or the posterior probability in MAP estimation).
Since finding the globally optimal model seems to be &
difficult optimization problem in general (Abe &
Warmuth, 1990), we have experimented with various
heuristic methods to improve the performance of the
method.

Probably the best method is to give the model 2 hint if
something is already known about the sequences, which is
often the case. A good starting point makes it much more
likely that the nearest peak is at least close to optimal.
This is done by setting the probabilities in the initial
model to values reflecting that knowledge. If, for instance,
an alignment of some of the sequences is available, it is
straightforward to translate that into a model by simply
caleulating the relative frequency of the amino acids and
the transition frequencies in each position, as in the
profile method (Gribskov et al., 1990).

It is of course even more interesting if the model can be
found from a fabula rase, i.e. using no knowledge about
the sequences. For that we have used an initial model
where all equivalent probabilities are the same, i.e.
F (my,,|m,} is independent of the position & in the
model, and similarly for all other transition probabilities,
and 2(zim,) is also independent of k. To avoid the
smaller local maxima, noise is added to the model during
the iteration before each re-estimation. Initially quite a
lot of noise is added, but over 10 iterations the noise is
decreased linearly to zero. Since noise is added directly to
‘the model, it is not like the usual implementation of
simulated annealing, but the principle is the same. The
“annealing schedule” is presently rather arbitrary, but it
does seem to give reasonable resultst if it is applied
several times, and the best of the models found is used as
the final model. :

It is important that the best model be selected, since
suboptimal models do produce inferior alignments in
general. However, when studying alignments from sub-
optimal globin models, we noted that they tend to align
some regions well, occasionally getting better alignments
in those regions than the best overall model found, while
in other regions they are completely incorrect. This leaves
open the intriguing possibility of combining the best
solutions found for different regions into a new overall
best model. We have not yet explored this possibility.

The length of the mode] is also a crucial parameter that
needs to be chosen a priori. However, we have developed
a simple heuristic that selects a good model length, and
even helps in the problem of local maxima. The heuristic
is this: after learning, if more than a fraction} y, of the
paths of the sequences choose d,, the delete state at
position k, that position is removed from the model.
Similarly, if more than a fraction y;,, make insertions at
position k (in state i,), 2 number of new positions equal to
the average number of insertions-made at that position
are inserted into the model after position k. After these

f An alternate method that also appears to give good
results has been developed by Baldi et al. (Baldi et al..
1993; Baldi & Chauvin, 1993). This method uses
stochastic gradient descent in place of the EM method,
which may help in avoiding local minima.

1 Currently we choose y,,; and y,,, each to be 1/2.

changes in the model, it is retrained, and this cycle is
repeated until no more changes are needed. We call this
“model surgery”. ’

(h) Over-fitting and M AP estimation

A model with too many free parameters cannot be
estimated well from a relatively small data set of training
sequences. If we try to estimate such a model, we run into
the problem of overfitting, in which the model fits the
training sequences very well, but gives a poor fit to
related (test) sequences that were not included in the
training set. We say that the model does not “generalize”
well to test sequences. This phenomenon has been .well
documented in statistics and machine learning {see e.g.
Geman e al., 1992; Berger, 1985). One way to deal with
this problem is to control the effective number of free
parameters in the model by using prior information. This
can be accomplished with MAP estimation. Parameters
that we assume (via our prior distribution on models) can
be well-estimated a priori in effect become less adaptive,
because.it takes a lot of data to override our prior beliefs
about them, whereas those ebout which we have only
weak prior knowledge are estimated in almost the same
manner as in maximum likelihood estimation. In this
way, the model can have a very large number of para-
meters, but a much smalier number of “effectively free”
parameters. To make MAP estimation practical, we use
Dirichlet distributions as priors. The details of the method
are described elsewhere {Krogh ef al., 1993a; Brown e al,,
1993).

3. Resuits
{a) Globin experiments

The modeling was first tested on the globins, a
large family of heme-containing proteins involved in
the storage and transport of oxygen that have
different oligomeric states and overall architecture
{for a review see Dickerson & Geis (1983)).
Hemoglobins are tetramers composed of two «
chains and two other subunits (usually 8, ¥, 5 or 8).
Myoglobin is a single chain, some insect globins are
present as dimers and some intracellular inverte-

- brate globins occur in large complexes of many

subunits.

Globin sequences were extracted from the
SWISS-PROT database (release 19) by searching
for the keyword ‘‘globin”. Eliminating the false
positives, resulted in 625 genuine globin sequences
of average length 145 amino acids. We left three
non-globins in the sample for illustrational purposes
giving a total of 628 sequences. The sample of
globins in the database is not the random sample a
statistician would prefer, but is perhaps one of the
best and largest collections of protein sequences
from a homologous family. Searching for the words
“alpha”, “beta’, “gamma’, “delta’, “theta’, and
“myoglobin” in the data file yielded 224 alpha, 199
beta, 16 gamma, 8 delta and 5 theta chains and 79
myoglobins, which adds up to 531 sequences. These
should naturally be considered minimum numbers.
but they give a good picture of how skewed the
sample is.

To test our method, we trained an HMM using
the method described in Methods sections (b) and
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Helix AAAAAAAAAAAAAAAA  BBBBBBBBBBBBBBBBCCCCCCCCCCC

HBA_HUMAN -----—-— VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPEF-DLS~———— HGSA
HBB_HUMAN -——-————- VHLTPEEKSAVTALWGKV--—-NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP
MYG_PHYCA ———m———- VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLF KSHPETLEKFDRFKHLKTEAEMKASE
GLB3_CEITP ---——-———- LSADQISTVQASFDKVKG————~- DPVGILYAVFKADPSIMAKFTQFAG-KDLESIKGTA

GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKFKGLTTADQLKKSA

LGB2_LUPLY —~—=-—-— GALTESQAALVKSSWEEFNA--NIPKHTERFFILVLEIAPAAKDLFS-FLK-GTSEVPQNNP
GLB1_GLYDI -———————- GLSAAQRQVIAATWKDIAGADRGAGVGKDCLIKFLSAHPUMAAVFG-FSG-———AS——-DP
Helix EEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF FFGGGGGGGGGGGGGGGGGGG

HBA_HUMAN QVKGEGKKVADALTNAVAHV---D--DMPNALSALSDLHABKL~-~RVDPVNFKLLSHCLLVTLAAHLPAE
HBB_HUMAN KVKABGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL~-HVDPENFRLLGRVLVCVLABEFGKE
MYG_PHYCA DLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH--KIPIKYLEFISEAITHVLESREPGD
GLB3_CHITP PFETHANRIVGFFSKIIGEL--P-—-NIEADVNTFVASHKPRG---VTEDQLNNFRAGFVYSYMKAHT-~D
GLBS_PETMA DVRWHAERIINAVNDAVASM~--DDTEKMSMKLRDLSGKHAKSF-—QVDPQYFKVLAAVIADTVAAG——--
LGB2_LUPLU ELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-~~VADAHFPVVKEAILKTIKEVVGAK
GLB1_GLYDI GVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVREKGYGNKHIKAQYFEPLGASLLSAMEHRIGGK

Helix BHHHHHEHHHHHEBHEHERHEHHRHEH

HBA_EUMAN FTPAVHASLDKFLASVSTVLTSKYR------
HBB_HUMAR FTPPVQAAYQKVVAGVANALAHKYH-———--
MYG_PEYCA FGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHEITP FA-GAEAAWGATLDTFFGMIFSKM---—~--
GLB5_PETMA ---~-- DAGFEKLMSMICILLRSAY---~~--
LGB2_LUPLU WSEELNSAWTIAYDELAIVIKKEMNDAA---

GLB1_GLYDI MNAAAKDAWAAAYADISGALISGLQS-----

Figure 4. Seven representative globin sequences of known structure and their alignment taken from Bashford et glv
(1987). The letters A to H in Helix denote the 8 different a-helices. Some regions, especially CD, D and FG, are not well
defined. The sequences and their SWISS.-PROT identifiers are Human o (HBA_HUMAN), humanr § (HBB_HUMAN},
sperm whale myoglobin (MYG_PHYCA), larval Chironomous thummi giobin (GLB3_CHITP), sea lamprey globin
(GLB5_PETMA), Lupinus lueus leghemoglobin (LGB2_.LUPLU). and bloodworm globin (GLB1-GLYDI). (In -
SWISS-PROT 19 a 3 is used instead of an “_" in the identifiers.)

(g). We used a homogeneous initial model that
contained no knowledge about the globin family. Its
probability parameters were derived from the prior,
and were the same for all equivalent transitions (i.e.
9 different transition probabilities). All amino acid
probabilities (the 2 distributions) were set equal to
the distribution of the amino acids given by Krogh
et al. (1993a). In the insert states we used a prob-
ability of 1/20 for all amino acids. The only model
parameters set by hand are the initial transition
probabilities and corresponding regularization para-
meters (see Krogh et al., 1993a). From our experi-
ence, the method does not seem to be very sensitive
to the choice of these parameters, but it would
require considerable further experimentation to
verify this quantitatively.

For our training set, we picked 400 sequences at
random from the 628 sequences. We withheld the
remzaining 228 sequences in order to test the model
on data not used in the training process. The model
was trained using noise and model surgery (y;.,=
Yins = O-5), as described in Methods section (g). This
procedure was repeated about 20 times with model
lengths chosen randomly between 145 and 170. The
average run-time was around 60 CPU minutes on a
Sun Sparcstation I. For each run we computed a

NLL-score for the model, which was the average of
the NLL-scores for the training sequences, as
defined in Methods section (b). The final NLL-scores
varied considerably for these runs but the best was
210-7.

We then took this model, produced ten new
models by adding noise, and optimized these. These
models all generated approximately the same
NLL-score and we picked the model with the best
NLL-score, 210-3, having a length of 147. We vali-
dated this modeltf in two ways: from the alignments
it produced, and by its ability to discriminate
between globins and non-globins. The results are
described below. -

(i} Multiple sequence alignments .
A multiple alignment of many globin sequences has

‘been produced by Bashford et al. (1987) by

including into the alignment procedure tertiary-
structure information of seven globins (Fig. 4). This

1 We stress that the final model was chesen aecording
to an objective measure, namely the NLL-score on the
training set, and not retroactively on the basis of how
well it did in multiple alignment or database search
tasks.
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was achieved by aligning these seven sequences and
then aligning the rest of the 226 studied to the
closest of these seven. In contrast. generating
multiple alignments with HMMs requires no prior
knowledge of underlying structure. Using the globin
HMM, we produced a multiple alignment of all the
625 globin sequences by the Viterbi algorithm as
described in Methods section (c). Figure 3 shows this
alignment for the seven sequences from Bashford et
al. (1987).

The alignment found in this experiment agrees
‘extremely well with the structurally derived align-
ment of Bashford et al. Our alignment differs in the
region between the C and E helices. However, this is
a highly variable area since only some globins
possess a2 D helix. The difference in the F/G-helices
is more pronounced, with the remaining discrepan-
cies possibly representing an alternative ahgnment
Four of the insertions the model chose are in vari-
able regions between or at the end of helices. i.e.

between secondary structure elements. The last two
insertions appear in the F/G region.

(ii) Database search: discriminating globins from
non-globins

The globin HMM model we found was also tested on
all the 25.044 proteins in the SWISS-PROT data-
base release 22:0 of length less than 5000 amino
acids (which is all but 2}. A NLL-score and a Z-score
were computed for each of these sequences as
described in Methods section (f). These are plotted
in Figures 6 and 7 as a scatter plot and a histogram,
respectively. For the histogram (but not the scatter
plot). the data were filtered as follows:

All sequences with a Z-score >3'5 and either
more than a total of 25, or more than 159, unknown
residues were removed (a total of 23). Currently we
treat an unknown amino acid, X, as being the most
probable amino acid at the position it is matehed to,

Helix AAAAAAAAAAAAAAAA  BBBBBBBBBBBBBBBBCCCCCCCCCCC DDDDDDDEE

EXRREREEERRERERF  ++tbtP kR ek kkkbkbkkt ik +
HBA_HUMAN V......... LSPADKTNVKAAWGKVGA . . BAGEYGAEALERMFLSFPTTIKTYFPHF-DLSHGSAQ~~~~
HBB_HUMAN Vh........ LTPEEKSAVTALWGKV~~. . NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP
MYG_PHYCA V......... LSEGEWQLVLHVWAKVEA. .DVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASE
GLB3_CHITP -......... LSADQISTVQASFDKV--. .KGDPVG--ILYAVFKADPSIMAKFTQF-AGKDLESIKGTA
GLBS_PETMA PivdtgsvapLSAAEKTKIRSAWAPVYS..TYETSGVDILVKFFTSTPAAQEFFPKFKGLTTADQLKKSA
LGB2_LUPLU Ga........ LTESQAALVKSSWEEFNA. . NIPKHTHRFFILVLEIAPAAKDLF-SFLKGTSEVPQ-NNP
GLB1_GLYDI G......... LSAAQRQVIAATVKDIAGadNGAGVGKDCLIKFLSABPQHAAVF—GF----SGASD-—LP
Helix EEEEEEEEEEEEEEEEEEE FFFFFFFFF FFFFFGGG GGGGGGGGGGGGGGGG

RERkREERERRERERRKE REEEERKKE RxkERERREERERERS
HBA_HUMAN -VKGHGKKVADALTNAVARVDD..... MPNALSALSDLHA. . .HKLRVDPV. NFKLLSHCLLVTLAAHLP
HBE_HUMAN KVKAHRGKKVLGAFSDGLAHLDN.....LKGTFATLSELHC...DKLHVDPE.NFRLLGKVLVCVLARHFG
MYG_PEYCA DLKKHGVTVLTALGAILKKKGH..... HEAELKPLAQSHA. . . TK-HKIPIKYLEFISEAIIHVLHSRHP
GLB3_CHITP PFETHANRIVGFFSKIIGELPK..... IEADVNTFVASHK. . . PR-GVTHD . QLENFRAGFVSYMKAH--
GLBS_PETMA DVRWHAERIINAVNDAVASMDDtek..MSMKLRDLSGKHA. . .KSFQVDPQ.YFKVLAAVIADTVAA-~~
LGB2_LUPLU ELQAHAGKVFKLVYEAAIQLQVtgvvvTDATLKNLGSVHV. . .SK-GVADA.HFPVVKEAILKTIXKEVVG
GLB1_GLYDI GVAALGAKVLAQIGVAVSHLGDegk..MVAQMKAVGVRHKgygNK-HIKAQ.YFEPLGASLLSAMEERIG
Helix HHHHHHAHHHHEAHHHHHHARBEHAHA
SRkt kR Rk kok Rk kR Rk k

HBA_HUMAN AEFTPAVHASLDKFLASVSTVLTSKY...... R
HBB_HUMAN KEFTPPVQAAYQKVVAGVANALAHKY...... H
MYG_PHYCA GDFGADAQGAMNKALELFRKDIAAKYkelgyqG
GLB3_CHITP TDF-AGAEAAWGATLDTFFGMIFSKM...... -
GLB5_PETMA GD--———- AGFEKLMSMICILLRSAY...... -
LGB2_LUPLU AKWSEELNSAWTIAYDELAIVIKKEMnda...A
GLB1_GLYDI GKHMAAKDAHAAAYADISGALISGLq ..... S

Figure 5. The ahgnment of the same 7 globins as in Fig. 4. as obtained from our model trained on 400 randomiy
chosen globin sequences. The capital letters represent amino acids aligned to the main line of the model. —. to deletions in

the model. and lower-case letters to amino acids treated as insertions by the model. The .

is used as a fill character to

accommodate insertions. No attempt has been made to align the insertion regions. In the line above the alignments *
indicates complete agreement of a column iwith the structural ahgnment (Fig. 4) and + denotes a minor deviation (the
only accepted difference is a reasonable displacement of a gap). The regions between the helices are not checked in this
way. The training set contained 5 of the 7 globins. not HBA_LHUMAN and GLB5-PETMA.
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Figure 6. Plot of NLL-score rersus sequence length for globins and non-globins. All sequences of length less than 300
from the SWISS-PROT 22 database are shown. including partial sequences and 3 false globins from the globin file. and

sequences from the database containing many Xs.
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Figure 7. Histogram showing the number of sequences
with a certain Z-score. The training set of 397 globins. the
test set of 231 globins. and the rest of the sequences from
SWISS-PROT 22 after “filtering" are shown. The insert
shows expansion of the region around a Z-score of 5.

so sequences with many Xs spuriously match the
model very well.

Since we searched a newer release of
SWISS-PROT (release 22) than the one from which
the globin training set was extracted (release 19),
eight new globins were found and incorporated into
the test set.

Five globin fragments of length 19 to 45 were
removed from the data. .

Three non-globin sequences in the globin file that
were identified as outliers in Figure 6 were removed.
One of these non-globins was left as part of the
training set to illustrate the robustness of the
method.

The model distinguishes extremely well between
globins and non-globins. Choosing a Z-score cutoff
of 5 we would miss 2 out of 628 globinst and get
essentially no false positive globins. There is one
“non-globin”’, a bacterial hemoglobin-like protein
(SWISS-PROT id HMP_ECOLI), that may or may
not be counted as a false positive. Only one
sequence, the heme containing catalase of
Penicillium vilale (CATA_PENVI, Z-score 4+7), has
a Z-score between 42 and 51, so any cutoff in this
range will essentially give the same separation. The
two sequences falling between a Z-score of 1-and 4

+ 628 in the original data set. plus 8 new. minus 3
spurious. minus 5 fragments. 397 were left from the
training and the remaining 231 made up the test set.



1512

Hidden Markov Models

{GLB_PARCA and GLB_TETPY) are protozoan,
whereas the other globins are metazoan. The
primary sequences of these globins are similar and
have little similarity with other eukaryotic globins.
Note also that both of these sequences are in the
test set.

(iit} Discovering subfamilies of globins

We also performed an experiment to automatically
discover subfamilies of globins using the method
described in Methods section (d). An HMM with ten
component HMMs was used. The initial lengths of
_the components were chosen randomly between 120
and 170, but were adjusted by model surgery during
training. We trained this HMM on all 628 globins
and then calculated the NLL-score for each
sequence for each of the ten component HMMs.
A sequence was classified as belonging to the cluster
represented by the component HMM that gave the
lowest NLL-score, i.e. the one giving the highest
probability to that sequence.t Three of these
clusters were empty and the remaining seven non-
empty ones represented chains from known globin
subfamilies:

Class 1. 233 sequences: principally all 2, a few {
(an a-type chain of mammalian embryonic hemo-
globin}, n/n’ (the counterpart of the & chain in major
early embryonic hemoglobin P), and 6-1 chains
(early erythrocyte a-like).

Class 2. 232 sequences, almost all 8, a few §

\(ﬁ-like), ¢ (B-type found in early embryos), y
{comprise fetal hemoglobin F in combination with 2
a chains), p (major early embryonic f-type chain)
and @ chains (embryonic f-type chain).

Class 3. 71 myoglobins.

Class 4. 58 sequences. The 13 highest scoring in
this cluster are leghemoglobins. This class contains a
variety of sequences including the three non-globins
in original data set. :

Class 5. 19 sequences. Midge globins.

Class 6. Eight sequences. Globins from agnatha
(jawless fish).

Class 7. Seven sequences. Varied.

We have not repeated this experiment using
different randomization to ascertain if better results
can be obtained. However, we are encouraged by
the results of this first experiment since it is able to
classify correctly the major globin subfamilies
(alpha, beta and myoglobin).

{iv) The final globin model

Examination of the model itself yields information

on the structure of globins. Figure 8 shows the

normalized frequency counts (the numbers used to
" re-estimate thie parameters of the model) from some

parts of the final model. The thickness of a line

t We can also calculate the posterior probability of
each cluster by looking at the transition probabilities
out of the global start state, and thereby obtaining a
posterior distribution over the 10 clusters for each
sequence. However, these posteriors are very sharply
peaked, so this adds little to the analysis.

indicates what fraction of the 400 training
sequences made that transition or used that parti-
cular amino acid. A broken line indicates that less
than 5%, of the sequences used that transition. (The
continued delete is mostly due to fragments that
have to make many deletions.) The histogram in a
match state shows the distribution of amino acids
that were matched to that state. The number in an
insert shows the average length of an insertion
beginning at that position.

For the amino acids the ordering proposed by
Taylor (1986) is used. Starting from the top, the
amino acids are medium-sized and non-polar, small
and medium polar (around G and P), medium sized
and polar (around K), large medium-polar (around .
F and Y), and finally below they are medium-large
and non-polar. There does seem to be some ten-
dency for the distributions to peak around neigh-
boring amino acids when using this ordering, as one
would expect. When one looks at the whole model,
regions that are highly conserved are also readily
distinguished from the more variable regions, both
as a function of the probability that a position is
skipped, and the entropy of the distribution of
amino acids at that position.

(b) Kinase experiments

Protein kinases are defined as enzymes that
transfer a phosphate group from a phosphate donor
onto an acceptor amino acid in a substrate protein
(Hunter, 1991; Hanks et al., 1988). Based upon the
acceptor amino acid specificity, they have been
classified into serine/threonine. tyrosine, histidine,
cysteine, aspartyl and glutamyl kinases. Only
enzymes in the first two categories have been well
characterized and recent developments indicate
that some can phosphorylate both aleohol (serine/
threonine) and phenol (tyrosine) groups, the so-
called dual-specificity protein kinases (Lindberg et
al., 1992). It is the region comprising the catalytic
domain of these hydroxyamino acid phosphory-
lating enzymes that we model by an HMM and
which we subsequently refer to as protein kinases or
simply kinases. Despite the differences in size,
substrate specificity. mechanism of activation, sub-
unit composition and subcellular localization, all
these kinases share a homologous catalytic core
containing 12 conserved subdomains or regions
(Hanks & Quinn, 1991; Hanks et al., 1988).

Because the kinase catalytic domain is only a
subsequence embedded in a larger protein, the
kinase experiments differed from the globin experi-
ments. The HMM used in the globin experiments
modeled the entire protein rather than simply a
segment of a protein as is the case for the kinase

- family. Modeling domains requires several modifica-

tions to our standard HMM training which are
described in Methods section {e).

The training set for these experiments is a group
of 193 sequences from the March 1992 release of the
protein kinase catalytic domain database main-
tained by Hanks & Quinn (1991). This set is
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Figure 8. Parts of the final globin model. The position numbers are shown in the delete states.

composed of serine/threonine, tyrosine and dual-
specificity kinases principally from vertebrates and
higher enkaryotes but also includes some from lower
eukaryotes and viruses.

We trained ten HMMs on all 193 (unaligned)
sequences in this data set using the prior distribu-
tions described by Krogh et al. (1993a). No para-
meters. of the modeling process were set manually
and the initial model lengths ranged from 242 to 282
positions (this encompasses the average length of
the sequences in our kinase catalytic domain
training set). At the end of the ten training runs, the
best kinase model had a NLL-score (the average
—log P(sequence|model) over the training set) of
588-39 and a length of 254. Modules were added at
the beginning and end of this model as described in
Methods section (e). We tested this model in the
same manner as described earlier for the globin
model.

Our main tests were discrimination tests, in which
we utilized the model to search the SWISS-PROT
version 22 database (25,044 sequences) for proteins
containing the kinase catalytic domain.

As described in Methods section {f), a NLL-score
was computed for each of the sequences in the
database and this information was used to compute
a sequence’s deviation from the average curve as
measured by a Z-score. The data were then filtered
to remove all sequences with any unknown residues
{353) and all sequences having length less than 200
(4230), since complete protein kinase -catalytic
domains range from 250 to 300 residues (Hanks ef
al., 1988). This filtering removed a total of 4386
sequences. A scatter plot of NLL-score versus length
for the SWISS-PROT sequences is given in
Figure 9.

A cutoff of 6-0 was chosen because there are no
sequences with Z-scores between 4:935 and 6773.
See Figure 10 for a histogram of the resulting
Z-scores. Any sequence having a Z-score >6-0 was
therefore classified as containing the kinase cata-
Iytic domain while those with Z-score <60 were
classified as not possessing the domain. With this
cutoff, 296 sequences were classified as containing
the kinase catalytic domain. The remaining 20.357
sequences were rejected.
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Figure 9. Scatter plot of NLL-score versus length for sequences in SWINS-PROT using the Kinase HMM.

\\ The general issue of estimating the humber of
false negatives and false positives when
distinguishing sequences belonging to a given family
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Figure 10. Histogram showing the number of sequences

with a certain Z-score relative to the kinase model.

from non-members is a complex one. In the case of

the globins. it is “relatively” straightforward since

it -is possible to identifyv all the globins in the data-
base by performing a keyword or title string search.
The situation for the kinase domain or the EF-hand
motif (see section (c) below) is less obvious and thus
more problematic. For instance, while a given pro-
tein mayv possess the sequence characteristics for
this motif or domain. functionally, the region may
not bind calcium or possess kinase activity. We
have attempted to address this complicated matter
as best we can as described below. However, we
stress that we do not feel able to give a definitive
answer as to the number of true false negatives and
true false positives in our kinase or EF-hand data-
base discrimination tests.

A list of potential protein kinases was created
from the union of sequences designated as being
kinases from four independent sources: our HMM,
PROSITE (a dictionary of sites and patterns in
proteins (Bairoch. 1992)), PROFTLESEARCH {a
technique used to search for relationships between a
protein sequence and multiply aligned sequences
{Gribskov ef al., 1990)) and a keyword search.

Two regions of the catalytic domain of eukaryotic
protein kinases have been used to build PROSITE
signature patterns. The first pattern corresponds to
an area believed to be involved in ATP binding
(PROSITE  entry PROTEIN_KINASE_ATP,
sequence motif [LIV]IG.G.[FYM][SG].V). There are
two signature patterns for the second region impor-
tant for catalytic activity: one specific for serine/
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Fig. 11.
threonine  kinases (PROTEIN_KINASE ST, OKBOG). bovine cGMP-dependent protein kinase

[LIVMFYC].{HY].D[LIVMFY]K.2X[LIVMFYC)}3)
and the other for tyrosine kinases (PROTEIN_
KINASE.TYR, [LIVMFYCLHY).D[LIVMFY]
[RSTAJ2NR[LIVMFYC)3). Since PROSITE
expressions do not allow for flexible gapping or
insertions, a profile of kinases was constructed from
an alignment of seven kinases and employed for
database diserimination tests (M. Gribskov,
personal communication) using the program
PROFILESEARCH (Gribskov ef al.. 1990). The
seven kinases used to generate the profile are.
bovine cAMP-dependent protein kinase (PIR code

(OKBO2C), bovine protein kinase C (KIBOC),
human mos kinase-related transforming protein
(TYHUFS6). human ref-a kinase-related trans-
forming protein (TVHUMS), mouse pim-1 kinase-
related transforming protein (TVMSPI), and human
Jeslfpe  kinase-related  transforming  protein
(TVHUFF). The keyword search consisted of
searching the descriptions of the sequences in
SWISS-PROT for the following strings: “SERINE/
THREONINE-PROTEIN KINASE. SER/THR-

PROTEIN KINARE. PROTEIN-SERINE/
THREONINE KINASE. PROTEIXN-SER/THR



TYROSINE KINASE, PROTEIN-TYR KINASE,
V-ABL, C-ABL, V-FGR, C-FGR, V-FMS, C-FMS,
V-FPS/FES, V-FES/FPS, C-FPS/FES, C-FES/FPS,
V-FYN, C-FYN, V-KIT, C-KIT, V-ROS, C-ROS,
V-SEA, C-SEA, V-8RC, C-SRC, V-YES, C-YES,
V-ERBB™. '

Of the 296 SWISS-PROT 22 sequences that were
above the Z-score cutoff of 6:0 and were thus classi-
fied as containing a kinase domain by our HMM,
278 were similarly classified by PROSITE, PRO-
FILESEARCH and the keyword search. These 278
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Fig. 11.
KINASE, . TYROSINE-PROTEIN KINASE, sequences may be considered to constitute “certain
TYR-PROTEIN KINASE, PROTEIN-  kinases”. Figure 11 shows the multiple sequence

alignment generated by our HMM of some represen-
tative kinases from this set (sequences 1 to 22).
Sequences 23 to 40 are the 18 sequences (296 minus
278) that were designated as kinases by the MM
and one or two of the three other methods. For
PROSITE, we consider a sequence to be a kinase if
it satisfies one or more of the three patterns
PROTEIN_KINASE_ATP, PROTEIN_KINASE_
ST or PROTEIN_KINASE_TYR as a true positive
(“T" in Fig. 11B). PROSITE false negatives (“N"),
potential hits (P”) and false positives (“F”,
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sequences which do not belong to the set under
consideration) are ignored.

Among the 18 sequences classified as kinases by
our HMM, eight (23 to 26, 35, 38 to 40} were also
deemed to be kinases by the keyword search and
PROSITE, and one {27) by PROFILESEARCH
and PROSITE. The remainder (28 to 34, 36 to 37,
those indicated by 9, in Fig. 11B) are particulate
guanylyl cyclases and except for 36 to 37,
PROFILESEARCH also defines them as possessing
a kinase domain. These guanylyl cyclases contain a
single transmembrane domain, a cyclase catalytic
domain and an intracellular protein kinase-like

domain in which protein kinase activity has not
been seen to date (reviewed by Garbers, 1992).
Although these sequences are not kinases in terms of
function, they possess all the conserved subdomains
(subdomain 1, the nucleotide binding loop is modi-
fied in some) and the majority of conserved residues
present in certain kinases (see Subdomain of
Fig. 11A and positions indicated by *).

Sequences 41 to 50 are the top ten sequences in
SWISS-PROT immediately below our cutoff of 6-0.
Of these, the first three {41 to 43) were classified as
kinases by two out of PROSITE, PROFILE-
SEARCH and the keyvword search. Our cutoff was
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Fig. 11.

chosen from a visual inspection of a histogram of  domain is absent. Three (51 to 53) possess divergent
Z-scores which indicated that 60 lay in a large gap  forms of many of the conserved regions and like 11
(see Fig. 10). If the Z-score cutoff is lowered to the to 43, although they are below our cutoff, the HMM
next largest gap (from Z-score 39 to 4:8) between s able to generate an alignment that correctly iden-
sequences 43 to 44, then these three viral sequences tifies divergent forms of conserved regions. Finally,
{41 to 43) would also bg categorized as kinases by  there are three aminoglycoside 3'-phosphotrans-

the HMM.

ferase sequences (34 to 33, 58) which are only desig-

Of the eight sequences (41, 51 to 53, 56 t0 57. 59 nated as kinases because they satisfy the PROSTTE
to 60) that were not classified as kinases by our  expression for the catalytic loop.
HMM but were classified only by the keyword Inspection of Figure 11B permits an estimation of
search and PROSITE, one (41) is the first sequence  the accuracy of the various methods in dis-
below our cutoff discussed above. Four (56 to 57, 39  tinguishing kinases from non-kinases in database
to 60) are partial sequences where the kinase discrimination tests. The HMM generates six false
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negatives (41 to 43, 51 to 53) of which the first three
fall immediately below our kinase cutoff. For
PROFILESEARCH, there are 12 false negatives
(23 to 26, 35, 38 to 41, 51 to 53) but it should be
recalled that eight of these (those indicated by $ in
Fig. 11B) do not appear in the results obtained from
searching SWISS-PROT 25 provided to us by M.
Gribskov {personal communication). We suspect
that at least four (23 to 26) would be correctly
classified as kinases by PROFILESEARCH leaving
an estimate of three to eight false negatives. In the
case of PROSITE, using our assumption of a kinase
. to be a true pasitive (T) sequence for anv one of the
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three patterns, there are three false negatives (39, 42
to 43). However, the actual performance of the
PROSITE patterns themselves is much worse; scans
of SWISS-PROT 22 with each of the patterns
PROTEIN_KINASE_ATP. PROTEIN-
KINASE_ST and PROTEIN_KINASE_TYR indi-
vidually yield 40, 2 and 3 false negatives,
respectwelv

The difficulty in quantifying the precise number
of false positives and false negatives produced by
the database discrimination tests may be illustrated
by employving an alternative mechanism for
assessing the number of false negatives. If simply
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ID Length } NLL-score { Z-score | HMM { PROFILE- | Keyword PROSITE

SEARCH A | Bl] B2

23 KLSK_HUMAN 509 1188.032 | 48.056 + -§ + T]1-]T
24 KLSK MOUSE 509 1193.879 | 47.376 + -$ + T} -]T
25 ARKB_HUMAN 689 1826.919 § 31.781 + -$ + *1*yo-
26 ARKB.BOVIN 689 1827.514 | 31.720 + -$ + * e ] -
27 BYR1SCHPO 340 808.153 | 27.540 + + - N|ITT] -
28 CYGR_ARBPU 986 2839.392 | 22.121 + + - %1 - -
29 ANPA_RAT 1057 3062.107 | 21.418 + + - %{ -1 -
30 ANPA_HUMAN | 1061 3072.615 | 21.390 + + %] - -
31 NPB.LHUMAN 1047 3033.232 | 21.220 + + - %l - | -
32 ANPA_MQUSE 1057 | 3065.181 | 21.042 + + - %l -1 -
33 ANPB.RAT 1047 3038.053 | 20.633 + -+ - %l - | -
34 CYGS_STRPU 1125 3277.621 | 18.745 + + - %] -] -
35 VPSF_YEAST 1454 4263.173 | 17.896 + - N|TT -
36 HSER-RAT 1075 3143.529 | 17.681 + - - %) -1 -
37 HSER_.HUMAN 1073 | 3139.039 | 17.552 + - - %] - -
38 KR2.VZVD 510 1521.597 | 9.615 + - + N|T] -
39 KR2_HSV1! 518 1548.949 | 9.042 + - + N|{-1-
40 KR1.HSVII 230 710.448 6.773 + -3 + N|T]{| -
41 KR2.EBV 455 1393.761 | 4.935 - - + T] - T
42 KRB2.VACCV 283 880.650 4.848 - + + N|NJ| -
43 KRB2_.VACCC 283 880.753 4.838 - + + N{iN]J| -
44 AK3.ECOLI 449 1385.412 | 3.900 - - - EE -
45 PSP_.MOUSE 235 754.545 3.804 - - - -] - -
46 DHOM_BACSU 433 1340.413 | 3.706 | . - - - B -
47 FLIG_.BACSU 338 1055.096 | 3.699 - - - -] - -
48 CALQ_RABIT 395 1229.120 | 3.487 - - - - - -
49 NUIM_PODAN 368 1149.759 | 3.415 - - - - b - -
50 RUVA_ECOLI 203 667.519 3.413 - - - - b -] -
51 UlSR_HSVEU 562 1728.770 3.171 - -§ + T - T
52 KRF1_.VACCC 439 1366.011 | 2.900 - -$ + N{T]J -
53 ULST_.HCMVA 707 2165.296 | 2.854 - -3 + N T
54 KKAG.ACIBA 259 838.469 2.370 - - - - -{T
\ 55 KKA8_ECOLI 271 885.548 1.182 - - - -7 -{T
Y 56 KGPB_.BOVIN 293 953.735 0.684 - - + Pl P -
57 EGFR.CHICK 703 2179.703 | 0.065 - - + Pl - P
58 KKA1_ECOLI 271 902.461 | -0467 | - - - -1 T -
59 KDTK_DROME | 753 2334.760 | -0.523 - - + Nf{-{[N
60 KPCG_HUMAN 318 1051.016 | -1.486 - - + P|P| -

B

Figure 11. A, Multiple sequence alignment generated by our kinase HMM of some of the sequences used to train the
HMM (1 to 22) and test sequences from the SWISS-PROT 22 database (23 to 60} (see Results section (b)). Numerals
appearing in the alignments indicate the number of amino acids to be inserted at that point. otherwise the notation
follows the convention of Fig. 5. In Subdomain, the Roman numerais and * refer to the subdomains and residues -
conserved across 75 serine/threonine kinases given by Hanks & Quinn (1991). A and B in PROSITE refer to the ATP
binding and catalytic regions, respectively, used to create 2 different signature patterns for kinases. X-ray identifies the
location of the x-helices AA-AI and B-strands B1-B9 (read vertically) derived from the 27 A erystal structure of the
catalytic subunit of cAMP-dependent protein kinase (sequence 1} (Knighton ef al.. 1991). Sequences 1 to 22 are
representative kinases taken from the March 1992 Protein Kinase Catalytic Domain Database (Hanks & Quinn, 1991).
These are: CAPK-ALPHA, cAMP-dependent protein kinase catalytic subunit, a-form: WEE1 +. reduced size at division
mutant wild-type allele gene product; TIK, mouse serine/threonine kinase; SPK1. 8. cerevisiae kinase cloned with anti-p-
Tyr antibodies; RSK1-N, amino domain of type 1 ribosomal protein 86 kinase; PYT, putative serine/threonine kinase
cloned with anti-p-Tyr antibodies; PKC-ALPHA, protein kinase C, x-form; PDGFR-B, platelet-derived growth factor
receptor B type; PBS2, polymix in B antibiotic resistance gene product: MIK1, 8. pombe mik! acts redundantly with
weel +; MCK1, 8. cerevisiae protein kinase; INS.R, insulin receptor: HSVK. Herpes simplex virus-US3 gene product;
ERK], rat insulin-stimulated protein kinase; EGFR, epidermal growth factor receptor {celtular homolog of v-erbB);
ECK, receptor-like tyrosine kinase detected in epithelial cells; DPYK. developmentally regulated tyrosine kinase in D.
discoideum; CLK, mouse serine/threonine/tyrosine kinase; CDC2HS. human functional homolog of yeast ede2+ /CDC28;
CAMII-ALPHA, calcium/calmodulin-dependent protein kinase II, z-subunit; C-SRC, cellular homolog of v-src; and
C-RAF, cellular homolog of »-raf/mil. Sequences 2 to 4, 6. 10, 11, 14. 17 and 18 are the candidate dual-specificity protein
kinases as defined by Lindberg ef al. (1992). Sequences 23 to 40 are the SWISS-PROT 22 sequences designated as kinases
by our HMM {Z-score >6-0) but not by 2ll 3 other methods, PROSITE. PROFILESEARCH and the keyword search.
Bequences 41 to 50 are the top 10 sequences below our cutoff of 60 and 41 to 43 and 51 to B0 are sequences that
were not classified as kinases by the HMM but were so by one or more (but not all) of the 3 other methods. Note that
sequences identified as kinases by all 4 methods are not shown. All sequences that are less than 200 residues in length
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the number of sequences denoted as kinases only by
all three other methods is evaluated, the number of
false negatives for each of the techniques differ from
the more detailed analysis: two for the HMM
(42 to 43), seven for PROFILESEARCH (23 to 26,
35, 38, 40) and none for PROSITE (ignoring known
false negatives as above). This general problem is
further highlighted by the guanylyl cyclases
(indicated by 9, in Fig. 11B). If the definition of a
kinase is based upon function and not possession of
particular sequence patterns, then the guanylyl
cyclases are the only false positives for both the
HMM and PROFILESEARCH. The PROSITE
patterns PROTEIN_KINASE_ATP, PROTEIN_
KINASE.ST and PROTEIN._KINASE_TYR
produce eight, none and two false positives. respec-
tively, giving some indication of the actual
PROSITE performance. :

Overall, both the HMM and PROFILESEARCH
appear to perform generally better than PROSITE
in the discrimination tests, with the HMM possibly
having a slight advantage over PROFILE-
SEARCH.

The HMM database search did not suggest any
new putative kinases in SWISS-PROT 22.
However, & comparative examination of the HMM
produced multiple sequence alignment and the
crystal structure of the catalytic subunit of cAMP-
dependent protein kinase (Knighton et al., 1991)
(sequence 1), a template for the protein kinase
family, yields insights into the conserved regions
and their fanctions in kinases of unknown structure.
Figure 11A displays the location of secondary struc-
ture elements obtained from this crystal structure.
An invariant Asp in subdomain VIb (Aspl66 in
Knighton et al., 1991) that is proposed to be the
catalytic base is known to diverge in guanylyl
cyclases (28 to 34, 36 to 37) even though the imme-
diate region is highly conserved (Garbers, 1992).
Our results indicate that other invariant residues
appear to be replaced as well. In the sea urchin
spermatozoan cell-surface receptor for the chemo-
tactic peptide “‘resact” {sequences 28 and 34), a Lys

in subdomain II (Lys72) that forms part of the ATP

a- and B-phosphate binding site is changed to His.
The heat-stable entertoxin receptor of rat (36)
replaces an Asp in subdomain IX (Asp200) that
contributes directly to stabilization of the catalytic
loop by Glu. Yeast VPS15 (sequence 35), a probable
serine/threonine kinase that is autophosphorylated,
lacks many of the residues in subdomain 1. In
addition. a conserved ion-pair that stabilizes ATP
{Glu91-Lys72) would be disrupted in VPS15
because the Glu in subdomain 111 is altered to Arg
resulting in the apposition of two positively charged
residues. In the putative B12 kinases of two strains
of vaceinia virus (42 to 43), the proposed Asp cata-
lytic base is replaced by Lys (cf. guanylyl cyclases).
This is accompanied by a further change in the
“general” sequence of the catalytic loop: the
normally positively charged residue at » + 2 has
been altered to Glu. In general, all the sequences
below our cutoff and the last one above it (40 to 60}
appear to lack a-helix F (see X-ray in Fig. 11A). The
functional and or structural consequences of these
modifications on any kinase activity are not clear.

(¢) EF-hand experiments

For these experiments we used the June 1992
database of EF-hand sequences maintained by
Kretsinger and co-workers (Nakayama et al., 1992).
Sequences in this database are proteins containirl%
one or more copies of the EF-hand motif, a 29
residue structure present in cytosolic calcium-modu-
lated proteins (Nakayama et al., 1992; Persechini et
al., 1989; Moncrief et al., 1990). These proteins bind
the second messenger calcium and in their active
form function as enzymes or regulate other enzymes
and structural proteins. The motif consists of an
a-helix, a loop binding a Ca®* followed by a second
helix. Although a number of proteins possess the
EF-hand motif, some of these regions have lost their
calcium-binding property.

For our training set, we extracted the EF-hand

- structures from each of the 242 sequences in the

have been removed. B, Details on sequences 23 to 60 shown in the alignment (arranged in order of decreasing Z-score).
NLL-score and Z-score are measures of how well the kinase HMM fits these SWISS-PROT 22 test sequence that were not
present in the training set {see Results section (b) for more details). In HMM, PROFILESEARCH and Keyword, +
denotes sequences that are classified as containing a kinase domain and ~ those that do not. For PROFILESEARCH, -§
identifies sequences that do not appear in the results obtained’ from searching SWISS-PROT 25 (not 22 as in HMM,
Keyword and PROSITE) provided to us by M. Gribskov (personal communication). Two PROSITE signature patterns
for eucaryotic protein kinases have been derived and these are labeled A and B in the alignment. A is the region believed
to be involved in ATP binding (PROSITE entry PROTEIN_KINASE_ATP) while Bl and B2 indicate the area
important for catalytic activity in serine/threonine kinases (PROTEIN_KINASE_ST) and tyrosine kinases
(PROTEIN.KINASE_TYR), respectively. In all instances, T signifies a true positive; N a false negative (a sequence
which belongs to the set under consideration but which is not picked up by the pattern); P'a “‘potential’’ hit (a sequence
that belongs to the set but which is not picked up because the region that contains the pattern is not yet available in the
data bank, i.e. a partial sequence); and ? an unknown (a sequence which possibly could belong to the set). * Indicates
SWISS-PROT files which contain a cross reference to the specified PROSITE pattern, but these PROSITE entries do
not contain a corresponding pointer to the SWISS-PROT file. — Signifies sequences that do not satisfy the kinase
patterns and % denotes particulate forms of guanylyl cyclase receptors which contain an intracellular protein kinase-like
domain but which have not been shown to possess kinase activity to date (reviewed by Garbers, 1992).
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database. obtaining 885 EF-hand motifs having an
average length of 29. For our first experiment we
trained five HMMs on all 885 EF-hand motifs. using
the standard techniques described earlier. (In sub-
sequent experiments, described below, we trained
on smaller subsets of these 885 sequences.) The best
model had a final length of 29, and a NLL-score (the
average — log P(sequence|model)) of 61-41.

As described in Methods section (e), we modified
the final model to enable it to search the

SWISS-PROT database for sequences containing

the EF-hand motif. We computed .Z-scores for all
sequences as described in section (f) and Figure 12
shows the resulting histogram. In contrast to the
kinases, a visual inspection of the histogram of
Z-scores did not indicate the presence of a distinct
gap thus making the selection of a cutoff more
difficult. After choosing by eve a cutoff of +75 and
excluding all sequences with unknown residues (Xs).
the model classified 232 sequences as containing the
EF-hand sequence motif.

As with the kinase experiments in the previous
section, false positives and false negatives were
identified in the following manner. A list of “certain
EF-hands™ was created from the union of sequences
determined to be containing the EF-hand motif by
three independent sources: PROSITE, a keyword
search, and the results of Michael Gribskov's
PROFILESEARCH. Details of the PROSITE and
keyword searches are given by Krogh ef al. (1993a).
Two different PROFILESEARCH experiments

ere conducted for us by M. Gribskov (personal
communication}). The first employed a profile gener-
ated using the maultiple sequence alignment of
sequences classified as EF-hands by our HMM and
the second was constructed using an alignment of
the following four sequences: Escherichia coli galac-
tose binding protein (JGECG, 1 EF-hand motif).
rabbit parvalbumin (PVRB, 2), human troponin
{(TPHUCS, 4) and human calmodulin (MCHU. 4).

Although a sequence may possess multiple copies
of the EF-hand {or any other) motif, only the one
which most closely resembles that described by the
HMM is identified. Of the 232 SWISS-PROT 22
sequences that were above the cutoff (Z-score
>4-75) and were thus classified as containing an
EF-hand motif by our HMM, 163 were similarly
classified by PROSITE, both PROFILESEARCH
experiments and the keyword search (if only one of
the PROFILESEARCH experiments is considered,
then there are an additional 14 sequences making a
total of 177). These may be considered to constitute
certain EF-hands and Figure 13 shows the multiple
sequence alignment generated by our HMM of some
representative EF-hands from this set (sequences I
to 27). Of the 69 {232 minus 163) or 55 (232 minus
177) sequences above the cutoff and not categorized
as EF-hands by all three other methods, 33 possess
the motif but do not bind calcium (indicated by 2
in Fig. 13B) and six (64, 72, 88, 89, 91. 94) were
classed as EF-hands by only one other method.

The identification of certain EF-hands as
compared to certain kinases is not as straight-

EF—-hands

Number of sequences

20 -10 ° 10 -]

Figure 12. Histogram showing the number of sequences
with a certain Z-score relative to the EF-hand model.

forward, making it difficult to ascertain the precise
number of classification errors made by each tech-
nique. This problem arises partly because of the
absence of a pronounced gap in the histogram of
Z-scores and the resultant uncertainty in assigning
an exact cutoff (Figs 10 and 12). The mnemonic
developed to identifyr EF-hand homologs and
distinguish them from analogs (Nakayvama ef al.,
1992) is known to generate errors and is unable to
detect 8 of the 27 sequences known to be EF-hands
{sequences 1 to 27 in Fig. 13). Therefore. the sensi-
tivity and specificity of the EF-hand database dis-
crimination tests is unlikely to be comparable to the
kinases. Using Figure 13B, an estimate of the false
negative rate for each method was determined by
using the simple notion of evaluating the number of
sequences classified as EF-hands by all methods
other than the one being considered. (Those which
possess the motif but do not bind calcium, denoted
by 9, in Fig. 13B. are not considered.) Using this
criterion. the number of false negatives are 1 for the
HMM (101), 20 for PROFILESEARCH using four
sequences (28, 47, 56 to 57, 59. 67. 74 to 82, 84 to 85,
92 to 93. 96). seven for PROFILESEARCH using
our EF-hand alignment (28, 57, 74, 79 to 80, 92 to
93). one for the keyword search (58) and two for
PROSITE (60. 70). A similar analysis of false posi-
tives produces six for the HMM (52, 71, 83, 86. 90,
94) nine for PROFILESEARCH using four
sequences (97, 99, 111 to 112, 121 to 122, 129, 132 to
133). eight for the kevword (123, 126, 130-131, 134
to 137) and one for PROSITE (120). It should be
noted however, that a search of SWISS-PROT 22
using the PROSITE pattern EF-HAND produces
different results: three false negatives and 24 false
positives (compared with 2 and 1 using the simple
criterion). A total of 26 sequences were not desig-
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nated as EF-hands by the HMM but were classified
so by PROFILESEARCH, PROSITE or the
keyword search. Of these, 19 were classified as such
by only one of these methods. This includes five
fragments where the EF-hand motif is missing:
human and murine spectrin alpha- and beta-chains
{123, 126, 131, 134) and rabbit calgizzarin (125).
Inspection of the HMM produced alignment and
examination of the putative calcium-binding
ligands (Fig. 13) for the 20 sequences immediately
below the cutoff (97 to 116) and the false negatives
and positives suggests thdt many possess potential
EF-hand motifs. This includes six sequences whose
Z-scores lie above our cutoff but are not classed as
EF-hands by any other method: chicken myosin
light chain alkali, smooth muscle (52); bovine
calpactain I light chain (71); 4rabidopsis thaliana
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134 SPCONOUSE  1qutlqdle9A..L.XRAWE.5.R.. . .LTQ.CLGF. ...Q.EF .QRDARGA-4ilenqt I8
135 SPILYEAST  mkfravla$IT..T.TTLFR.5t-.... eee. . o=S. LRD. ... T.0L. YQTATQV-aqe 1que23]
136 SRCRAOKAT  mghhrpuS92R..R.EEAGC.A.S... EJ r.r. -E5G.E3TGpqdal. £Y GHYQPCS-legyeate™
157 SACHAMBIT  mgergpw14dD..L.AENGS.K. r.mm ..... oo ED . ED= VISS. . . E.RP . RNVLARA~Prgbgges?s

A (coni)
Fig. 13.

inorganic pyrophosphatase (83); rat placental
calcium-binding protein (90) (note however that
the mouse protein, sequence 88, is designated
an EF-hand by the keyword search); and rat
and bovine 1-phosphatidylinositol-¢,5-bisphosphate
phosphodiesterase III {86 and 94). A notable
example among the false negatives is the a-1 sub-
unit of L-type calcium channels from carp and
rabbit skeletal muscle (97, 99) and rat and rabbit
cardiac muscle (111, 112). These proteins play an
important role in excitation-contraction coupling
and earry the calcium antagonist binding domains
(reviewed by Grabner et al., 1991). They possess a
highly conserved and evolutionarily preserved puta-
tive intracellular region of 155 residues near the
carboxyl terminus immediately following the fourth
internal repeat. This region has been suggested to
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ID Length NLL-score Z-score HMM PROFILESEARCH Keyward Prosite
Gribikov HMM
28 CALM_ASPNI 148 398.961 12.975 + . . + T
23 MLEI_HUMAN 193 542.924 11.662 + + + - %
30 MLEI.RABIT 191 $37.011 11.66) + + + - %
31 MLEV.HUMAN 194 546.027 11.631 + + + - %
32 MLEG.CHICK 193 543.095 11.60% + + s . %
33 MLEV_RAT 199 561.007 11.561 + + + - %
34 MLEI.CHICK 190 534.042 115186 + + + - £3
35 MLEL.RAT 188 528.051 11.262 + + + - %
36 MLEI_.MOUSE 187 525.056 11.224 + + + - %
37 MLEF_LHUMAN 196 554.316 11.005 + + + - %
38 MLEF_RAT 192 542.332 10.892 + + + . %
39 MLEF.MOUSE 192 542.332 10.892 + + + - %
40 MLEX_CEICK 185 521.797 10.342 + + + - %
41 MLE3.HUMAN 149 411.100 10,201 + + + - %
42 MLEY HUMAN 208 $88.847 10.194 + + + - %
43 MLE3.RABIT 149 411.179 10.177 + + + - %
44 MLE3.RAT 149 41}.207 10.169 + + + - %
45 MLE3.MOUSE 149 411.208 10.169 + + + . %
46 MLE3.CHICK 149 411.206 10.169 + +. + - %
47 AACTHUMAN 892 2642.237 9.957 + - + + T
- 48 MLEBALRO 151 418.497 9.918 + + + - %
49 MLES_HUMAN 151 418.627 9.879 + + + - %
50 MLEN_HUMAN 151 418.627 9.879 + + + - %
51 MLEN.CHICK | 150 415.631 9.798 + + + - %
52 MLEM_CHICK 150 415.631 9.798 + . . . [3
53 MLEG.HUMAN 94 248.725 9.735 + + + - %
54 MLE_PATYE 156 433.703 9.629 + + + . % \

55 MLE_.AEQIR 156 433.703 9.62% + + + - % \
5¢ AACT.DRUME 895 2653.286 9.130 + - + + T
57 RECO_CHICK 192 548.396 8.348 + - - + T
58 MLE_DICDI1 166 465.170 8.834 + + + . T
$9 SPCA_DROME 2415 7205.568 8.787 + - + + T
60 MLR.DICD]1 161 451.967 8.678 + + + + .
61 MLE_.TODPA 159 446.406 8.616 + + + - %
62 SPCN.CHICK 2477 7392.895 8.157 + . + - T
63 CLILMOUSE 96 263.095 1.516 + + + - %
64 AACS.CHICK 887 2663.548 7.446 + - - + -
65 CLIL.RAT 34 257.103 7.423 + + + - %
66 LAVI.PRYPO 355 1039.236 7.298 + - + . T
67 CAP3_RAT 821 2436.445 7.150 + - + + T
68 MLEP.DRUME 155 439.713 7.053 + + + ~ %
69 MLEL_ DROME 155 439.713 7.053 + + + - %
70 SP2D.STRPU 143 397.689 6.990 + + + + R
71 CLIL BOVIN 96 265.582 6.319 + - - - %
72 EHF5.TRYBB 192 554.482 6.797 + + + . R
73 CLI1L_PIG 95 262.586 6.763 + + + - %
74 FCAB_TRYBB 233 676.012 6.684 + - - + T
75 SCP1.ASTPO 192 554.824 6.681 + - + + T
76 CAP2_RABIT 422 1242.278 6.589 + - + + T
77 CAP3_HUMAN 778 2307.499 6.577 + - + + T
78 CAPS_HUMAN 268 782.852 6.383 + - + + T
79 CAP2.HUMAN 706 2074.486 6.305 + - - + T
80 KDGL_PIG 734 2176.760 6.160 + - - + T

B
Fig. 13.

contain functional demains that are typical or inferred EF-hands for these proteins occur within
essential for all L-type caleium channels regardless  this conserved 155-residue segment.

of whether they couple to ryanodine receptors,

The above results were for an HMM trained on all

conduct ions or both (Grabner ef al.. 1991). The 885 EF-hand motifs from the Kretsinger database.
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ib Leagth NLL-score Z-score HMM PROFILESEARCH Keyword | Prosite
Gribskov HMM
. 81 SCPA_PENSP 192 556.636 6.071 + . + + T

82 SCPB_PENSP 192 557.071 5.924 + . + + T

83 IPYR.ARATH 263 769.241 $.909 + B . - .

84 SCP1.BRALA 185 535.787 5.827 + - + + T

85 SCP2.BRALA 18% 535.816 5.818 + - + + T

86 PIP3_RAT 756 2244.255 5.713 + - - . ?

87 AACT.CRICK 888 2641.411 5.684 + . R + N

88 CAB.MOUSE 101 284.695 | 5.589 + . . + .
89 TEGU_SCHMA 190 552.242 5.469 + . + . ?

90 CAB_.RAT 101 285.488 5.369 + . . - .

91 G19P_LHUMAN 527 1560.198 5.330 + . . . T
92 TCH2.ARATH 45 116.235 5.321 + . . + T
93 KDGL_.HUMAN 735 2182.343 5.301 + - 1 - + T

94 PIP3_BOVIN 695 2063.206 5.034 + . . - ?

35 CALM_LYTPI a0 | 6734 4.942 + . . + P
96 CAPI.LHUMAN 714 2120.342 4.924 + . + + T

9T CICI.CYPCA 1852 5530.321 4.714 - -+ - - -

98 GUNF_.CLOTM 739 2196.618 4.602 - . . . ?

99 CIC1_RABIT 1873 5593.640 4.550 - + . . .

100 VSTABPT4 80 224.359 4.470 - . . - .
101 CALG.CHICK 65 178.908 4.438 - + + | + T
102 NIFE_.NOSCO 86 243.556- 4.347 - . . - .
103 ARFL_LDROME 180 524.609 4.300 - . . . A
104 AROAKLEPN 427 1264.280 4.296 - . - . .
105 REL1.HUMAN 185 540.676 4.249 . . . . | .

106 HII.BOVIN 104 298.227 4.240 - . . . .
107 YCSX.CHLPY 110 316.022 4.210 - - - - .
108 DP3X.ECOLI 643 1910.667 4.186 - - - - -
109 AROASALTY 427 1264.760 ¢.130 . . . R .
110 ANX1.CAVCU 346 1022.514 4.043 - . . . .

111 CICCRAT 2169 6481.468 4.011 - + . . .

112 CICC.RABIT 2171 6487.460 £.010 - + .. . .
113 LACA_LACLA 141 407.967 3.986 - - . - .
114 AROA_BORPE 442 1310.475 3.985 - - . . .

115 AROASALTI 427 1265.295 3.945 . . . - .
116 ARDASALGL 427 1265.295 3.945 - - - - -
117 CAP1.CHICK T04 2093.590 3.888 . . - + T
118 PR10.CAVPO 92 267.751 2.866 - + + + 3

119 SCI.RAT €634 1888.35) 2.662 - . - - T

120 QR1.COTIA 676 2015.770 1.941 - . . . T
121 RS37.NEUCR 78 229.363 1.766 - + - -

122 YTRI.SPIAU 140 412.844 1,753 . + . . .
123 SPCB.HUMAN 274 814.811 1.610 . . . + .
124 UTNC.MOUSE 302 899.470 1.146 - . . + T
125 CALG_RABIT 35 106.946 1.126 - + + + P
126 SPCAMOUSE 253 753.490 1.101 - . . + .
127 OTRC.HUMAN 303 902.914 0.988 - . . + T
128 OTNCBOVIN 304 905.856 0.983 - . - + T

128 Y433.BPT4 102 305.597 0.603 - + - - -

130 KDGL_ECULI 121 362.137 0.547 - . B + .
131 SPCA.HUMAN 585 1779.087 0.039 - - - + .
132 IMMC.ECOLI 85 257.06% 0.025 - + . - -
133 DGAL.ECOLI 332 992.734 | -0.028 . + B B .
134 SPCE_MOUSE 236 706.853 -0.161 . B . + .

135 SPIO_YEAST 326 978.184 -1.203 - - - + -
136 SRCH.HUMAN . - 699 2098.085 +2.613 - - . + .

137 SRCH.RABIT 852 2556.715 -3.145 - . - + -

B

Figure 13. A, Multiple sequence alignmeni generated by our EF-hand HMM of some of the sequences used to train the
HMM (! to 27) and test sequences from the SWISS-PROT 22 database (28 to 137) (see Results section (c}). In Structure,
H and L denote residues in an a-helical or loop conformation based upon EF-hands of known structure (Nakayama «t al..
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There is considerable overlap between this training
set and the EF-hand motifs found in SWISS-PROT
22, so in order to provide some clearer cross valida-
tion of our results we also did another series of
experiments. In these experiments, models were
estimated using training sets consisting of different
numbers of randomly chosen EF-hand sequences
from the database of 885 EF-hand sequences. For
training sets consisting of 5, 10, and 20 random
EF-hand sequences, 15 models were estimated, each
using a different randomly chosen training set. For
training sets consisting of 40, 80, 100, 200, and 400
random EF-hand sequences, five models were esti-
mated. In all, 70 models were estimated. A model’s
performance after training was gauged on how well
it performed on a test set which consisted of motifs
from the database of 885 sequences that were not
used in the training set. Thus for each model, two
NLL-scores were computed (see Methods section
{f)), one for the training set and one for the test set.
These NLL-scores serve as a quantitative measure
of how well the model is representing the sequence
data. Figure 14 shows that for small training set
sizes, the model overfits the training data. This is
shown by low training NLL-scores but very high
testing NLL-scores. This effect largely disappears
when the training set size reaches about 100
sequences.

A model’s performance was also gauged on how
well it searches a database for sequences containing
the EF-hand motif. For each training set size, one
model was randomly chosen to search
SWISS-PROT 22. A histogram of the resultant
Z-scores was plotted and a cutoff was chosen by eye.
The number of false positives was computed, as
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Figure 14, Average NLL scores for test and train sets
for models with training sets of size 5, 10, 20, 40, 80, 100,
200 and 400. Error bars represent one standard deviation.

described earlier in this section, by taking a list of
certain EF-hands (i.e. determined to contain the
EF-hand motif by the 3 independent sources) an

counting the number of sequences above the Z-score
cutoff in the HMM database search that were not in
the certain EF-hand list. Figure 15 shows that
models built from small training sets have large
numbers of false positives. Again, this effect dis-

1992). PROSITE denotes the positions used to generate the pattern EF-HAND. Ca-binding identifies the 6 residues
involved in octahedrally coordinating the calcium jon (denoted by X, Y. Z. x, z and y). The oxygen atom at position y
comes from the main-chain and so can be supplied by any amino acid. Sequences 1 to 27 are representatives of the
various EF-hand subgroups in the June 1992 database of EF-hand sequences maintained by Kretsinger and co-workers
{Nakayama et al., 1992). These sequences are: CAMHS, Homo sapiens calmodulin; aACTGG, Gallus gallus a-actinin;
VISININ, G. gallus visinin; TPP24CTF, Canis familiaris p24 thyroid protein; TPHUCS, H. sapiens skeletal troponin-C;
TPAPI1, Astacus poniasticus troponin-C-1: TCBP25, Tetrahymena thermophila TCBP-25; SPEC2A, Strongylocentrotus
purpuratus spec2a; SCBPBL, Branchiostoma lanceolatum SARCY; QUIDLN, Loligo pealei squidulin; MOHSCR, H.
sapiens myosin {RLC-ventricle); MOHSA1, H. sapiens myosin (ELC-L1-skeletal); LPS1A, Lylechirus pictus a-Lpsl;.
LAV, Physarum polycephalum LAV1-2; EFHS, Trypanosoma brucei putative caleium binding protein; CVP, B.
lanceolatum calcium vector protein; CRGHS. H. sapiens calmodulin-related gene; CMSE, Saccharopolyspora erythraea
bacterial-CAM; CDPK, Glycine max calcium. dependent protein kinase: CDC31, Saccharomyces cerevisiae cell division
controi protein 31; CALPLHS, H. sapiens calpain (light); CALCIB, Bos taurus caleineurin-B; CALBNGG, G. gallus
calbindin; CALICE, Caenorhabditis elegans cal 1 gene; BCHS, H. sapiens B S-100 protein; AEQAV 1. Aeguorea vicloria
aequorin-1; and 1F8, Prypanosoma cruzi flagellar calcium binding protein. 28 to 96 are the SWISS-PROT 22 sequences
designated as EF-hands by our HMM (Z-score >4-75) but not by all 3 other methods, PROSITE, PROFILESEARCH
and the keyword search. Note that sequences identified as EF-hands by all 4 methods are not shown. 97 to 116 are the
top 20 sequences below our cutoff of 4:75; 117 to 137 are sequences that were not classified as EF-hands by the HMM but
were so by one or more (but not all) of the 3 other methods. B, Details on sequences 28 to 137 shown in the alignment
(arranged in order of decreasing Z-score). NLL-score and Z-score are measures of how well the EF-hand HMM fits these
database test sequence that were not present in the training set (see Results section (¢} for mare details). In HMM.
PROFILESEARCH, Keyword and PROSITE + and — denote sequences that are and are not. respectively. classified
as containing an EF-hand motif by the 4 specified methods. For PROFILESEARCH. Gribskov and HMM indicate
results based upon profiles generated from four EF-hand sequences and our HMM alignments. T. N. P and ? in
PI;EQSITE have the same meaning as in Fig. 11. 9, indicates sequences which possess an EF-hand motif but do not bind
calcium.
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Figure 15. EF-hand database search false positives for
models trained with 3. 10, 20, 40, 80. 100. 200. 100 and
885 sequences.

appears substantially when the training set size
reaches about 100 sequences.

4, Discussion

A new method to model protein families using
hidden Markov models has been introduced. The
method is capable of tapping into the tremendous
amount of statistical information contained in
many unaligned sequences from the same family.
For the cases of globins, kinases and EF-hands. the
results have shown that by using this method. it is
possible to obtain multiple alignments that mirror
structural alignments, having anly the unaligned
primary sequences as input. The results have also
shown that the model can be used successfully in
database searches for putative analogs of sequences
in a given protein family or domain. Finally. we
believe that the model itself is a valuable tool for
representing the family or domain.

The HMM method we have proposed requires
that many sequences be available from the family or
domain one wants to model. Since the number of
sequences in the protein databases is growing
rapidly, this may be less of a problem in the future,
but it will always be a serious issue. Currently. only
a relatively small number of sequences are available
for most protein families and domains. Tor the
globin family, we found that 400 sequences is
certainly sufficient. Preliminary results indicate

that 200 is enough, and even as few as 70 may -

suffice if theyv are chosen carefully from our data-
base of 628 (70 chosen at random will be nearly all
o- and f-chains). Our experiments using smaller
numbers of EF-hand sequences for- training. as
described in Results section (¢), show a similar
trend. Using careful regularization. these numbers

might even be lowered further. However, there will
be a limit on how small the number of available
sequences can be if one hopes o obtain a reasonable
model starting from a tebula rasa.

We believe that the answer to the problem of
small training sets is to add more prior knowledge
into the training process. One way to do this is by
starting with a better initial model. We have per-
formed several experiments in which we have
started with a model obtained from a small set of
aligned sequences, and then trained the model
further using a larger set of unaligned sequences.
These will be reported in a future paper. We find
that this technique can often give better results.
This also suggests that one application of HMMs
may be in maintaining multiple alignments as the
number of sequences in the alignment grows. Each
time new sequences are added to a dataset of homo-
logous sequences. we can begin with the HMM based
on the alignment of the previous set of sequences,
train it with the larger dataset that includes the new
sequences. and then create a new multiple align-
ment for the larger dataset from this HMM. Not
only will the new sequences be included in the new
alignment. but the alignment of the old sequences
may be improved by utilizing the statistical
information present in the larger dataset.t

Another way to add more prior knowledge into
the training process is to use & more sophisticated
Bayesian prior. We are currently exploring the use
of & prior on the probability distribution over the
amino acids in a match state of the model consisting
of a mixture of Dirichlet priors {Brown et al., 1993).
Using such a prior is like “soft-tying™ the distribu-
tions in the states of the HMM. By soft-tyving we
mean a combination of the idea of tying states (see
e.g. Rabiner. 1989). in which the number of free
parameters is reduced by having groups of states all
sharing the same distribution on the output
alphabet (the 20 amino acids in this case), and the
idea of soft weight sharing from Nowlan & Hinton
{1992). in which the regularizer {in this case the
prior for the distribution of amino acids) is also
adaptively modified during learning. We have
shown that this method can be used to estimate
good EF-hand meaodels using substantially fewer
training sequences. (Other types of more sophisti-
cated priors can be obtained by switching from the
alphabet of the primary sequences to a different
representation based more on the structural or
chemical properties of the amino acids in- the
sequence. We plan to explore these as well.

It ix interesting to note that we have obtained
quite good results in multiple alignment and data-
base searching without using any special weighting
schemes to make up for the statistical bias in ow
training sets (see e.g. Sibbald & Argos, 1990), o1
emploving Dayhoff’s matrix or any of its analog:
(see e.z. Waterman. 1989} to take explicit mutatior

t This point was suggested to us by an anonymous
referee of one of our previous reports.
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probabilities between amiro acids into account. It
also remains to be seen whether or not incorporating
any of these exiensions into the HMM approach wil
yield even better results.

We also believe that some of the errors made by
our HMM models are due to the fact that these
models are suboptimal, in the sense that their
N1L-scores are not as low as they could be. This is
because the EM procedure is not guaranteed to find
the globally optimal model for a given training set.
In other experiments, reported by Haussler ¢ al.
(1993), we trained an HMM for-globins beginning
with a model derived from the Bashford et al. (1987)
alignment, and obtained a slightly lower N Ll.-score
than any model from our experiments using EM on
unaligned training sequences (208 compared to
210-3}. Hence. we know that EM is not locating the
globally optimal model in this case. An important
open problem is to find a reliable way to prevent
EM from getting stuck and returning a suboptimal
solution.

Another issue is the adequacy of the hidden
Markov model itself as a statistical model of the
sequence variation within a protein family. ('learly
an HMM provides at best a “first order”™ model of
sequence variation. There are many kinds of inter-
actions in proteins that are not easily modeled by
HMMs. for example. pairwise correlations between
amino acid distributions in positions that are widely
separated in the primary sequence, but close in the
three-dimensional structure (see e.g. Klinger &
Brutlag (1993)). It would be very valuable to have
more general models that incorporate such inter-
actions while still remaining computationally trac-
table. We are currently exploring the potential of
one-model class of this type to capture the base-
pairing in RXA families (Sakakibara et al.. 1993).
and hope eventually to incorporate some of the
features of these models into our protein models.

Finally, we are encouraged by the quality of the
multiple sequence alignments generated by the
HMMs and the accuracy of the database searches.
For example, the kinase HMM is able to align
correctly class I{T receptor tyrosine kinases which
possess a domain that differs from other receptor
tyrosine kinases by the insertion of a stretch of 70 to
100 residues (see the insertion between the D and E
helices in sequence 8, the B-chain of the platelet-
derived growth factor receptor, in Fig. 11A). With
respect to the database discrimination tests, we
would eventually like to see HMMs built for all the
domains and families currently indexed by
PROSITE expressions. In many cases. HMMs for
subfamilies could be constructed automatically
using the method described in Methods section (d).

- Once this is done, this might then lead to the
construction of a simple “protein language parser”
using HMMs. This parser could be constructed by
connecting all these individual HMMs in parallel
into a single large HMM with a global BEGIN and
END state, and a transition from the END state
back to the BEGIX state. In principle. this parser
should be capable of finding all occurrences of each

of the PROSITE-indexed domains in a single long
protein, using the Viterbi algorithm. The remaining
portions of the sequence could be marked as
“unknown’. While this would not constitute a
complete parse of the sequence, it would be very
useful in providing some automatic annotation of
new sequences, which is of eritical importance as the
rate of growth of the protein databases continues to
accelerate. A related approach to protein anno-
tation is given by Stuitz ef al. (1993), and a related
HMM-based DNA parser for E. coli is described by
Krogh et al. (1993b).

A  comparative examination of the HMM
produced kinase multiple sequence alignment and
the crystal structure of the catalytic subunit of
¢AMP-dependent protein kinase (Knighton e al..
1991) indicates a number of conserved residues in
kinases of unknown structure that may be suitable
for further experimental study (see Results section
(b)). Results from our database discrimination tests
suggest the presence of an EF-hand calcium-binding
motif in a highly conserved and evolutionary
preserved putative intracellular region of 155
residues in the 2-1 subunit of L-type caleium chan-
nels which play an important role in excitation-
contraction coupling (see Results section (c)). This
region has bheen suggested to contain the functional

"domains that are typical or essential for all L-type

calcium channels regardless of whether they couple
to ryvanodine receptors. conduet ions or both. Our
EF-hand HMM indicates the following proteins may
also possess this motif: chicken myosin light. chain
alkali (smooth muscle), bovine calpaetain I light
chain. drabidopsis thaliarna inorganic pyrophospha-
tase. rat placental calcium-binding protein and rat
and bovine 1-phosphatidylinositol-4,5-bisphosphate
phosphodiesterase 111. '

Although there are many experiments left to be
done. based on aur experience, we believe that
HMMs and the EM algorithm have tremendous
potential in the area of statistical modeling of bio-
logical macromolecules. Currently. most of this
potential remains to be realized.

We thank Peter Brown, Seren Brunak. Richard
Durbin. Harry Noller. Martin Vingron. Don Morris. and
Michael Zuker for valuable comments on this work. Very
special thanks to Richard Hughey for implementing our
software on a MASPAR parallel machine and to
MASPAR for providing computer time on their machine
for some of these experiments. and very special thanks to
Michael Gribskov for running his PROFILESEARCH
program for the kinases and EF-hands so that we could
compare the results to those found with the HMM. This
work was supported by NSF grants CDA-9115268 and
TRI1-9123692. OXR grant N00014-91-J-1162. XTH grant
number GM17129. and a grant from the Danish Natural
Science Research ('ouncil. The full alignments and Z-score
tables described in this paper are available in electronic
form. and can be obtained by anonymous ftp from
ftp.ese.ucsc.edu. Our HMM building program and other
tools (written in C) will also be made available from the
same ftp site.
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