
BIOINFORMATICS Vol. 18 no. 2 2002
Pages 315–318

Models@Home: distributed computing in
bioinformatics using a screensaver based
approach

Elmar Krieger ∗ and Gert Vriend

CMBI, Center for Molecular and Biomolecular Informatics, Toernooiveld 1,
NL-6525 ED Nijmegen, The Netherlands

Received on June 14, 2001; revised on August 28, 2001; accepted on September 17, 2001

ABSTRACT
Motivation: Due to the steadily growing computational
demands in bioinformatics and related scientific disci-
plines, one is forced to make optimal use of the available
resources. A straightforward solution is to build a network
of idle computers and let each of them work on a small
piece of a scientific challenge, as done by Seti@Home
(http://setiathome.berkeley.edu), the world’s largest
distributed computing project.
Results: We developed a generally applicable distributed
computing solution that uses a screensaver system similar
to Seti@Home. The software exploits the coarse-grained
nature of typical bioinformatics projects. Three major
considerations for the design were: (1) often, many
different programs are needed, while the time is lacking
to parallelize them. Models@Home can run any program
in parallel without modifications to the source code; (2) in
contrast to the Seti project, bioinformatics applications
are normally more sensitive to lost jobs. Models@Home
therefore includes stringent control over job scheduling;
(3) to allow use in heterogeneous environments, Linux
and Windows based workstations can be combined with
dedicated PCs to build a homogeneous cluster.

We present three practical applications of Mod-
els@Home, running the modeling programs WHAT IF
and YASARA on 30 PCs: force field parameterization,
molecular dynamics docking, and database maintenance.
Availability: Models@Home is freely available including
source code and detailed instructions from http://www.
cmbi.nl/models.
Contact: elmar.krieger@cmbi.kun.nl

INTRODUCTION
No matter how smart the algorithm, it is always too
slow to do the job—overnight on a desktop PC. And
when PCs have finally become fast enough—the algorithm
has become obsolete, replaced by a new approach, with

∗To whom correspondence should be addressed.

fewer approximations. That is a well known experience in
bioinformatics, almost comparable to Murphy’s law. The
usual approach is to split the problem into little jobs that
can be executed independently. The execution time is then
reduced by 1/n, with n being the number of computers
working in parallel. As noted by Amdahl (1967), this ideal
speed-up cannot be reached in practice, leading to the
more realistic formulation

Sn = 1

(1 − PF) + PF/An
(1)

in which Sn it the total speed-up when going from one
to n processors, PF is the ‘Parallelizable Fraction’ of the
program (i.e. the fraction of the total execution time that
can be reduced by working in parallel), and An is the
speed-up of the algorithm’s PF on n processors.

Algorithms in bioinformatics tend to be applied to
a large number of different targets, e.g. all ORFs in a
genome, all sequences in CASP, or all potential drug
candidates in a library. If each computer is assigned
one target, these jobs are completely independent and
parallelize perfectly, as no communication overhead is
required: PF is close to one, An and Sn are close to n. The
coarse-grained nature of typical bioinformatics projects
is probably one of the reasons why most follow-ups to
Seti@Home fall into this area, e.g. FightAids@Home
(http://www.fightaidsathome.com) or Folding@Home
(http://www.stanford.edu/group/pandegroup/Cosm). An
overview of other approaches to distributed computing,
clusters and computational grids is given in Table 1.

METHODS
Models@Home has been designed for use in typical
departmental situations, in which a large number of Linux
or Windows workstations is idle for about 16 h a day. The
program consists of several functional units, as shown in
Figure 1. Detailed installation instructions are available
from http://www.cmbi.nl/models.

c© Oxford University Press 2002 315



E.Krieger and G.Vriend

Table 1. List of different approaches to clusters and distributed computing. S = source code available, O = run your own programs ($ requires payment),
W = available for Windows, U = available for Unix/Linux

Program name www address S O W U Description

Beowulf www.beowulf.org + + − + Software for dedicated Linux clusters
Berkeley NOW now.cs.berkeley.edu + + − + In-house network of workstations
Condor www.cs.wisc.edu/condor + + + + Distributed computing library
Cosm www.mithral.com + + + + Distributed computing library
Distributed.net www.distributed.net − − + + Cracking encryption keys
Entropia www.entropia.com − $ + − Distributed computing for Windows
FightAids@Home www.fightaidsathome.com − − + − Drug design using Entropia
Folding@Home www.stanford.edu/group/pandegroup/Cosm − − + − Protein folding simulations using Cosm
Globus project www.globus.org + + − + Computational grid for Unix
Legion legion.virginia.edu − + − + Worldwide computer for Unix
Models@Home www.cmbi.nl/models + + + + Screensaver cluster for any program
Mosix www.mosix.cs.huji.ac.il + + − + Software for dedicated Linux clusters
Seti@Home setiathome.berkeley.edu − − + + Search for extraterrestrial intelligence
United devices www.ud.com − $ + − Distributed computing for Windows

Fig. 1. Models@Home data flow. Refer to the methods section for details. Abbreviations: ID = Idle Detection module, Exec = Program
execution module, ScrSaver = graphical screensaver module, App 1+2 = application 1+2, TCP/IP = Transmission Control Protocol/Internet
Protocol, NFS = Network File System.

Supervisors
Users of the cluster run programs called ‘supervisors’.
These are typically applications that keep track of the
work that has to be done, but do not do it themselves.
Instead they cut it into pieces and submit the individual
jobs to the Models@Home job scheduler (via an interface
of C functions or a Python class). The supervisors thus
form the part that has to be adapted specifically for a
certain application. This is most easily done by adding a

‘submit to Models@Home’-command to the inner loop of
an existing script. All other aspects of Models@Home are
totally general.

Working clients
As the name suggests, they do the actual work. Ini-
tially, only the Idle Detection (ID) module is active
on these computers. The ID module is highly op-
erating system specific and has been derived from

316



Distributed computing in bioinformatics

existing open-source screensavers. The Linux ver-
sion is based on Jamie Zawinski’s XScreensaver
(www.jwz.org/xscreensaver), with additional changes
to Linux configuration files (/etc/X11/xdm/Xsetup 0,
/etc/X11/xdm/Xsession), the Windows equivalent on Bill
Buckel’s work (www.escape.ca/∼bbuckels). The modified
sources are available from www.cmbi.nl/models.

As soon as the computer is idle (i.e. no mouse move-
ments or key-strokes occur for 15 min), the ID module
launches a graphical screensaver (ScrSaver) and the
execution module (Exec). Both have been implemented
in an operating-system independent way based on the
SDL library, including SDL net for the TCP/IP interface
(www.libsdl.org). Users running batch jobs can configure
the screensaver to become active only if they are not
logged in.

The Exec module contacts the server. This contact
message also contains the time stamps of files that should
be kept up to date (these names are stored with other
information, like the server’s IP address, in the local
configuration file ‘cluster.cnf’).

If there are jobs waiting in the queue, the Exec module
receives a job description (the name of the application
to run, command line parameters, scripts), file updates if
needed, and the data files required to complete the job
(e.g. specific PDB files). These are stored in the working
directory /job. Exec runs the requested application (App 1
or App 2 in Figure 1) and waits until the job has finished.
Result files are sent back to the server. Large applications
consisting of hundreds of files should be permanently
installed on the clients, small and compact programs can
be transmitted as part of the job description.

If a user on a working client terminates the screensaver,
Exec kills the running application and notifies the server
that the job could not be completed. No attempt is made to
put the application on hold and continue at a later time, as
this would negatively affect the cluster’s performance (it is
not known if and when the client will be available again).
Jobs taking a long time must therefore return checkpoint
files in reasonable time intervals. Usually this does not
require a modification of the source code, as most time-
intensive programs already have these mechanisms built
in (e.g. every molecular dynamics program can save a
snapshot of the current simulation state).

Exec can also be run as a stand-alone module (without
the screensaver) on the nodes of a dedicated cluster. It then
allows a very efficient use of cluster resources: while many
batch queueing systems generate the maximum overhead
when the cluster is busy (by asking clients sequentially if
they want to accept a job), Models@Home works the other
way round: clients ask the server for a job, only reaching
the maximum number of requests (and thus network load)
when the cluster is not used at all.

Server
The server is the link between supervisors and working
clients. It manages the job queue ‘cluster.job’ and dis-
tributes jobs according to their priority. It also handles the
transfer of job data files from a job-specific directory on
the supervisor (via NFS) to the working directory on the
working client (via TCP/IP). Job results travel back in the
reversed direction.

The latest file updates are stored in subdirectory /updates
and transmitted to working clients to replace outdated
versions. (In principle any file on the working client can
belong to this update group, including the Models@Home
software and the actual applications.)

The server also collects ‘still alive messages’ from
working clients. If a client does not send such a message
for a given time period, it is assumed to have ‘disappeared
without notice’ (e.g. a power failure) and the job is
retransmitted to another client.

IMPLEMENTATION
Models@Home is based on a straightforward client–
server architecture using the TCP/IP protocol as shown
in Figure 1. Every client has the Models@Home soft-
ware and all applications that are too large for repeated
transmission installed locally (which is most easily
done by remote administration). The main component
of Models@Home is a screensaver that becomes active
when the client is not used for a certain time period. Be-
side displaying some graphical animations, the program
contacts the central server and requests a new job. Jobs
can be added via a Python or C interface. The screensaver
detects when a program has finished, returns the specified
result files and requests a new job. As all this is done by
the Models@Home software, it is possible to run any
program in parallel without modifications to the source
code, as long as user input is not needed.

The above procedure applies to ideal conditions only. A
number of additional features had to be implemented to
cope with problems encountered in practice:

• Hard resets and power failures: computers occasion-
ally stop working, making it impossible to notify the
server about the job interruption. Clients therefore
send a ‘still alive message’ in fixed time intervals.
Especially short intervals require a permanent inter- or
intranet connection and exclude any dial-up clients.

• Program development and bugs: if the program is
under development, it is of course not reasonable
to continuously reinstall it on every client. The
Models@Home communication protocol therefore
includes the time-stamps of selected files including
executables. These are automatically updated if newer
versions are available on the server.

317



E.Krieger and G.Vriend

• Security issues: in the majority of cases, Mod-
els@Home will be used in the intranet only (normally
protected by a firewall). Either because this already
provides enough computer power, or because the
programs are not freely distributable, or because of the
large amount of work required to support users outside
the department. If the ‘world wild web’ is targeted, the
update feature mentioned above must be deactivated,
and it is up to the developer to ensure that the executed
programs cannot do any damage (e.g. a simple SAVE
command in a program script could already overwrite
system files in a Windows environment).

DISCUSSION
The Models@Home environment has been installed and
tested on 30 mixed Linux/Windows PCs at the CMBI
(http://www.cmbi.nl). The following paragraphs describe
some of the applications and concentrate on the aspects
related to parallel execution, the very details will be
described elsewhere.

Molecular dynamics docking
A protocol was developed where docking is performed
with YASARA (http://www.yasara.com) during a molec-
ular dynamics simulation (see Di Nola et al., 1994 for an
early description of a comparable method), which inher-
ently considers both ligand and protein flexibility (Krieger
et al., 2001, submitted). The ligand is shot towards the
protein, allowing side chain reorientations during complex
formation, followed by a short MD simulation, an energy
minimization (simulated annealing) and the evaluation of
the final energy.

To sample conformational space reasonably well, thou-
sands of molecular dynamics simulations with different
initial orientations of ligand and protein are required.
As these are completely independent, the supervisor
could spawn all docking jobs at once, making molecular
dynamics docking an ideally ‘coarse-grained’ application
for distributed computing.

Force field parameterization
Selecting force field parameters that optimally fit a
given force field equation is a lengthy procedure, usually
requiring extensive validation studies. In addition it is
very difficult to obtain an internally consistent parameter
set. We therefore let a force field ‘parameterize itself’
while energy minimizing protein structures (Krieger et al.,
2001, submitted and http://www.yasara.com/nova). This
was done with Monte Carlo moves in parameter space, that
were accepted if the resulting force field did less damage
to high resolution x-ray structures and at the same time
improved models built by WHAT IF (Vriend, 1990).

Each parameter optimization cycle required an energy
minimization of 50 protein structures. The supervisor

therefore spawned 50 jobs. Each job included the PDB
file of the structure, as well as a YASARA script to do the
energy minimization and to finally calculate the RMSD
from the initial structure. Only this RMSD value was sent
back as a result. The 50 RMSDs were averaged and used
as a progress indicator.

For this application of Models@Home, the rate limiting
step was the time it took to minimize the largest protein in
the set. All RMSDs had to be known before the quality
of the current force field could be estimated and new
jobs could be spawned. More computers would thus not
have improved the performance. This is an example of a
‘medium-grained’ application.

Database maintenance
The CMBI hosts a large number of databases, many of
which are not mirrored but generated in-house. Especially
those related to protein structure are often time consuming
to maintain, like the PDBREPORT database, that lists
anomalies in protein structures (Hooft et al., 1996 and
www.cmbi.nl/gv/pdbreport). It contains one entry for
every PDB file, and is mainly used by modelers to find
optimally suited templates.

To keep this database up to date, the supervisor com-
pares it with the PDB once a week, deletes obsolete PDB
reports and spawns jobs to create new ones. All these jobs
are independent and parallelize perfectly.

CONCLUSION
Models@Home provides a flexible environment for
parallel execution of different applications without the
need to modify any of these programs. It is therefore
well suited for bioinformatics, where both the turnover
of different software packages and the requirement for
computer power are huge.

Models@Home can be reconfigured for use with differ-
ent programs without making changes to the source code.
It is freely available and can be downloaded from www.
cmbi.nl/models.

ACKNOWLEDGEMENTS
We would like to thank all researchers at the CMBI for
participating in the Models@Home screensaver project.

REFERENCES
Amdahl,G. (1967) The validity of the single processor approach to

achieving large scale computing capabilities. AFIPS Conf. Proc.,
30, 483–485.

Di Nola,A., Roccatano,D. and Berendsen,H.J. (1994) Molecular
dynamics simulation of the docking of substrates to proteins.
Proteins Struct. Funct. Genet., 19, 174–182.

Hooft,R.W.W., Vriend,G., Sander,C. and Abola,E.E. (1996) Errors
in protein structures. Nature, 381, 272.

Vriend,G. (1990) WHAT IF: a molecular modeling and drug design
program. J. Mol. Graph., 8, 52–56.

318


