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Abstract 
 
This document surveys the computational strategies followed to parallelize the most used software in 
the bioinformatics arena. The studied algorithms are computationally expensive and their computational 
patterns range from regular, such as database searching applications, to very irregularly structured 
patterns (phylogenetic trees). Fine- and coarse-grained parallel strategies are discussed for these very 
diverse sets of applications. This overview outlines computational issues related to parallelism, physical 
machine models, parallel programming approaches, and scheduling strategies for a broad range of 
computer architectures. In particular, it deals with shared, distributed, and shared/distributed memory 
architectures.  
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Introduction 
 �

Information overload 

 
With the growth of the information culture, eff icient digital searches are needed to extract and abstract 
useful information from massive data. In the biological and biomedical fields, massive data take the 
form of bio-sequences flat files, 3D structures, motifs, 3D microscopic image files, and more recently, 
videos, movies, animations, etc. However, while genome projects and DNA arrays technology are con-
stantly and exponentially increasing the amount of data available (for statistics see http://www3.ebi.ac-
.uk/Services/DBStats), our abilit y to absorb and process this information remains near constant. 
 
It was only few years ago when we were confident that evolution in computer-processing speed, 
increasing exponentially like some areas of knowledge in molecular biology, could handle the growing 
demand posed by bioinformatic applications. Processing power has jumped from the once-impressive 
4.77 MHz in the early Intel 8088 to more than one GHz current frequencies in the AMD-K7 and 
Pentium III gallery. Most probably when reading this document the Pentium IV and AMD-K8, with up 
to 1.5 GHz, will be available (for details, http://www.prism.uvsq.fr/mirror/CIC/summary/local). This 
exponential growth rate can also be observed in the development of practically every computer 
component, such as the number of CPU transistors, memory access time, cache size, etc. 
 
However, contemporary genome projects have delivered a blow to this early confidence. From the 
completion of the first whole organism's genome (saccharomyces, mid-1998), the growth rates for 
biological data have become a detriment to sequential computing processing capabilit y. At this point, 
sequential (one-processor) computing can allow only a small part of the massive, multidimensional 
biological information to be processed. Under this scenario, comprehension of the data and 
understanding of the data-described biological processes could remain incomplete, causing us to lose 
vast quantities of valuable information because CPU-power and time constraints could fail to follow 
critical events and trends.  
 �

Computational resources 

 
From a computational point of view, there are several ways to address the lack of hard computing power 
for bioinformatics. The first is by developing new, faster heuristic algorithms that reduce computational 
space for the most time-consuming tasks (Altschul, et al., 1997, Pearson and Lipman, 1988). The second 
is incorporating these algorithms into the ROM of a specialized chip (i.e., the bio-accelerator at 
Weizmann Institute, http://sgbcd//weizmann.ac.il/ ).  
 
The third and most promising consideration, however, is parallel computing. Two or more 
microprocessors can be used simultaneously, in parallel processing, to divide and conquer tasks that 
would overwhelm a single, sequential processor. However promising, parallel computing still requires 
new paradigms in order to harness the additional processing power for bioinformatics. 
 
Before this document embarks on a detailed overview of the parallel computing software currently 
available to biologists, it is useful to explore a few general concepts about computer architectures, as 
well as the parallel programming approaches that have been used to address bioinformatic applications. 
 
 
 
 
 
 
 
 



Parallel Computers 
 �

Parallel Computer architectures: Taxonomy. 

 
A parallel computer uses a set of processors that are able to cooperate in solving computational 
problems (Foster, 1994). This co-operation is made possible, first, by splitti ng the computational load of 
the problem (tasks or data) into parts and, second, by reconnecting the partial computations in order to 
create an accurate outcome. The way in which load distribution and reconnection (communications) are 
managed is heavily influenced by the system that will support the execution of a parallel application 
program.  
 
Parallel computer systems are broadly classified into two main models based on Flynn's (1972) 
specifications: single-instruction multiple-data (SIMD) machines, and multiple-instruction multiple-data 
MIMD machines.  
 
SIMD machines are the dinosaurs of the parallel computing world; once powerful, but now facing 
extinction. A typical SIMD machine consists of many simple processors (hundreds or even thousands), 
each with a small l ocal memory. Every processor must execute, at each computing or ‘clock’ cycle, the 
same instruction over different data. When a processor needs data stored on another processor, an 
explicit communication must pass between them to bring it to local memory. The complexity and often 
the inflexibilit y of SIMD machines, strongly dependent on the synchronization requirements, have 
restricted their use mostly to special-purpose applications.  
 
MIMD machines are more amenable to bioinformatics. In MIMD machines, each computational process 
executes at its own rhythm in an asynchronous fashion with complete independence of the other 
computational processes (Hwang and Xu, 1998). Memory architecture has a strong influence on the 
global architecture of MIMD machines, becoming a key issue for parallel execution, and frequently 
determines the optimal programming model. 
 
It is really not diff icult to distinguish between shared and distributed memory. A system is said to have 
shared-memory architecture if any process, running in any processor, has direct access to any local or 
remote memory in the whole system. Otherwise, the system has distributed memory architecture.  
 
Shared memory architecture brings several advantages to bioinformatic applications. For instance, a 
single address map simpli fies the design of parallel programs. In addition, there is no 'time penalty' for 
communication between processes, because every byte of memory is accessible in the same amount of 
time from any CPU (uniform memory access, UMA architecture). However, nothing is perfect, and 
shared memory does not scale well as the number of processors in the computer increases.  
 
Distributed memory systems scale very well , on the other hand, but the lack of a single physical address 
map for memory incurs a time penalty for inter-process communication (non-uniform memory access, 
NUMA  architecture).  
 
Current trends in multiprocessor design try to achieve the best of both memory architectures. A certain 
amount of memory physically attaches to each node (distributed architecture), but the hardware creates 
the image of a single memory for the whole system (shared architecture). In this way, the memory 
installed in any node can be accessed from any other node as if all memory were local with only a slight 
time penalty. 
 
A few years ago, two technological breakthroughs made possible another exciting approach to parallel 
computing. The availabilit y of very fast processors in workstations, together with the widespread 
utili zation of networks, led to the notion of a "virtual parallel computer" that connected several fast 
microcomputers by means of a Local Area Network. This distributed-memory system was called multi-
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computer architecture.  
 
Multi -computer configurations are constructed mainly with clusters of workstations (COWs), although 
one emerging multi -computer architecture is beowulf-clusters (http://www.beowulf.org), which are 
composed of ordinary hardware components (like any PC) together with public domain software (like 
Linux, PVM or MPI). A server node controls the whole cluster, serving files to the client nodes.  
 
  
 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Summarized Parallel Computer Architecture Taxonomy and Memory Models. Many forms of parallelism 
exist today. Some architectures bring together a relatively small number of very tightly-coupled processors. In other 
designs, the coupling of processors is relatively loose, but the number of processors can scale up to the thousands. A 
diagram of parallel architecture taxonomy is presented on the left. On the right are the most used memory models 
available for these architectural designs. 
 
Multi -computers bring several advantages to parallel computing: cost (on average, one order of 
magnitude cheaper for the same computational power), maintenance (replacing fault nodes), scalabilit y 
(adding new nodes), and code-portabilit y. Some drawbacks also exist, such as the lack of available 
software that enables management of the cluster as one integrated machine. In addition to this, current 
network technology has high latency and insuff icient bandwidth to handle fast parallel processing. 
These factors limit the effectiveness of this architecture at the present time, although it looks promising 
given the expected capabiliti es of future technologies. 
 �

Parallel Programming Models 

 
In simple terms, parallel software enables a massive computational task to be divided into several 
separate processes that execute concurrently through different processors to solve a common task. The 
method used to divide tasks and rejoin the end result can be used as a point of reference to compare 
different alternative models for parallel programs.  
 
In particular, two key features can be used to compare models:  (a) granularity: the relative size of the 
units of computation that execute in parallel (coarseness or fineness of task division); and (b) 
communication: the way that separate units of computation exchange data and synchronize their activity 
 
Most of today's advanced single microprocessor architectures are based on the Superscalar and Multiple 



Issue paradigms (MIPS-R10000, Power-PC, Ultra-Sparc, Alpha 21264, Pentium III , etc.) These 
paradigms have been developed to exploit Instruction Level Parallelism (ILP): the hardware level of 
granularity. 
 
The finest level of software granularity is intended to run individual statements over different subsets of 
a whole data structure. This concept is called data-parallel, and is mainly achieved through the use of 
compiler directives that generate library calls to create lightweight processes called threads, and 
distribute loop  iterations among them. 
 
A second level of granularity can be formulated as a "block of instructions". At this level, the 
programmer (or an automatic analyzer) identifies sections of the program that can safely be executed in 
parallel and inserts the directives that begin to separate tasks. When the parallel program starts, the 
run-time support creates a pool of threads which are unblocked by the run-time library as soon as the 
parallel section is reached. At the end of the parallel section, all extra processes are suspended and the 
original process continues to execute. 
 
Ideally, if we have n processors, the run time should also be n times faster with respect to the wall clock 
time. In real implementations, however, the performance of a parallel program is decreased by 
synchronization between processes, interaction (information interchanges), and load imbalance (idle 
processors while others are busy). Co-ordination between processes represents sources of overhead, in 
the sense that they require some time added to the pure computational workload.  
 
Much of the effort that goes into parallel programming involves increasing eff iciency. The first attempt 
to reduce parallelization penalties is to minimize the interactions between parallel processes. The 
simplest way, when possible, is to reduce the number of task divisions; in other words, to create 
coarsely-grained applications. 
 
Once the granularity has been decided, a crucial question arises: how will t he parallel processes interact 
to coordinate the behaviour of each other? Communications are needed to enforce correct behavior and 
create an accurate outcome. 
 �

Communications 
 

When shared memory is available, interprocess communication is usually performed through shared 
variables. When several processes are working over the same logical address space, locks, semaphores 
or critical sections (blocks of code that only one process can execute at a time) are required for safe 
access to shared variables. 
 
When the processors use distributed memory, all i nterprocess communication must be performed by 
sending messages over the network. With this message-passing paradigm, the programmer needs to keep 
in mind where the data is, what to communicate, and when to communicate to whom. Library 
subroutines are available to facilit ate message-passing constructions: PVM (Sunderam, 1990), MPI 
(http://www.mpi-forum.org/index.html), etc. As one might imagine, writing parallel code for a 
disjointed memory space address is a diff icult task, especially for applications with irregular data-access 
patterns. To facilit ate this programming task, software distributed shared memory provides the ill usion 
of shared memory on top of the underlying message-passing system (i.e., TreadMarks, 
http://www.cs.rice.edu/~will y/TreadMarks/overview.html). 
 �

Task scheduling strategies 
 

Common knowledge gained from working on parallel applications suggests that obtaining an eff icient 
parallel implementation is fundamental to achieve a good distribution for both data and computations. In 
general, any parallel strategy represents a trade-off between reducing communication time and 
improving the computational load balance. 



 
The simple task scheduling strategy is based on a master/slave approach. In essence, one of the 
processors acts as a master, scheduling and dispatching blocks of tasks (e.g., pairwise sequence 
alignments) to the slaves which, in turn, perform the typical calculations specified by the algorithm. 
When the slave completes one block, the master schedules a new block of tasks and repeats this process 
until all tasks have been computed. Eff iciency can be improved by slaves pre-fetching tasks from the 
master so as to overlap computations and communications. Eff iciency is further improved by catching 
problems in slaves, so that slaves communicate with the manager only when no problems are available 
locally. 
 
As the number of slaves scales upward, slaves can be divided into sets, each with a sub-master, in a 
hierarchical fashion. Finally, in a fully decentralized model, each processor manages its own pool of 
tasks, and idle slave processors request tasks from other processors. One can easily see how 
bioinformatics applications, with their massive data calculation loads, would be amenable to parallel 
processing. 
 
At this point, a very schematic and abbreviated description of parallel architectures has been presented 
for easier comprehension. A more academic, up-to-date, and detailed description can be found, for 
example, in Tanenbaum 1999, (chapter 8: Parallel Computer Architectures). 
 
 
BioInformatic Applications 
 
In this section, different and routinely used algorithms, will be presented to describe the strategies 
followed to paralleli ze bioinformatic software. The discourse has been organized by the task-level 
computational pattern observed in such algorithms, from regular to irregular structured (Rodriguez et 
al. 1998). Traditionally, a regular-irregular classification, also named synchronous/asynchronous (and 
their respective semi-regular and loosely synchronous levels), has been used in such a way that it was 
closely related to the characteristic that computations were performed over dense or sparse matrices. 
However, when working with non-numerical applications, as is the case for most of bioinformatic 
applications, the rate of free-dependent tasks, the data access pattern, and the task homogeneity, are 
appropriate indices used to classify applications. 
 �

Regular computational pattern: Database searching 

 
Database searching (DBsrch) is the most heavily used bioinformatic application. It is also one of the 
most famili ar applications to begin a discussion about parallelization in bioinformatics: DBsrch has a 
very simple form as far as data flow is concerned, and a broad range of strategies have been proposed to 
apply parallel computing.  
 
The primary influx of information for bioinformatics applications is in the form of raw DNA and protein 
sequences. Therefore, one of the first steps towards obtaining information from a new biological 
sequence is to compare it with the set of known sequences contained in the sequence databases. Results 
often suggest functional, structural, or evolutionary analogies between the sequences.  
 
Two main sets of algorithms are used for pairwise comparison (the individual task in a DBsrch 
application): (a) exhaustive algorithms based on dynamic programming methodology (Needleman and 
Wunsch, 1970; Smith and Waterman, 1981); and (b) heuristic (faster and most used) approaches such as 
the FASTA (Wilbur and Lipman, 1983, Lipman and Pearson 1985, Pearson W.R. and Lipman 1988) 
and BLAST (Altschul, et al. 1990, 1997) famili es.  
 
DBsrch applications allow two different granularity alternatives to be considered: fine- and coarse-
grained parallelism. Early approaches focused on data-parallel over SIMD machines (notably the 
ICL-DAP massive parallel computer) starting with the pioneering work of Coulson et al. (1987). 



Deshpande et al. (1991) and Jones (1992) presented a work on hypercubes and CM-2 computers. Soon 
after, Sturrock and Colli ns (1993) implemented the exhaustive dynamic programming algorithm of 
Smith and Waterman (1981) in the MasPar family of parallel machines (from the minimum 1024 
processors configuration of MP-1 systems up to a 16384 processors MP-2 systems). They roughed out 
one of the first remote servers over parallel machines (the BLITZ server at the EMBL, http//:www.embl-
heidelberg.de) that is still active at the EBI (http://www.ebi.ac.uk/MPsrch/). 
 
Simple and elegant dynamic programming-based algorithms compute an SN,M matrix (N and M being the 
sequence lengths). The Si,j cell i s defined by the expression:  

Si,j = max [ { Si-1,j-1 + w(xi,yj) }, { Si-1,j + � g }, { Si,j-1 + � g}] 
where w represents a scoring scheme for every pair of residues xi,yj, and � g is a negative value 
representing the penalty for introducing or extending a gap of length g. To compute the Si,j cell , data 
dependencies exist with the value of the previous cell i n the same diagonal, and the best values are on 
the left of the previous row and on top of the previous columns. 
 
Fine-grain means, in this case, that processors will work together in computing the S matrix, cell by cell . 
Edmiston and Wagner (1987), and Lander et al. (1988) organized the CM-2 machine as an array of 
processors to compute in diagonal-sweep fashion the matrix S (see Figure 2). An advantage is that this 
strategy only requires local communications (in each step, Pi sends Si,j to Pi+1 to allow it to compute Si+1,j 
in the next step, while Pi computes Si,j+1). Query sequence length determines the maximum number of 
processors able to be assigned, and processors remain idle at begin/end steps. Both inconveniences are 
important due to the high number of processors usually present in SIMD architectures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Diagonal-sweep fine-grained workload distribution for SIMD machines to avoid data dependencies. Rows 
are distributed along processors (residue xi of query sequence is assigned to processor Pi) and processor Pi starts its 
computations with a delay of i columns. There will be (P x (P-1)) idle processors at the beginning and at the end of 
computations.  
 
Around this time, Colli ns et al. (1987) proposed a row-sweep workload distribution, splitti ng the 
sequence database into groups of 4096 residues to be assigned to a 64x64 array of processors. This 
modification was significant, because solving both problems (number of P's greater than sequence 
length and idle processors), addresses an important problem: data-dependencies. In fact, in step j, Pi 
computes only partially the cell Si,j (Si-1,j-1 is received by a message from Pi-1 in step j-1 and the best 
column value is in the same processor). At this point, the best horizontal value is needed to complete the 
cell final value. To broadcast this value, only log2P messages are used when processor P sends a 
message in iteration i to processor P+2i (with i=1...12). Note that a given processor needs to send a 
message only when it changes its best row value (a very unlikely event); thus, in practical terms, the 
number of messages is much lower. 
 
It might seem unnecessary that the last two paragraphs have been used to discuss parallel strategies for 
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computers that, to use a colloquial expression, are in danger of extinction. However, apart from its 
historical interest, there are other good reasons. As we can see right away, a coarse-grained approach is 
best for a great number of tasks (such as most of today's parallel bioinformatic problems). However, 
several other applications exist for which there are not enough independent tasks to be solved 
concurrently. It is still possible to learn from early approaches, and obtain fruitful conclusions that 
improve new parallel solutions. 
 
There are several proposed strategies for achieving coarse-grained parallelism in DBsrch applications. 
Most of them can be explained on the basis of the following general pseudo-code:  
 
 
 
 
 
 
 
 
 
 
Table 1: General sequential pseudo-code for a DBsrch application. Step [1] sets the initial stage of the algorithm, 
and Step [2] manages the algorithm extension which works until the number of database sequences is exhausted. 
Step [3] loads the next sequence to be compared against the query sequence in step [4]. The result value is often 
used to rank the best results as in step [5], and finally, specific implementations can incorporate a last optimization 
step (i.e., assessing the statistical significance of results) described as step [6] and report results in step [7]. 
 
As should be noted, the algorithm has a very simple form as far as data flow is concerned. The database 
sequence corresponds to the data set to be searched, which, we need to keep in mind, is a set of 
sequences of different lengths. In essence, in a typical coarse-grained parallel implementation, one of the 
processors acts as a "master", dispatching blocks of sequences to the "slaves" which, in turn, perform the 
algorithm calculations. When the slaves report results for one block, the master sends a new block. This 
strategy is possible because results from the comparison between two sequences (query and database 
sequences) are independent of the previous results deriving from the comparison of the query with other 
sequences.  
 
However, the time required in the processing of any given sequence depends not only on the length of 
the sequence, but also on its composition. Therefore, the use of a dynamic load balancing strategy is 
necessary. The simplest way is to modify the way in which the master processor distributes the load on 
demand from the slaves. Obviously, sending one-sequence messages introduces additional expensive 
time overhead due to the high number of messages interchanged. Thus, rather than distributing messages 
sequence-by-sequence, better results are achieved by dispatching blocks of sequences (Deshpande, et al. 
1991).  
 
Additional improvements are obtained by applying buffering strategies that reduce or eliminate slave 
inactivity while waiting for a new message (server data starvation). The master processor can send, at 
the outset, more than one block of sequences to each slave, so that a slave has a new block at the ready 
to continue working as soon as each block is completed. (Trelles et al. 1994a). 
 
Several methods have been used to determine the size of the block of sequences to be distributed. The 
simplest way is to divide the database in n chunks (n being the number of slave processes) and 
obviously assign one chunk to each slave (Martino, et al. 1994) The data chunks can even reside in a 
local disk storage. To minimize load unbalancing, sequences are ordered by size and are assigned in 
round-robin fashion to chunks. The strategy is simple, inexpensive, and effective.  
 
Unfortunately, it also presents at least two diff icult problems: (a) to perform the distribution it is 

  [1] Get-Parameters, get Query-Sequence and Perform Initializations 
  [2] while (there is sequences in the Database) {  
  [3]  fetch a DB-sequence 
  [4]  score = Algorithm(Query-Sequence, DB-sequence, parameters) 
  [5]  Maintain a trace of the best results (DB-seq-Code, score) 
 }  
  [6] Results Optimization 
  [7] Report Best Results 
 



necessary to know in advance the number of processors (n); and (b) when working in heterogeneous 
environments, such as multi -computers clusters of workstations, the CPU-time needed to process each 
chunk can be quite different, depending on the CPU-power and the CPU availabilit y in each node. 
 
A direct solution divides the database in m blocks of sequences (m >> n) of fixed length (with block 
size around 4-16 Kbytes, aiming to maximize the network bandwidth) and assigns blocks to slaves on 
demand. In this way, the maximum imbalance at the end of computations is proportional to the block 
size, and scheduling cost (including message-passing) is proportional to m. The major scheduling-
distribution cost is normally shadowed by using buffering strategies, as explained above. An additional 
specialization can be obtained by using blocks of variable size (Trelles et al. 1994b).  
 
This last approach allows a pattern of growing-size/decreasing-size messages with a minimal scheduling 
cost. It is especially suitable for clusters of workstations because it avoids server data starvation due to 
scheduling latencies. If the first blocks are short, the first servers may finish computing before a new 
block of data is available to them. If the first blocks are large, the last slaves must wait a substantial 
amount of time for their first block of data to be dispatched. Moreover, large blocks in the last steps of 
the data distribution may increase overall processing time due to poor load balancing.  
 
For distributed memory parallel machines, the blocks of sequences arrive at slaves via message passing 
from a master that deals with the file system. It is also possible that the master sends to slaves only a 
pointer in the database, and the slaves load the sequences by themselves through the NFS (Network File 
System) or another particular element, i.e., the CFS (Concurrent File System).  
 
When shared memory is available, a counter-variable, which serves as a pointer into the database, 
manages the workload distribution. Since the counter is located in the shared memory, each processor 
can access it in a guarded region, obtain the value, and move the pointer to the next block. This type of 
system has been implemented for the Cray Y-MP (Jülich, 1995). 
 
Two simple notes complete this epigraph: 
 
(a) The Achilles heel of message passing is the relatively limited data transmission bandwidth in 

the communication pathway. In these architectures, the communication/computation ratio must 
be low to eff iciently port algorithms. It will always be harder to parallelise Fasta or Blast than a 
dynamic programming algorithm; and  

(b) when there are several query sequences for database searching (i.e., in the case of a DBsrch 
server) a process-level of granularity can be applied (in fact, this approach is used at the NCBI 
(http://www.ncbi.nlm.nih.gov/BLAST) 

 
However, there is a more important thing to be learned at this point. When more tasks than processors 
are available, the simplest and most effective strategy is coarse-grained parallelization. This is so 
fundamental that presenting a new algorithm with this feature goes together with its parallel coarse-
grained implementation. Some good examples are: 
 
Structural biology (electron microscopy): determines viral assembly mechanisms and identifies 
individual proteins. The computational-intensive task in this algorithm is associated with imaging the 
3D structure of viruses from electron micrographs (2D projections). The number of tasks is related to 
the set of candidate orientations for each particle, such calculations being at different orientations, 
completely independent of each other. 
  
Protein structure prediction: this task involves searching through a large number of possible structures 
representing different energy states. One of the most computationally intensive tasks calculates the 
solvent accessible surface area that can be measured on individual atoms if the location of neighboring 
atoms is known. 



 
Searching 3D structure databases: as the number of protein structures known in atomic detail i ncreases, 
the demand for searching by similar structures also grows. A new generation of computer algorithms has 
been developed for searching by: (a) extending dynamic programming algorithms (Orengo et al. 1992); 
(b) importing strategies from computer vision areas (Fisher et al. 1992); (c) using intra-molecular 
geometrical information, as distances, to describe protein structures (Holm and Sander, 1993, 1994); and 
(d) finding potential alignments based on octomeric C alpha structure fragments, and determining the 
best path between these fragments using a final dynamic programming step followed by least squares 
superposition (Shindyalov and Bourne, 1998). 
 
Linkage analysis: genetic linkage analysis is a statistical technique used for rapid and largely automated 
construction of genetics maps from gene linkage data. One key application of linkage analysis aims to 
map human genes and locate disease genes. The basic computational goal in genetic linkage analysis is 
to compute the probabilit y that a recombination occurs between two loci L1 and L2. Most frequently 
used programs estimate this recombination function by using a maximum likelihood approach (Ott, 
1991).  
 
All of the previous examples fit perfectly to coarse-grained parallel applications, due to the large 
number of independent tasks and the regular computational pattern they exhibit, together with the low 
communication/computation rate they present. All these features make them suitable for parallelism 
with high eff iciency rates. However, several other interesting examples have non-regular computational 
patterns, and they need particular strategies to better exploit parallelism. 
 
Let's take a deeper look into the last example. In the parallelization of LINKMAP, Mill er et al. (1992) 
first used a machine-independent parallel programming language known as Linda. It was compared to 
the use of machine-specific calls on the study case of a Hypercube computer and a network of 
workstations, concluding that a machine independent code could be developed using that tool with only 
a modest sacrifice in eff iciency. One particular hypothesis says there are many pedigrees and/or many 
candidate �  vectors, treating each likelihood evaluation for one pedigree as a separate task. If there are 
enough tasks, a good load balancing can be obtained. Godia et al. (1992) use a similar strategy for the 
MENDEL program. However, Gupta et al. (1995) observe that typical optimization problems have a 
dimension of only 2 or 3, thus, there is no need for a large number of processors. In conclusion, it is 
important to integrate parallelization strategies for individual function evaluation (coarse grained), with 
a strategy to parallelize the gradient estimation (fine-grained). 
 	

Semi-Regular Computational patterns 

 
A similar problem arises in the parallelization of hierarchical multiple sequence alignments, MSA 
(Corpet, 1988; Gotoh 1993; Mill er 1993, Thompson et al. 1994). The first steps for solving an MSA 
include calculating a cross similarity matrix between each pair of sequences, followed by determining 
the alignment topology and finally solving the alignment of sequences, or clusters themselves.  
 
Pairwise calculation provides a natural target for parallelization because all elements of the distance 
matrix are independent (for a set of n sequences n(n-1)/2 pairwise comparisons are required). 
Computing the topology of the alignment (the order in which the sequences will be grouped) is a 
relatively inexpensive task, but solving the clustering (guided by the topology) is not that amenable to 
parallelism. This is due to the fact that, at this stage, many tasks are to be solved (for a set of n 
sequences it is necessary to solve n-1 alignments). However, only those tasks corresponding to the 
external nodes of the topology can be solved concurrently.  
 
Certainly, parallel strategies for the cross matrix calculation have been proposed (Gonnet et al. 1992; 
Date et al. 1993, SGITM, 1999), all of them in a coarse-grained approach. In addition, when the MSA is 
embedded in a more general clustering procedure (Trelles et al. 1998), combining a dynamic planning 



strategy with the assignment of priorities to the different types of active tasks using the principles of data 
locality has allowed us both to exploit the inherent parallelism of the complete applications, and to 
obtain performances that are very close to optimal. 
 
However, at present and strictly speaking, the last step in MSA remains unsolved for parallel machines. 
When the work is carried out following a coarse-grained parallelization scheme for distributed memory 
architectures, it is then necessary to exchange the sequences and/or clusters that are being modified due 
to the insertion of gaps during their alignment, which is extremely expensive.  
 
For this, we should look back and learn from the earliest fine-grained parallel solutions applied to 
sequence comparison. Today, when mixed shared/distributed memory architectures are available, this 
could be an excellent exercise that -it should be stressed- is far from being an academic one. A full 
solution probably should combine a coarse-grained solution when computing the cross similarity matrix 
with a fine-grained solution for solving the topology. Many challenges are yet to be overcome. 
 


Irregular computational patterns 

 
Applications with irregular computational patterns are the hardest to deal with in the parallel arena. 
In numeric computation, irregularity is mostly related to sparse computational spaces which introduce 
hard problems for data parallel distributions (fine-grained approaches) and data dependencies. The 
latter reduces the number of independent tasks, which affords littl e chance to develop eff icient 
coarse-grained parallel implementations. 
 
A good example of this comes from another routine task in biological sequence analysis; that of 
building phylogenetic trees (Gribskov, M. and Devereux, J. 1991, Cavalli -Sforza and Edwards, 1967; 
Felsenstein, 1973, 1988). Earlier approaches to apply maximum likelihood methods for very large 
sets of sequences have been centered in the development of new simpler algorithms, such as the 
fastDNAml (Olsen et al., 1994), which has been ported to parallel architectures using the P4 package 
(Butler & Lusk 1992). A current parallel version of the fastDNAml, implemented in C with 
communications under MPI is available at http://www.santafe.edu/~btk/science-paper/bette.html and 
at the Pasteur Institute under TreadMarks http://www.cs.rice.edu/~will y/TreadMarks/overview.html. 
Even these simpli fied approaches have been known to be quite computationally intensive. In fact, 
they were reported to have consumed most of the CPU time of the first IBM SP1 installation in the 
Argonne National Laboratory (1993).  
 
Let's centre our attention on the original Felsenstein version of the method (implemented in the 
PHYLIP package, available at evolution.genetics.washington.edu). In very simple terms, the 
maximum likelihood method searches for a tree and a branch length that have the greatest probabilit y 
of being produced from the current sequences that form that tree. The algorithm proceeds by adding 
sequences into a given tree topology in such a way that maximizes the li kelihood topology (suitable 
for coarse-grained paralleli sm). Once the new sequence is inserted, a local-optimization step is 
performed to look for minor rearrangements that could lead to a higher likelihood.  
 
These rearrangements can move any sub-tree to a neighbouring branch. Given a current tree Tk with 
likelihood Lk, one of its k nodes is removed and rearranged in its two neighbour nodes which produce 
two new trees, Tk1 y Tk2, with likelihood Lk1 and Lk2, respectively. The tree with greater likelihood value 
(including Lk) is chosen as the new best-tree and it replaces the current-tree. This procedure is 
performed until the set of nodes to rearrange is exhausted, as can be observed in Table 2.  
 
 
 
 
 



 
 
 
 
 

 
Table 2 Pseudo-code for local-optimization step in DNAml algorithm 

 
Strictly speaking, only those nodes without leaves and a depth of at least 2 (not hanging from the root 
node) can be reorganized, which represent 2k-6 tasks (k being the number of species). For a large 
number of sequences, it could be addressed in a coarse-grained parallel solution by distributing the n-
tasks among different processors. 
 
Unfortunately, the reorganization task of one node is dependent on the reorganization of the previous 
nodes, due to the replacement of the current best-tree. In fact, each new-optimization task must be 
performed over the last best-tree found, and not over the initial topology. This leaves only two tasks 
(likelihood evaluation for Tk1 and Tk2 topologies) that can be solved in parallel. In other words, the 
maximum theoretical speed-up of this step will be limited to this value (2), independent of the 
number of processors used in the computation. 
 
There is no generic procedure to address this type of irregular problem; hence, a good initial 
approach includes a detailed analysis of the computational behavior of the algorithm. In this specific 
case, a careful run-time analysis of the algorithm shows that the number of times a tree with a 
li kelihood better than the current likelihood is obtained is extremely low (see Figure 4). From this 
behaviour, it is possible to conclude that the probabilit y of a new current-best-tree event is rather 
low; or conversely, in most of the cases there is a high probabilit y that a best tree will not be 
produced. The most important implication of this run-time observation is that, having evaluated the 
probabilit y of rearranging a node, the next likelihood evaluation can be started with the same tree 
used to evaluate the previous one. In this way, the task dependencies in the local optimization step are 
avoided (Ceron et al. 1998, Trelles et al. 1998).  

   
Figure 4. Example of the run-time behaviour of the DNAml algorithm in the optimization step (4) using 50 
sequences. The number of circles in each horizontal li ne represents the number of optimization tasks 
successively performed as a function of the number of sequences already incorporated into the topology (in the 
left-hand column). Fill ed circles show those points in which a new maximum value was detected. At the top 
right-hand corner of the figure, the total number of tree likelihood evaluations performed by Ceron et al. 
algorithm is presented, together with the number of extra-evaluations (parallel-penalty) incurred by the algorithm 
and the very low penalty evaluation percentage. 

Current-best-tree Tk (Lk) [from insertion step] 
for i = 1 to n-tasks 

Remove sub-tree i from Tk and produce Tk1 and Tk2 
Likelihood evaluation for Tk1 and Tk2 (Lk1 and Lk2) 
Current-best-tree Tk = tree with greater likelihood (Tk, Tk1, Tk2)  

  end for 
 



 

Conclusions 
 �

Inter-disciplinary work 

 
Born almost at the same time 50 years ago, molecular biology and computer science have grown 
explosively as separate disciplines. However, just as two complementary DNA strands bind together in a 
double helix to better transmit genetic information, an evolving convergence has created an 
interrelationship between these two branches of science. In several areas, the presence of one without 
the other is unthinkable.  
 
Not only has traditional sequential Von Neumann-based computing been fertili zed through this 
interchange of programs, sequences, and structures, but the biology field has also challenged high-
performance computing with a broad spectrum of demanding applications (for CPU, main memory, 
storage capacity, and I/O response time). Strategies using parallel computers are driving new solutions 
that seemed unaffordable only few years ago. 
 �

reusing available software 

 
Parallel computing has shown itself to be an effective way to deal with some of the hardest problems in 
bioinformatics. The use of parallel computing schemes expands resources to the size of the problem that 
can be tackled, and there is already a broad gallery of parallel examples from which we can learn and 
import strategies, allowing the development of new approaches to challenges awaiting solution, without 
the need to 're-invent the wheel'.  
 
Today, it should be natural to "think in parallel" when writing software, and it should be natural to 
exploit the implicit parallelism of most applications when more than one processor is available. In most 
bioinformatic applications, due to a high number of independent tasks, the simplest approaches are often 
the most effective. These applications scale better in parallel, are the least expensive, and are the most 
portable among different parallel architectures. 
 �

new challenges 

 
However, several other challenges in bioinformatics remain unsolved as far as parallel computing is 
concerned. They represent attractive challenges for biologists and computer scientists in the years ahead. 
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