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Abstract

This document surveys the omputational strategies followed to perall €lize the most used software in
the bicinformatics arena. The studied agorithms are cmputationally expensive and their computational
patterns range from regular, such as database seaching applicaions, to very irregularly structured
patterns (phylogenetic trees). Fine- and coarse-grained parallel strategies are discussed for these very
diverse sets of applicaions. This overview outlines computational issues related to parall elism, physicd
madine models, parallel programming approadies, and scheduling strategies for a broad range of
computer architedures. In particular, it deds with shared, dstributed, and shared/distributed memory
architedures.
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I ntroduction

=% |nformation overload

With the growth o the information culture, efficient digital seaches are needed to extrad and abstrad
useful information from maessve data. In the biologicd and hiomedicd fields, massve data take the
form of bio-sequences flat files, 3D structures, motifs, 3D microscopic image files, and more recantly,
videos, movies, animations, etc. However, whil e genome projeds and DNA arrays techndogy are @n-
stantly and exporentially increasing the anourt of data avail able (for statistics e http://www3.ebi.ac
.Uk/Services/DBStats), our ahility to absorb and processthisinformation remains nea constant.

It was only few yeas ago when we were a@nfident that evolution in computer-processng speed,
increasing exporentialy like some aeas of knowledge in moleaular biology, could hande the growing
demand pased by bicinformatic goplications. Processng power has jumped from the once-impressve
4.77 MHz in the ealy Intel 8088 to more than ore GHz current frequencies in the AMD-K7 and
Pentium 11l gallery. Most probably when reading this document the Pentium IV and AMD-K8, with up
to 1.5GHz, will be available (for details, http://mww.prism.uvsg.fr/mirror/CIC/summeary/locd). This
exporential growth rate can aso be observed in the development of pradicdly every computer
comporent, such as the number of CPU transistors, memory accesstime, cade size, etc.

However, contemporary genome projeds have delivered a blow to this ealy confidence From the
completion d the first whde organism's genome (sacdaromyces, mid-1998, the growth rates for
biologicd data have become adetriment to sequential computing processng capability. At this paint,
sequential (one-processor) computing can alow only a small part of the masdve, multidimensional
biologicd information to be processed. Under this <enario, comprehenson d the data ad
understanding of the data-described hiologicd processes could remain incomplete, causing us to lose
vast quantities of valuable information tecause CPU-power and time cnstraints could fail to follow
criticd events and trends.

=% Computational resources

From a computational paint of view, there ae several ways to addressthe ladk of hard computing power
for bioinformatics. The first is by developing new, faster heuristic algorithms that reduce omputational
gpacefor the most time-consuming tasks (Altschul, et al., 1997 Peason and Lipman, 1988. The second
is incorporating these dgorithms into the ROM of a spedalized chip (i.e., the bio-acelerator at
Weizmann Ingtitute, http://sgbcd//weizmannacil/).

The third and most promising consideration, havever, is paralel computing. Two o more
microprocesors can be used simultaneoudly, in parald processng, to dvide and conquer tasks that
would overwhelm a single, sequentia processor. However promising, parallel computing still requires
new paradigmsin order to harnessthe alditional processng power for bioinformatics.

Before this document embarks on a detailed overview of the parallel computing software airrently
available to hiologists, it is useful to explore afew genera concepts about computer architedures, as
well asthe parallel programming approades that have been used to addresshbioinformatic gopli cations.



Parallel Computers

=% Parallel Computer architectures. Taxonomy.

A paralld computer uses a set of processors that are ale to cooperate in solving computational
problems (Foster, 1994. This co-operation is made possble, first, by splitti ng the computational load of
the problem (tasks or data) into parts and, semnd, ly reconreding the partial computations in arder to
crede an acarate outcome. The way in which load distribution and reconnedion (communicaions) are
managed is heavily influenced by the system that will suppat the exeaution o a parallel applicaion

program.

Paralel computer systems are broadly classfied into two main models based on Flynn's (1972
spedficaions: single-instruction multi ple-data (SIMD) machines, and mullti ple-instruction multi ple-data
MIMD madhines.

SIMD madhines are the dincsaurs of the paralel computing world; once powerful, bu now fadng
extinction. A typicd SIMD machine cnsists of many simple processors (hundeds or even thousands),
ead with a small locd memory. Every processor must exeaute, at ead computing or ‘clock’ cycle, the
same instruction over different data. When a procesor neeals data stored on anather processor, an
explicit communication must passbetween them to bring it to locd memory. The mmplexity and dten
the inflexibility of SIMD macdines, strongly dependent on the synchronization requirements, have
restricted their use mostly to spedal-purpose gplications.

MIMD machines are more anenable to hioinformatics. In MIMD madhines, eat computational process
exeautes at its own rhythm in an asynchronous fashion with complete independence of the other
computational processes (Hwang and Xu, 1998. Memory architedure has a strong influence on the
global architeaure of MIMD madines, beaoming a key issle for paralel exeaution, and frequently
determines the optimal programming model.

It isredly nat difficult to dstinguish between shared and dstributed memory. A systemis sid to have
shared-memory architecture if any process runring in any procesr, has dired accessto any locd or
remote memory in the whae system. Otherwise, the system has distributed memory architedure.

Shared memory architedure brings sveral advantages to hioinformatic goplicaions. For instance, a
single aldressmap simplifies the design o paralée programs. In addition, there is no 'time penalty’ for
communicaion ketween processs, becaise every byte of memory is accessble in the same anourt of
time from any CPU (uniform memory access UMA architedure). However, nahing is perfed, and
shared memory does nat scde well as the number of processorsin the cmputer increases.

Distributed memory systems scde very well, onthe other hand, bu the ladk of asingle physicd address
map for memory incurs a time penalty for inter-process communication (nonuniform memory acces
NUMA architedure).

Current trends in multi processor design try to adhieve the best of bath memory architedures. A certain
amourt of memory physicdly attaches to ead nock (distributed architedure), bu the hardware aedes
the image of a single memory for the whde system (shared architedure). In this way, the memory
installed in any node can be accesed from any other noce asif all memory were locd with orly adight
time penalty.

A few yeas ago, two techndogicd breathroughs made possble ancther exciting approach to parall €
computing. The availability of very fast processors in workstations, together with the widespread
utili zation d networks, led to the nation d a "virtual paralel computer” that conreded severd fast
microcomputers by means of a Locd AreaNetwork. This distributed-memory system was cadled multi-



computer architedure.

Multi-computer configurations are constructed mainly with clusters of workstations (COWSs), athough
one emerging multi-computer architedure is beowulf-clusters (http://www.beowulf.org), which are
composed of ordinary hardware comporents (like aty PC) together with public domain software (like
Linux,PVM or MP1). A server noce @ntrolsthewhde duster, serving fil esto the dient nodes.
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Figure 1. Summarized Parallel Computer Architedure Taxonomy and Memory Models. Many forms of parallelism
exist today. Some achitedures bring together arelatively small number of very tightly-coupled processors. In other
designs, the @upling of procesorsis relatively loase, but the number of processors can scae up to the thousands. A
diagram of paralel architedure taxonomy is presented on the left. On the right are the most used memory models
avail able for these achitedural designs.

Multi-computers bring several advantages to pardlel computing: cost (on average, ore order of
magnitude deger for the same wmputational power), maintenance (repladng fault nodes), scdability
(adding new nodks), and code-portability. Some drawbads also exist, such as the ladk of available
software that enables management of the duster as one integrated machine. In addition to this, current
network techndogy has high latency and insufficient bandwidth to hande fast parale processng.
These fadors limit the dfedivenessof this architedure & the present time, athough it looks promising
given the expeded cgpabiliti es of future techndogies.

=% Parallel Programming Models

In smple terms, paralel software enables a massve cmputational task to be divided into several
separate processes that exeaute ancurrently through dff erent processors to solve a @mmon task. The
method sed to divide tasks and rejoin the end result can be used as a paint of reference to compare
diff erent aternative models for parall e programs.

In particular, two key feaures can be used to compare models. (a) granularity: the rlative size of the
units of computation that exeaute in parallel (coarseness or fineness of task division); and (b)
communication: the way that separate units of computation exchange data and synchronize their adivity

Most of today's advanced single microprocessor architedures are based onthe Superscdar and Multiple



Issie paradigms (MIPSR10000, Power-PC, UltraSparc, Alpha 21264, Pentium Ill, etc.) These
paradigms have been developed to exploit Instruction Level Paralelism (ILP): the hardware level of
granularity.

The finest level of software granularity isintended to runindividual statements over different subsets of
awhade data structure. This concept is cdled data-parallel, and is mainly adieved through the use of
compiler diredives that generate library cdls to crede lightweight processes cdled threads, and
distribute loop iterations among them.

A seoond level of granuarity can be formulated as a "block of instructions’. At this level, the
programmer (or an automatic analyzer) identifies ssdions of the program that can safely be exeauted in
parallel and inserts the diredives that begin to separate tasks. When the parallel program starts, the
rurrtime suppat credes a pod of threads which are undocked by the runtime library as son as the
paralel sedionisreaded. At the end o the paralle sedion, al extra processs are suspended and the
origina processcontinuesto exeaute.

Idedly, if we have n proces=ors, the run time shoud also be n times faster with respead to the wall clock
time. In red implementations, howvever, the performance of a parald program is deaeased by
synchronization ketween processes, interadion (information interchanges), and load imbalance (idle
procesors while others are busy). Co-ordination between processes represents ources of overhead, in
the sense that they require some time alded to the pure mmputational workload.

Much o the dfort that goes into parallel programming involves increasing efficiency. The first attempt
to reduce pardl€dization pendties is to minimize the interadions between paralel processes. The
simplest way, when passble, is to reduce the number of task divisions; in aher words, to crede
coarsely-grained applicaions.

Oncethe granularity has been dedded, a aucia question arises: how will the parallel processs interad
to coordinate the behaviour of eat ather? Communications are nealed to enforce @rred behavior and
crede an acairate outcome.

=% Communications

When shared memory is available, interprocess communicdion is usualy performed through shared
variables. When severa processs are working over the same logicd address pace locks, semaphaes
or critical sections (blocks of code that only one processcan exeaite & atime) are required for safe
accessto shared variables.

When the processors use distributed memory, al interprocess communication must be performed by
sending messages over the network. With this message-passng paradigm, the programmer neeads to keep
in mind where the data is, what to communicae, and when to communicae to whom. Library
subroutines are avalable to fadlitate messge-passng constructions: PVM (Sunderam, 1990, MPI
(http://Amww.mpi-forum.org/index.html), etc. As one might imagine, writing parallel code for a
digointed memory space aldressis a difficult task, espedally for applicaions with irregular data-access
patterns. To fadlit ate this programming task, software distributed shared memory provides the illusion
of shared memory on top d the underlying message-pasing system (i.e, TreadMarks,
http://www.cs.riceedu/~will y/TreadMarks/overview.htmt).

=% Task scheduling strategies

Common knowledge gained from working on parallel applicaions suggests that obtaining an efficient
paral el implementation is fundamental to achieve agood dstribution for bath data and computations. In
general, any pardle strategy represents a trade-off between reducing communicaion time ad
improving the cmputational load balance



The simple task scheduling strategy is based on a master/dave gproach. In essence ore of the
procesors ads as a master, scheduling and dspatching blocks of tasks (e.g., pairwise sequence
alignments) to the daves which, in turn, perform the typicd cdculations gedfied by the dgorithm.
When the dave mompletes one block, the master schedules a new block of tasks and repeas this process
until all tasks have been computed. Efficiency can be improved by slaves pre-fetching tasks from the
master so as to overlap computations and communicaions. Efficiency is further improved by caching
problems in slaves, so that daves communicae with the manager only when no goblems are available
locdly.

As the number of daves cdes upward, daves can be divided into sets, ead with a sub-master, in a
hierarchicd fashion. Findly, in a fully decentralized model, eat procesor manages its own pod of
tasks, and idle dave processors request tasks from other processors. One can easly see how
bioinformatics applications, with their massve data cdculation loads, would be anenable to perall el
processng.

At this paint, a very schematic and abbreviated description o parallel architedures has been presented
for eassier comprehension. A more acaemic, upto-date, and cetailed description can be found, for
example, in Tanenbaum 1999, (chapter 8: Parallel Computer Architedures).

Biol nformatic Applications

In this ®dion, dfferent and routinely used algorithms, will be presented to describe the strategies
followed to paralelize bioinformatic software. The discourse has been arganized by the task-level
computational pattern observed in such algorithms, from regular to irregular structured (Rodriguez et
al. 1999. Traditionally, aregular-irregular clasdfication, aso named synchronow/asynchronous (and
their respedive semi-regular andloosely synchronots levels), has been used in such away that it was
closely related to the charaderistic that computations were performed over dense or sparse matrices.
However, when working with norrnumericd applications, as is the cae for most of bicinformatic
applicdions, the rate of freedependent tasks, the data accespattern, and the task homogeneity, are
appropriate indices used to clasdfy applications.

=% Regular computational pattern: Database searching

Database searching (DBsrch) is the most heavily used hioinformatic gpplication. It is aso ore of the
most famili ar applications to begin a discusson abou paralelization in hioinformatics: DBsrch has a
very smple form as far as data flow is concerned, and a broad range of strategies have been proposed to
apply parale computing.

The primary influx o information for bioinformatics appli cationsisin the form of raw DNA and potein
sequences. Therefore, ore of the first steps towards ohtaining information from a new biologicd
sequenceisto compare it with the set of known sequences contained in the sequence databases. Results
often suggest functional, structural, or evolutionary anal ogies between the sequences.

Two main sets of agorithms are used for pairwise @wmparison (the individua task in a DBsrch
applicaion): (a) exhaustive algorithms based on d/namic programming methoddogy (Needleman and
Wunsch, 1970 Smith and Waterman, 1982; and (b) heuristic (faster and most used) approadhes such as
the FASTA (Wilbur and Lipman, 1983,Lipman and Peason 1985,Peason W.R. and Lipman 198§
and BLAST (Altschul, et al. 1990, 1997 famili es.

DBsrch applicaions alow two dfferent granularity aternatives to be cnsidered: fine- and coarse-
grained paralelism. Early approadhes focused on ditaparallel over SSIMD madines (notably the
ICL-DAP massve paralel computer) starting with the pioneaing work of Coulson et al. (1987).



Deshpande et al. (1991 and Jones (1992 presented awork on hypercubes and CM-2 computers. Soon
after, Sturrock and Collins (1993 implemented the exhaustive dynamic programming algorithm of
Smith and Waterman (1987 in the MasPar family of parale madines (from the minimum 1024
procesors configuration d MP-1 systems up to a 16384 pocesors MP-2 systems). They roughed out
onre of thefirst remote servers over parall el madines (the BLITZ server at the EMBL, http//:www.embl-
heidelberg.de) that is gill adive & the EBI (http://www.ebi.acuk/M Psrchy).

Simple and elegant dynamic programming-based a gorithms compute an Sym matrix (N and M being the
sequencelengths). The S cedl isdefined by the expresson:

Sj=max[{Saja+ Wiy} {Sa+agh {Sj1+ gl
where w represents a scoring scheme for every pair of resdues Xi,yj, and ug iS a negative value
representing the penalty for introducing or extending a gap o length g. To compute the S cel, data
dependencies exist with the value of the previous cdl in the same diagonal, and the best values are on
the left of the previous row and ontop d the previous columns.

Fine-grain means, in this case, that procesors will work together in computing the Smatrix, cdl by cdl.
Edmiston and Wagner (1987, and Lander et al. (1988 organized the CM-2 madcine & an array of
processors to compute in dagonal-sweep fashion the matrix S (seeFigure 2). An advantage is that this
strategy only requires locd communications (in ead step, P sends S to P.1 to alow it to compute S+ 1
in the next step, while P computes S+1). Query sequence length determines the maximum number of
procesors able to be assgned, and procesors remain idle & begin/end steps. Both inconveniences are
important due to the high number of processors usualy present in SIMD architedures.
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Figure 2. Diagonal-sweep fine-grained workload dstribution for SIMD madinesto avoid data dependencies. Rows
are distributed along processors (residue x; of query sequenceis assgned to procesor P) and procesor P, starts its
computations with adelay of i columns. There will be (P x (P-1)) idle procesors at the beginning and at the end of
computations.

Around this time, Collins et al. (1987 proposed a row-sweep workload dstribution, splitting the
sequence database into groups of 4096 residues to be assgned to a 64x64 array of processors. This
modficdion was sgnificant, because solving bath problems (number of P's greder than sequence
length and idle procesrs), addresses an important problem: data-dependencies. In fad, in step j, P
computes only partialy the cdl S; (S-j-1 is receved by a message from Pi1 in step j-1 and the best
column value isin the same procesr). At this paint, the best horizontal value is needed to complete the
cdl final value. To broadcest this value, orly log.P messages are used when processor P sends a
message in iteration i to processor P+2' (with i=1...12. Note that a given processor needs to send a
message only when it changes its best row vaue (a very unlikely event); thus, in pradicd terms, the
number of messagesis much lower.

It might seam unrecessary that the last two paragraphs have been used to dscusspardlel strategies for



computers that, to use acolloquia expresson, are in danger of extinction. However, apart from its
historicd interest, there ae other goodreasons. Aswe can seeright away, a aarse-grained approadh is
best for a grea number of tasks (such as most of today's pardle bicinformatic problems). However,
several other applicaions exist for which there ae not enowh independent tasks to be solved
concurrently. It is gill posshle to lean from ealy approades, and oldain fruitful conclusions that
improve new parall el solutions.

There ae severa proposed strategies for achieving coarse-grained paralelism in DBsrch applicaiors.
Most of them can be explained onthe basis of the following genera pseudo-code:

[1]  Get-Parameters, get Query-Sequence and Perform Initi ali zations
[2] while(thereis ssquencesin the Database) {

[3] fetch a DB-sequence
[4] score = Algorithm(Query-Sequence, DB-sequence, parameters)
[5] Maintain atraceof the best results (DB-seg-Code, score)

}

[6] ResultsOptimization
[7] ReportBest Results

Table 1: General sequential pseudo-code for a DBsrch applicaion. Step [1] sets the initial stage of the dgorithm,
and Step [2] manages the dgorithm extension which works until the number of database sequences is exhausted.
Step [3] loads the next sequenceto be cmpared againgt the query sequencein step [4]. The result vaue is often
used to rank the best results as in step [5], and finally, spedfic implementations can incorporate alast optimization
sep (i.e., asessng the statisticd significance of results) described as gep [6] and report resultsin step [7].

As dodd be noted, the dgorithm has avery simple form as far as data flow is concerned. The database
sequence @rresponds to the data set to be seached, which, we neeal to kegp in mind, is a set of
sequences of different lengths. In essence, in atypicd coarse-grained parall €l implementation, ore of the
procesrsadsasa"master”, dispatching blocks of sequencesto the "daves' which, inturn, performthe
agorithm cdculations. When the daves report results for one block, the master sends a new block. This
strategy is passble because results from the omparison between two sequences (query and database
sequences) are independent of the previous results deriving from the cmparison o the query with ather
Sequences.

However, the time required in the processng of any given sequence depends nat only on the length of
the sequence, but also onits composition. Therefore, the use of a dynamic load belancing strategy is
necessary. The simplest way is to modify the way in which the master processor distributes the load on
demand from the daves. Obvioudly, sending one-sequence messages introduces additional expensive
time overheal due to the high number of messages interchanged. Thus, rather than dstributing messages
sequence-by-sequence, better results are adieved by dispatching blocks of sequences (Deshpande, et al.
1991).

Additional improvements are obtained by applying buffering strategies that reduce or eliminate dave
inadivity while waiting for a new message (server data starvation). The master processor can send, at
the outset, more than ore block of sequences to eat dave, so that a dave has anew block at the ready
to continue working as onas eat bock iscompleted. (Trelles et al. 1994).

Several methods have been used to determine the size of the block of sequences to be distributed. The
simplest way is to dvide the database in n churks (n being the number of dave proceses) and
ohvioudly assgn ore dhurk to eat dave (Martino, et al. 1994 The data churks can even reside in a
locd disk storage. To minimize load untalancing, sequences are ordered by size and are adgned in
roundrobin fashionto churks. The strategy is smple, inexpensive, and eff edive.

Unfortunately, it also presents at least two dfficult problems. (&) to perform the distribution it is



necessary to know in advance the number of procesrs (n); and (b) when working in heterogeneous
environments, such as multi-computers clusters of workstations, the CPU-time needed to processeadt
churk can be quite different, depending on the CPU-power and the CPU avail ability in ead nock.

A dired solution dvides the database in m blocks of sequences (m >> n) of fixed length (with bock
size aound 416 Kbytes, aiming to maximize the network bandwidth) and assgns blocks to daves on
demand. In this way, the maximum imbalance d the end d computations is propartiona to the block
size, and scheduing cost (including message-passng) is propational to m. The maor scheduling-
distribution cost is normally shadowed by using buffering strategies, as explained above. An additi onal
spedalization can be obtained by using blocks of variable size (Trelles et al. 19941).

This last approadch al ows a pattern of growing-size/deaeasing-size messages with aminimal scheduling
cost. It is espedally suitable for clusters of workstations becaise it avoids srver data starvation die to
scheduling latencies. If the first blocks are short, the first servers may finish computing before anew
block of data is available to them. If the first blocks are large, the last daves must wait a substantial
amourt of time for their first block of data to be dispatched. Moreover, large blocks in the last steps of
the data distribution may increase overall processng time due to poa load balancing.

For distributed memory parall el madines, the blocks of sequences arrive & slaves via messge passng
from a master that deds with the file system. It is also passble that the master sends to daves only a
painter in the database, and the slaves load the sequences by themselves through the NFS (Network File
System) or anather particular element, i.e., the CFS(Concurrent File System).

When shared memory is available, a curter-variable, which serves as a pointer into the database,
manages the workload dstribution. Since the courter is located in the shared memory, eat procesor
can accessit in aguarded region, oliain the value, and move the pointer to the next block. This type of
system has been implemented for the Cray Y-MP (Jilich, 1995.

Two simple notes compl ete this epigraph:

)] The Achilles hedl of message passng is the relatively limited data transmisson bandwidth in
the communicaion pathway. In these achitedures, the communicatior/computation ratio must
be low to efficiently part agorithms. It will aways be harder to perall €li se Fasta or Blast than a
dynamic programming agorithm; and

(b) when there ae several query sequences for database seaching (i.e., in the cae of a DBsrch
server) aprocesslevel of granularity can be gplied (in fad, this approach is used at the NCBI
(http://www.nchi.nlm.nih.gov/BLAST)

However, there is a more important thing to be leaned at this point. When more tasks than processors
are available, the simplest and most effedive strategy is coarse-grained paral€lization. This is ©
fundamental that presenting a new algorithm with this fegure goes together with its parallel coarse-
grained implementation. Some goodexamples are:

Structural biology (eledron microscopy): determines viral asembly medianisms and identifies
individual proteins. The computational-intensive task in this algorithm is associated with imaging the
3D structure of viruses from eledron micrographs (2D projedions). The number of tasks is related to
the set of candidate orientations for ead particle, such cdculations being at different orientations,
compl etely independent of eat ather.

Protein structure prediction: this task involves saching through a large number of posshble structures
representing different energy states. One of the most computationally intensive tasks cdculates the
solvent accessble surface aeathat can be measured onindividual atoms if the locaion d neighbaing
atomsisknown.



Seaching 3D structure databases. as the number of protein structures known in atomic detail i ncreases,
the demand for searching by similar structures also grows. A new generation d computer algorithms has
been developed for seaching by: (a) extending dynamic programming algorithms (Orengo et al. 1992);
(b) importing strategies from computer vison aress (Fisher et al. 1992; (c) using intramoleaular
geometricd information, as distances, to describe protein structures (Holm and Sander, 1993, 199% and
(d) finding patentia alignments based on a@tomeric C alpha structure fragments, and determining the
best path between these fragments using a final dynamic programming step followed by least squares
superpasition (Shindyalov and Bourne, 1999.

Linkage analysis: genetic linkage analysisis a statisticd technique used for rapid and largely automated
construction d genetics maps from gene linkage data. One key applicaion d linkage analysis aims to
map human genes and locate disease genes. The basic computational goa in genetic linkage anaysisis
to compute the probability that a recombination accurs between two loci Ly and L. Most frequently
used programs estimate this recombination function by using a maximum likelihood approach (Ott,
1991.

All of the previous examples fit perfedly to coarse-grained perale applicaions, dwe to the large
number of independent tasks and the regular computational pattern they exhibit, together with the low
communicatiorn/computation rate they present. All these feaures make them suitable for paralelism
with high efficiency rates. However, severa other interesting examples have nonregular computational
patterns, andthey neal particular strategiesto better exploit paral elism.

Let's take adeeper look into the last example. In the parall ization d LINKMAP, Miller et a. (1992
first used a madiine-independent parallel programming language known as Linda. It was compared to
the use of madine-spedfic cdls on the study case of a Hypercube computer and a network of
workstations, concluding that a macdhine independent code could be developed using that tod with orly
a modest saaificein efficiency. One particular hypaothesis sys there ae many pedigrees and/or many
candidate £ vedors, treding ead likelihoodevauation for one pedigree & a separate task. If there ae
enowh tasks, a good load balancing can be obtained. Godia et al. (1992 use asimilar strategy for the
MENDEL program. However, Gupta et al. (1995 observe that typicd optimization problems have a
dimension d only 2 o 3, thus, there is no reed for a large number of procesrs. In conclusion, it is
important to integrate parall €li zation strategies for individual function evaluation (coarse grained), with
adtrategy to paral €lize the gradient estimation (fine-grained).

=% Semi-Regular Computational patterns

A smilar problem arises in the parall€elization d hierarchica multiple sequence dignments, MSA
(Corpet, 1988 Gotoh 1993 Mill er 1993, Thompson et al. 1994). The first steps for solving an MSA
include caculating a cross smilarity matrix between eat peir of sequences, followed by determining
the dignment topdogy and finaly solving the dignment of sequences, or clusters themselves.

Pairwise cdculation provides a natural target for parall€lization kecaise dl eements of the distance
matrix are independent (for a set of n sequences n(n-1)/2 pairwise mparisons are required).
Computing the topdogy of the dignment (the order in which the sequences will be grouped) is a
relatively inexpensive task, bu solving the dustering (guided by the topdogy) is nat that amenable to
paralelism. This is due to the fad that, at this dage, many tasks are to be solved (for a set of n
sequences it is necessary to solve n-1 alignments). However, orly those tasks correspondng to the
external nodes of the topdogy can be solved concurrently.

Certainly, paralel strategies for the cross matrix caculation have been proposed (Gonret et al. 1992
Date et al. 1993,SGI™, 1999, al of them in a marse-grained approadh. In addition, when the MSA is
embedded in a more general clustering procedure (Trelles et al. 1998, combining a dynamic planning



strategy with the assgnment of prioriti es to the diff erent types of adive tasks using the principles of data
locdity has alowed us bath to exploit the inherent parallelism of the complete gplications, and to
ohtain performances that are very closeto ogimal.

However, at present and strictly spe&king, the last step in MSA remains unsolved for parallel macdines.
When the work is carried ou following a warse-grained parall €li zation scheme for distributed memory
architedures, it is then necessary to exchange the sequences and/or clusters that are being modified dwe
to theinsertion d gaps during their ai gnment, which is extremely expensive.

For this, we shoud look badk and lean from the ealiest fine-grained perallel solutions applied to
sequence omparison. Today, when mixed shared/distributed memory architedures are available, this
could be an excdlent exercise that -it shoud be stresed- is far from being an acalemic one. A full
solution probably shoud combine a ©arse-grained solution when computing the aoss smil arity matrix
with afine-grained solution for solving the topdogy. Many chall enges are yet to be overcome.

=% |rregular computational patterns

Applicaions with irregular computational patterns are the hardest to ded with in the parallel arena
In numeric computation, irregularity is mostly related to sparse momputational spaces which introduce
hard problems for data parale distributions (fine-grained approacies) and data dependencies. The
latter reduces the number of independent tasks, which affords little cance to develop efficient
coarse-grained parall el implementations.

A good example of this comes from anather routine task in biologicd sequence analysis; that of
building phylogenetic trees (Gribskov, M. and Devereux, J. 1991,Cavalli -Sforza and Edwards, 1967
Felsenstein, 1973, 1988 Earlier approaches to apply maximum likelihood methods for very large
sets of sequences have been centered in the development of new simpler algorithms, such as the
fastDNAMI (Olsen et al., 1994, which has been pated to parall el architedures using the P4 padage
(Butler & Lusk 1992. A current paralel version d the fassDNAmI, implemented in C with
communications under MPI is available & http://www.santaf e.edu/~btk/science-paper/bette.html and
at the Pasteur Institute under TreadMarks http://www.cs.rice edu/~will y/TreadM arks/overview.html.
Even these simplified approaches have been known to be quite computationaly intensive. In fad,
they were reported to have consumed most of the CPU time of the first IBM SPL instal ation in the
Argonre National Laboratory (1993.

Let's centre our attention onthe origina Felsenstein version d the method (implemented in the
PHYLIP padage, available & evolutiongeneticswashingtonedu). In very simple terms, the
maximum likelihoodmethod searches for atree and a branch length that have the greaest probability
of being produced from the aurrent sequences that form that tree The algorithm proceeals by adding
sequences into a given treetopdogy in such a way that maximizes the likelihoodtopdogy (suitable
for coarse-grained parallelism). Once the new sequence is inserted, a locd-optimization step is
performed to look for minor rearrangements that could leal to a higher likelihood.

These rearangements can move aly sub-treeto a neighbouing branch. Given a airrent tree Ty with
likelihood Ly, ore of its k nodes is removed and rearanged in its two neighbou nodes which produce
two new trees, Tia Y Tie, With likelihoodLi: and L., respedively. The treewith greder likelihoodvalue
(including Ly) is chosen as the new best-tree and it replaces the aurrent-tree This procedure is
performed urtil the set of nodes to rearrange is exhausted, as can be observed in Table 2.



Current-best-tree Tk (Lk) [from insertion step]

fori =1to ntasks
Remove sub-treei from Ty and poduwce Ty and Ty
Likelihoodevaluationfor Ty and Tio (Lk1 and Lk2)
Current-best-tree Ty = treewith greder likelihood(Tk, Tki, Tk2)
endfor

Table 2 Pseudo-code for locd-optimization step in DNAmI algorithm

Strictly speding, ony those nodes without leares and a depth o at least 2 (nat hanging from the roct
node) can be reorganized, which represent 2k-6 tasks (k being the number of spedes). For a large
number of sequences, it could be aldressed in a arse-grained parale solution by distributing the n-
tasks among diff erent processors.

Unfortunately, the reorganization task of one nocke is dependent on the reorganization d the previous
nodes, due to the replacament of the current best-tree. In fad, ead new-optimization task must be
performed over the last best-tree found,and nd over the initial topdogy. This leaves only two tasks
(likelihood evaluation for Ty, and Ty, topdogies) that can be solved in parallel. In ather words, the
maximum theoretica speed-up d this gep will be limited to this value (2), independent of the
number of procesors used in the computation.

There is no generic procedure to address this type of irregular problem; hence a good initia
approadh includes a detail ed analysis of the mmputational behavior of the dgorithm. In this gedfic
case, a caeful run-time anaysis of the dgorithm shows that the number of times a tree with a
likelihood tetter than the aurrent likelihoodis obtained is extremely low (see Figure 4). From this
behaviour, it is posgble to conclude that the probability of a new current-best-tree event is rather
low; or conversely, in most of the caes there is a high probability that a best tree will not be
produced. The most important implicaion d this run-time observation is that, having evaluated the
probability of rearanging a node, the next likelihood evaluation can be started with the same tree
used to evaluate the previous one. In thisway, the task dependenciesin the locd optimization step are
avoided (Ceronet al. 1998, Trelles et al. 1998.

DMNA-mMI: Algorithm Run-Time Behaviour
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Figure 4. Example of the run-time behaviour of the DNAmI algorithm in the optimization step (4) using 50
sequences. The number of circles in ead horizontal line represents the number of optimization tasks
successvely performed as a function of the number of sequences already incorporated into the topdogy (in the
left-hand column). Filled circles $ow those points in which a new maximum value was deteded. At the top
right-hand corner of the figure, the total number of tree likelihood evaluations performed by Ceron et al.
algorithm is presented, together with the number of extra-evaluations (parall el-penalty) incurred by the dgorithm
and the very low penalty evaluation percentage.
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Conclusions
=% |nter-disciplinary work

Born amost at the same time 50 yeas ago, molealar biology and computer science have grown
explosively as sparate disciplines. However, just as two complementary DNA strands bind together in a
doulde helix to better transmit genetic information, an evolving convergence has creded an
interrelationship between these two branches of science In several aress, the presence of one withou
the other is unthinkable.

Not only has traditional sequential Von Neumann-based computing been fertilized through this
interchange of programs, sequences, and structures, bu the biology field has also challenged high-
performance @mputing with a broad spedrum of demanding applicaions (for CPU, main memory,
storage cgadty, and 1/0 resporse time). Strategies using parallel computers are driving new solutions
that seemed ureffordable only few yeas ago.

=% reusing available software

Parallel computing has own itself to be an eff edive way to ded with some of the hardest problemsin
bioinformatics. The use of parallel computing schemes expands resources to the size of the problem that
can be tadkled, and there is aready a broad gallery of paralée examples from which we can lean and
import strategies, al owing the development of new approades to chall enges awaiti ng solution, withou
the need to re-invent the whed'.

Today, it shodd be natural to "think in paralel" when writing software, and it shodd be natural to
exploit the implicit parall elism of most appli cations when more than ore processor is avail able. In most
bioinformatic gpplicaions, dueto ahigh number of independent tasks, the simplest approaces are often
the most effedive. These gplicaions <de better in parallel, are the least expensive, and are the most
portable anong diff erent parall € architecures.

=% new challenges

However, several other challenges in bioinformatics remain ursolved as far as parallel computing is
concerned. They represent attradive chall enges for biologists and computer scientistsin the yeas aheal.
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