CENTRO DE INVESTIGACION Y DE
ESTUDIOS AVANZADOS DEL INSTITUTO
POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Matematicas

Estructuras casi-Frobenius

Tesis que presenta

Ana Karina Gonzalez de los Santos

Para obtener el grado de

Doctora en Ciencias
En la especialidad de Matematicas

Director de la Tesis: Dr. Ernesto Lupercio Lara

México, D.F'. Diciembre de 2010.



i




CENTER FOR RESEARCH AND

ADVANCED STUDIES OF THE
NATIONAL POLYTECHNIC INSTITUTE

Campus Zacatenco

Department of Mathematics

Nearly Frobenius Structures

A dissertation presented by

Ana Karina Gonzéalez de los Santod]

To obtain the degree of

Doctor of Science
In the speciality of Mathematics

Thesis Advisor: Dr. Ernesto Lupercio Lara

Mexico, D.F'. December, 2010.

IThis work corresponds to the study supported by a scholarship given by the Department of
Exterior Relation of Mexico.




v




Agradecimientos

A mis padres, porque creyeron en mi y porque me sacaron adelante, porque
en gran parte gracias a ustedes hoy puedo ver alcanzada mi meta, ya que siempre
estuvieron impulsindome en los momentos mds dificiles de mi carrera y porque el
orgullo que sienten por mi, fue lo que me hizo ir hasta el final. FEsto se los dedico
a ustedes, por lo que valen, porque admiro su fortaleza y por todo lo que han hecho
por mi. A mi hermano que aunque sin muchas palabras siempre he contado contigo,
con tu amor y proteccion. A mis amigas, Andréa, Fugenia, Laura, Majo, Rocio y
Sandra, companeras de tantos anos, aunque separadas por kilometros siempre juntas
por el carino que nos une. Mil palabras no bastarian para agradecerles su apoyo, su
comprension y sus consejos en los momentos dificiles.

Quiero dedicar un pdrrafo a mi companero de vida, de aventuras y principal mo-
tor en este camino de investigacion que estamos transitando juntos. Gracias a sus
cuestionamientos, sugerencias e ideas originales veo este dia llegar. FEstoy conven-
cida que sin su apoyo, paciencia y carino este trabajo no habria visto la luz. También
le quiero agradecer por tantas horas de discucion matemdtica que me hicieron ver
otro enfoque de los problemas, que en muchos casos era el correcto. Por todo esto
y mucho mds te doy las gracias. Por estar a mi lado en los buenos y en los malos
momentos, por inspirarme y hacerme querer ser cada dia mejor te dedico este logro.
Con todo mi corazon esto es para vos, Carlos.

A Ernesto, quien me mosotré que todas las dreas de las matemdticas estan rela-
cionadas. Que me enseno a no tener miedo de hacerme prequntas, aunque parezcan
imposibles de resolver. Su amor a las matemdticas son una inspiracion para mi. A
todos los investigadores, estudiantes y personal del departamento de matemdticas por
su valioso apoyo. A todos, espero no defraudarlos y contar siempre con su amistad.



vi




Resumen

Las algebras de Frobenius fueron introducidas en algebra en teoria de grupos y
la teoria de sus representaciones. Posteriormente aparecieron de forma inesperada
en topologia. En la década pasada las algebras de Frobenius han aparecido en una
variedad de contextos topoldgicos, en fisica y en computacién. En fisica las dlgebras
de Frobenius aparecen en el contexto de Teorias Topoldgicas de Campos.

Las algebras de Frobenius fueron estudiadas por primera vez por Frobenius en
[Ero03]. En los 30" Brauer y Nesbitt retomaron el estudio de las mismas. Nakayama
en [Nak39] y [Nak41] descubrié la dualidad que estas tienen y Lawvere en [Law69]
las caracterizé en términos de coproductos.

En este trabajo estamos interesados en la relacion entre las dlgebras de Frobenius
y las Teorias Topolégicas de Campo. Donde una descripcién de las ultimas fue
dada por Atiyah en [Ati88]. Una n-Teoria Topoldgica de Campo (nTTC) es una
regla Z donde a cada (n — 1)-variedad cerrada orientada M le asocia un espacio
vectorial Z(M) y a cada n-variedad cuya frontera es M le asocia un vector de
Z(M). Esta regla estd sujeta a una coleccién de axiomas, entre los cuales esta el
que pide que variedades difeomorfas tengan asociados espacios vectoriales isomorfos
y que la union disjunta de variedades tengan asociado el producto tensorial de los
espacios correspondientes a cada variedad. En dimensién dos tenemos el siguiente
teorema.

Theorem 0.0.1. Eziste una equivalencia de categorias
2TTC = cAF

donde cAF es la categoria de dlgeras de Frobenius conmutativas. El funtor estd
definido de la siguiente manera, el espacio vectorial subyacente al dlgebra de Frobe-
nius es el espacio asociado, mediante la 2-Teoria Topoldgica, al circulo S*.

En el trabajo de Moore y Segal, [MS06] se estudia la posibilidad de abrir estas
teorias y considerar la accién de un grupo finito en ellas. En este trabajo daremos
una generalizacion al caso no compacto.

Una familia de ejemplos de algebras de Frobenius es la cohomologia de una
variedad compacta cerrada M. El hecho que H*(M) sea un algebra de Frobenius
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es equivalente a la dualidad de Poincaré. Nos podemos preguntar cuanta de esta
estructura podemos recuperar en el caso en que la variedad M sea no compacta. En
este trabajo damos una posible respuesta. Probamos que H*(M) es una casi-dlgebra
de Frobenius cuando M es no compacta. La nocién de casi-algebra de Frobenius es
una nociéon més débil que la de algebra de Frobenius pero ambas son mas fuertes
que la nocién de dlgebra. En este trabajo también veremos que esta construccion
estd lejos de ser trivial, para ello daremos una familia infinita de ejemplos usando
teoria de cuerdas y orbifolds.



Abstract

Frobenius algebras were introduced in algebra motivated by group theory and
the theory of their representations. It was somewhat unexpected to find them later
appearing in topology. During the past decade, Frobenius algebras have shown up
in a variety of topological contexts, in theoretical physics and in computer science.
In physics, the appearance of Frobenius algebras occurs in the context of topological
quantum field theories (TQFTs), which in their axiomatization amount to a precise
mathematical theory.

Frobenius algebras were first studied by Frobenius [Fro03|] around 1900. During
the 1930’s Brauer and Nesbitt in their classical paper On the reqular representations
of algebras took up again the study of these structures. It is only then that they
are christened as Frobenius algebras. Nakayama discovered a rich duality theory
in [Nak39] and [Nak41l]. Dieudonné used this duality to characterize Frobenius
algebras, in [Die58] where he called this property of an algebra a perfect duality.
A very important characterization of Frobenius algebras in terms of coproducts
goes back at least to Lawvere [Law69] (1967), rediscovered by Quinn [Qui95] and by
Abrams [Abr96] in the 1990’s, in the then brand new context of topological quantum
field theories.

In this work we are interesting in the relation between Frobenius algebras and
Topological Quantum Field Theory, where an axiomatic formulation of the last
was described by M. Atiyah in [Ati88]. An n-dimensional topological quantum
field theory (TQFT) is a rule Z which to each closed oriented (n — 1)-manifold M
associates a vector space ZM, and to each oriented n-manifold whose boundary
is M associates a vector in ZM. This rule is subject to a collection of axioms
which express that topologically equivalent manifolds have isomorphic vector spaces
associated to them, and that disjoint unions of manifolds go to tensor products of
vector spaces.

In dimension 2 we have the following important theorem:

Theorem 0.0.2. There is an equivalence of categories
2TQFT ~ cFA.

The underlying vector space of the Frobenius algebra is the wvector space that the
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TQFT (seen as a functor 2Cob — Vect) associates to the circle (seen as an object
in 2C0b.)

In their seminal paper Moore and Segal [MS06] studies some of these generaliza-
tions. In particular they studied the possibility of open strings and of gauging under
the action of a finite group. The work we present here is a further generalization to
the case of non-compact background space-time in terms of this over-simplified toy
model for string theory.

A family of examples of Frobenius algebras is the cohomology of a compact closed
manifold M. In fact the statement that H*(M) is a Frobenius algebra is equivalent
to Poincaré duality. We can ask then what if anything of this information can be
encoded in some sort of algebraic entity for the cohomology of a non-compact closed
manifold. We provide in this work one possible answer. We prove that H*(M) is
a nearly Frobenius algebra even when M in non-compact, the notion of a nearly
Frobenius algebra being weaker than that of a Frobenius algebra but of course
stronger than that of an algebra. Isolating the definition of a nearly Frobenius
algebra is not hard once one is inspired in TQFTs. In this way we isolate the
corresponding algebraic generalizations for the various notions of Moore and Segal
of a Frobenius structure in the non-compact framework. These definitions are one of
the main contributions of this work. The second main contribution is to prove that
the definitions a very far from trivial, for we construct infinite families of examples
using string topology and orbifolds.
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Chapter 1
Introduction

Frobenius algebras were introduced in algebra motivated by group theory and
the theory of their representations. It was somewhat unexpected to find them later
appearing in topology. During the past decade, Frobenius algebras have shown up
in a variety of topological contexts, in theoretical physics and in computer science.
In physics, the appearance of Frobenius algebras occurs in the context of topological
quantum field theories (TQFTs), which in their axiomatization amount to a precise
mathematical theory. In computer science, Frobenius algebras arise in the study of
flowcharts, proof nets, and circuit diagrams.

Frobenius algebras were first studied by Frobenius [Fro03|] around 1900. During
the 1930’s Brauer and Nesbitt in their classical paper On the reqular representations
of algebras took up again the study of these structures. It is only then that they
are christened as Frobenius algebras. Nakayama discovered a rich duality theory
in [Nak39] and [Nak41]. Dieudonné used this duality to characterize Frobenius
algebras, in [Dieb8| where he called this property of an algebra a perfect duality.
A very important characterization of Frobenius algebras in terms of coproducts
goes back at least to Lawvere [Law69] (1967), rediscovered by Quinn [Qui95] and by
Abrams [Abr96] in the 1990’s, in the then brand new context of topological quantum
field theories. Indeed, a Frobenius algebra A can be defined as an algebra with a
coproduct which is a map of A-modules.

In the axiomatic formulation described by M. Atiyah in [Ati88] an n-dimensional
topological quantum field theory (TQFT) is a rule Z which to each closed oriented
(n — 1)-manifold M associates a vector space ZM, and to each oriented n-manifold
whose boundary is M associates a vector in ZM. This rule is subject to a collection
of axioms which express that topologically equivalent manifolds have isomorphic
vector spaces associated to them, and that disjoint unions of manifolds go to tensor
products of vector spaces, etc.

In our opinion the clearest formulation of a TQFT is in terms of category theory,
as introduced by G. Segal: first one defines the category of cobordisms nCob the
objects of which are closed oriented (n — 1)-manifolds (up to diffeomorphism), and
an arrow from >; to X5 is an oriented n-manifold M whose incoming boundary is



31 and whose outgoing boundary is 5. The composition of cobordisms is defined
by gluing together the underlying manifolds along common boundary components.
The cylinder ¥ x I seen as a cobordism is the identity arrow of X. The operation of
taking disjoint unions of manifolds and cobordisms gives this category a monoidal
structure. On the other hand, the category Vecty of vector spaces is monoidal
under tensor products. Roughly speaking the Atiyah axioms amount to saying that
a TQFT is a (symmetric) monoidal functor from nCob to Vecty. This is also called
a linear representation of nCob.

In dimension 2, these structures are classified: since surfaces are completely
classified, one can also describe completely the cobordism category. Every cobordism
is obtained by composing the following four basic cobordisms: the disc with an
outgoing circle, the pair of pants, the cylinder and the disc with an incoming circle.
Two cobordisms are equivalent if they have the same genus and the same number
of incoming and outgoing boundaries. This gives a set of relations, and a complete
description of the monoidal category 2C'0b in terms of generators and relations.

The generating bordisms for 2C0b are “creation”, “merging”, “splitting up” and
“annihilation”. These bordisms transform under the symmetric monoidal functor
as algebraic operations:

’ Principle \ Feynman diagram \ 2D cobordism \ Algebraic operation in a k-algebra A ‘

merging : g product ARA— A

creation - @ unit k— A

splitting : @ coproduct A—->ARA
annihilation — @ counit A—=k

Finally, the relations that hold in 2C0b correspond precisely to the axioms of a
commutative Frobenius algebra. This is encoded in the following important theorem:

Theorem 1.0.3. There is an equivalence of categories
2TQFT ~ cFA.

The underlying vector space of the Frobenius algebra is the vector space that the
TQFT (seen as a functor 2Cob — Vect) associates to the circle (seen as an object
in 2Cob.)
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All of the above can be thought of as an extremely simplified version of string
theory. And all of the above talks only about closed strings. It is quite natural to
consider several possible generalizations.

In their seminal paper Moore and Segal [MS06] studies some of these generaliza-
tions. In particular they studied the possibility of open strings and of gauging under
the action of a finite group. The work we present here is a further generalization to
the case of non-compact background space-time in terms of this over-simplified toy
model for string theory.

What this means for a topologist is the following. A natural source of examples
of Frobenius algebras in topology is the cohomology (or the homology) of a compact
closed manifold M. In fact the statement that H*(M) is a Frobenius algebra is
equivalent to Poincaré duality. We can ask then what if anything of this information
can be encoded in some sort of algebraic entity for the cohomology of a non-compact
closed manifold. We provide in this work one possible answer. We prove that H*(M)
is a nearly Frobenius algebra even when M in non-compact, the notion of a nearly
Frobenius algebra being weaker than that of a Frobenius algebra but of course
stronger than that of an algebra. Isolating the definition of a nearly Frobenius
algebra is not hard once one is inspired in TQFTs. In this way we isolate the
corresponding algebraic generalizations for the various notions of Moore and Segal
of a Frobenius structure in the non-compact framework. These definitions are one of
the main contributions of this work. The second main contribution is to prove that
the definitions a very far from trivial, for we construct infinite families of examples
using string topology and orbifolds.

We will describe now the contents of this work.

The beginning of each chapter contains a more detailed summary of its contents.
Here we shall just give a brief overview of each chapter together with the statements
of the major results.

Chapter 2. In this chapter we review the standard definitions of Frobenius alge-
bras and we give a list of examples that illustrate the theory. We recall some basic
algebraic results due to Lowell Abrams [Abr96] and Aaron D. Lauda [Lau0§|. They
give two additional equivalent definitions of a Frobenius algebra using the coalgebra
structure.

These results are important to us because they admit the "non-compact” gen-
eralizations that we are looking for in a very natural manner. Indeed, while it is
difficult to guess what the correct definition would be using the traditional defini-
tions using traces, the equivalent definition of Abrams is very easy to modify for our
purposes.

So following Cohen and Godin [CG04] we define the concept of a nearly Frobenius
algebras. A nearly Frobenius algebra consists of an algebra A with a map A : A —
A ® A such that the following diagrams commute:



e The coalgebra axioms

A

A AgA
Ai \LA@l
ARA—=ABADA

ie. (A®1A(z)=(1®A)A(x) for all z € A.
e The Frobenius identities

ARA— A AR A— A

e |a e |2

Le. Alx)y = A(xy) = 2A(y), for all z,y € A.
Or equivalently, a nearly Frobenius algebra consists of an algebra A with a map
0:k — A®A such that the following diagram commutes:

A o ARADA

oor| e e

AQARA AA

1®m

If we note 6(1) = > & ® & to say that the last diagram commutes is equivalent to
say that Y& @ &x = Ax) =Y 26 @ &, for all z € A.

Note that this new concept is a generalization of the concept of Frobenius algebra
where we remove the counit, in particular there is no trace involved in the definition.
All of the above is essentially well known, but we have set to clarify the details in
the literature.

The first new result of this thesis is the proof that a natural example of a nearly
Frobenius algebra is the Poincaré algebra of an oriented, connected not necessarily
compact smooth manifold, which in turn proves that there in infinitely many non-
trivial examples.

Chapter 3. We review in this chapter the notion of Topological Field Theory.
Although not strictly necessary in the logical sense for the results of this work, it
provides a great source of clarification for our definitions.

In the first section we review the basic definition of a nD-Topological Field The-
ory given by Michael Atiyah in [Ati88] and [Ati90]. In the section 2 we study a
formulation in categorical terms. Graeme Segal woked out very carefully this char-
acterization in his Lecture Notes form the Workshop on Geometry and Physics.
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The main result in this chapter is the so called Folk theorem which classifies such
theories. This result was obtained for example by Dijkgraaf in [Dij89] and Voronov
in [Vor94|, further details of the proof having been provided by Quinn in [Qui95|,
Dubrovin in [Dub96], Abrams in [Abr96], Kock in [Koc03] and Moore-Segal in
MS06].

Theorem 3.3.1 There is a canonical equivalence of categories
2D—TFT[K ~ CFAk

where cFAy is the category of commutative Frobenius algebras over k (field of char-
acteristic zero).

In the last section we introduce a new structure in topology in analogy with the
new structure defined in the chapter 1. This definition is motivated by the Folk
theorem and Cohen and Godin [CG04] decided to call this a Topological field theory
with positive boundary TFT,. It is defined in the same way as TFT but with the
difference that we can write the maps linear maps associated to a surface only when
this surface has non-empty outgoing boundary.

In this new context we have an analogous result to the Folklore theorem.

Theorem 1.0.4. The category of nearly Frobenius algebras is equivalent to the cat-
egory of 2D-TF'T with positive boundary.

This result was obtained in collaboration with Ernesto Lupercio, Carlos Segovia
and Bernardo Uribe, and it appears in [GLSU]. We shall not use this result to
obtain the theorems of this thesis, so we will not include a proof here.

Finally we recover a theorem of Cohen and Godin. We prove that the homology
of free loop spaces of a compact, oriented, closed manifold with the algebra structure
of Chas and Sullivan (discovered in their seminar work from 1999 [CS99]), naturally
has the structure of a nearly Frobenius algebra. While this result is not new we
think our proof is sufficiently different to interest the reader.

Chapter 4. One way to extend the notion of a 2-dimensional topological field
theory is to assign a vector space Z(X) to each compact oriented 1-dimensional
manifold, with or without boundary, and each boundary component is labeled with
an element of a fixed set By, called the set of boundary conditions. One still requires

Z(X1 I Xy) =Z(X1) @ Z(Xy).



Any compact 1-manifold is a union of circles and intervals, so this part of the data
amounts to two vector spaces

¢ =2(S") and A= Z(I).

Cobordisms M : Xy — X; must now be taken to be surfaces M whose boundary
OM is the union of X, II X; with a free part 0;M, which is itself a cobordism
an : aXQ — 8X1

M
Xo ———— X

3eM:3X,—>3X,

A theory of this type is called 2D open-closed topological fiel theory.
Moore and Segal in his work [MS06] proved the next classification theorem:

Theorem 1.0.5. To given an open-closed topological field theory is the same as
to giwe a Frobenius structure, where a Frobenius structure consists of the following
algebraic data:

1. (A, Ay, 1y) is a commutative Frobenius algebra.
2. A C-linear category B, where Obj(B) = By and Oy = Hom(a,b) fora,b € HAy.
2a. With associative linear maps 1%, and units u,
Mo : Oab @ Ope = O, (1.1)
Ug : C = O, (1.2)
2b. The spaces O,, have nondegenerate traces
Op: Oy — C (1.3)

In particular, each O, is not necessarily a commutative Frobenius algebra.
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2c. Moreover,
ﬁab & ﬁba — ﬁaa % C (1 4)
ﬁb(z@ﬁab — ﬁbb i C ‘
are perfect pairings with
Ou(V1102) = Op(¥2)1) (1.5)
for 7701 S ﬁab; and ¢2 € ﬁba-
3. There are linear maps:
lg: A — Ou, 1% Opg — A (1.6)
such that
3a. g 15 an algebra homomorphism
La(0192) = ta(P1)ta(2), (1.7)
3b. the identity is preserved
ta(1g) = 1,. (1.8)
3c. Moreover, 1, is central in the sense that
La(@)Y = Yu(9), (1.9)

3d.

3e.

forall € A and Y € Oy,

La and t* are adjoint

@A(La(d})gb) - @a(wLa(gb)) :

We define the map ©p : Oy — Oy, as follows. Since Oy and Oy, are in
duality, if we let v, be a basis for Oy, then there is a dual basis Y* for Og,.

Then we define
(&) =D pulyt.
o

We require the Cardy conditions:

T, = Lp O L%

(1.10)



We will call axioms 2b and 2c¢ in the above definition the trace azioms.
The central result that we prove in this chapter is the next purely algebraic the-
orem.

Theorem 4.4.7 The trace axioms in the definition of Frobenius structure are
equivalent to the following coproduct axiom:

Coproducts Aziom: There exist a family of coassociative linear maps AS, = Og, —
Ope @ Oy which are Oy, X Ow-bimodule morphisms and linear maps ©, : 0,, — C
such that

b

Aab Azb
ﬁab ﬁab X ﬁbb ﬁab ﬁaa & ﬁab

ﬁab@k k®ﬁab

IR

commute.

This theorem permits us to reconstruct the definition of Frobenius categories in
terms of the coproducts rather than traces, and motivated by this new presentation
we define a new algebraic structure. We have decided to call this structure nearly
Frobenius structure.

A nearly Frobenius category is given by the following algebraic data:

1. (A,Au,1,) is a commutative nearly Frobenius algebra.
2. A C-linear category B, where 0,, = Hom(a,b) for a,b € A,.
2a. With associative linear maps

Toe : O @ Oy — O (1.11)

2b. With co-associative linear maps

Agb : ﬁab — ﬁac ® ﬁcb. (112)

2c. where A¢, is a morphism of 0y, X Op.-bimodule, i.e. the diagrams:

a b
Oda @ Oy T O Oy ® Oy — Oae

1QAL, lAgb AZb@ll Afe

ﬁda & ﬁac X ﬁcb’?:ﬁ ﬁdc X ﬁcb ﬁac ® ﬁcb X ﬁbelw ﬁac X ﬁce

commute.
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3. There are linear maps:
lg: A — Ot : Opg — A (1.13)
such that

3a. (, is an algebra homomorphism
ta($102) = ta(P1)ta(P2) (1.14)

3b. The identity is preserved
a(la) = 1, (1.15)

3c. Moreover, ¢, is central in the sense that

La(@)Y = Pup(9) (1.16)
for all ¢ € A and ¥ € O,

3d. We define the map
71'? = 771?1, oTo Aga : ﬁaa — ﬁbba

where 7 : Oy ® Oy — Opy @ Oy is the transposition map. We require the
Cardy condition:
Ty = 1p 01", (1.17)

We dedicate the last section of this chapter to prove that open-closed string
topology satisfies all the axoms of nearly Frobenius structure. This example was
studied by Dennis Sullivan in [Sul04], and by Cohen, Hess and Voronov in the
book [CHVO06]. In this situations our background manifold comes equipped with a
collection of submanifolds,

B={D;, C M},

and the morphisms are given by the homology of the path spaces

Pu(D;, D;) = {v:1]0,1] - M picewise smoooth: v(0) € D;, v(1) € D,}.

Chapter 5. In this chapter we gauge (or orbifold) Frobenius structures by the
action of a finite group.

The first algebraic structure that we consider is that of a G-Frobenius algebra,
namely an algebra ¢ = ©,c6¢,, where for g € G, 6, is a vector space of finite
dimension such that
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1. There is a homomorphism « : G — Aut(%¢’), where Aut(%) are the algebra
homomorphisms of %, such that

Qap, - ng — (ghghfl,
and for every g € G we have
ag‘(gg = 1%9‘

2. There is a G-invariant trace or counit ¢ : 4, — % which induce nondegenerate
pairings

99 : (gg@)%g—l — €.

3. For all x € €, and y € €, we have that the product is twisted commutative,
ie.
ry = ay(y)z.

4. Let Ay =3¢ R € Cy ® €y—1 the Euler element, where {¢£]} is a basis of
¢y and {gf‘l} is the dual basis of 6,-1. We have that for all g,h € G

Doan€el = elayE).

This definition is due to Moore and Segal, [MS06].

We show in this chapter that the G-invariant part of a GG-Frobenius algebra is a
Frobenius algebra. Just as before we give a new presentation of G-Frobenius algebras
using coproducts rather than traces. Then, motivated by this new presentation, we
define a new algebraic object, that we have call nearly G-Frobenius algebra, which
consists of an algebra ¢ = @©4c¢%,, where € is a vector space for g € G such that

1. There is a homomorphism « : G — Aut(%’), where Aut(%) is the algebra of
homomorphisms of %, such that

ap . %g — Cghgh—l,

for every g € G we have
Otg|<gg = Id%g .
2. For all x € €, and y € 6, we have that the product is twisted commutative,
ie.
ry = ay(y)z.
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3. There are coproducts Ay, : €y — €, @ €}, such that the following diagrams

commute.
m 4 m
ng & cghf 9:h] nghf ng X cghf 90T nghf
1®Ah’fl Aghvf Agh’hl®1l Agl'hf
Cy @ Cr, @ C my 1 Cyn © Cf Cagh @ Ch-1 @ Gy m(ggh®%f

that is, for all x € €, and y € €),y we have Ay ;(y) = Agn r(2y) = Agpp-1(2)y.

4. These coproducts have the next property: for every g, h € GG the next diagram

commutes
u Ay 1®ay
C C. Cn R Ch-1 AR nghflg—l
u lmh,ghlgl
. A, Cy D Cy e Chgh— @ Cy1 ep—— Chgh—1g-1

In other words the trace has been removed.

The main result in this section is the next algebraic theorem.
Theorem 5.3.3 If <7 is a nearly G-Frobenius algebra then its G-invariant part is a
nearly Frobenius algebra.

We proof the major results of this thesis in the last section of this chapter. They
consist of two examples of nearly G-Frobenius algebras. The first example called
virtual cohomology, was introduced by Lupercio, Uribe and Xicoténcatl in [LUX07].
We consider the complex global quotient orbifold [M/G], where M is a complex
manifold and G is a finite group acting holomorphically on M. We define the
virtual cohomology

H* (M, G) == @ H*(M7),
geG
where MY is the fixed point set of the element g. The group G acts in the natural
way on the cohomologies by conjugation of the labels.
If « € H*(MY) and 3 € H*(M"), we define the virtual product as

axfi=1igp! ((V(g, h) ;h(a X 5)) ,
M|, 0

where v(g, h) = e(M; M9, M") is the Euler class of the excess bundle VIR o Vi a—
M9, M9

Qg 2 MOh = M9 N M"Y — M9 and 6, : M9" — M9 x M" is the diagonal map.
As the same form, if a € H*(M9") we can define the virtual coproduct as

Agn(@) == bgn! (ulgh, g, h)iy ()




12

TM]|, 9.0

where u(g,h) =e (TMqh—W ) TMgJZ).

The second example orbifold string topology, was introduced again by Lupercio,
Uribe and Xicoténcatl in [LUXO0g].
As the same as before we consider the complex orbifold [M/G], and we construct

the space
= |_| Py(M) x {g}
geG
where

Po(M) ={y:10,1] = Y :7(0)g = v(1)},
together with the G-action given by

G x |_|:P9<M) x {g} — |_|:P9(M> x {g}

(h, (v,9)) = (yn, h™" gh)

where ~,(t) := y(t)h.
We define the product as the composition

Ng,h - HP(?Q(M))(X)Hq(:Ph(M)) ]—'> Hp+q—d(?g(M)e1 XeoTh(M)) g Hp+q—d(fpgh(M))7

where Py(M)e, X Pu(M) = {(v0,7) : %0(1) = 1(0)}, j : Py(M)e, X, Pu(M) —
Py(M) x Pp(M) is the inclusion and ® : Py (M), erCPh( ) = Pyn(M) is the com-
position of paths.

The coproducts are defined in a similar manner by the compositions

Agn : Hpygra(Pon(M)) = Hyg(Py(M)e,x Pi(M)) 5 Hy(Pg(M)) @ Hy(Py(M)).

Chapter 6. In this chapter we study the case of finite groups acting on Frobenius
categories. The first theorem that we prove is quite natural:
Theorem 6.0.6 The G-invariant part of a G-Frobenius category is a Frobenius cat-

egory.

Again we extend the concept of G-Frobenius category to G-nearly Frobenius cat-
egory, and we prove the analogous theorem.

The main results of this chapter are the fact that the virtual cohomology and the
loop orbifold admit extensions to G-nearly Frobenius categories. In the first case
the category of boundary conditions is the following:

B = {X C M G-invariante}
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such that, if X, Y € B then TX|(xny)ys = TY |(xny)s forall g € G, and Homg(X,Y) =
H* (X NY), for X,Y € B.
In the second case the category of branes is the following:

P ={X C M G-invariant submanifold with X MY transverse for X # Y and XNY # 0}

Chapter 7. We will wind down with an expository chapter in which we present
an example of a Frobenius category studied by Caldararu and Willerton in [CW07].
This example is a very interesting example because the category of D-branes or
boundary conditions is the derived category of a compact Calabi-Yau manifold.
This example shows an interaction between these TQFTs and algebraic geometry.

We finish presenting a conjecture that is quite natural from our point of view.
Namely that the derived category of a non-compact Calabi-Yau manifold satisfies
the axioms of a nearly Frobenius category. This is would include a very nice gen-
eralization of Serre duality to the non-compact case. I shall return to this issue
elsewhere in collaboration with Ernesto Lupercio.
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Chapter 2

Frobenius structures

In this chapter we will give some equivalent definitions of Frobenius algebras
and a serie de examples that let us to understand in a better way this concept. A
fundamental example of Frobenius algebra is the Poncaré algebra associated to every
compact closed manifold M, this is provided by its cohomology algebra A = H*(M)
with trace

O(X) = /M X,

It is not very hard to see that the Frobenius property is equivalent to Poincaré
duality.

When we consider the case of a non-compact manifold M its cohomology algebra is
no longer a Frobenius algebra, but we may ask ourselves what structure remains.

To get an idea of a possible answer to this question we have to recall that the
concept of Frobenius algebra is strongly related to the concept of a 2D-Topological
Field Theory. A natural generalization of this concepts are not to consider the
trace as a component of the algebraic structure in the topological structure. This
will motivate us to introduce the new concepts of nearly Frobenius algebra and 2D-
Topological Fiel Theory with positive boundary. This structures are strongly related
as we will see.

A Frobenius algebra is a finite dimensional unital associative algebra with a
special kind of bilinear form which gives an isomorphism to the dual.
The concept of Frobenius algebras was first studied in the 1930s by Brauer and
Nesbitt [BN38] where they were named after Frobenius. Nakayama discovered the
beginnings of a rich duality theory in [Nak39] and in [Nak41]. Dieudonné used
this to characterize Frobenius algebras in [Die58] where he called this property of
Frobenius algebras a perfect duality. The characterization of Frobenius algebras in
terms of coproducts goes back at least to Lawvere [Law69], it has been rediscovered
by Quinn [Qui95] and by Abrams [Abr97].

15
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2.1 Frobenius algebras

Fix a fiel k of characteristic zero. A k-algebra is a k-vector space A together
with two k-linear maps

pARA—-A uk—A

called multiplication and unit such that p is associative and u is the unit (u(1) = 14).

We start by giving a serie of equivalent definitions of Frobenius algebras.

Definition 2.1.1. A Frobenius algebra is a k-algebra A of finite dimension whit
a non-degenerate bilinear form (, ) : A ® A — k which is associative, in the sense
(ab,c) = (a, bc).

Definition 2.1.2. A Frobenius algebra is a k-algebra A of finite dimension with a
linear function € : A — k called counit, such that the ker(e) do not have non trivial
ideals.

Definition 2.1.3. A Frobenius algebra is a k-algebra A of finite dimension with an
A-module isomorphism A : A — A*, where the dual space A* is an A-module with
the action a - ¢ = p om(a), where m : A — End(A) is the multiplication by a € A.

Proposition 2.1.4. These definitions are equivalent.

Proof. (1) = (2) Given a pairing (, ) : A ® A — k we define the counit as follows

e: A — k

a +— (la,a). (2.1)

(2) = (3) If we have the counit € : A — k we define the isomorphism A as follows

A A = A
a — Ma): A — k (2.2)
b — e(ab)
(3) = (1) Finally, given A : A — A* we define the pairing as follows

(,): ARA — k
a@b = A(la)(ab) (2:3)
*

The next theorem is due to Lowell Abrams [Abr96] and Aaron D. Lauda in
[Lau08]. They give two additional definitions of a Frobenius algebra.
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Theorem 2.1.5. A commutative algebra A of finite dimension with product m :
ARA — A and unit u : k = A is a Frobenius algebra if and only if it satisfies one
of the next conditions

i) (Abrams) There is a coproduct A : A — A ® A, with a counit ¢ : A — k
satisfying the Frobenius identities which define a coalgebra structure on A.
Ezxplicitly the following diagrams commute:

e The coalgebra axioms

A AOA Ak~ A0A-2keA

N %

AQA—TFTKARARA

If we note A(z) = le ® o, then for x € A the coalgebra axioms are given
by the next relations

(A®1KA@»:}jmmymﬁma=§:m@mm®wm=%1®AxA@»

1@e)(Alx) =) mie(an) =z=Y e(r1)m = (£ @ 1)(A(2)).

o The Frobenius identities

A A—= A A A —2 A
1®Ai lA A®1L lA
AARA ——ARA ADAQA G~ AR A

e Y xY QYp = Z(fﬁy)l ® (2y)2 = S. 21 @ Ty, for v,y € A.

ii) (Lauda) There ezists a co-pairing 0 : k — A ® A such that the following
diagrams commute:

A— A0 A A k—"'>A®A
9®1l \ lm®1 el \ Ls®1
AQARA 3 A A ASA—5—A
Let x € A, if we denote 0(1) = Y& ® & then the Lauda condition is the
following:
fol ® & = Z% ® Ty = Zél ® &,
and

25(&)52 =1la= 2515(52)-
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Proof. i) We define the coproduct as follows

A—2E-A0A

Al TA1®>\1

that is A :== (A™! @ A7!) o m*\, where ) is as defined in equation .
Using that m is a commutative and an associative map we have that A is
a cocommutative and a coassociative map. We need to check that A is an
A-module morphism, for this we construct the next map
m: A — EndA) = AQA*
a —> a = oay e el

where {ej,...,e,} is a basis of A and {e7, ..., e’} is the dual basis.
It is easy to prove that the next diagrams commute.
-1
A2 2 A A
T T o
A®Amﬂ*®fl*wﬂ®fl* A®A<1®?A®A*

We consider the next diagram.

AR A ik A

@™ Y 1 @

ARAGA ———AQADA———AD A G A @A
M @ 1®A //
AQA*  ———F— ARQ A"

1®1*

Note that @ and @ commute by definition of m, @ and @ clearly com-
mute. The external diagram commute because

m

TR Yt

%

TR Y. ye el > rye; @ el

/m %

LYY @ el =y Y e ® e

rY
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ii)

Then the diagram @ commutes and A is a morphism of A-modules.

Reciprocally, we define (,) : A® A — k by (,) = ¢ om. Using that m
and ¢ are linear maps we have that (, ) is also linear. The associativity is
a consequence of the associativity of the product. Finally, to prove that the
pairing is non-degenerate, we use that the next diagram commutes since A is
a A-module morphism.

ARARA
A®1 1®m

The top composition gives

1®xl—>1A®x|—>(Zuj@)ej)@xl—)Zuj®ejx»—>z<ej,x)uj®1.

J J J

and the bottom composition gives

I@r—=la@r—mr—=Al)— (1e)Alr) =21

Then z =~ {e;, z)u;, therefore {u;} is a basis of A. In particular if we take
x = u; we have (e;, u;) = 0;.

Now we take k; such that (> kie;,x) = 0 for all z € A. If x = u; we have
> i ki{ei,uj) =0, then k; = 0 for all ¢ = 1,...n. Therefore ), kie; = 0 and

the pairing (, ) is non-degenerate.

It is easy to see that this condition is equivalent to the Abrams condition.
Given the coproduct A we define 0 : k - A® A by § = Aou. We deduce the
commutativity of the diagrams using the A-module properties. If we consider
the co-pairing # : k — A ® A we define A : A - A ® A as follows

A=(1@em)o(l®l)=(m®1)o(1®46)

L J

Definition 2.1.6. A Frobenius algebra A is called a symmetric Frobenius algebra
if one (and hence all) of the following equivalent conditions holds.

(i)

The Frobenius form ¢ : A — k is central; this means that e(ab) = (ba) for all
a,beA.
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(ii) The pairing ( ,) is symmetric (i.e. (a,b) = (b,a) for all a,b € A).
(iii) The left A-isomorphism A — A* is also right A-linear.
(iv) The right A-isomorphism A = A* is also left A-linear.

Definition 2.1.7. A Frobenius algebra homomorphism ¢ : (A,e) — (A’,€’) be-
tween two Frobenius algebras is an algebra homomorphism which is at the same
time a coalgebra homomorphism. In particular it preserves the Frobenius form, in
the sense that ¢ = ¢¢’.

Let FAy denote the category of Frobenius algebras, and let cFA, denote the full
subcategory of all commutative Frobenius algebras.

Lemma 2.1.8. If a k-algebra homomorphism ¢ between two Frobenius algebras
(A,e) and (A',€") is compatible with the forms in the sense that the diagram

¢ a
'

A

commutes, then ¢ is injective.

Proof. The kernel of ¢ is an ideal and it is clearly contained in ker(e). But ker(e)
contains no nontrivial ideals, so ker(¢) = 0 and thus ¢ is injective.

L J

Lemma 2.1.9. A Frobenius algebra homomorphism ¢ : A — A’ is always invertible.
In other worlds, the category FAy is a groupoid and so is cFA.

Proof. Since ¢ is comultiplicative and respects the counits € and &’ (as well as the
units  and 7'), the dual map ¢* : A — A* is multiplicative and respects the units
and counits. But then the preceding lemma applies and shows that ¢* is injective.
Since A is a finite-dimensional vector space this implies that ¢ is surjective. We
already know it is injective, hence it is invertible.

L J

2.2 Basic examples

In this section we will present a collection of examples of Frobenius algebras. A
good reference for this is [Koc03]. Our main example is the Poincaré algebra, it
is the principal motivation for the definition presented in the next section, this is
because if we consider M a manifold not necessarily compact we do not necessarily
have the trace but all the other structures are preserved.
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2.2.1 The trivial Frobenius algebra

Let A =k, and € : A — k be the identity map of k. Clearly there are no ideals in
the kernel of this map, so we have a Frobenius algebra.

2.2.2 A concrete example

The field of complex number C is a Frobenius algebra over R: an obvious Frobenius
form is taking the real part

C—R
a-+1b— a.

2.2.3 Skew-fields

Let A be a skew-field (also called division algebra) of finite dimension over k. Since
just like a field, a skew-field has no nontrivial left ideals (or right ideals), any nonzero
linear form A — k will make A into a Frobenius algebra over k, for example the
quaternions H form a Frobenius algebra over R.

2.2.4 Matrix algebras

Let A be the space Mat,, (k) of all n x n matrices over k, this is a Frobenius algebra
with the usual trace map

Tr : Mat, (k)— k

(ay) Z Wi

To see that the bilinear pairing resulting from Tr is nondegenerate, take the linear
basis of Mat,, (k) consisting of E;; with only one nonzero entry e;; = 1. Clearly Ej;
is the dual basis element to E;; under this pairing. Note that this is a symmetric
Frobenius algebra since two matrix products AB and BA have the same trace. If
we twist the Frobenius form by multiplication with a noncentral invertible matrix
we obtain a nonsymmetric Frobenius algebra.

a b

As a concrete example, consider Maty(R) = {(c d

) ca,b,c,d e R} with the

usual trace map
Tr: Mapy(R) — R

a b
(C d) — a+d



22 2.2. Basic examples

Now twist and take as Frobenius form the composition

Mato(R) —s  Mato(R) R

a b 01»—>b+
¢ d)\1 0 ¢

This composition is not a central function, for example if we take A = (1) g) and
1 1 1 1 1 2 . .
B = (0 0) then AB = (O 0) and BA = (O 0) and finally the map gives, in

the first case 1 and in the second 2.

2.2.5 Finite group algebras

Let G = {e,g1,...,9,} be a finite group, the group algebra C[G] is defined as the
set of formal linear combinations > ¢;g;, where ¢; € C, with multiplication given
by the multiplication of GG. It can be made into a Frobenius algebra by taking the
Frobenius form to be the functional

e: CA
e

C
1
9i 0

L1

for i # 0.

Indeed, the corresponding pairing g®h +— £(gh) is nondegenerate since g®h — 1

if and only if h = g%

2.2.6 The ring of group characters

Assume the group field is k = C. Let G be a finite group of order n. A class
function on G is a function G — C which is constant on each conjugacy class;
the class functions form a ring denoted R(G). In particular, the characters (traces
of representations) are class functions, and in fact every class function is a linear
combination of characters. There is a bilinear pairing on R(G) defined by

(6.0) = = 3 o).

teG

The characters form an orthonormal basis of R(G)with respect to this bilinear pair-
ing, so in particular the pairing is nondegenerate and provides a Frobenius algebra
structure on R(G).
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2.2.7 The Poincaré Algebra

Let M be a compact, closed, connected, oriented manifold of finite dimension n. We
can define a counit map ¢ : H*(M) — k by

where [M] is the fundamental class of M in homology. This map induce the pairing
(,) : H'(M)®@H" (M) =k

defined by (p,v) = e(p — ¢¥) = (¢ — V)([M]) = ¢([M] —~ 1). Remember that we
have the next isomorphism induced by Poincaré duality

® : H" (M) & Homy(H,_x(M), k) 2 Homy (H*(M), k)

where h is the map induced by the evaluation of cochains on chains, and D* is the
dual of Poincaré duality. Then ®()(¢) = p([M] —~ 1), this proves that the pairing
is nondegenerate.

2.3 Nearly Frobenius algebras

In this section we develop the central concept of study in this work. That is the
structure of nearly Frobenius algebra. In the next chapters we will give a serie of
interesting examples of this new concept. String topology is the first example that
we will develop, but is not the only one.

Definition 2.3.1. A commutative algebra A with product m : A @ A — A is a
nearly Frobenius algebra if and only if it satisfies one of the following conditions:

(i) There exists a coproduct A : A — A ® A that makes the following diagrams
commutative:
e The coalgebra axioms

A

A A®A
Ai \LA@l
AGA—=ADADA

Le. D11 @12 @ g = Y, 1 @ To ® g for all z € A, with the notation
Alx) = 21 ® xo.
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e The Frobenius identities

AR A— A AR A— A

- |a e |2

ADADA—=ADA AQADA_—>~AQA

e Dlay1 @yr = D (2y)1 ® (wy)2 = D71 @ w9y, for z,y € A.

(ii) There exists a copairing 6 : k — A ® A such that the following diagram
commutes:

A L ARA®A

or| e e

ARARA A A

1®m

with the same notation as before the commutativity of the last diagram is

equivalent to
foi ® ¢ = 21’1 QR T9 = Zfi ® .

A nearly Frobenius structure can be drastically different from a Frobenius struc-
ture: there is nothing akin to definition, as the following example illustrates.

Example 2.3.1. Every Frobenius algebra is also a nearly Frobenius algebra.

Example 2.3.2. Let A be the truncated polynomial algebra in one variable Clx]/x" 1,
where z is of degree 2, together with the coproduct given by

Ay(z") = Sppimina® @ 2!,
e The coalgebra axiom: Let x* € A with i > 0.

(Ar®@1)(A1(a) = (A1) (Cimin? ®7') = Yipisiin Driompin? @2° @2
- D ortstimipon T @ 1° @ 1!

1@ A)(AL() = Q@A) (Cpmisn? ®2) = Ppiisiin Drpueiin ¥ @2 @ 2
- D et ttu—it2n @t @
e The Frobenius identities: Let x*, 27 € A.

A (z'z?) = Ay(2') = Z " @t =g Z " @t =1 A (27)

k+l=i+j+n r+l=j+n
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this is because k£ > 7. For the other hand

Ay(a'a?) = M(@™) = Y dFeal= ( > ®$8) = A (a")a!

k+l=i+j+n k+s=i+n

because [ > j.
Then A is a nearly Frobenius algebra. This structure comes from a Frobenius
algebra, because in this case we have a trace map ¢ : A — C given by e(z") = 0; 5.

Not every nearly Frobenius algebra structure comes from a Frobenius algebra
structure.

Example 2.3.3. Let A be the truncated polynomial algebra in one variable C[z] /2",
where x is of degree 2, together with the coproduct given by:

j k l
Ag(7') = Bppimipnt17” @ .

As the same before we can prove the coalgebra axiom and the Frobenius identities.
But in this case A has not counit. If we have a counit map ¢ : A — C then it
satisfies the axiom of counit m(e ® 1)(Ay(z?)) = 2* for all 2 € A. But

mE® D(Aal)) = Y (ah)al,
k+l=i+n+1

with [ > 4, so m(e ® 1)(Ag(z")) # z'. Then this structure does not come from a
Frobenius algebra structure.

Example 2.3.4. The Poicaré algebra is a nearly Frobenius algebra when M is a
non-compact smooth manifold. Consider the diagram:

M 2 MxM

Ai Jixa

MxM—MxMxM
Ax1

Using transversality we have that:
(A x 1)*(1 x A) = A'A*,

where A* : H* (M) ® H* (M) = H*(M x M) — H*(M) is the map induced by the
diagonal map in cohomology, and A" : H*(M) — H*(M) ® H*(M) is the Gysin map
of the diagonal map. Therefore

(A*@1)(1eA) =A'A*

Then H*(M) is an algebra with a coproduct which is a module homomorphism.
But in this case we can not define a trace because we can not guarantee the existence
of the fundamental class [M].
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Chapter 3

2D-Topological Field Theory

Topological Field Theories (TFT) are a somewhat recent development in the
interface between physics and mathematics. The mathematical interest in them
comes from the hope that they will disclose new phenomena, or at least offer efficient
organization of invariants like the Jones polynomials, or the Donaldson invariants
of 4-manifolds. The interest in physics comes from their value as examples in which
extensive calculations are possible. They also shed light on mathematical structures
involved in more realistic theories. It seems fair to say that from both points of view
this is still an exploration- in a state of flux with the best applications still to come.
As mathematicians understand them they were essentially discovered by Witten.

In this work, I am going to concentrate in the most elementary case, that of a
topological field theory in dimension two. I will give first an axiomatic approach,
valid for all dimensions, following [Ati88]. Then I will specialize this down to dimen-
sion two and show that in this case the theory is entirely equivalent to a Frobenius
algebra. Subsequently I will give a natural generalization of this theory, called Topo-
logical Field Theory with positive boundary (due to Cohen and Godin), and show
that this theory is equivalent to a nearly Frobenius algebra.

Vaguely speaking, Segal interprets a topological field theory as a functor from
a geometric category to a linear category, where we choose the geometric category
to be the category whose objects are closed, oriented (d — 1)-manifolds, and whose
morphisms are oriented cobordisms (two such cobordisms being identified if they
are diffeomorphic by a diffeomorphism which is the identity on the incoming and
outgoing boundaries). The linear category in this case is just the category of complex
vector spaces and linear maps, and the only property we require of the functor is
that (on objects and morphisms) it takes disjoint unions to tensor products.

27
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3.1 Atiyah’s definition of nD-Topological Field The-
ory

Sir Michael Atiyah in [Ati88] and [Ati90] defined nD-Topological Field Theory
(nD-TFT) Z#, a set of the following data:

1. A vector space Z4(X) associated to each (n — 1)-dimensional closed manifold
.

2. A vector Z*(M) € Z*(0M) associated to each oriented n-dimensional manifold
M with boundary 0M.

3. An isomorphism Z(f) : Z(3,) — Z(X,), where f : ¥; — ¥, is an orientation
preserving diffeomorphism.

This data is subject to the following axioms:

(i) 74 is functorial with respect to orientation-preserving diffeomorphisms of ¥
and M.

(ii) Z* is involutory, i.e. Z*(X*) = Z*(X)* where ¥* is ¥ with opposite orientation
and Z*(X)* is the dual vector space of Z*(%).

(iil) Z* is multiplicative

78 U X,) = Z4(2) @ Z4(2).

(iv) Z4(0) = k, where () is interpreted as the empty (n — 1)-dimensional closed
manifold.

(v) Z4(®) = 1, where @ is interpreted as the empty n-dimensional manifold.

(vi) If f : ¥y — X5 is an orientation-preserving diffeomorphism, then Z(f) :
Z(X1) — Z(35) is an isomorphism.

These axioms are meant to be understood as follows. The functoriality axiom
means first that an orientation-preserving diffeomorphism f : ¥ — ¥’ induces an
isomorphism ZA(f) : Z4(¥) — ZA(Y') and that Z4(gf) = Z*(g) Z*(f) for g :
Y — ¥ Also if f extends to an orientation-preserving diffeomorphism M — M’,
with OM = ¥ and OM' = Y/, then Z*(f) takes the element Z*(M) to Z*(M").
The multiplicative axiom is clear. Moreover if OM; = ¥, U X5, OMy = X3 U X,
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and M = M, Us, M, is the manifold obtained by gluing together the common
Yi3-component:
3, >,

>

Then we require:

ZH(M) = (2" (M), Z* (Ms))

where (,) denotes the natural pairing from the duality map,
7ZA(2)) ® Z4(83)* @ Z4(23) @ ZH(8y) — ZA(21) ® Z4(5,)

defined by a ® p @ b® ¢ — p(b)a ® c¢. This is a very powerful axiom which implies
that Z4(M) can be computed (in many different ways) by “cutting M in half” along
Y3,

3.2 Categorical definition of nD-Topological Field
Theory

The first step is to define the category of cobordisms that permits us to give a
categorical concept of nD-TFT.

Definition 3.2.1. Let 3, and 3J; two compact, connected, oriented (n—1)-manifolds,
we say that they are cobordat if there is a n-manifold M, with boundary 7 LI 3,
in this case we say that M is a n-cobordism of ¥; to Y.

If we fix a positive entire n, we can construct a category nCob where the objects
are the closed smooth (n — 1)-dimensional manifolds, and the morphisms are the
oriented smooth n-dimensional manifolds(n-cobordism). An obliged question is if
the composition of two cobordism of the same dimension is a smooth manifold, the
answer is yes up to a smooth process (for reference see [Koc03]).

Let be nCob' = n(fjgi)/ ~ where ~ is the relation up to diffeomorphisms.

Let ¥ be a closed submanifold of M of codimension 1. Assume both are ori-
ented. At a point x € X, let [v1,...,v,_1] be a positive basis for T,X. A vector
w € T, M is called a positive normal if [vy, ..., v,—1,w] is a positive basis for T, M.
Now suppose ¥ is a connected component of the boundary of M with an specific
orientation; then it makes sense to ask if the positive normal w points inward or
it points outward compared to M. Locally the situation is the following, a vector
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in R™ for which we ask if it points inward or outward compared to the half-space
H* (H* = {(z1,...,zs) € R" : 2, > 0)}). If a positive normal points inward we
call ¥ an in-boundary, and if it points outward we call it an out-boundary. To see
that this makes sense we have to check that this does not depend on the choice of
positive normal (neither the choice of the point z € ¥). If some positive normal
points inward, it is a fact that every other positive normal at any other point y € X
points inward as well. This follows from the fact that the normal bundle is a trivial
line bundle on ¥. This in turn is a consequence of the assumption that both M and
Y. are orientable (see Hirsch [Hir95], theorem 4.4.2.).

Thus the boundary of a manifold M is the union of various in-boundaries and out-
boundaries. The in-boundary of M may be empty, and the out-boundary may also
be empty. Note that if we reverse the orientation of both M and its boundary 3,
then the notion of what is in-boundary or out-boundary is still the same. We will
denote nCob the category nCob’ giving an orientation to every object (therefore any
cobordism has a direction).

In the next definition we asume that the reader is familiar with the concept of
monoidal category, if this is not the case you can read the Appendix 1.

Definition 3.2.2. An n-dimensional topological field theory is a symmetric monoidal
functor Z¢, from (nCob,U,0,T) to (Vecty,®,k,0).

Proposition 3.2.3. The Atiyah and the categorical definition of TFT coincide.

Proof. Suppose Z* is a TFT in the sense of Atiyah, then for M an oriented n-
dimensional manifold, the next isomorphism gives the correspondence

U ZA5) ®ZA(%) < Hom(ZA(Sh),Z4(%,))

7Z4(M) — 7 (M) (3:1)

where OM = ¥ U Y, Set Z9(M) = Z4(M), if we identify the image of the
idempotent element Z4(X x I) with the identity l1z4(s), then we get a functor

Z¢ : nCob — Vecty. This functor is well defined by the functorial and multi-
plicative axioms. Moreover, the monoidal structure is given by L — ® and it is
symmetrical since Z¢(Ts 5) = 076 (0,26 (5)-

Conversely, given a symmetrical monoidal functor Z¢ : nCob — Vecty, if ¥
is a closed (n — 1)-dimensional smooth manifold, set Z4(X) := Z%(X). For M a
n-dimensional oriented smooth manifold we take

ZAM) = Z29(M)(1) € Z°(Z1n)* @ Z° (Zow),

where M’ is M reversing the orientation to the in-boundary. By hypothesis, we have
ZC(Q)) = k. Moreover, the functor Z¢ is multiplicative and it is independent of the
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cut by the correspondence[9.1] As consequence, the axioms (iii) and (iv) are satisfied.
Clearly Z4(#) = 1®1. The axiom (v) is an implication of ¥(Z4(0)) = ¥(1®1) = k.
The axiom (i) is satisfied because Z¢ factors through differential homotopy classes.
The axioms (ii) is the proposition [3.2.5]

L J

Corollary 3.2.4. For a topological field theory 7. of any dimension and X2 an object
in nCob, the image of ¥ under Z is a finite dimensional vector space.

Proof. Let
(,)n Z(X)®Z(X) —k

and
Oy k — Z(X") @ Z(%)
the maps associated to B and @ respectively. Since Z is a TF'T, then the next

diagram

(,) s ®idz(s)
—_—

Z(f) (Z(X) ® Z(TE)*) ® Z(X) k® f(Z)
7(5) @ k —22%_ 705 @ (2(5) @ Z(T)) 7(%)

is the identity map. Graphically

@x

then we have ((, )s ® lzm)) o (Izx) ® Os) = lgx). For Ox(1) = > v; ® w,; and
a € Z(X) the next implications follows
a——a®l=((,);®1lzx) o (lzx) @ 0s)(a® 1)
= ((, )2 ®1z) ) a®@uv; ®wy)
= {av)y @w; ==Y {a,v5) g
Then a = ) (a,vj)yw;, and consequently {w;} generates Z(X), but since k is at
least a division ring, we can extract a basis from the generating set. Now since

every division ring has the property of invariance of dimension then Z(X) is finitely
generated with n = rank(A) < |{w;}|.
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L J

When we study this type of structures, it is remarkable how much information
they encode. For example the fact that the theory only depends on the topology
implies that the next cobordisms

BB

have associated the same linear transformation, which is the identity. In the liter-
ature this equivalences are called the zig-zag identities. This simple fact has as a
result that for any n-dimensional TQFT the vector space associated to every ob-
ject of nCob is finite dimensional. The next proposition proves that there exists a
nondegenerate pairing, which consequently entail the construction of the product
and the unit for the state space.

Proposition 3.2.5. Let Z be an n-dimensional TFT, and % an n-dimensional ori-
ented closed smooth manifold, then Z(X) is equipped with a nondegenerate pairing
and Z(X%) ~ Z(%)".

Proof. Similarly to [3.2.4] we have that the next diagrams

(Ie®lz(s)
- s

7(%) (Z(5) @ Z2(5)) @ Z(5) k® 7Z(%)
7(%) ® k—2 2% 705 @ (Z(Z*) ® Z(%)) 7(%)
and
k @ Z(5") —2 (7054 @ Z(3)) @ Z(5¥) 7(5%)
7(5) 25 @ (Z(S) @ Z(5) 2202275 ok

are the identity maps of Z(X) and Z(X*) respectively, i.e.

lzz) = ((, )g @ 1z(x)) © (1z(x) ® Ox)

and
Lzes)y = (Izim4 @ (, )g) 0 (02 @ lyss)
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An easy algebraic exercise is to prove that (, )y, is a nondegenerate pairing and that
the map

Aei = Z(XF) — Z(D)
Y — <5U:?/>2

is an isomorphism (hint:use that Z(X) and Z(3*) are finitely generated).

3.3 Relationship between cFA; and 2D-TFT

Theorem 3.3.1. (Folklore) There is a canonical equivalence of categories
2D-TFTy ~ cFAg

where cFAy s the category of commutative Frobenius algebras.

Proof. 1t is easy to see that a 2-TF'T determines a Frobenius algebra. This is the
vector space A associated to the circle. The next cobordisms induce a product
m:AA = Aand aunid u:k — A.

1. Q

A@f[ —>A |k—>A

The next cobordisms implies respectively the properties of associativity, commuta-
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tivity, unit and non-degenerate.

We need to prove that when we have a commutative Frobenius algebra we can
assign a well defined functor from 2 Cob to Vecty, for this first we note that the cate-
gory is generated under composition and disjoint unions by the next five elementary

cobordisms,
b; Q. 0:D: 03

Moreover every decomposition in elementary cobordisms is done by a Morse
function and every decomposition of a cobordism depends of all its decomposition
in elementary cobordisms, where we mean by a Morse function the one which every
critical point is of Morse type and all its critical values are different. The construc-
tion of a well defined functor is done if there is some way we can join any pair of
Morse functions of a specific cobordism. Two Morse functions can always be con-
nected by a good path in which every element is a Morse function except for a finite
set which belongs to one of the two following cases:
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1. The function has one degenerate critical point where in local coordinates (x, )
it has the form £a? + 3.

2. Only two critical values of Morse type coincide.

It is understood that in any of the two cases the other critical values are different
(for the case 1, they are even different to the degenerate critical point) and of Morse
type. The first case is solved by the unit and counit axioms, for the second we used
the identity for the Euler number

X= (-1 er

with ¢y the number of critical points of index A of its Morse function. Since every
elementary cobordism has at most a critical point of index 0, 1 or 2; then for the
case Y = 2 the cobordism corresponding to the two critical values has Euler number
—2, 0 or 2. When y = 0 or 2 the only relevant possibilities are the cylinder and the
sphere while for y = —2 it is just a torus with two holes or the sphere with four holes.
In the case (1,1,1) (one entry, genus one and one exit) there is nothing to check,
because, though a torus with two holes can be cut into two pair of pants by many
different isotopy classes of cuts, there is only one possible composite cobordism, and
we have only one possible composite map

A— AR A — A.

Note that the coproduct is just

A—E- A0 A

,\l T)\1®/\1

where )\ is the corresponding Frobenius isomorphism between A and its dual and
for a commutative algebra is easy to prove that

A(a) :Zaei@)el# :Zei@)efa

with {e;} a basis for A and # denotes the dual. For the sphere with four holes
when we have (3,0,1) and (1,0, 3) these cases are covered by the associativity of
the product and coassociative of the coproduct respectively. Finally for (2,0,2) it
is enough to prove that is well defined for all the possible pants decomposition;
it is known that for a compact surface (m,g,n) every pants decomposition has
39 — 3 + m + n simple closed curves which cut the surface in 2g — 2 + m + n pairs



36 3.4. TFT with positive boundary

of pants, hence for this case we have only a curve dividing in two pair of pants and
then the only possibilities are

S

but this is clearly the Abrams theorem [2.1.5

3.4 TFT with positive boundary

Definition 3.4.1. A Topological field theory with positive boundary (TFT,) is de-
fined at the same at TFT but with the difference that we can write the maps of the
form

Uy : ASm 5 AB™

only if m > 0. In other words we can write the linear map Wy only if ¥ has at least
one outgoing boundary component. In particular, there is not linear form associated
to the following surface: namely, we no longer have a trace.

(D

0: A—k

Theorem 3.4.2. The category nFAy of commutative nearly Frobenius algebras is
equivalent to the category 2D-TFT, of Topological Field Theories with positive
boundary.

We have proved together with Lupercio, Segovia and Uribe this theorem in
[GLSU]. Since the results of this thesis do not depend on this fact we will omit
the proof here, we will only mention that it is a subtle modification of the argument
given above for the usual Folk theorem.
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3.4.1 String Topology

String topology is the study of the (differential and algebraic) topological prop-
erties of the spaces of smooth paths and of smooth loops on a manifold, which
are themselves infinite-dimensional manifolds. The development of string topology
is strongly driven by analogies with string theory in physics, which is a theory of
quantum gravitation, where vibrating strings play the role of particles. As we will
see, string topology provides us with a family of TFTs, one for for each manifold

M.

Let M be a smooth, orientable manifold of dimension n. The space of free loop
space is

LM = {a:S'— M}

where every loop is assumed piecewise smooth.
Chas and Sullivan in [CS99] proved the next result.

Theorem 3.4.3 (Chas and Sullivan, 1999). Let M be a compact, closed, smooth,
orientable manifold of dimension d. There is a commutative and associative product

HP<LM) ® Hq(LM) — Hp+q—d(LM)
e making H,(LM) := H,4(LM) an associtive, commutative algebra and

e is compatible with the intersection product on H,(M), i.e., the following dia-
gram commutes.

H,(LM) @ Hg(LM) —— H,1g—a(LM)

evy Qevs \L lev*

H, M @ H, M Hyqa M

In this section we present a generalization of this result when M is not necessarily
compact. Moreover, we will prove that H,(LM) is a nearly Frobenius algebra. In
particular, using the Folklore Theorem we have an example of a 2D-TFT with
positive boundary. In the next chapter, we will give an extension of the string
theory that permits us to give a new example of 2D Open-Closed TFT with positive
boundary.

Algebraic Structure

The Loop product: The Chas-Sullivan “loop product” in the homology (over a
field k of zero characteristic) of the free loop space of a closed oriented d-manifold,

1t Hy(LM) @ Hy(LM) — Hyq.q (LM)
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is defined as follows.

Let Map(8, M) be the mapping space from the figure 8 (i.e the wedge of two
circles) to the manifold M. Chose a basis point in the circle, notice that Map(8, M)
can be viewed as the subspace of LM x LM consisting of those pair of loops that
agree at the basepoint. In other words, there is a pullback square

Map(8, M) ——=LM x LM (3.2)
evl leV X ev
M X M x M,

where ev : LM — M is the fibration given by evaluating a loop at the basepoint.
The map ev : Map(8, M) — M evaluates the map at the crossing point on the figure
8. Since ev x ev is a fibre bundle, e : Map(8, M) < LM x LM can be viewed as a
codimension d embedding, with normal bundle ev*(va) = ev*(T'M).

The existence of this pullback diagram, of fiber bundles, means that there is
a natural tubular neighborhood of the embedding e : Map(8, M) — LM x LM.
Namely, the inverse image of a tubular neighborhood of the diagonal embedding
A: M — M x M. That is, n. = (ev X ev)~'(na). Because ev is a locally trivial
fibration, the tubular neighborhood 7, is homeomorphic to the total space of the
normal bundle ev*(T'M). This induces a homeomorphism of the quotient space to
the Thom space,

(LM x LM)/((LM x LM) — 5.) = (Map(8, M))e" M),

Combining this homeomorphism with the projection onto this quotient space,
defines a Thom-collapse map

To : LM x LM — (Map(8, M))*" (TM),

For notation, we refer the Thom space of the pullback bundle ev*(T'M) —
Map(8, M) as Map(8, M)TM.

There is a functorial construction in homology which goes in the wrong direction.
This is called the Gysin map or Umkher map, see [CK09]. We define an umkehr
map,

Nu

e : H (LM x LM) = H,(Map(8, M)™) =% H,_;(Map(8, M))

where u € H(Map(8, M)T™™) is the Thom class.

Chas and Sullivan also observed that given a map from the figure 8 to M then
one obtains a loop in M by starting at the intersection point, traversing the top
loop of the 8, and then traversing the bottom loop, this defines a map

p: Map(8, M) — LM.
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Figure 3.1: The disc D

Definition 3.4.4. We consider the next diagram

Map(8, M)

SN

LM x LM

where e is defined in the diagram [3.2] The loop product in the homology of the loop
space is the composition

n: H, (LM)®H, (LM) = H,(LM x LM) = H,_4(Map(8, M)) 2= H,_4(LM)

The Loop coproduct: Notice that Map(8, M) can be viewed as the subspace
of LM consisting in a loop that agree at the basepoint. In other words, there is a
pullback square

Map(8, M) *——~ 1M

eVO\L levo X ev%

M4A>MXM

where evg x evi : LM — M x M is the map given by evaluating a loop at 0 and 1
Then we can define the umkehr map

pr s Hy(LM) =% H,(Map(8, M)™) 2% H,_,(Map(8, M)).

Definition 3.4.5. The loop coproduct for the homology of the loop space is the
composition

A H, (LM) -2 H,_4(Map(8, M)) - H,(LM x LM) = H,(LM) ® H, (LM).

The unit and counit: Consider de disk D as a cobordism with zero incoming
boundary component and one outgoing boundary component (see Figure [3.1). The
restriction map to the zero incoming boundary is the map

pin : Map(D, M) — Map(0), M) = point.

Notice that the disc D is homotopy equivalent to a point, then the smooth mapping
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space Map(D, M) is homotopy equivalent to the manifold M. The umkehr map in
this setting is
(pin)1 : Hi(point) — H,yq(M),

which is defined by sending the generator to [M] € Hq(M). The restriction to the
outgoing boundary component is the map

Pout - M ~ Map(D, M) — LM,
which is given by ¢ : M < LM. Thus the unit is given by

U (Pout)x © (Pin)t = s © (pin )1 : Hi(point) — H,yq(M) — H,iq(LM),

which sends the generator to the image of the fundamental class.

The reason of the nonexistence of a counit in the Frobenius structure is formally
the same to the existence of a unit. Namely, for this operation one must consider D as
a cobordism with one incoming boundary, and zero outgoing boundary components.
In this setting the role of the restriction maps p;, and p,,: are reversed, and one
obtains the diagram

Map(0), M) <—“— Map(D, M) —* LM
i lll I
point . M - LM

where € : M — point is the constant map. Now notice that in this case, the
embedding Map(D, M) < LM is of infinite codimension for our knowledge we do
not know how to define the umkher map. Ando and Morava, in [AM99], argument
that if one has a theory where this umkehr map exists, one would need that the
Euler class of the normal bundle e(v(¢)) € H*(M) is invertible.

Verification of the axioms of nearly Frobenius algebra

That H,(LM) is a nearly Frobenius algebra was first proved by Cohen and Godin
in [CGO4]. The proof we propose here is sufficiently different to be of independent
interest.

We will use the lema to prove of the next theorem. This lema appears
in Appendix 2 below, and is based in a result of Quillen’s that appears in [Qui71],
(Proposition 3.3).

Theorem 3.4.6. H,(LM) is a nearly Frobenius algebra.
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Proof. 1. Associativity of the loop product

%ﬁb

The loop product is defined by the next diagram.

Map(8, M)

SN

LM x LM

The associativity of the product is represented by the next two diagrams

(1)

LM x LM x LM LM x LM LM

(2)

LM x LM x LM LM x LM LM
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We will use the Quillen result to prove this property.

o (TM) = k*ev*(TM) - - > Map(&, M)

|

ev'(TM)- - - - -~ > Map(8, M) —— LM x LM
evi ievo X evp
TM--------- - M S Mx M

where ¢ = evok and ev*(T'M) is the normal bundle of i.

ev* (T M) - = = Map(b, M) —% Map(8, M) x LM

leV X ev

M x M

(1) We have 0 — ev*(TM) — ¢*(T'M) — F; — 0 is an exact sequence.
Note that ¢ = ev, then F; = 0. Similarly, for (2) we have F» = 0, then
€(F1> = G(Fg).

2. Coassociativity of the coproduct

LM x Map(8, M)

/
%/ P e 1xp 1xe

LM LM x LM LM x LM x LM
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Map( &

)\
Map(8, M) x LM

/

LM x LM LM x LM x LM

(1) In the first case we have:

ev* (T M) - - = Map(Sb, M) — Map(8, M)

\Lev lEV1 X evo
2
A

TM -~~~ - M M x M
and
j*(ev xev) (TM) - - - > Map(dd, M)
I
LM x Map(8, M) Z“—T.M x LM
™ - ———-—--—-~- =M x M M x M x M

Then, we have the next exact sequence 0 — ev*(T'M) — ri(ev x ev)*(TM) —
Fy — 0. We conclude F; = 0 since ev*(T'M) = r3(ev x ev)* (T'M).

(2) In the other case there are the diagrams

ev* (T M) ~ — > Map(db, M) —— Map(8, M)

TM------ - M S~ MxM
and
j*(evxev)*(TM) - - = > Map(dds, M)
lj
Map(8, M) x LM 2L 1M x LM
0 TURDT

Mx MxM
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Then we have the exact sequence 0 — ev*(T'M) — ji(ev x ev)"(TM) — Fy —
0. Since ev*(T'M) = jj(ev x ev)*(T'M) then F, = 0.

3. Abrams condition

Map(8, M) x L

/ px1

LM x LM LM x LM x LM LM x LM

In the first diagram we have

ev J(GVXGV%

M x M
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and
ev*(TM) - - = Map(&b, M) —— Map(8, M)
lev X GV% X ev

2 _MxM

Then we have the exact sequence 0 — ev*(T'M) — " ev*(TM) — F;, — 0.
Since ev ok’ = ev then I} = 0.

For the second diagram

jevxev)"(TM)- - - >1\/[3Lp(é%7 M)

ij
ex1

(evxev)*(TM)- - =Map(8, M) x LM — LM x LM x LM

evXevi leVXGVXGV
Ax1

Mx M x M

and
ev (T M) - — = Map(&, M) —= LM x Map(8, M)

\LBV levxev

TM------ - M S~ MxM

Therefore we have the exact sequence 0 — ev*(T'M) — j*(ev x ev)*(TM) —
F; — 0. Note that ev*(T'M) = j*(ev x ev)*(T'M), then F; = 0.

% (M )

LM

P y \ )

M x LM Map(8, M)

/% rx1 Pin M\

pt x LM LM x LM LM

4. Unit axiom
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3.4. TFT with positive boundary

First, we note that ¢ and ¢’ are homotopic maps, then p, = ¢.,.
In (1) we have

eoxid

ev'(TM)---->1LM M x LM
evi J{idxev
TM----- =M —2=Mx M
and
ev' (TM)------ ~LM

Map(8, M) —22—~ LM x LM

evi levxev
A

M x M

Then F} = 0. In the second diagram is trivial to prove that F, = 0.



Chapter 4

2D Open-Closed Topological Field
Theory

A 2DO-CTEFT is a generalization of a 2DTFT. Now the category of cobordism
is modified in the sense the boundary objects are compact, oriented, one-manifolds,
X, together with a labeling of the components of the boundary, X, by objects of
a C-linear category B, see figure [.1] The morphisms generalize the usual notion
of a cobordism between manifolds with boundary, but with the additional data of
the labeling category B. A cobordism Xx, x, between two objects X; and X, is an
oriented surface ¥, whose boundary is partitioned into three parts: the incoming
boundary 0;,> which is identified with X, the outgoing boundary 0,,;> which is
identified with X5, and the remaining part of the boundary is referred as the “free
part” Oy.> whose path components are labeled by objects of B. Note that Ofye.2
is a cobordism between 0X; and 0X,, which preserves the labeling, see figure (4.2

A monoidal functor from this category to the category of complex vector spaces
will be called a (141)-dimensional open-closed topological fiel theory. We write A for
the vector space associated to the standard circle S, and &,;, = Hom(a,b) for the
vector space associated to the interval [0, 1], with ends labeled by a,b € Obj(B).

O

a

a
as

s

Figure 4.1: A one manifold with labels a; € Obj(B).

47
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b
b
a
a
c/
¢

d¥d

Figure 4.2: An open-closed cobordism.

4.1 Algebraic structure
A Frobenius structure consists of the following algebraic data:
1. (A, Ay, 1) is a commutative Frobenius algebra.
2. A C-linear category B, where 0,, = Hom(a,b) for a,b € A.
2a. With associative linear maps n°. and units wu,
Mo : Oab @ Ope = O, (4.1)
Ug : C = Opa, (4.2)
2b. The spaces 0,, have nondegenerate traces
Ou: Oy — C (4.3)
In particular, each &, is not necessarily a commutative Frobenius algebra.

2c. Moreover,

ﬁab@)ﬁba — ﬁaa i C (44)
Opa @ Oy, — Oy, 2 C
are perfect pairings with
Ou(V1102) = Op(¥2)1) (4.5)

for 101 c ﬁaba and ¢2 € O,



4. 2D Open-Closed Topological Field Theory 49

3. There are linear maps:
lg: A= Oy, 1“:0,, — A (4.6)
such that

3a. i, is an algebra homomorphism

La(D192) = ta(P1)ta(2), (4.7)
3b. the identity is preserved
ta(la) = Lo (4.8)
3c. Moreover, ¢, is central in the sense that
1a(0) = Yus(0), (4.9)

for all p € A and ¢ € O,

3d. ¢, and * are adjoint

@A([’a(w>¢) = @a<wba(¢))'

3e. We define the map 7} : O, — O, as follows. Since 0y, and 0}, are in duality
(using 6, or 6,), if we let 1, be a basis for 0}, then there is a dual basis ¢*
for 0,,. Then we set

T () =Yyt (4.10)

and the Cardy condition is
Ty = 1p 0 L% (4.11)

4.2 Pictorial representation

For the case of a closed 2D TFT the Frobenius structure is provided by the
diagrams in fig. [£.3] The consistency conditions follow from fig. {.4] In the open
case, entirely analogous considerations lead to the construction of a non necessarily
commutative Frobenius algebra in the open sector. The basic data are summarized
in fig. [4.5] The fact that the traces are dual pairings follows from fig 4.6, The
new ingredients in the open-closed theory are the open to closed and closed to
open transitions. in 2D TFT these are the maps ¢,, t*. they are represented by
fig. f.71 There are five new consistency conditions associated with the open-closed

transitions. They are illustrated in fig. to fig [4.13]

Theorem 4.2.1. A 2-dimensional Open-Closed Topological Fiel Theory defines and
1s defined by a Frobenius structure..

The proof of this theorem is a little more complicate that the Folklore theorem,
because we have to study more possibilities. You can see the proof in [MS06].
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9LKTE

ARA — A A—AQA

Figure 4.3: Four diagrams defining the Frobenius structure.

4.3 Example: Representations of a finite group G

A simple example of an open-closed TFT is the associated to a finite group G.

Where the category Z is the category Zep(G). If E € Obj(Zep(G)) the trace
O : O — C takes ¢ : E — E to |é| tr(e).

The algebra o is the center of the group algebra C[G] such that

LEg Z(C[GD — ﬁEE,

Z Qgg Z QgPg
g g

LE : ﬁEE — Z(C[G]),
I e A Ztr(wpg]p;)g

and the trace
Oz(ciap - Z(CIG]) = C
S oy &
— 7 al
The next computation proves all the axioms.

1. (Z(C[G)),0z«cia): 1z(ciap) is a Frobenius algebra.

Let I C ker(0z(c(a)) be an ideal of (Z(C[G]), and Z agg € I. Then Oz ciap (D2, ag9) =

%I = 0, hence ay = 0. If h € G we have Z aggh™ € I,thus 0z(ciq) (Zg aggh™) =
= 0. For this reason o, = 0 for any h € G. Then I = {0}.

Qp
G
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D

G ot
@o )

= O

s o B
112

112

Figure 4.4: Associativity, commutativity, Abrams condition and unit
constraints in the closed case.
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QD

= Gy

d
b d
b> ¢ = F(2): @éb® @bc% @éc

=> ea:@aa%k

o

= F(x): k—0C
1 —> 14

= F()=id:Cy—s Oy

Figure 4.5: Basic data for the open theory.

d
b a a
— b b
d
b
Figure 4.6: Assuming that the strip corresponds to the identity

morphism we must have perfect pairings.
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laiﬂ%@éa

la: @aa%ﬂ

a

Figure 4.7: Two ways of representing open to closed and closed to open
transitions.

@] C _Q _

D,
off ( ? 0, j
la (@)1 la(0,0,)

Figure 4.8: ¢, is a homomorphism.

a a
a a
la(1)=Ta

Figure 4.9: 1, preserves the identity.
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@(K> o C

I I
L @) =T"1a(®)

D

Figure 4.10: ¢, maps into the center of O,.

a a
I r

d
® o] C
0,2 (D D)= 0a"a (D))

Figure 4.11: +* is the adjoint of ,.

(on

TC: Cha— Oy

Figure 4.12: The double-twist diagram defines the map 7} : Oy — Opyp.
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b a b a3 a

< ) b_ a b 3 2

Figure 4.13: The Cardy-condition is expressing the factorization of the
double-twist diagram in the closed string channel.

2a

2b.

2c.

3a.

3b.
3c.

Cldg, ifi =7,
0 in other case.
Then 0;; ® 0, — Oy, is zero except for ¢ = j = k. In this case
Oii ® O — Oy
Ald@upld — Apld

. Notation ﬁ” = Hom(EZ-, EJ) =

The trace 0; : 0; — C is nondegenerated. Note that if ) € 0}; then there
exist A € C such that ¢y = A1d;, hence ker(6;) = {0}.

First, suppose that i # j then
ﬁij®ﬁji — ﬁu ﬁ) (C,
0.
0;;00;; — O;; = C

we have 6;(¢Y¢) = 0 = 0;(pv).
If i = j then Oy ® Oy — Oy 2 C. In this case ¢ = AId and ¢ = Id, hence
Yo = ¢, and as a consequence 0;(1¢p) = 0;(p1)).

tg is an algebra homomorphism.

e((D agg) (Y Buh)) = 1u(Y - agbugh) = ayBupen
(Y ag9)is(d_Buh) = agpy > anpn =D agBupepn

This expressions are the same because p is a group homomorphism.
The identity is preserved by definition (tg(e) = Idg).

The linear map ¢ is central i.e. tp(d_, ayg)y = Yir(d_, ayg) with ¢ € Opr.
If ¢ € 0;;, then ¢ =0 for ¢ # j or ¢ = A1d, for ¢ = j.

If ¢ # j is true the statement. Now we see the case i = j, but since we have
1) = A1d then it follows.
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3d. The linear maps g and ¥ are adjoint, i.e. 0zcia) (L5 (¥)¢) = Op(Vip(d)).

Op(Yep(o Z gpg) = (Z aghpg)

1
= @ tr( Z aghp,y) = @ Z o tr(Ypg)

0zcic) (7 (¥)9) = Ozcia) Z agt” = 92 Ele)) Z agtr(1p,))

g

= ‘a Z 0 tr(pg)

3e. First

i
T

T

Oy — 03 @ O —— 0}; @ Oy — O
If i # j then 7} = 0. If i = j we have

Oii — 05 @ Oy — Oy Q@ Oy — Oy

Ald — )\Id®|G| Id— — ] [d®AId — |—G|)\Id

n; n; n;

Then 7¢(AId) = ln—cib\, where n; = dim E;.

Now we need to study ¢;¢7.

The map ¢ : Oy — Z(C[G]) takes A1d to 37 tr(Apg)g = A3, xi(g)g and
v+ Z(Cl[G]) — 0Oj; takes 3 a,g to > agpy. Consequently ¢ji'(A1d) =
A, Xi(9)pg + Ej — Ej.

For the map p, : £; — Ej;, with Ej; is an irreducible representation, there exists
p € C such that p, = pld;. Hence tr(p,) = pdim Ej, so p = %Xj(g)- For
this ¢;e'(Ad;) = A 32 xi(9)70x5(9) 1d; = 2 32, xi(9)xi(9) Id; = -2
Using that the representations are real, we have that x;(¢g) = Xi(g), then
d;+; = 0;; and the maps coincide.




4. 2D Open-Closed Topological Field Theory 57

4.4 2D Open-Closed TFT with positive boundary

In a 2D open-closed TFT we have a family of maps AS, : Oy — Ohe @ O, which
are called coproducts, with a,b,c € #. These are defined by

—AC
=AS

ﬁab ﬁac ® ﬁcb

Dap il

* * * * *
ﬁba ne* ﬁbc ® ﬁca T ﬁca ® ﬁbc

ba

where @ 1 Oy — O, is Pup(2)(y) = Ou(xy), for x € Oy and y € O,.

a

C a C
Aab': b

b

It is clear that A¢, is a linear map.
Remark 4.4.1. The spaces O, are finite dimensional with bilinear maps
7]2{, : ﬁac ® ﬁcb — ﬁab-

In the case a = b = ¢, 0%, is an associative product.
These maps satisfy the next commutative diagram

b @1

ﬁab X ﬁbc X ﬁcd - ﬁac X ﬁcd

1®T7§di i”gd

Orq Q@ Oy Oad

b
Nad

Lemma 4.4.2. The maps A, are coassociative, i.e. the next diagram commutes

d

Aa,b
Oap Oud @ Oy

) o

ﬁac®ﬁc Eﬁac®ﬁc ®ﬁ
b 1®Af.b d db

for all a,b,c,d € A.
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Proof. Note that in the next diagram we need to prove that the external diagram
commutes.

* *
i Opa ® O,
/‘l7 \7'
oy o, ® 0y
ba da bd
-1 -1
O neo1* Oud @ Oy

a

Dy, C P,q®1

1
ﬁl;ka "/ @ ﬁ:ikc ® ﬁ:a ® ﬁl;kd @ ﬁ;lka X ﬁdb

Mo e ®1
* * % * % * %
ﬁbc ® ﬁca ﬁca ® ﬁbd ® ﬁdc T®1 ﬁdc ® ﬁca ® ﬁdb
1@ng: 17
T T®1
10100,
* * * * * db * *
ﬁca ® ﬁbc ﬁca ® ﬁdc ® ﬁbd ﬁca ® ﬁdc ® ﬁdb
I S ter o leos ol
* * *
Ouc @ O 02 ® Oy ® 0, Ouc @ Ocg @ Og
1@y, 100 led !
\ mtotor /j@ .
ﬁac®ﬁgc ﬁ(w@ﬁ;c@ﬁgd

o ey
Cae ® Opy ® O,

Note that @ commutes trivially. The diagram @ can be divided into four com-
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mutative diagrams

d*
ba T
* * * * *
ba bd ® da ﬁda ® bd

Nhe, l 1®ngs, J{ ln%@l

be ® Ota —= Oy ® 0. ® 05— 05, @ 05, @ O}

dx

T e

ﬁ;:ka ® ﬁgc T@Zg?:a ® ﬁl;kd ® ﬁ;c E) ﬁ:a ® ﬁ;c ® ﬁl;kd

The diagram @ is the following

1o a1
By, D,q®1

ﬁ;lka ® ﬁl;kd ﬁad X ﬁdb ﬁ;lka ® ﬁdb
néé@ll in%@l
Zlkc ® ﬁ:a ® lj(d ;c ® ﬁ;(a ® ﬁdb
T®1l T®1i
182,

0, ® 05, 0 0 R0 Q Oy

and it commutes naturally. Now we check that the diagram @ commutes

1@nd* 107
* * C * * * * * *
00 ® Oy, —= 0, @ O3, @ O, — 0, @ 0. ® O

(I)Ecl@‘b;bll \ l1®r

ﬁac & ﬁcb ﬁ:a ® ﬁl;kd & ﬁ);lkc

18P 1
Doc ®1

ﬁac® ﬁgc]w@ac® ﬁ;d® ﬁ;c

It commutes naturally. Finally, it rests to prove that the diagram @ commutes.

Then the external diagram commutes. The diagram @ can be divided into the
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next diagrams.

1d 71
il 02, @ 05, ® Oy

* * /9%
ﬁca ® dc™ bd

17

Pl®1
“ ol @1

ﬁ:a & ﬁ;d ® ﬁ;c

Poi®1

ﬁac ® ﬁ;;d ® ﬁ;c lor ﬁac ® ﬁ;c ® ﬁ{:dlmlﬁac ® ﬁcd ® ﬁdb

It is clear that they are commutative, and the coproducts are coassociative

Lemma 4.4.3. Given the maps O, : O,, — k, we have that the triangles

b a
Aab

A
ﬁab . ﬁab & ﬁbb ﬁab ﬁaa & ﬁab
%l A %i 0.1

O @k k® Ou

commute.
Proof. Note the identity ©, = u} o ®,. It is clear that the next diagram commutes,

bx
(Pab * Tba * *
ﬁab ﬁba ﬁbb & ﬁba
lT
* *
ba ® bb

1R

—1 *
P Ouy / J{®1®¢1
1 ab bb
(bab ®1

O @ C~—— ﬁab@)ﬁ;bwﬁab@ﬁbb

b
the reason is that the identity n2, o (uy ® 1) = 1 implies that (u; @ 1) on2 = 1 then

(Do ®up)oTomy =70 (1® D)o (uy @ 1) oy =70 (18 Py)

This proves the lema.
L J
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Consider the maps
NS+ Oap — Hom(Oy, On) = Oy @ O,
T+ 2 O — Oy, product by the right of z
£ 1 Owpy — Hom (O, Opp) = O @ O,
x> x: Oy — Oy, product by the left of z

It is not difficult to prove that the next diagrams commute

-1

P
* ab
ﬁab ﬁba ﬁab

A;bt Lngz Lnb

Dap

* * *
ﬁac & ﬁd)@%z;@q)ac)m' be ® ﬁca = ﬁCb ® ﬁca
CDab * (I)ab
ﬁab ﬁba ﬁab

Aibt LUEZ Lgb
*
b

ﬁac ® ﬁcb(mT be ® ﬁca 70(Pac®1) ﬁac ®

Proposition 4.4.4. The coproduct AS, is a morphism of Oqq X Ope-bimodule for all
d,e, i.e. the squares

a b
Oga @ Oy o O Ouy @ Ope o O
1®AG, iAéb A2b®1l AGe
ﬁda X ﬁac ® ﬁcb ﬁdc & ﬁcb ﬁac ® ﬁcb & ﬁbe ® ﬁac & ﬁce

commute.

Proof. Consider the diagram

ﬁda X ﬁab

1€, &b
1QAG, @ Agy

ﬁda & ﬁac X bcl®1®'1> ﬁda & ﬁac X ﬁcb EL(ST) ﬁdc & ﬁcb T ﬁdc ®

Ndc @ cb
@ 1®q>cb
e @17 191*

ﬁdc ® ﬁl;kc ﬁdc ® ﬁl;kc
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If we prove that the external diagram, and the diagrams @, @, @, @ commute
then the diagram @ commutes. Note that the diagramas @ and @ commute
using the last statement. Clearly the diagrams @ and @ commute, and finally

the external diagram commutes by definition of £¢,.
We use the next diagram to prove that the other diagram commutes.

ﬁab & ﬁbe

7o(i®1) . ®1l g
ab

AC

ae

ﬁ:‘l ® ﬁCb ® ﬁbe m ﬁac ® ﬁCb ® ﬂbe ﬁac X ﬁce % ﬁ:a ® ﬁce

1®ng,
¢GC®1

ﬁca & ﬁce 1*4@1) ﬁca (9 ﬁce

Applying the Proposition [£.4.4] we have that the cobordisms of the figure

coincide.
C C
c d < < b c
b b d _ d
d — b d —™ b
b a a a a d
a a
Figure 4.14: Abrams condition.
Lemma 4.4.5.

V]
o N

o

C
C b C
C b
c b— a@b — a
c a a a
a a
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Proof.

b b b b

hence

a

Remark 4.4.6. Let O, : C — 0, ® 0, defined by
O, = Ab

aa © Ya,

where u, : C — O, is the unit. Then Ou4(1) = ¥;¥; @ ¥, where {¥;} is a basis of
O, and {¥'} is the dual basis of O, 1.e. (U, W) = §;;.
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Proof. Let be ©4(1) = %, ;8,;V; ® W, where f3;; € C.

Then we have ( @ )O(l@ﬁbb)( ”ﬁm\lf ®\I/]®\I’k) (1®€)b)(2@]ﬁ”\1'1®\1”\11k) =
Ez]ﬁz]@b(‘lﬂ\l/k> = Zzﬁ k\lf = \I/k and hence ﬂl] = 61]

L J
Proposition 4.4.7. We can modify the azioms 2 in the definition of Frobenius
structure as follows: there exist a family of coassociative linear maps AS, : Oqp —

Ope ® Oy which are Oy, X Oy-bimodule morphisms and linear maps ©, : O,, — C
such that

Abb Agb
ﬁab ﬁab X ﬁbb ﬁab ﬁaa X ﬁab

gl% El%

ﬁab®k k@ﬁab

commute.

Proof. We only need to prove that the trace ©, : 0,, — C is non-degenerate. For
this we consider the next commutative diagram

ﬁaa ® ﬁaa ® ﬁaa

Aga®1 %
1®04

C®ﬁaai®iﬁaa®ﬁaa ﬁaa@)ﬁaa*)ﬁaa@(c
m\ %
ﬁaa

This implies the next property

1®xr—>1a®x»—>(Zui®ei)®xr—>2ui®eixr—>Z@a(ei:):)ui:93

where {e;} is a basis of 0,,. Hence {u;} is also a basis of 0.

If we take = u;, then ©,(e;u;) = 6;;. We suppose y = > . oye; with the property
that ©,(yx) = 0 for all v € 0,,. Therefore, if we take x = u; hence > . 0,0,(e;u;) =
a; = 0 for all j. This prove that y = 0 and consequently the trace is non-degenerate.
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a

Figure 4.15: Traces in the open theory and closed theory.

L J

Definition 4.4.8. We will define a weaker notion of a positive (outgoing) boundary
open-closed topological field theory (2D OC-TFT, ) just as we defined a 2D OC-TFT
similarly with the difference that the morphisms have at least one outgoing bound-
ary. In particular there is not linear form associated to the surfaces illustrated in
the figure Namely, we no longer have traces. Now, we describe the algebraic
axioms of this theory.

A positive boundary 2D open-closed TFT is given by the following algebraic

data:

1.

2

2a.

2b.

2c.

(A, Ay, 1) is a commutative non compact Frobenius algebra.
O, 18 a collection of vector spaces for a,b € A.
There is a family of associative linear maps

772(; . ﬁab ® ﬁbc — ﬁac

There is a family of co-associative linear maps

AZb : ﬁab — ﬁac X ﬁcb'

Moreover, A¢, is a morphism of 0y, X Op.-bimodule, i.e. the diagrams0
O ® Oy — o Oy @ Oy — 2 Y
da @ Oap db ab & Oy ae
1®AL, lAgb A§b®1l Ag.

ﬁda X ﬁac XK ﬁc%:ﬁ) ﬁdc X ﬁcb ﬁac & ﬁcb X ﬁbelw ﬁac X ﬁce

commute.

(4.12)
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3. There are linear maps:
lag: A — Ot : Opg — A (4.13)
such that
3a. 1, is an algebra homomorphism

La(P102) = ta(P1)ta(P2) (4.14)

3b. The identity is preserved
ta(la) =1, (4.15)

3c. Moreover, ¢, is central in the sense that
La(P)Y = Yu(9) (4.16)
for all ¢ € A and ¥ € O,
3d. We define the map
T = 0T o AY, : Oug — O,

where 7 : Oy ® Oy — Opy @ Oy is the transposition map. We require the
Cardy condition:
Ty = tp 0L (4.17)

Remark 4.4.9. This algebraic construction is equivalent to consider the categorical
definition, as we do for the 2D open-closed TFT with the restriction that it do not
traces in the closed and open part.

4.4.1 Open-closed String Topology

Let # be the category of D-branes, the objects of this category are a collection
of submanifolds of M,

Obj(#) = {D; C M : submanifold of M}.
Now we consider the path spaces, see figure 4.16]
Pu(D;, D;) = {v:1[0,1] = M picewise smooth :~(0) € D;,v(1) € D;}
Then, the morphisms of the category %4 are

HOIIL%(DI', Dj> = H*(c@M(Dm Dj))a
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Y(1)eD;

N0)eD;

Figure 4.16: Space Py (D;, D;).

for D;, D; € Obj(#). In the chapter 2, we gave a nearly Frobenius structure on
the homology of the free loop space, (H«+(LM), A, u). Now, we describe the other
structural maps.

Consider the path space

Pri(Dy, Dy, D) — {a 10,1 = M : a(0) € Dy, (%) € Dy, a(l) € Dg}

Y(1)eD;

Y)eD,

N0)eDy
Now we consider the next diagram

?M(D17D27D3)

. . .0
J12%XJ23 13

Pri(D1, Dy) x Py(Ds, Ds) P (Dy, D3)

where 25 : Pp(Dy, Do, D3) — Par(Dy, Do) is the natural inclusion, jio : Pas(Dy, Do, D3) —
P (Dr, Dy) is defined by jio(a)(t) := a(3), and joz : Pas(D1, Do, D3) — Par(Do, D3)

is defined by jos(a)(t) == ().

The main idea to defining the product is to construct the umkehr map
(J12 X jo3)! : Hui(Pm (D1, Do) @ Ho (P (D2, D3)) — Ho(Par(D1, D2, D3))
and we define the product n?; as the composition

My = (i13):© (12 X ja3)! : Ho(Par (D1, D2)) @ Ho(P31(D2, D3)) — Hu(Par(Dy, Ds)).
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Now we observe that there is a pullback diagram of fibrations,

Pri(Dy, Dy, Dg) ——2252 9, (Dy, Dy) x P(Ds, Ds)

ev% ev1 X evo
D2 A Dg X D2
this let us define the umkehr map (jio X j23)!.
As before we can consider the diagram
Pr(D1, Dy, D3)
«@M(Dl,Dg) f@M<D17D2) X «@M(DQ,Dg)

Then, we define a coproduct
A%y Ho(Py(Dy, Ds)) = Ho (P (D1, D2)) @ Ho (P (D2, Ds))

as the composition (ji2 X ja3)« 0 (i35)! : Ho(Py (D1, D3)) — Ho(Par(Dy, Do, D3)) —
H.(Pm(Dy1, D)) @ Ho (P (D2, D3)).

We can define the umkehr map (i%;)! because we have a pullback diagram of fibra-
tions,

P(Dy, Dy, D3) —2 P4(Dy, Ds)

evy Xev
2

D2 A M x M

ev

ol
[N

For the unit we consider the diagram
D \

where 7 : D — pt is the constant map and ¢ : D — Py (D, D) is the inclusion. This
diagram defines the unit

up : Hi(pt) = Ho (P20 (D, D))

as up := i, or!, where r! : H,(pt) — H.(D) sends the generator to the fundamental
class [D].
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Figure 4.17: The cobordism I.

To finish the construction we need to define the connection maps. Consider the
open-closed cobordism [ between an interval, whose boundary is labeled by a D-
brane D, and a circle. This cobordism is pictured in the Figure [4.17 As in the
previous cases, we consider the space,

Ln(M) = {8 € LM : 8(0) € D}

and the diagram

We define the map ¢ by the composition,
P = (ip)s o (jp)! : Hu(Zy(D, D)) — H,(Lp(M)) — H.(LM).

For defining the umkehr map we observe that there is a pullback square

Lp(M) b ?v(D,D)

evg evg Xevy

D X D x D

Finally we define the map tp = (jp)s o (ip) : Ho(LM) — H.(Py(D, D)) —
H.(Zv(D, D)), where the umkehr map (ip), can be defined because the existence
of a pullback square,

Lp(M) —° LM
€vo Levoxevo
D X M x M

Theorem 4.4.10. (H.(LM), %) is a 2D open-closed TET with positive boundary.

Proof. We only need to prove the open axioms. This because in the chapter 2 we
gave the proof of the closed axioms. We will use the lema 8.2.2
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1. Abrams condition.

This condition is represented in the next figure.

D &
(e . o, )
= D3 Dy =
>) : C”
(D ) D, 3)

For this we just meed to prove that the maps for (1) and (2) are the same. The
same applies for the the maps for (2) and (3). The next diagrams represent

these composition maps.

(1)

Pu(Dy, Dy, D3, Dy)

A@.‘I(DlvDZ) X f‘)e\/(Dz-,Da- £y

Pri(Dy, Dy, Ds) x Py(Ds, Dy)

X j23% 34

Pm(Dy, Dy) x Pay(Ds, Dy) Pu(Di, Do) x Pr(Ds, Ds) x P(Ds, Dy) Py(Di, Da) x Py(Da, Da)

(2)

Py(Dy, Do, Dy, Dy)

J12Xj24

J13%J34

Pr(Dy1, Dy) x Py (Da, Dy)

91\J<D17D4)

Pr(Dy, D3) x Py (Ds, Dy)

First, we note that & = &, 1 = 12 and that the squares are pullback squares.
To prove that the composition maps coincide we only need to check that the

Euler class of each square coincides.
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(1) In the first diagram we have the next constructions

(%5 x i534)"(ev X eV%)*(TDZ%) ******* > Py (D1, Dy, D3, Dy)
i Xiday
Pu(Dy, D) X Pp(Da, D3, Dy) M«@M(DhDﬁ X Pu(Da, D3) x Pr(Ds, Dy)

ev X ev X ev

EVXGV%
TD3———————————————— > Dy X Dy x4 Dy x D3 X Dj
and
(evy x ev2)*(TDy) ~ — — — = Py (Dy, Dy, Dy, Dy) — 2% 2, (Dy, Dy, Dy) x Pos(Ds, Da)
EV% XEV% SV% X ev Xev
TDy————-————— > Dy X Dy 1 Dy x Dy X D3

Note that (evi x evz)*(T'D;) = ({5 X i334)"(ev x ev1)*(T'D3). Then
0— (ev% X ev§)*(TD3) — r3(ev X GV%)<T_D3) — F1 —0,

is exact where F} = 0.

(2) In the second case we have

(Z.?QZL)* eV*%(VQ) - - = @M(Dlv D27 D37 D4)
g
124
Py (D1, Dy, Dy) B Py(Dy, Dy)
eV%l leV% Xev%
Vpmm———— - - - ~ D, = M x M
and
i2
ev’%(ug) — = > Py(D1, Dy, D3, Dy) ~* P(Dy, D3, Dy)
levl levl Xevi
3 3 3
Vg o ~ D, 2 M x M
As (eV%)*(VQ) = (1754)"(e %)*(VQ), then I, = 0.
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D,
D3
D,
(2)

Pu(Dy, Dy, D3, Dy)

12
ity i} \

D3) x Py (D3, D)

Pum(Dr, Dy, Dy)
gzu(Dl Dz) X Jzu(Dz D% X Jzu D3, D4

Py(D1, D3) x Pr(Ds, Dy)

Py (D1, Dy)
(2)

2. Associativity of the product.

Pu(Dy, D,

]\[ D|7D2 Di

1
;34
i3 iz \

Pu(Dy, Dy) x Py(Dy, D3, Dy)

]'\1 Dl D2 D4
'@M(DlsDZ) @M(Dz D% @M D; D4

0]11[ Dl DZ 0}11[ DZ D4

Py(Dy, Dy)
First, we note that the external maps coincide

In the diagram (1) we have

i 12
2(TDs) — — - — = Py (Dy, Dy, Dy, Dy) “2 Py (Dy, Dy, Ds) x Par(Ds, D)
vz ev X ev
TD3 —————————— >D3 A

D3XD3
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and
(1354)" eV%(TDS) ————>Py(D1, Dy, D3, Dy)
i34
Pri(Dy, Dy, Dy) —229 . ,,(Dy, Ds) x Ppr(Ds, Dy)
evy ev X ev
TD3g—--=-—-—---~-~~ >~ Dy = Dy x Dy
Note that evi oify = evz, then ev%(TDg) = (evy0ifyy)*(T'Ds), and as a
consequence Fi = 0.

In the second diagram we have

i34 il
ev’% (TDy) - - - - - > P (D1, Dy, D3, Dy) o et Pr(Dy, Dy) x Py(Da, Dy, Dy)
ev% ev X ev
TDQ ——————————— >D2 A D2 X D2
and
(7:?24)* eVE(T‘D2> - = @M(Dla D27 D37 -D4>
i3 l
124
Pri(Dy, Dy, Dy) —— Py (D1, Dy) X Ppi(Ds, Dy)
ev%l levxev
TDy— — == — = — — - - D, 2 Dy x D,

We note that evy = evy 0i3y,. Then evg (T'Dz) = (evy 0i39,)* (T Dy) and Fy =
0.
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3. Coassociativity of the coproduct.

91&1 Dl D2 D'Z D4

i34
it

P (D1, Dy, Dy) P(Dy, Dy) X Pri(Ds, D3, Dy)
Pu(Dy, D) Pum(Dr, Dy) x Pyi(Da, Dy) Pu(Dr, Do) x Pyi(Da, Ds) x Par(Ds, Da)

(2)

@\I Dl DZ D'} D4

/\

Pu(Dy, D3, Dy) Pum(Dr, Dy, D3) x Pai(Ds, D)
/
giu(DlyDél) «]\1 Dy, Dz X «]\1 D3, D4 7\1 Dy, Dz X 7\1(D2 Dz) X 7\1(D3 D4)

In the first case we have

ev

(1) = = = Py (D1, Dy, Dy, Dy) "2~ & —— Pu(Dy, Dy, Dy)

eva eva Xeva
3 3 3

Wl *

M x M
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and

(i354)" (ev X ev%)*(,u) ————— = Zu(D1, Do, D3, Dy)

i%34l
1xi3,
@M(D17D2) X @M(D2,D3,D4) X4>32M(Dl>Dz) X @M(D2>D4)

ev X ev ] evXevy Xevy
2 2 2

x4 Dy x M x M

Then the sequence 0 — ev’h (p) — i5(ev x ev%)*(u) — Fy — 0 is exact, with
3

(id54)*(ev X evi)*(n) = evi(n). And for that reason we conclude Fy = 0.
2 3

In the second case, there is the diagram

’i2
evg(y) — = > Py (D1, Dy, D3, Dy) = Py (D1, Ds, Dy)

evli \Levl xXeviy
3 3 3
Vo - D, 2 M x M
and

(iil23)*(eV% xev)'(v) - - - - - = Pv(D1, Da, D3, D)

4
1123l

i2,x1
@M(DMD%DS) X ?M(DS,DU LIk QZM(Dl,Ds) X gZM(DZS,DAL)

evy Xev evy Xevy Xev
2 2 2

x4 M x M x Ds

As the same as before ev’ (1) = (ify3)*(ev1 x ev)*(v). Consequently Fy = 0.
3 2

4. Cardy condition

Dy D>
|

O\OBE |
|
D, D> v \ /D2

(1) 2)
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Let be

1
LM(Dl,DQ) = {Oé : Sl — M O{(O) € Dl and « (5) € DQ}

L]\I D1>D2

/

ylﬂ D17D2 Dl

2, o(j12 X 21

Pu(Dy, Dy) (D2, D1) x Par(Dy, Do) Pu(Da, D)

Where 7 is the transposition map.

(2)

LM(‘DIJ DQ)
n / X 3
LD1 (M) LDz(M)
{/ N\
,// JDq iDg 1Dy JDy \\\
@M(Dl,Dl) LM '@M<D25D2)

Note that the next diagram is a pullback square

Lat(Dy, Dy) P (Ds, Dy, Dy)
(51 J21Xj12
P (D1, Dy, D) WI?M(DMDQ) X Pn(Da, Dy)
Then, for the first case

ev*(TDy) - — = Ly (Dy, D) —> 24,(Dy, Dy, D)

evl leVO Xevy
A

D1><D1
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and
(Zg)* ev (TDl) ————— >LM(D1, Dg)
P1(Dy, Dy, Dy) "2 g0 (D Dy) % Pyy(Da, D)
ev ev X ev
TDl —————————— >D1 A D1 X D1

The next equality holds ev*(T'D;) = (ev oiy)*(T'D;). And we conclude F; = 0.

In the second case

ev*(¢) = = > Ly(D1, Dy) LLDl(M)

eviy Xeviy
evl l 3 2

C ***** >D2 A M x M
and
Js ev*(() = = = Ly (D1, Ds)
jzl
ip,
Lp,(M) LM
BV\L levxev
(------ > D, X M x M

In the same way ev*(¢) = (ev ojs)*({), then F, = 0.

5. Unit axiom
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Py(Dy, Dy)

r@1\4(D1,D2 X pt ,@]\[ Dl DQ X jM DZ Dg) r@1\/1(D1./D2)
First, we note that the next diagram is a pullback square.
Py (Dr, D) : P (D1, Dy, Ds)
lxsll \lezxjm
Pu(Dy, D2) x Dy —— Prv(Dy, Dy) x Py(Da, Dy)
(2)
C@ (D17D2 D17D2 D17D2>

It is clear that for the second diagram we have F;, = 0. Basically we have
n = id and & ~ id, then & = id,. In the first diagram the umkher map
(1 X €1)! due to the next square

1xeq

ev (TDQ) - — > @M(Dl,Dg) —_— QZM<D1,D2) X D2

evl iev Xid

D2xD2
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and
i* ev’%(TDg) _____ = Py (D1, D)
@M(Dl,Dz,Dz) et =@M(D1,D2) X @M(D%DQ)
ev% ev X ev
TD2 ————————— > .D2 DQ X D2

A
Since (ev% 0i)*(T'Ds) = ev*(T'Dy), then F; = 0.

6. tp is morphism of algebras

D D
D D
(1) (2)

Let be
Mapp (8, M) ={a:8 = M : «(0) € D}
(1)
LM x LM LM Pu(D, D)
(2)

LM x LM @]\,{(D,D) X gZM(D,D) <@]\4(
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In the first diagram there is the square

ev*(0) - — = Mapp, (8, M) —> Map(8, M)
ev \LGVXGV

M x M

A

and

|
Lp(M) LM
|

Clearly ev*(0) = 7*ev*(p). Then F; = 0.
By the other hand in (2) we have

ev*(T'D)—-—->Mapp(8, M) — Lp(M) x Lp(M)

ev ievxev
TD------ ~D = DxD
and
e »; TDY o
J evi( ) Map (8, M)
j1l
Py(D, D, D)2 3, (D, D) x Py(D, D)
ev%l ievl X evp
A
TD-------~- ~D DxD

As before, jfev*(T'D) = ev*(T'D). Consequently Fy = 0.

7. ¢ is a central morphism
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(1)

LDI (T)fl ><€ogzM(l)h D2)

LD1 ]\[ X @AI D1 Dz

Py (D1, Dy)

LI\IXL@AI(Dl D2 ]\/j Dl Dl X QM Dl D2

(2)

LU}M(DM D?)q XEOLDQ(]\J)

LD2 M >< :@M D1 Dz

@AI(Dl DQ)

Ll\/IX@]\/[(Dl Dg @1\1 Dl D2 X QZAI DZ D2

Note that in the last case we have that the pullback spaces are different. For

this particular case we use the corollary [9.2.4] for this, we first need to prove
that Lp, (T)e, Xeo Prn (D1, Do) and Lp, (T')e; Xeo P (D1, D) are homotopically

equivalent spaces. For this we construct the maps.
We define the map

i 0 Lp (TexeePu(D1, D2) — Py(Diy, Da)ey X ey Lp,(T)
(a, B) — (B, Bxaxp),

and in the same way let be

¢: gZM(DlﬂDQ)ﬂXEOLlh(T) — LD1<T)61XEOQZM<D17D2)
(7,9) — (7 * 57, 7).

See this maps in the figura [4.18|

Now we check that this maps determine a homotopy equivalence.

vop(a,B) =v(B,Bxaxf)= (e, axaxfxaxa)~(af)
poth(v,0) = p(y*0%7,7) = (7, T*7*x7*7)=(7,0).
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(04 (04
B 0 B /W\
UL AN

(OLB) —> (B, proxp)

A0 /4%\/\)

xéD1 yeD,
(1,9) —>  (7%0%7,7)

Figure 4.18: The map ¢ : Lp,(T)e; Xeo Pri (D1, Da) — Lp, (T)e; Xeo Pai(D1, D3)

Finally we need to check that the external maps are homotopic.

nopla,B)=n'(B,Bxaxf) (Bxaxp,p)~(apf)
n(e, 8) = (a, B)

gopla,B) =¢€(B,Bxaxpf)=F*Bxaxf~axf
{(a,B) = (a*p)

no(v,0) =nly*d*7,7) = (y*d*7,7) = (6,7)
n'(7,0) = (6,7)

Eop(7,0) =&(vxd%7,7) =y*xdxFxy=yx*d
§'(7,0) =vy*0

Then, we can use the corollary. It rest to calculate the Euler class.

In the first diagram we have

ev* (TDy) = — > Lp,(T)e, Xeo Pri (D1, Dy) —— Lp, x Py(Dy, D)

evooi lq X €0

D1><D1
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and

J" GVE(TDI) - = >LD1(T)61X60‘@M(D1’D2>

)

gZM<D1, Dy, D2) % «@M(Dl, Dl) X «@M(Dla D2)

ev
%l J{ep«o

TDl —————————— > D1 A Dl X Dl
Note that j*ev’ (T'Dy) = evi (T'D;). Then F; = 0.
2
In the second diagram there is the square
ev: (TDy) = — — = = Pyr(Dy, Do), X ey Lpy (M) —2— Lp (M) x P3,(Dy, Ds)
TDQ ——————————— > DQ DQ X DQ

and

7" evi(TDs) - — = 21 (Dy, Dy)e, X oo Lip, (M)

)

Pv(Dy, Dy, Dy) SN P (Dy, Dy) X Par(Do, Dy)

evy
Q\L \LE1XEO

DQXDQ

Clearly 7™ ev?% (T'Ds) and ev’ (T Ds) coincide, then Fy = 0.

Finally, we need to determine that v, = 0. For this we will construct the next
homotopy.

H: Ix(LpMcxePu(D1,D2) — LM xcPy(Dy,Dy) x I
(s, (o, 8)) — (Bs * ok Bs, 3, 5)

where the map € : [ x Py (D, Dy) — M is given by (s, 8) := ((s), and the
curve s : I — M is B4(t) = B(st) for all t,s € I.

Note that H(0, (a, 8)) = (a, ) and H(1,(a, 8)) = (B a3, 8) = T o p(a, ).
Now we need to prove that these spaces of infinite dimension has a smooth
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structure i.e. a infinite dimensional manifold; see [KM91]. The space W :=
LM, X2y (Dy, Dy) x I is determined by the next pullback square.

W = LM, x.2(Dy,Dy) x I —=LM x 2y,(Dy, Ds) x I

exli leoxexl

M x1 N Mx M x1

Then W is a infinite dimensional manifold. In the other hand, the next pull-
back square give us that the spaces Z; := Lp, M, X Py (D1, Dy) are sub-
manifolds of W of codimension one.

Zs = LDlMelxeng(D17D2> X {S}HLMQXE@M(Dl,DQ) x I

EOOXS\L leooxl

M x {s}¢ M x I

In particular we have the next situation

ZOILDquXngZM(DhDQ) ZOILDquXeof@M(DlaDQ)
1d —1 o
Zy= Lp M., Xeoe@M(Dl, DQ) Zy = gZM<D1>D2)61 XEOLDQM

Then v, =0 and e(v,) = 1.



Chapter 5
(GG-Topological Field Theory

An important construction in string theory is the orbifold construction. Ab-
stractly, this can be carried out whenever the closed string background has a group
G of automorphisms. There are two steps in defining an orbifold theory. First, one
must extend the theory by introducing “external” gauge fields, which are G-bundles
(with connection) on the world-sheets. Next, one must construct a new theory by
summing over all possible G-bundles (and connections).

5.1 Equivariant closed theories

Let us begin with some general remarks. In n-dimensional topological field theory
one begin with a category nCop whose objects are oriented (n — 1)-manifolds and
whose morphisms are oriented cobordisms. Physicists say that a theory admits a
group G as a global symmetry group if G acts on the vector space associated to
each (n — 1)-manifold. The linear operator associated to each cobordism is a G-
equivariant map. When we have such a “global” symmetry group G we can ask
whether the symmetry can be gauged, i.e. whether elements of G can be applied
independently in some sense at each point of space-time. Mathematically the
process of “gauging” has a very elegant description: it amounts to extending the
field theory functor from the category nCob to the category nCobg whose objects
are (n — 1)-manifolds equipped with a principal G bundle, and whose morphisms
are cobordisms with a G-bundle.

We have another interpretation of this category, this view is due to Turaev
[Tur99] and it consists on working in the language of pointed homotopy theory
(smooth version). For this, we set a path-connected topological space X with basis
point x € X. We call an X-manifold by a pair consisting of a pointed closed
oriented manifold M and a characteristic map gy, : M — X. For M and M’
as before we can talk of a X-diffeomorphisms between them. A cobordism W
from M, to M; is endowing with a map W — M sending the basis point of the
boundary components into x. Both basis My and M; are considered as X-manifolds

85
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with characteristic maps obtained by restricting the given map W — M. An X-
diffeomorphism of a X-cobordisms f : (W, My, My) — (W', M{, M) is an orientation
preserving diffeomorphism inducing a X-diffeomorphisms M, — M|, M; — M|
and such that gy = gw-f where gy, gy are the characteristic maps of W, W’
respectively.

We can glue X-cobordisms along the basiss. If (Wy, My, N), (Wy, N', M) are
X-cobordisms and f: N — N’ is an X-diffeomorphism then the gluing of W, with
Wy along f yields a new X-cobordism with basiss My and M;.

If we make a quotient by identifying diffeomorphic objects, hence any diffeomor-
phism becomes an identity. We get an alternative viewpoint for nCobg, for this we
take X := BG (the classifying space of Milnor).

Definition 5.1.1. A G-equivariant TFT is a symmetrical monoidal functor from
nCobg to Vectc.

5.2 G-Frobenius algebras

We start with the definition of the algebraic data with a proposition which is
related with the Frobenius structure of the G-invariant part and with the equivariant

version for the Abrams theorem. This definition was done in the seminar paper by
Moore and Segal [MS06].

Definition 5.2.1. A G-Frobenius algebra is an algebra ¢ = ©4c€,, where €, is a
vector space of finite dimension for all g € G such that

1. There is a homomorphism a : G — Aut(%), see figure where Aut(%) is
the algebra of homomorphisms of & such that

oy . ng — Cghghﬂ,

and for every g € G we have

Qglz, = 1<gg.

Note that o, : ¢, — €, is the identity map.

2. There is a G-invariant trace or counit ¢ : 4, — C which induce nondegenerate
pairings, see figure 5.2}
99 : Cfg ®ngfl — C.
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g \ - /hijh‘
) v

Figure 5.1: The action oy, : 6y — Chgn-1-

Figure 5.2: The pairing 0, : 6, ® ¢,-» — C.

g h g

Figure 5.3: The twisted commutativity of the product.
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Figure 5.4: Torus axiom.

3. For all z € €}, and y € ¢}, we have that the product is twisted commutative
(see figura [5.3)), i.e.

ry = ay(y)z.

4. Let Ay =3¢ ®§-‘771 € 6, ® €, the Euler element, where {£} is a basis of
¢y and {Effl} is the dual basis of €,-1. For all g,h € G (see figure the
identity

PAGCISIED PG

The next proposition gives us a natural consequence of this definition. This is
that the G-invariant part of the G-Frobenius algebra €’“ is a Frobenius algebra.

Proposition 5.2.2. For ¢ a G-Frobenius algebra, we have the G-invariant part of
this algebra, denoted by Corp, is a Frobenius algebra.

Proof. Let be €, := € = (@gegcﬁg)q Note that €, = @geT%gC(g) where T is a
set of representatives for the conjugacy classes in G and C(g) is the centralizer of
g € G. The maps that define this isomorphism are

C G
Vi Dyer G @ ’ (Drec ©)
deG Yg ; de:r Zhe[g]ﬁ:kgkﬂ 89" (yg)

and
. G C(g)
T: (D) — Der ¢y !
deG x, — deT Ty
First, we prove that %, is an algebra. The product is simply the restriction of

the product in ¢, this is because for z,y € 4, we have that g -z = a4(z) = =
and g -y = a,(y) = y for all g € G, then g -2y = ay(zy) = ay(x)o,(y) = zy.
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An additional property is the commutative of the product, to check this we take
T = deG zgand y = >, o Yn € Corp. The calculations are as follows:

vy =) wayn= Y ag(yn)zg =Y oy (Z yh> Tg= ) Yty =yr.

g€G heG g,heG geG heG geG

For the Frobenius structure we define the trace ¢ : €,, — C as the restriction of
€ : ¢ — C with the value zero on €, with g # e. To complete the proof we need to
prove that the induced pairing is non-degenerate.

Let x = dec Ty € Corp and suppose e(zy) = 0, for all y € €,,,. We need to prove
that x = 0. If we show that z, = 0 for all ¢ € T" we finish. This is because z =
deT Zhe[g],h:kgk—l ai(xy). We can consider y, € %), where h is the representant
of [h] € T, then y := Zke[h],k:lhrl a;(yn) € Corp- Now

e(zy) = |[Mle(xn-1(yn))

Hence e(zp,-1yy) = 0 for all y, € 6}, and then x,-1 = 0 for every h € T. Finally
r=0.

L J

Corollary 5.2.3. The coproduct in 6,y is
where © : C — Gy @ Gorp 1S the copairing.

Proof. We only need to construct a basis of 6.

-1
Let be {e/} a basis of €, such that a(ef) = el is a basis of Grgp-1.
For x € %6,,, there is the identity

v=2 2. e
g€T helg),h=kgk—1
where z, = >, Ne! € €,. Therefore

=3 > Y Nae) =Y >N > =N S N,

g€T helg),h=kgk=1 i geT i helg),h=kgk—1 geT 1

where E; , = Zhe[g] el. This proves that {F;,} is a generator of %, Now we
prove that this set is linearly independent. Suppose that geTyicl, BigFigy =0, then

ZgET,iGIg Zhe[g] 51',96? = dec (Zielg ﬁhgezh) = 0, where ;4 = B if h and g are
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in the same conjugation class. As Zie[g BigEig € €, hence Zielg BigEi gy =0 for all
g € G. We use that €/ is a basis of €, to prove that 5;, =0 forall g € T, i € I,.

Note that for E;, € 6, and kK € G we have k- E;, = Zhe[g] ag(elh) =
> helg] ekhh™ — D ield] el = E; ,, where | = khk™! € [g].

We can construct {E’f&g} = @ Zhe[g} e?_l as the dual basis of %,,;,. Then

geTjiel,

and

Ax) = Z vE}, ® E; g = Z Z ﬁxe?l ® el

geTyiely g€Ti€ly h,kE[g]

L J

Theorem 5.2.4. (Abrams equivariant case) Let € = @,ecC, an algebra with an
associative product myyp, : €4 @ €1, — Gy, and a unit u : C — 6., where every €, is
a finite dimension space. We have that a trace € : 6, — C is non-degenerate if and
only if it has a coassociative coproduct Ny, : Cyn, — €4 @ 61, with € as its counit,
such that for every g,h,k € G the following diagrams commute:

Gy @ Crp ——2 A Cop @ G — 2t E i (5.1)

1®Ah,kl LAgh,k Ag,h®lt ‘(Ag,hk

(gg®(€h®%k ngh@)%k; (b&g@)%h@%k ng@)%}zk

mg p®1 1®@mp k

Proof. The necessity is the nontrivial part and for this we define the coproduct

Agoh

ngh ng ® Cgh
%L T%l@@hl
;Lk—lg—l ;—1 ® (5;—1 (gg*—l ® cg;_l

mh_l,g_l

where @ ((x)(y) = e(my -1 (r®y)). This coproduct is coassociative and satisfies the
two diagrams [5.1}

L J

Theorem 5.2.5. Every 2D G-equivariant topological field theory defines and is de-
fined by a G-Frobenius algebra, i.e. the categories associated to this structures are
equivalent.



5. G-Topological Field Theory 91

In order to prove this result, we note that in the same way as before the only
statement for checking is that the axioms for a G-Frobenius algebra are the only

sewing conditions to cut a cobordism in all possible ways. A good reference for this
result is [MS06].

5.3 Nearly G-Frobenius algebras

Definition 5.3.1. A nearly G-Frobenius algebra is an algebra ¢ = ©,c¢6,, where
@, is a vector space for all g € G such that

1. There is a homomorphism « : G — Aut(%), where Aut(%) is the algebra of
homomorphisms of %, such that

ayp . (gg — Cghgh—l,

for every g € G we have

Qg Cg Id(gg :

Note that o, : ¢, — €, is the identity map.
2. For all x € €, and y € €, we have that the product is twisted commutative,
le.
ry = ay(y)z.

3. There are coassociative coproducts Ay, : 6, — 6, ® €3, such that the follow-
ing diagrams commute.

m m
Cy @ Chy g’hf Cyns g ® Chy . Cons
1Ay Agh, s Agpp—1®1 Agh, s
%gh@cgh—l ®(€hfWC€gh®(gf %gh@%h—l ®(ghf m(ggh(g(gf

See Figure [5.5]

4. These coproducts have the next properties: for every g, h € GG the next diagram

commutes
u JANS 1®ay
C Cge (gh X (thl cgh X (ggh—lg—l
u My gh—1g—1
Ce A, Ty @ Gy anol Chgh—1 © €y I — Chgh—14-1
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ohf

hf hf
2) 3)

Figure 5.5: Abrams condition.

Remark 5.3.2. Note that the condition 3 involves the next particular case. We
take the particular commutative diagrams

Mg,e Me,g

%, 0 C, %, €. G, %,

1®Ah—1,hi ‘/Agh_l,h Agh_l,hg_l(g)lt Agh_l,h

Cy @ Ch—1 @ G, - Con—1 @ 6 Cogh—1 @ Chg—1 ® Cy N Con—1 @ G
Mg,n=1 —lg

and z, € 6, then the next equality is satisfied
nge?% ® el = Z e '® ehgflxg,
i i

where {e/'} is a basis of €}, which is a generalized condition of Lauda (see Figure

5.6).

Theorem 5.3.3. If € is a nearly G-Frobenius algebra then its G-invariant part,
denoted by €1, is a nearly Frobenius algebra.

Proof. We define the coproduct
A Cgorb — Cgorb ® Cgorb

similarly as in Corollary 1.3. This is A(z) = 3 cr e, 2on ke zel ' @ ek
To prove that (%,.4,A) is a nearly Frobenius algebra we only need to prove the
Lauda condition, i.e.

Z er ®6 = Z Z ®efx.

g€eT i€ly h,ke[g] 9€Ti€ly h,keg)
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gl,il
h
-1
gh
h
g
Figure 5.6: Generalized Lauda condition.
If v =3, ., then
D D wel ®e= >, > > mel @d
geT i€ly h,ke[g) g€T i€ly hke[g] lI€G
By the remark [5.3.2) we have 3, 2.l @ el = ieghfl ® 6?971%' If we act the

second component by «, : €, — €,n—1 = €. Then the next identity is satisfied

Z "Egei'fl ® ar(e?) - Z G?hil ® Of?”(eibgilxg)a
i

%

hence

h—1 k_ gh™! rhg~1lr—1

Z rge; e = Z el ®e; a,(zg).
i i

Therefore

Bl k 1h=1 hl—1p—1

E E E rie; Qe = § § E e ®e" T ap(m).
g€T icly hke[g] l€G g€T i€ly h,ke[g] I€G

We use that [h=! and rhl='r~ = kri~'r~! are in the same conjugacy class and [h~*
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and rhl~'r~! vary over all G, so we can change the variables h, k for u,v. Then

A)= Y > > et ®ela(n)

geTicely uwelg] leG

- T re @egar(zx)

geTicly u,velg] leG

:Z Ze ® efa,(x)

geT iely uwelg]

= Z Z e’ ®elx.

g€eTi€ly uwe [g}

5.4 Examples

5.4.1 Virtual Cohomology

Now we introduce a new structure which is defined in [LUX07]. This is a cohomol-
ogy theory for orbifolds and it is other important example of a nearly G-Frobenius
algebra. We will work, as the same as before, with the global quotient orbifold
[M/G], where M is a smooth manifold and G is a finite group acting smoothly on
M. In this subsection we will describe the structure maps. For this work we only
consider quotients of manifolds by a finite group.

This example generalizes two diferente families of Frobenius algebras. The first
example is the Poincaré algebra of an oriented smooth manifold M and the second
is the Dijkgraaf- Witten model given by a finite group G. We can relate these two
structures through a smooth action

A

Let G be a finite group and M9 := {x € M : xg = z} the set of fized points of g € G.
If M is an oriented smooth manifold (not necessarily compact), we can define the

G-virtual cohomology
= P ().

geG
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Definition 5.4.1. The next diagram defines the virtual product in H*(M, G) in the
following way:.

Mok
Sg.n ig.n
M9 x M" Mh
If « € H*(MY) and B € H*(M"), then we can define the virtual product
axf =iy ((l/(g, h)é;h(a X B)) ,
where a x = w(a)m};(6), and v(g, h) = e(M; M9, M") is the Euler class of the

TM'MQJL
TMg‘M%’t*TMthg,h

Grothendieck group of vector bundles over M9" the class is

excess bundle , which is called the excess intersection class. In the

TM|ppon +TMS" — T M| ypon — TM"| .

Notice that 07, (ax 3) = &g, (75 (@)} (8)) = (wgdg,n)" () (mndgn)(B) = ig(a)iz(5),
where i, : M9" — M9, i, : M9" — M" and 7, : M9 x M" — M9, 7, : M9 x M" —
M™",

This product becames graded with the degree shift
dimy;(@) = o] + cod(M? C M).
We have a natural action of the group G in H*(M; G) as follow
ag s H (M") — H* (M99 ™).

This is induced by the map Meha™h M", x+ xg. Note that Qy

w* (M) = 1dm=(ar9)-

Now we define the virtual coproduct as follows

g;h
%/w “m
Mh

M9 x M"
Then for o € H*(M9")
Agyh(@) = 597’1! (M(gh7g7 h)l;h(()é)) )

where p(g,h) = e (TZJ%L_Z% o TMWL).
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Theorem 5.4.2. H*(M; G) is a nearly G-Frobenius algebra.
Proof. We use the lema [9.1.2]

1. Associativity of the virtual product

g g
h ghf—
f f
(1)

(i)

M-S

M9h x M7 Mohf

M9 x M x MY Mo x Mt Mokt

o e5(v(gh, f))e(Fr)ei(v(g, h) x 1)

TMIMxMF|, o n TM)|

M3sh, f Mmah, f

w Fi)=c¢ v(gh =e

here 6( 1) (TMg’hXMf|M97h,f+TMgh’f|Mg,h»f ! (g 7f) TMIMygn,p +TME|gny )7

TM)| h
and v(g,h) = e ALG: )
<g7 ) (TMQ|Mgvh+TMh|Mg,h

Note that ef (v(g,h) x 1) = v(g, h)|prenr. We realize the calculations in K-
theory:

Set by T M* 2|y o0 = (ki, ko, ...), then

(D +(gh, =g = (H+gh+{H+{g, h, [)=(g, )= {F) = {gh, /) +{1)+(g, h)=(9) = (h)

=(2) + (g9, h, f) — (9) — (h) — ()

(ii)

M9 x MM/ Moht

M9 x M" x M* M9 x MM Mokt
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o ey (v(g, hf))e(Fa)er (1 x v(g, h))

TMIXMI| oh s TM|,h,f
where e(F5) = e M- v(h =e M
( 2) (TMgXMh"f|Mg,h,f+TMg’hf|Mg,h»f ’ ( ! f) TMh']\/Ih,f+TMf|]Mh»f !

TM|,,g.nf
and v(g,hf) =€ ALY
(9, 1) (TMg‘]WgﬁhijTthlMg,hf
In K-theory

(1)+(g, hf)=(9) = (hf)H @) +(hf)+ (g, b, [)=(g) = (. )= (g, hf)+(1)+(h, f)—(h)=(f)

= (2) +{g,h, f) = (g) = () = ([)-
Then (ax ) xy = ax (6x7).

2. Coassociativity of the virtual coproduct

g
ghf
(1)
(i)
M-S
MInhf x MMf
Nohf « Mhf M9 x M" x M7

o e (u(g, hf))e(F1)es(1 x u(g, h))

TMIXMM |, g h. s TM|yrg.hs h
wheree(F)) = e M9, hf) = e ( sopuel T )Njohf
(F1) (TMg I ygh f FTMIXMMT]) g g (g, hf) TMIM T, g ny '

and p(h, f)=e <—TM‘M” Tth>

TMRF| s
If we realize the calculations in K-theory, then

(D) +Ch, )= (hf)+H1) —(ghf)+{g, hf)+{g)+(hf)+(g, b, [)—{g,hf)—{g)—(h, f)
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(ii)

M-S
e e}
Mgh,f Mg,h % Mf
Mt M9 x M7 M9 x M" x M/t

o er'(ulgh, f))e(F2)ey (ulg, h) x 1)

TMIMXMI |, g ht TM|,,q.n h
where e( F: M h) = e g T N9f
( 2) <TMg h><Mf|Mghf+TMg ‘f|Aghf 7[1(97 ) TM9h|Mg,h 5

™
and v(gh, f) =e (TMML%TMWO.

In K-theory
(D)+(g, h)—(gh)+(1)+(gh, f)—(ghf)+{gh)+{f)+{g, h, £)—{gh, £)— (g, h)—(f)

3. The action is an algebra homomorphism

Moho~tgkg™!
/ lghg=1,gkg—1
Mohka™
h s MF Mohkg™!

hk
e(Fl) =e TM™| ohg=1,gkg=1
- h,k hkg—1
MR ang=1 gkt TTMIMEITT] L ohg=1 gkg—1

and v(h, k) =e ( TMl g )

TMh|Mh,k+TMk‘Mh,k
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Then in K-theory the calculations are

(1) + (b, k) = (h) — (k) + (hk) + (ghg™", gkg™") — (h, k) — (ghkg™™)

= (1) = (h) = (k) — (b, k).

(ii)

Mgha~tgkg™!
Ogng=1.gkg 1 \
Mgha~tgkg™! Moho~gkg ™!
;fiiff///// \\\\\\}\\\\* Oghg=1,gkg~L 'ghg=1,gkg—1
M" x M* M"* M9hka™!
ghg™1 gkg™!
o c(Fy)=e ™ i lusoho 1ok~
= g1 kg1 hg—1,gkg—1
TMItg= XT M9 |Mghg*179kg*1+TMg g ‘MMghgflygkgfl

TM| —1 1

—1 -1 M9hg™ " ,gkg

and v(gh k =€ ( — —

(g g 79 g ) T Mghg 1‘ Ik T M9k 1| hk

Then in K-theory

(1) +{ghg™", gkg™") — (ghg™") — (gkg™") + (ghg™", gkg™") + (ghg™")
+gkg™") — (ghg™") — (gkg™") — (ghg™", gkg™")
= (1) = (h) = (k) = (h, k).
4. Graded commutativity of the product
{ ' ghf_v e gh

)] 2
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(ii)

M" x M9 Mh

o v(ghg™', g)e(Fs)1

—1

TMIM ~ xMI|, on

where e(Fh) = e — A0 =e(0) =1.
(F2) (TMghg Lol g n+TMehg ™ M| o, (0)

In K-theory

(1) 4+ (g.h) — (ghg™") — (g).
(i)

M9hg™ "9 = Nf9h

dg,h L

M9 x M" Moh

MM x M9 M9 x M" M9

e v(g,h)e(Fy)l

TMIXMP, 4
where e(Fy) = e (TngMthg,hnL%\%hIMg,h) =¢e(0) = 1.
In K-theory

(1) + {9, h) = {g) — ().
Then ay(8) * o = igp! (v(g,h); , (T*(B % a))) if and only if
(h) = (ghg™").

This is true because the bundles are isomorphic. Now we need to understand

(B X ).
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Let be 7 : M9 x M" — M" x M9 the transposition, and 7, : M9 x M" — M9,
Tyt M9 x MM — M" ) Mh x M9 — M", «h o M" x M9 — M9. Hence

(B % a) = (" (8))7" (15 () = (wy7)* (B)(m57)" (@)
= my(B)mi(e) = (=D Wlai ()73 ()
— (_1)Ia|\/3|a x 3.

Then ay(8) x a = (—1)1*1%li 41 (v(g, h)dy (a0 % B)) = (—1)llFla % 3.

5. Abrams condition

gh gh
hf

(i)

Remember that if a € H*(M9") then
Agn() = 34! (1lgh, g, h)ign(a))

where (g, h) = e (M ® TM97h>.

TMgh‘]wg,h
(ii)
M-S
/ K
MIhf Mot
M9 x M Mot M9 x M*

o e5(u(gh, f))e(F1)er(v(g, hf)),

where e Fl =€ <TMg hf|;f;\/[;f]1]\7{]g\;q}{f\Mg hf
Then (1) +(gh, f) —(ghf)+{ghf)+{g,h, f> (g, hf)—(gh, f)+(1)+ (g, hf)—
(9) = (hf) = (2) + (g, h, [) — (g) — (hf).



102 5.4. Examples

(1)
MoMf
/ \
Mg X Mh’f Mg,h X Mf
M9 x MM M9 x M" x M7 M < M/

o e5(v(g,h) x De(Fa)e (1 x p(h, f)),

h Mt
where e(Fy) = TN yggons
)+
)+

TMgXMhf|Mth+TM9h><Mf|Mth

e
Then (1) + (g, h) = (g) — (h) +{g) + (B) +{f) + <g,h f)—={g)—(h, ) —(g. h) —
() + Q)+ (b, [) = (hf) = (2) + (g, h, [) = (Rf) = {9)-
(iii)
MIhf
/Mml Xth\ /}ghxww\
M9 x Mh M9 s MM s Mh M9 x M

o ey (Lx (b7t hf))e(Fy)er " (nlgh, ") x 1),

) TMoR Tfj\if/[hgf\th f‘:T]]\égj;‘M;\];}LLf1 hf|mghf)

Then (1)+ (b4, hf) = (W71 = (hf) +(gh) + (b 1)+ (1 f) + (g, b, f) = (gh, h™") =
(hf) = (gh) — (= hf) + (1) + (gh, h™1) — {g) = (2} + (g, b ) — (hf) — (9).

If we compare the three cases we have that the Abrams condition is satisfied.

where e(F3
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6. Torus axiom

g hgh h
%h hghg' hghyg'
O (= ‘
g : R  ghd
(i) (i)

Moh
/ \

M99 Mhah™tg™t
by g1 (ahXIV tgh—1 -1
M M9 x M9~ Mhah~tg™!
% 1 -1 % -1
o es(v(hgh™, g7 )e(F1)ei(ulg,97)),
-1
TMIXMI | on 1 TM| 4 .
wheree(F;) = e — MI:2 and =e <L“ T M99 =
( 1) TM9:9 1|Mg,h+TMh9h Lg 1|Mg’h ,u(g,g ) TM], o o1 b

e(T'M?). Then

(1)+(hgh™, g~ "y =(hgh™ ") =g~ ) +(g)+(g ) +{g. h)— (g, 97" )—(hgh ™", g ") +{g, g~V

(ii)

Moh

Mt Mhoh™g™

h,n=t On,gn—1g—1 hgh~lg~1
6h,h*1

M MM x M Mhah~lg!
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o e’ (v(h, gh~g ")e(Fo)er (u(h, h),
TMEXM®_ygarn ) and p(h,h™t) = e(TM").

where e(Fy) = e

Then
(1)+(h, gh™ g™ ) = (h)—(gh™ g™ ")+ (R)+(h" ) +(g, h)—(h, k™) =(h, gh™ g™ )+(h, 7Y

= (1) + (9. h) = {gh™'g™") + (h).
Using that (g) = (hgh™!) we finish the proof.

= T,
TMh:h |Mgh+TMh9h |Mgh

L3

Definition 5.4.3. We define the orbifold virtual cohomology as the G-invariant part
of H*(M;G). Tt is denoted by H%, . (M; G) = H*(M; G)“.

virt

Corollary 5.4.4. The orbifold virtual cohomology, H:

't (M5 G), is a nearly Frobe-
nius algebra.

5.4.2 Orbifold String Topology

Orbifold string topology was introduced by Lupercio, Uribe and Xicotencatl in
[LUXO08]. Let M be a smooth, compact, connected, oriented manifold and let G be
a finite group acting on M.

We will consider the global quotient orbifold X = [M/G].
We define now the loop orbifold LX for X as follows:
Consider the space
= | | Py(M) x {g}

geG
where
Py(M) = {7 :[0,1] = Y : 4(0)g = ~v(1)},
together with the G-action given by
Gx | | P(M) x {g} = | | P,(01) x {g}
geG geG
(h, (,9)) = (yn, h™" gh)

where ;,(t) := v(t)h.
xg xh(hgh)
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Then we define the loop orbifold as
LX := [Pa(M)/G].

In this section we associate a nearly G-Frobenius algebra to the loop orbifold
LX. This is Hi(Pa(M)) = D, Hi(Py(M)), which the G-action

t + Ho(Py(M)) = H,(Pagyr (M)

an([7]) = [l

It is important to mention that the string topology is included as H,(P.(M)) with
e € (G the identity.

We will describe the structure maps in the next section.

Algebraic structure

Orbifold string product: We will suppose that M is oriented and G acts by
orientation preserving diffeomorphisms. Now we define the product for the homology
of P (M). We start by defining a composition of path maps

© : Py(M)e, %o Pr(M) = Py(M)
where €, : Pi(M) — M is the evaluation map at ¢, given by v +— 7(¢) and

Po(M)e, X eoPr(M) = {(70,7) : 70(1) = 71(0)}.

The map ® is given by

(70 @’h)(t) = { '70(2t), (;i

Notice that the following diagram is a pullback square

Py(M)e, X o Pr(M) 1= Py (M) x Py(M) (5.2)

eool queo

M R M x M

where j is the inclusion, A is the diagonal map and e (70, 71) = V(1) = 71(0). We
observe that the pullback square allows a Thom-Pontryagin map

7Py (M) x Py(M) = (Py(M)e, x(,Pr(M)™,
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where (P, (M), X oo Pr(M))T™ denotes the Thom space of the pullback bundle €%, (T'M).
This is the normal bundle of the embedding j.
Set by (Pgn(M))"™ the Thom space of the bundle €} (T'M) with €1 : Py(M) —
2

M. The map ® induces a map of Thom spaces
® : (Py(M)ey X Pr(M))™M = (Pr (M)

An immediate consequence is the next commutative diagram

Py(M) X Pp(M) —— (Py(M)e, X (P (M)) M = (P, (M) ™M
€1 X€Q eool 6%
M x M T MTM = MTM

Then, we can consider the composition

T

Ny = Hp(Py(M)) @ Hy(Ph(M)) =5 Hyoo(Py(M) x Py(M))
Hy g (Py(M)e, %o Pa(M))TM) 55 Hyp g a(Pon (M),

where , is the Thom isomorphism. Summing over all elements g € G we obtain
the map
n: Hp(Pe(M)) © Hy(Pa(M)) = Hpyg—a(Pa(M)).

We denote by n the G-string product.
Orbifold string coproduct: First, we note that the next diagram is a pullback
square

Pg(M)e, % o Pr(M) = Py (M)
€oo e%,so.g
M X M x M

Then, we can consider the map
® 1 Pgn(M) — (Py(M)e, X o Pr(M))™

where (P, (M), X oo Pr(M))T™ denotes the Thom space of the pullback bundle €% (T'M),
which is the normal bundle of ®.
Then, we can consider the composition

Agn Hpygra(Pon(M)) = Hyy g a(Po(M) ey XePa(M)™ 55 Hy o (Py (M), X oo Ph(M)) L
Hp+q(g>g(M) X Pp(M)) — Hp(:Pg(M)) & Hq<Th(M))'
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Summing over all elements g € G we obtain the map
A Hy(Pe(M)) - Ho(Pe(M)) @ Ho(Pg(M))

We will call A the G-string coproduct.
The unit: We consider the next diagram

M
SN
{pt} Pe(M)

where r : M — {pt}, the constant map and i. : M — P.(M) is defined by i.(y) =
a : I — M such that a(t) =y is the constant loop.

Then u : H,({pt}) = k — H,(Y) < H,(P.(M)) — H.(Pg(M)).
w:k — H(Pa(M)).

Note that as the same as string topology the loop orbifold has not trace, this is
because, as late, the counit is given by the diagram

M
N
pt P (M)

and the inclusion map M — P.(M) has infinite codimension.
Theorem 5.4.5. H,(Ps(M)) is a nearly G-Frobenius algebra.
Proof. We will to check all the axioms.

1. Associativity of the product

g g
gh . h ghk
h ghk—
k k
(1) 2)

Remember that the product is defined from the next diagram

ngMq Xeoj)hM

j)gM X ﬂ)hM inhM
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The associativity is encoded in the next two diagrams.
(1)
PyM e, X oy P M, X oo PeM

1xj *X 1

PoM e Xy PrM x P M PonM e, X e PrM

/ *x1

?g]V[ X j)hj\l X ?kﬂi ?gh]\/[ X ?k]\/[ ?ghkkj

\

(2)
PyM o, X oo Pp Mo, X o PeM

Jx1 1x*

PyM X PuM X o P PyM oy X e PrcM

/ 1x%

?QAI X :Ph]\/f X :Pkﬂf ?91\1 X ?hk]\/[ ?ghk]\/[

\

The first case involved the next constructions

(* X 1)*620(TM) - — > :Pqu xeoj)hMel XEQTk}M

*Xll

620<TM) —————— > ﬂ)ghMel XEOTkM J nghM X iPkM
Eool ielXeo
TM-=--=------~~- - M ~ M x M

and

(€co X €o0)* (TM) — = = PyM, X PhM o, X (o P —=P M x (P M x P M
eooXEooi \LEOOXC:[XCQ

T™T™ - ———————— — =M x M N Mx MxM
xA
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We note that (x x 1)*eX (T'M) = (€x X €00)*(T’M). Then Fy = 0.

In the second diagram we have the next constructions

(I x %) es (TM)——>PyMe X, PrMe, X, Pi M

1X*i

e (TM)- - - - — - =Py M, X e PrM Lo P M x PrM
Eooi i€1 X €Q
™ -—-——-——-——-——-———-——-——— > M N M x M

and

(€co X €00) (TM) = = = PyM e, X oo PrM e, X g PrM —2P M x PuM ., (o P
eooXeooi \Lelxeoxeo@

™ - — — — — — — — — — =M x M A Mx Mx M
x1

Similarly as before, we note that (1 x *)*€; (TM) = (€x X €x0)*(T'M). Then
F5 = 0. Therefore the product is associative.

2. Coassociativity of the coproduct

g g
ghk " )
:gh . h
k . k
) )

In the same way as the product, the coproduct is defined from the diagram

ﬂ)gMel XEO?hM
fpghM TQM X ':PhM

The diagrams that represent this property are
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PyM o, Xy PrM ., X o P M

ngh]\/qu(U?k]\J TgA[choﬂjhA/[ X Tk.]\/j

* J #*x1 jx1

Py M P M x PpM P,M X PyM x PM

PyM e, X oo PhM e, X oo PeM

PyM o, Xy P M PyM x Py M., % o P M

* J Ixx 1xj
?ghk]\/[ ?g]\/[ X Thk]\/f ?g]\/[ X f})h]\/f X ?k]\/f

In the first case we have the next constructions

(1 X j)*<600 X 60)*77— - >:P9M€1X60iphM€1 Xeoj)kM

1le

(€oo X €0) N — — = — = PyM X o PhM x PeM —2o P, M x P M
EOOXEO\L l(G%ﬁOg)XﬁO
N == = =M x M N MxMxM
x1

and

(€oe X €0) N = — = PyM e, X (o PhM e, X o PeM =25 Py M o X o PrM
eooxeol l(e%,eog)xm

N —— - > M x M A Mx Mx M
x1

We note that (1 X j)*(€x X €0)*1n = (€00 X €0)*n. Then F; = 0.
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The second diagram has the next constructions

(] X 1)*(61 X 600)*77 - :PHMQ Xon)th XEOTkM

jxll

(61 X Eoo)*nf - - - >inM X fPthXEOiPkM&:PgM X iPhkM
EIXEN\L iqx(e%,eoh)
N-==-=-=-=-=-=-=--- M x M T T MXxMxM

and

(€1 X €00) N = = = PyM e, X (o PhM e, X o PeM —25 P M o, X oo Pri M
€1 Xeool iqx(e%,egh)

N —— - > M x M A Mx Mx M
x1

In the same way as before, we note that (7 X 1)*(e1 X €x)™n = (€1 X €x0)™.
Then F, = 0.

3. Graded commutativity of the product

This property is represented in the next diagrams

(1)

‘J)thXEIngM
:PhM X :P M :PhM

ﬂ)hMXTM ?MX?h ghM
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(2)
ThMel Xelﬂ)gM
(PhM X CP!]M jjghg—l ]\4€1 Xeoﬂ)gM
/ (agx1)or / \
:PhM X CPQM {‘Pghg’lM X [PgM nghM

First, we need to check that the maps * o (o, x 1) and %o 70 (ap-1 X 1) are
homotopic maps and the same for j o (1 x a,-1) and i. In each case, we will
construct the homotopy. In the first case we define

H:Ix (fPhMEqu:PgM) — [PghM

Note that H(0, (a, 3))(t) = ay(a)*f *ozh i(a) (%)
1)(a, 5)(t), and H(L, (v, 3))(t) = -
(x o T(ap-1 x 1)) (a, B)(1).

In the second case the next map
F:Ix(PpMxqPyM) — PpM x P,M

is defined by

Note that F(0, (a, 8))(r, ) (a(r), B ag-1(B) (3)) = (a(r), B(t)) = ia, B)(r, t),
and F(1, (a, )) - =J
t).

g1, B)(r,
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Now, we can determine the Euler classes. In the first case we have

(o 0T O (-1 X 1)) (TM) - —>Pr,Mc ¥, PgM
To(ay,—1x1)
Py M, X oo PrM 2= P M x Py M

€oo €1 X€Q

M x M

and
e(TM) = —>PyM X, PyM —= P, M x Py, M

€1 €1 X€1

TM------ - M =M x M
We note that €; = €5, 0 70 (-1 X 1), then F; = 0.
For the second case
(€0 (g x 1))(TM)——-—>PpM <, PgM
Tolagx1)
Pong 1 Mey X o PgM —L= P s M x Py M
- e1x€0
TM -—————————~- M M x M

and
e(TM)--=PyM,xoP,M P, M x P,M

€1 €1 X€1

X M x M

Similarly we note that €; = €, o (a; X 1), then I, = 0.
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4. The action is an algebra homomorphism

h hk  ghkg'

i3
I

This property is described in the next diagrams.

(1)

Tth Xegj)k
iPth Xeoj)k ThkM
ThM X TkM ThkM inhkg’lM
(2)
ﬂ)th Xeo
/ N
PM x P M Pong=1 Me; X g Porg—1 M
/ X / \
?hM X fpk ghg M X g)gkg gDghkgfl‘]\4

In the first case is clearly that F}; = 0 because the normal bundle is zero. Now
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we study the second case. This is

(ag X ag) es (TM)———=>PpM¢, Xy PrM
agXog
?ghg*1M51 Xgog)gkgflM ]4> J)ghgflM X ipgkgflM

€oo €1 X€Q

TM----------- - M M x M

and ‘
e (TM)-—>PMc, X, PuM ——~ P, M x P M

€oco €1 X€Q

N M x M
Note that € (TM) = (ay X oy)*€i (T M), then Fy = 0.

5. Abrams condition

g
k
K (1) 2)

This property is modeled by the next diagrams
(1)

PyM ., Xy PrM o, X (o P M

PgM x PpM, X ey PrM PoM ¢, X (g PpM x P M

N N

:P M x ‘Phkl\[ :P M x ThA[ X :Pk:A[ hA[ X :Pk:A[
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PyM, X oo PhM e, X o PiM

1x* X1

PyM e, X oy P M PonMe, X o PiM

€0

ﬂ)g]\/[ X ?hkj\/[ fpghk]\/f :Pgh,]\/[ X fpk]\/.[
The first case involves the following
((€xo X €0) 0 (L X g (TM) - = = PgMe, X PrM e, X e Pi M

1xj

7x1

:PgMel XEOiPhM X :PkM4>inM X :PhM X (:PkM

€co XE€Q €1 X€Q X€Q

™ - —-—-—-—-—-—————~- =M x M N M x M x M
x1

and
(Goo X 60)*(TM) - = > :PgMel XGOiPth XEO:PkM {PgM X ﬂ)hM X j)kM

€Eco XE€Q €1 X€Q X€Q

TM--------- M x M X M x M x M
x1

It is clear that (€5 X €9)*(TM) = ((€x X €9) © (1 X j))*(T'M), then F; = 0.
In the second case we have
(o 0 (x X 1))*(TM) — —>PgM e Xy PrMe, X g P M

*X 1
g)ghMel Xeoj)kM * g)ghk:M
oo €1 Xeggh
TM--—-—————— - — — > M M x M
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and
(€1 X €00) (TM) = = = PyM, X (g PhM e, X (o PeM —25 P M X o, Pri M

€1 X€co €1><6%><60h

TM~-~------—~ =M x M - M x M x M
XA

Finally (€1 X €50)*(T'M) = (€, © (* x 1)*(T'M), and then F; = 0.

% (1) (2)

Remember that the unit map is defined from the next diagram

M
pt P.M

where 7 : M — pt is the constant map, P.M = {a: I — M : «o(1) = «(0)
LM, and i, : M < LM in the natural inclusion. Then u : H,(pt) — H,(LM) =
H.(P.M) is the next composition map

6. Unit axiom

H, (pt) — H,(M) < LM,

The diagrams that represent the unit axiom are

/\
/\/\
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It is clear that F5 = 0.

(1)

1X12c.0€1

PyM x pt PyM x P.M PyM

First, we note that the map 1 is homotopic to the identity Id : P;M — P, M,
this is because

V:a— (a,i(a(l)) = axia(l)) ~a.

Clearly the map ¢ is the identity map.
Now, we determine the class of the square.

e (TM) - —=P,M —25P M x M

Eli lslxl

T™ -~ ~>M—F>MxM

(Ixe)e(TM)- - - -=P;M

lXeli

PyM Xy PM =P M x PM

Eooi ielXeo

M x M

A

In this case we note that €, o (1 X €¢;) = ¢, this implies €}(T'M) = (1 x
e1)*e: (T'M), and then F; = 0.
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7. Torus axiom

g hgh

QH 1 ‘H |

h ohg (i)

The co-pairing map O, : k — H.(P,;M) ® H,(P,~1M) is defined as the com-
position of the unit and the coproduct as follows,

A, -1
k — Ho(PM) 25 Ho(PyM) @ Ho(P,-1 M).

Now, we describe this map.

where the map i, : M9 — M is the inclusion, and f, : M9 — Py M X Py M
is given by = — (ay, ;) with «, the constant loop. The Quillen’s class of this
square is described as follows:

and
foes(Vxay)) M9
!
PoM e, X Pyt M —s P M
I
V(1xag) M M x M

1xay
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Note that €y o fy(7) = =, this implies that ey o f;, = iy and fref(Vixa,)) =
i;(y(lxag)) Therefore Fj is given by the next exact sequence

0 — v, — i;(y(lmg)) — F, — 0.

In the next step we determine the diagram associated to the first figure.

(1)

Mok

PyM e, X oo Py s M

g

:Phgh—l ]\/161 X E”Tg—l M

, . PyM x Py M i
ap X1
l
pt fPEZW ?hgh—l M x ngfl M fPhghf.ng

The class Fj is given by

. 9,h
Yign Moh—== M?

and
T n€ac(TM) Mo
.
Progh1 My X o Pyt M 2 P s M x Py M
T™ M < M x M

Note that € 0 jgn(7) = €xc(an(ay), ay) = x, then ey 0 jyn = iy and we have
the next exact sequence

0—vp, — ign(TM) — Fy — 0.

The second diagram is the following
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Moh

M {th\[ Xe fPh M Thi\[ X in; —1g- 1M
/ / PuM X Py M i
1xay
i \\

pt fP PrM x Tgh 11 M Thghflgfl]\/[

The class F5 is associate to the next map

h

Vi, M
in this case we have
Jgn€ao(TM) Moh
J{jg,h
ﬂ)hMel XEO:PghflgflM ]*> PrLM x fpghflg—lM
€ooJ/ J{el X€p
TM M M x M

A
As before there is the identity j7 €5 (T'M) =} ,(TM). Then

0 — vy, — ign(TM) — Fp — 0.

Applying the Quillen’s we conclude
®.J!((an x 1)7)®licer!(1) = d.(r!(1) N (e(i), (Fy)) Ue(F1)))

and
®.J1((1 X g)))u®licar! (1) = i (r1(1) N (e(ig 5, (Fn)) U e(F)))

To prove the axiom we need to check that

ey (Fy)) U e(F1) = e(igy,(Fi)) U e(Fy),
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or equivalently

i85 (Fy) @ Fy = i;‘j‘h(Fh) @ F,.

The bundles are the following:

_ gx i (TM)
Br = inF)eh = ey @
. i (TM
E, = i(F)aeFR = 0 g
s Zg,h(ylh)

The information is represented in the next diagrams

” g .
Zg,h(TM) Zth(I/ig) Vi,
eV '
L — > M9hC M9——M
Zg,h g
and
S h .
zg,h(TM) Zg,h(Vih) Vi
U a v \
i > Nf9:hC - MhE . M
g,h

T

TM

it (TM)

it hl(qT}M)

Using that all the maps are inclusions we have that 4} , (T'M) = T'M|yz» and

i0 5, (Viy) = Viy|aren. In other hand, we observe that

h
TM|Mg,h:TMg @Vigh@yig’Mg‘h7
and
h
TM|Mg,h :TMQ ®Vi2h @Vih|Mg,h.

Then
o .
Vig , @ Vig|pron = Vin, D Vi | mon

and in particular F; = Ej.
axiom is satisfied.

This proves that e(E;) = e(FE,) and the torus

L J



Chapter 6

G-OC-TFT

In this chapter we will consider that a group G acts on a OC-TFT and this theory
is called G-equivariant open-closed theory, for this we enlarge the category .4 in
the sence that the objects are oriented 1-manifolds with boundary, with labelled
ends, equipped with principal G-bundles. The morphisms are the same cobordisms
as in the non-equivariant case, but they are equipped with G-bundles.

Up to isomorphism there is only one G-bundle on the interval: it is trivial, and it
admits G as an automorphism group. So an equivariant theory gives us for each pair
a, b of labels a vector space 0, with a G-action. The action of g € G on 0, can be
regarded as coming from the square cobordism with the bundle whose holonomy is g
along each of its constrained edges. There is also a composition law Oy, X Oy, — O,

i pig?

Figure 6.1: The gray line is a constrained boundary. If there is
holonomy ¢ along the red path P then this morphism gives the (G-action
on O,.

which is G-equivariant. These maps are illustrated in Figure [6.1] and Figure [6.2]

)

o

Figure 6.2: The definition of the product in &,. The holonomy on all
gray path is e, the identity in G.

G,

123
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In the open-closed case the analogous conditions are the following. We focuss first

on a single label a, then the space 0,, is not necessarily a commutative Frobenius
algebra together with a G-action p : G — Aut(0):

Pa(P1p2) = (pgp1)(pgp2)

this action preserves the trace in the sense ©4(py) = Og(p), see Figure[6.3 There

are

whi

Qe @

(P®))P9)) =r:(99)

. D=0

0,(©®) = 6,0

IR

Figure 6.3: Showing that GG acts on 0 as a group of automorphisms.
also G-twisted open-closed transition maps
lga =1Llg: Cy—> Opg =0,

=191 Oy = O — C,

ch are G-equivariant, i.e. the next diagrams commute
0gy Qg
Co — Cgogrgy? ot — G
Loy l iL9291921 L9219192T Tﬂl
7 7 7 7
Pgo Pg2

These maps are illustrated in figure[6.4. The equivariant property is decried in figure

0.0l

Recall that we study in chapter 4 the definition of a G-Frobenius algebra where

€ = @yecC,. The map ¢ : € — O obtained by putting all the maps ¢, together,

=

Bgecly, 1S a ring homomorphisms (see figure , ie.

Loy ((I)l)bgz (@y) = Lgagn (©2@1),
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Figure 6.4: The open-closed transitions maps ¢, and /7.

£, 2,2,
() Po, | = () :’ }

Figure 6.5: Equivariant property of the transition maps.

with &; € 6, and &, € 6,,. Moreover t.(ly) = 1g. The G-twisted centrality
condition is

Lg((b)(\l/) = (pgfl\lj)bgﬁp)a
with ® € ¢, y ¥ € 0. The G-twisted adjoint condition is

9 9 9,
(K>| W%
9 9, g,

Figure 6.6:

¢t is a ring homomorphism.

B0 (Vig-1(P)) = O (L (V)P),

where ® € €,-1. Finally, the G-twisted Cardy conditions for the spaces of morphisms
O, between the labels a and b. For each g € G we must have

a __ g,a
Tgp = Lgpt?™.
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Hence g, is defined by

oo (0) = Y W(pgy)
n
where 1), is a basis of 0, and ¢* is the dual basis of 0,,. See Figures to

g 9

Figure 6.7: The G-twisted centrality axiom.

g1> -
LC

Figure 6.8: The G-twisted adjoint relation.

TCg lglg

0

Figure 6.9: The G-twisted Cardy condition.

Theorem 6.0.6. The G-invariant part of a G-OC-TFT is an OC-TFT.

Proof. We apply the Proposition to prove that € is a commutative Frobenius
algebra.

Let be 0 the G-invariant part of Oy, i.e.

Oy = {1 € Ou : py(v)) = ¥ Vg € G}
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where p: G — Aut(0,) is the action.
The next step are to define the structural maps and to check the properties associated
to an OC-TFT.

1. We define the product by
S 05 @ 0 — 0%

which is the restriction of the product 7720 : Ogpy @ Oyp. — O,.. We note that, if
Y € 05 and p € OF then b, (v @ p) € OF. This is because

pe(nl(¥ @ ©)) = 12u((pg (1)) @ (pg())) = nbe(th ® ),
with g € G.

2. Note that u,(1) € 0%

e a v
u; =u, : C— 0.

since pgy(uq(1l)) = ue(1) for all g € G, so we define

3. The trace ©F : 05 — C is the restriction ©F = O,|sc of the trace O, :
O, — C.

4. The connection map & : €¢ — €€ is the restriction of the map ¢, : € — O,
to €“. We need to prove that (& (¢) € €% for all ¢ € €C.

We know that pp(tg,4(¢)) = thgn-1(an(¢)), where ¢ € 6. If ¢ = > ¢y,
with ¢, € G, then 1o (@) = >_ ¢ tga(dy). Finally we have

n(a(®) = 3 pultga(@g) = 3 tngnr(n(@y)

geG geG

= Z Lhgh—1 (Prgn—1) = Z k(%)
e keG

= 14(0).

5. The map (& is central, i.e. (& () = & (p) for ¢ € € and ¥ € OF. Let

¢ = deG bg € €, since Lg,a(Bg)(pg(1)) = Viga(dy) for ¢y € Gy and ¢ € Oy
the next identity holds

v (P) = (Z Lg,a(¢g)) V= Z(Lg,a(¢g>pg(¢))

geG geG
= Z ¢L9=a(¢9) = ’(/) Z Lg,a(¢g)
geG geqG

= wba((b)'
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6. The connection map is (4% : 0% — € is the restriction of the map 1* :
Ouu — € to ﬁgl. We know that 9% o p, = ay, 0 L’flgh, and let ¢ € ﬁ’acfl then

W) = () = Y () = Y an(" ()

geG geG
o (z aflghw) . (z akw)
gea keG
= an(L*(¥)).

7. Similarly, we have the adjoint property Oy c (1% (¢)p) = O (& (¢)). To
prove the statement remember that O, (1t,-1(¢)) = O (:9%(¢0)¢). Then

%MWWWF@w<ZﬁWMm>=ZH%wWM%)

g,heCG g:h€G
=Z@wWMMﬂ4wawﬁ
g,heG g,heG
=0, <¢ Z La,gl(¢)) = @aG(¢LaG(¢))
geG

8. We need to define the coproduct AZ’bG 1 0% — 0% @ 05. Note that it is
enough to give the map O¢ : C — 0% ® 0% which is associated to figure m
Now we consider the basis {¢,} of O, and {¢*} the dual basis in &,,. In

a
C

C

Figure 6.10: Copairing ©.

this case we define © : C — 0,.® O,, by O(1) = ZMEI Y, @ Y*. Now we take
£, = \_cl:| >ogec Pe(Yu) € OF and & = ﬁ >ogeq Pe(WH) € O and we define

%) => L@ eole ol

pel
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Finally we need to prove that AZ},GW) = Zue] PE,REH = ZME] £, ®&Mp. We
know that Yo, ¥, @ ¢ = 3 ;4 ® ¢4, Then

DwE @ =33 Upg() @ o) =D py(¥)pg(th) ® pr (1)

pel nel g,heG nel g,heG
=33 ps@) @ () = > (pg @ p1) (Z Y ® w#)
pnel g,heG g,heG nel
=Y (@ pm) (Z Yu ® M) =) L@y
g,heG pel pnel

9. The Cardy condition, i.e. the map 7% := %% 070 ALG : 6% — GG coincides
with the map §' 0 1%C.
We know that 7§, (¢) = > c; ¥*¥(pgih) = tgp 07, for all g € G. We use

that AL () = E:ueffuéaf ¢ then

= U= Y ) p (W) pa(t) = ZZ(pgw“pg Zpgk%)

pnel g,heG pel geG pel keG
= Zpg (Z Z(¢M¢Pk(¢u))> = Z Pg (Z ¢H¢pg(¢u)>

geG nel keG g,keG nel
= D Peltp 0 W) = Y tgng-1(ag((PH(¥)))

g,keG g,keG
= Z Lgkg=1,b © Lgkgil’a(pg(@/’)) = Z lgkg=1b © Lgkgil’a(lb)

g,keG g,keG

=1 01" (y).

L J

In the next section we give the notion of a G-open-closed Topological Field
Theory with positive boundary.

6.1 G-OC-TFT with positive boundary

As before we define the notion of a G-open-closed theory with positive boundary
as a G-open-closed theory but with the restriction that the morphisms have at least
one outgoing boundary.

The algebraic characterization is the following.
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1. A nearly G-Frobenius algebra associated to the circle.

2. For each pair a, b of labels a vector space 0y, with a G-action
p: G — Aut(Oy)
such that
Pg(Nay (01 ® 02)) = 05 (pg (1) ® py(p2)),

A% (pg(0)) = (pg @ pg) Agy (i),
for 1 € Oy, o € Oy, ¢ € O, and g € G. This conditions are represented
in the figures and

¢, Q ;
C) L —5— bE - 5
@ Q
b b

Figure 6.11: The product is a G-morphism with the diagonal action.

a a
a L a o
(Pb/g\ Ce(Pb .
b b

Figure 6.12: The coproduct is a G-morphism with the diagonal action.

3. For every label a the vector space 0, is non necessarily a commutative nearly
Frobenius algebra.

4. There are also G-twisted open-closed transition maps
lga: Cy — Oy,

9 Oy — 6,

which are equivariant.
The map ¢ : € — O is obtained by putting the ¢, together, i.e. ¢+ = Byeqty is
a ring homomorphisms, then

Loy ((I)l)bgz (@2) = Lgagn (©29,),
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with @, € €, and 5 € 6,,. Moreover t.(l¢) = 14,,. The G-twisted centrality
condition is

tg(®)(pg V) = Wiy(®),
where ® € €, y ¥ € O,.
5. The G-twisted Cardy conditions. For each ¢ € G we must have
Ty p = Lgpt””.
Hence y , is defined by
Ty =M 0T o (1® py)o A
where 7 : Oy ®@ Oy — Oy, @ Oy is the transposition map, see Figure [6.13]

a a b
g

a b

b b E) b =
~

b b a -

a b a b
a a b

Figure 6.13: G-twisted Cardy condition.

Theorem 6.1.1. The G-invariant part of a G-OC TFT with positive boundary is
an OC-TFT with positive boundary.

6.2 Examples

6.2.1 Open-closed Virtual Cohomology

As in the model for the loop orbifold we saw that the virtual cohomology has the
structure of a G-topological field theory with positive boundary. Now we extend
this to an open-closed theory, the open part is the following: Let be B = {X C
M G-invariante} such that, if X,Y € B then T'X|xny)s = TY |(xny)s for all g € G.
We define Homg(X,Y) =H" (X NY), for X,Y € B.

Now we consider the diagram
XNnYynz

(i%y i )0 Xz

(XNY)x(YNZ) XNz
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where i%, : X NY NZ < X NY is the inclusion map.
We define the product nk, : H(X NY)®@ H* (Y N Z) - H(X N Z) by

77));2(0‘ ® f3) = Zg/(z! (EXYZ((i)Z(Y X Zi/(z) o A)*(a® 5))

Exyz=e ( TV |xnvoz )
T(XNY)|xavnz + TY N 2)|xavnz

In a similar way, we define the coproduct A%, : H (X N Z) - H (X NY) ®
H*(Y N Z) by

with

Axz(7) = ((Xy X iyz) 0 M) (E(X,Y, Z)ix%(7))

where
TM|xnvnz

T(X NZ)|xnvnz

The next step consists in defining the connection maps. For this we consider the

next diagram
X9
N
X MY

Then we define ¢, x : H*(MY) — H*(X) as follows
tg.x(a) = gl (e(Ey)ig(a))

where B, = % In the same way, the map %% : H*(X) — H*(MY) is

defined by

E(X,Y,Z):e< @T(XmYmZ)).

LQ»X(ﬁ) = g (€<Fg>35(6>)
with F, = TX|xs + T XY,

Theorem 6.2.1. The virtual cohomology together with the category % as the D-
branes is a G-OC-TFT with positive boundary.

Proof. We already know that the virtual cohomology is a G-TFT with positive
boundary, then it remaind to prove the open axioms.

1. Associativity

W,
7 w
z % W
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The diagrams are

(i)
Xnynznw
iZ‘VXiX . iZ
XY YZ XYw
(XNY)x(YnzZnW) XNnNynw
Ixidy, Ty Xigy)oA
(XNY)x Y NZ)x(ZnW) (XNY)x (Y nW) Xnw

We conclude the following

T(XNY)x Y NW)|xayvazaw

F - 9
YTTXNY) x (YN ZOW) | xavnzaw + T(X NY OW) xrynzaw
By — TY | xnyew
T(X NY)|xavew + T OW)|xnyaw’
and

By — TZynzow
T(Y N Z)lYﬁZﬂW + T(Z N W)’YQZQW

In K-theory the calculations are

(X,Y)+ (Y, W)+ (XY, Z W) — (X,Y) = (Y, Z,W) — (X,Y, W)
+ )+ (XY, W) —(X,Y) — (Y, W)
+(2)+ (Y. Z,W) =Y, Z) —(Z, W)

=X,V Z,W) +{Y) +{2Z) = (X.Y) = (Y. Z) = (Z, W)

(ii)
XNYnznw
iy Xiny i w
XY Z " "ZW XZW
(XNYNZ)x(ZNnW) XNzZnw
W \ / %\
Y, x1 TW 5 Xijy)oA

(XNY)x (Y NZ)x(ZnW) (XN2Z)x (ZnW) Xnw

Hence the identity

T(XNZ)x(ZNW)|xaynznw

F, = ,
2 T(X NnNY N Z) X (Zﬂ W)|XQYQZQW +T(Xﬂ Z N W)|XﬁYﬁZﬂW

TY |xnvnz
T(XNY)|xavaz + T N 2)|xavnz’

EXYZ =
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and
TZ|xnzaw

T(X N Z)lXﬂZﬁW + T(Z N W)|XOZF1W

EXZW =

Then
(X, Z)+(Z, W)+ (X, Y, Z, W) —(X,Y,Z) —(Z, W) — (X, Z, W)
+{Y) +(X,Y, Z) - (X,Y) = (Y, Z)
+{(Z2)+ (X, Z,W) - (X,Z) = (Z, W)
=(X,Y, Z W)+ (Y) +(2Z) = (X,Y) = (Y. Z) = (Z, W)

Y
Y z
z
Y W
X wW w
X (ii)

2. Coassociativity

(i)
XNnynznw
y WA
Xnynz (XNZNW)x(ZNY)
Xz Xi%y )0 iV, x1
(XNY) (XNZ)x(ZNnY) XNW)x(WNZ)yxzZnYy

In this case
T(XNZ)x (ZNY)|xaynzow

= ,
! T(XﬁYﬂZ)’XnYanw—f—T(XﬂZﬂW) X (Zmy)|XﬂYﬂZﬂW
TM|xnynz
E(X,Z2)Y)= eT(XNYNZ),
( ) T(XNY)|xnvnz ( )
and T
E(X,W,Z) = xnzow o T(XNZNW)

T(X NZ)|xnznw
Then in K-theory

(X, Z) +(Z,Y) + (XY, Z,W) — (X,Y,Z) = (Z,Y) — (X, Z, W)
(M) = (X,Y) + (XY, Z)
( (X, Z)+ (X, Z,W)
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(ii)

Xnynznw
Zyw Afy xi¥ s oA
XNnNynw (XNW)x Y NZNnW)
(i %y X3y )0 1xiZ,y
(XNY) (XNW)x (WnNY) XNW)x(WnNnZ)xzZnNnY

We conclude
T(XNW)x (WNY)|xnyazaw

Fy = :
2 T(X NnNY N W)’XQY[']ZQW + T(X N W) X (Y NnzZn W)|XﬂYmZﬂW
TM|xayew
EX,WY) = T XNYnNnWw),
W) = R Ay & )
and ™
EW,Z,Y) = YOIOW s T(YNZNW
W ZX) = T A rarar L )
In K-theory
(XW) + (W,Y) + (XY, ZW) — (XY, W) — (X, W) — (Y, Z, )

z z
Y’ z Y
z z z
w Y z wW Y W
= = Y
Y W Y X wW w
X W X w
X
X e X
(i) (ii) (iii)
(i)
Xnynznw
(XNYnW)x(YNn2Z) (XNW)x (Y nzZnw)

W
iy X1

i
/ Iy,
Y GX 7 W
(iXw Xy )oA X (18, xiyY ;)0

(XNY)x (YNZ) (); NW) x (WNY) x (Y NZ) (XNW)x (WNZ)
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Hence

T(X N W) X (W N Y) X (Y N Z)|XnYanW

F = ,
! T(XﬂYﬂW) X (YﬂZ)‘XﬂYﬁZﬂW —|—T(X ﬂW) X (Yﬂ Zﬂ W)’XQYQZQW

TM|xnyow
E(X Y) = TXNYNnW
( ’M/? ) T(XQY)’XHYQW @ ( )7

and
TY lynzow

E -
WY.Z2 = WNY)lyazaw + T(Y 0 Z)|ynzow
I l en iIl K-theors/

(X, W)+ (W, Y) + (Y, 2) + (XY, Z,W) — (X, Y, W) = (Y, Z) — (X, W) = (Y, Z, W)
+ (M) — (X,Y) + (X,Y, W)
H(Y) =Y W) + (Y, Z, W) — (Y, Z)

=(M) +(Y) + (X,Y, Z W) = (Y, Z) - (X,Y)

(ii)
XNnynznw
i¥yz iXzw
XNnynz XNnzZznw
(i%y xi35)o & xigw)oA
Xz Nz
(XNY)x (YN 2) (XN 2) (X AW) x (WNZ)

As a consequence

T(X N Z)|xavnzow

o= T(XNYNZ)|xavnzew + T(X N ZNW)|xavnzew
TM|xnznw
E(X.W,Z) = XN Dl & T(XNZNW),
and
Fxyy— TY |ynznx
o TXNY)lynzox +T(Y N Z)|lynznx
In K-theory

(X, Z) + (XY, Z,W) — (X,Y,Z) — (X, Z, W)
+ (M) — (X, Z) + (X, Z, W)
H(Y) = (X,Y)+(X,Y,Z) — (Y, Z)

=(M) + (V) + (XY, Z W) — (Y, Z) - (X,Y)
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(iii)
Xnynznw
(HZ(VJ“)KZW)O lZyWXi)z(v);)OA
L XnY)x(Ynznw) (XAY NW) % (ZNW)
T \?Em\ /ﬂﬁﬁf TR
(XNY)x(YN2Z) (XNY)x (YAW)x (WN2Z) (XNW)x (Wn2Z)
Hence
jo TXNY)x(WnNY)x (WnNZ)|xavnzaw
3 — )
T(X M Y) X (Y NZnN W)IXﬁYﬂZﬂW + T(X NnY N W) X (Z N W)|XﬂYﬁZﬂW
TM|zayow
EY W, Z)= eT(ZNY NW),
VW 2) = ey e & ¢ )
and
Exy = TY |xnyaw
Y T(XNY)|xovaw + T NW)|xavaw
In K-theory

(X,Y)+ (WYY + (W, 2) + (XY, Z,W) = (Z,Y,W) — (Y, X) = (Z,W) — (Y, X, W)
+ (M) = (Z,Y) +(2,Y,W)

FYY = (Y, X) + (Y, X, W) — (Y, W)

=(M) +(Y) + (X,Y, Z, W) = (Y, Z) - (X,Y)

4. The map ¢, is an equivariant map

FO -0,
h g " h X X
(i) (ii)
(i)
Xghg™!
bohg—1 K
Moha™! X ghg™"
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h —1
TMI | gt _0
-

=
hg—1 hg—1
TMQ 9 ‘Xghg—l + TXg 9 |Xghg_1

and
E TM|Xgh971

ghg=! = hg—1
TX|gng—1 + TMII™"| (g1

Then in K-theory

(Lyar + (ghg™")x — (ghg™ ") — (1)x

R
/ \/\

T‘X|X9hg_1
TX|Xghg*1 + TXh|X9h9*1

(ii)

FQI

=0,

and
TM | Xh

TX|Xh +TMh|Xh

E, =
Then in K-theory
(Dar+ (h)x — (M) — (L)x

We use that X9" = X" then (h)x = (ghg!)x and in the same way, we
have (h)y = (ghg™")u

5. The map /¢ is an equivariant map

1

D =000
) | X/Qg\
'h h X
i 9" i N
(i)
Xh
% X
X9 'he M
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Hence L,
TMI ‘he
Fl = ‘X_hl = 07
TM" xn +TX9 9| yn

this is because TM9 'hs = T )f h and we conclude

1

Fying =TX| g1y + TXY "

Then in K-theory
(Lx +{g7"'hg)x (6.1)

Xh
2N
X X"
Pg X
id Jh
X X

(ii)

Mh
Similarly
TX
= L =0,
TX'Xh +TXh|Xh
and
Fp =TX|xn +TX"
Then, in K-theory
(Lx + (h)x (6.2)
and are the same because X" = X9 'hd,
6. The map ¢, is a ring homomorphism
9 9 h
X gy
h X = h X
(i) i)
(1)
X9h
Jg,h 1g,h
X9 x Xh X

JgXJn id
igXih A

M9 x M" X xX

S
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Hence
o T(X x X)|xon
PTT(X9 X X xon + TX | xon
TM|xs
E, =
TX|xe +TM9|xs’
TM|Xh
Eh - P
TX|Xh +TMh|Xh
and
B B TX|x B
AT TIX |+ TX|x

Then in K-theory

(Dx + (Lx +{g:h)x = (9)x — ()x — (1)x
+ W+ {g)x — (x = {(9)m
+ (D +(h)x — (U)x — (W)

=L+ N — (Ux + (9. ) x — (9)u — (M) m

(ii)

/\
T“/\/\

M9 x M" X
We conclude
F o Tth’Xg,h
2T TM g+ TX| o
TM|xrg
Ehg = |Xh

TX|th + Tth|th ’

and
TM‘Mg h

T M| yran + T M yrom’

v(g,h) =

Then in K-theory

(hg)ar + (g, h)x — (g, h)mr — (hg)x
+ (a4 (hg)x — (1)x — (hg)m
+ (a4 (9, B)ar — {9y — (hyur
=(La + (D — (Ux + {9, h)x = (9)m — (W) m
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7. G-twisted centrality condition

X OZY X
X =
X—=X Y
Y Y7 v Y
(i) (i)
(1)
(XNnY)
/ \
X9x (XNY) XNnY
Jgx1 id
M9 x (XNY) X x (XNY) XnyYy
Hence
. T(X x (X NY))loxowy
1 — )
T(Xg X (X N Y))|(me)g +T(X r\|Yv)|(XﬁY)9
TM|xs
Eg — )
TX|xos+TM9|xq
and

TX|xny
TX|xny +T(X NY)|xny

EYXX = =0

Then in K-theory

(Dx +{X,Y) +{g)xy — (9)x —(X,Y) = (X,Y)
+ (a4 (9)x — (x = (9)um
=+ (@xy —(X,Y) = (9)m

(ii)
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As a consequence

T(Y x (X NY))|xoye

F == I
2T TYIx (XNY))|xevys + T(X N Y)|(xmy)s

b TMly
97 TY |y + TM9|ys’

and
TY |xny

TY |xny + T(X NY)|xny

Eyyx = =0

Then in K-theory

Dy H{X,Y) +(g)xy — (9)y —(X,Y) —(X)Y)
+(Oar +(9)y — (U)y —{9)um
=()m +(@xy —(X,Y) —(9)m

8. Cardy condition

XNy XNy

,L'Y iy
X X
x /K)WOA \
) Y

X (XNY)x (YNX

Hence
T(XNY)x (XNY))|xnyys

T(X N Y)|(me)g + T(X N Y)|(X0Y)9 ’
TX|xny
TY NX)|xny +T(XNY)|xay

F1:

EYXY =

and

TM
E(X,Y,X) = ﬁ ST(XNY)
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In K-theory
<X7 > <X Y> <g>X,Y - <X7 Y> - <X7 Y>
+< >X < > <X7Y>_<X7Y>
+ Ly — (Hx + (X, Y)
=(¢)xy + {(1)m
(ii)
(XNnY)
XY Y9
X M9 Y
Then
7 TM9|(me)g
C X xavye + TV (xryys
TMl|yq
E, = ,
TY |ys +TM9|yq
and
F,=TX|xs +TX*
In K-theory

(9m + {9 xy —(9)x — (9)v
+ (Om + 9y — (Vy —(9)m
+(Dx +(9)x

=(¢)xy + (Dum

6.2.2 Open-closed Loop Orbifold

In the previous chapter we saw that the homology of the Loop Orbifold has the
structure of a G-topological field theory with positive boundary. Now we describe
the open part of this theory.

The category of branes is the following:

P = {X C M G-ivariant submanifold with X MY transverse for X # Y'}
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Now we consider the sets PxyM = {a: I — M : a(0) € X, a(l) € Y}, for
X, Y € #. We define Homg(X,Y) = H.(PxyM). Note that G acts in H.(Pxy M)
as follows

p G —>Aut(H*<:PX7yM))
g — Pg H*(TX’yM) — H*(fvayM)
a = a.g

where a.g(t) = a(t)g for t € 1.

The product and coproduct is the same that the product and coproduct defined in
the open-closed string topology.

Now we describe the connection maps. For this we consider the next diagram

PX N
PyM PxxM

where PXM = {a: T — M : o(1) = a(0)g, a(0) € X}.
First, we will prove that the map ji : H,(PyM) — H, (P M) exists. This is because
the next diagram is a pullback square.

PXN TP M

EO\L lﬁoXﬁl

XC—> M x M
(id,g)

Clearly the map (id,g) : X — M x M is an embedding. Then, we can define the
map (g4 x as the conposition

H.(PyM) -5 H.(PXM) 5 H(Px x M).
For the other map we consider the same diagram
PX
PyM PxxM
and we use the next pullback square

PXM —=Px xM

GOl lequ

X g™ XX
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to define the map 9% as the composition
X HL Py M) 5 Ho(PEM) L5 HL(P,M).

Theorem 6.2.2. The following (H.(Pg(M)),#B) is a G-OC-TFT with positive
boundary.

Proof. We will check the open axioms.

1. The action respects the product

X X X

z X X z X
o~

Z Y Y Z Y

Y Y Y

The property is the following

(1)

iPXZYJ\J
iPXzyM :PXYM
fPXzM X ipzyM :nyM ?XyM
(2)
Pxzv M
f])XzM X 'J)ZyM ?XZYM
1 JxzXjzy ixXz
PgXpg
fpsz X :szM szM X :szM TxyM

In the first diagram is clear that F} = 0, this because the normal bundles are
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zero. In the second diagram we have

iPXZ)/MM:PXzM X ?ZyM

€
%l lélXEQ

N-—=-==-=-=-=-=--= =7 N M x M
and o
€i(n)- - - - - = Pygy M —22 Py 5 Py M
| =
N-——-—--- -7 < M x M

We note, as before, that (pg o €1)*(17) = €1(n). Then Fy = 0.
2

2. The action respects the coproduct

X X X
X X Z X
% Y zZ Y
(D)

@) Y

N

N

<

:PXZYM

:PXYM :PXZYM

{.PXyM TxyM szM X szM
(2)

:PXZYM

:PXZ}/M iPXZM X ':PZYM

y\%/m

TxyM szM X :szM :szM X fpzyM
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In the second diagram it is clear that F5 = 0. In the first diagram the calculus
as the following

(5% © pg)(V) = = = Px 7y M

]

Py M2 Py M
ell lelxel
2 2 2
G-=-=--- -7 ——F>MxM

and

N M x M

Since p, is a isomorphism, then the next bundles are isomorphic,
€1 (0) = (e3 0 p,)(9)
hence F; = 0.

3. The map , is an equivariant map

()l - Q=0

(1) 2)
Remember that the connection maps are defined using the next diagram

PXM

N

PxxM

where PXM = {a: I — M : a(1) = a(0)g, a(0) € X}.
We defined ¢4 x by the composition

H, (P, M) 25 HA(PXM) 5 Ho(Pxx M)
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The diagrams that model this properties are:

(1)

iPXM
iPXM PxxM
/ \ / X
{‘_PQ fPXX]\J ?XXM
(2)
iPXM
PX M
P,M Prgn—1 M PxxM

In the first case it is clear that F; = 0. This because the normal bundles are
zero. For the second case we have

(€0 0 ) (V) — = - >'.P;(M

ahi

:Pf)li]h 1M 4j> ’:Phgh*I M

R -X——F——M

and

()~ - =PXM =P M

g---->X——>M

The bundles €}()) and (€ o ay,)*(¥) are isomorphic because the action vy, is a
diffemorphism. Then, in particular is Fy = 0.

4. The map (" is an equivariant map
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The diagrams are the followings

(1)

_lhg

/

/

PxxM PXM

e N

?XXM ﬂDXXJM iPh]w

For the first case, it is an easy consequence that F; = 0. This because the
normal bundles are zero.

The second case involves the following diagrams

(00 ag)"(¥) = = = Py, M

%i

:P‘;L(M 4Z> CPX)(M

Eoi lEOXq

e >XTah.XXX



150 6.2. Examples

and
66(19) - = > T;{1h9M Z*> :PXXM

EO\L l60X61

9----- X =X x X

IXa, —
Qg—lng

Note that the bundles €}(0) >~ (g0 ay)* () since ay is a diffeomorphism. Then
FQ = O

5. The map ¢, is a ring homomorphism

=

In this case the diagrams that model this property are the following

(1)

Py M, X PXM
> ™~
Py M., X oo Pr M PX M
P,M x PpM Pon M PxxM
(2)
Py M, x o PXM
> \
PEM x PXM PxxxM

J12Xj23

<
X
<
5
X
©
<
=
w

:PQM X :PhM :PXxM X iPX)(M :PXXM
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For the first case we have
(60 o *)*(77) - (‘P;(Mﬂ XGO(‘P})L(M

|

PXM Pon M
Eoi leoXEl
M-————=-- - X Mx M

1xg

and o
()~ == PX M x o PXM TP M X o, P M

EO\L lﬁoxel

N-====-- =X M x M

1xg

We note that ¢y o * = ¢, then €/(n) = (o 0 *)*(n) and F; = 0.
The second case has the following diagrams

(6% O*)*(TX) _____ >T§M61XEOT;}L{M
PxxxM e PxxM x PxxM
e%l J{elxeo
TX--——-"="==-—-—-~ =X X X xX
and
e (TX)- - - - - - PXM o, X (g PEM — PXM x P, M
gool i€1><€0
T7X----—------ > X X X xX

We note that €1 0 = €x, hence €5,(n) = (e1 0 %)"(n) and Fy = 0.

6. G-twisted centrality condition

i
X X M Y §
Y x—=X Y

Y Yy Y
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This condition is modeled by the next diagrams.

(1)

:P;(Mﬂ XeoipxyM

fP;fM X Pxy M PxxyM N\
K y 113\
ngM X TxyM iPXXM X fPXyM TxyM
(2)
:PXYMel XEOT;/M oo
T;/M X Pxy M Pxyy M
g)gM X TxyM iPXyM X ‘:PnyM (.])XyM

We first check that the spaces Tg(MqXEOTXyM and TXYMEIXEO?;/M are
homotopic. We define the maps as follow:

@ . in(MquinxyM — iPXquX fPYM

€0 g

(aa/@) — (ﬁ»B*pg*(a) *pgfl(ﬂ))

b Py Mo x(oPYM —  PXM % Pxy M
(7,0) > (0g(7) * pg(6) *7,7)
Pop(a,B) = (B, Bxpyi(a)xpg-1(8)) = (pg(B) % pg(B) ¥ ax BB, B) = (e, B),
poth(7,6) = w(pg(7) * pg(8) x7,7) = (v, 7% v %6 % pg—1(F) * pg-1(7)) = (7, 9).
Then
Yop~Id and o ~Id.

Now we check the external maps for the diagrams (1) and (2).

o py00(a, ) = @a(B, Bxpgi()xpg-1(8)) = BxBxpg-i () pg1(8) =~ axf,
o oi(a, B) = ax*p.

. zbzogo)(a,ﬁ) = Ua(B, Brpg-1(a)pg-1(B)) = (B*pg-1(a)*pg-1(B), py(B)) =

i wl(avﬁ) = (Oé,ﬁ).
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o 010Y(7,0) = 1(pg(7) * pg(6) x7,7) = pg(7) * pg(0) * 7 % v = x4,

o vo(7,0) =y 4.

o 1 0(7,0) = i(pg(7) * pg(0) % 7,7) = (pg(7) * pg(6) *7,7) = (6, pg(7)),
o ¥a(7,0) = (3, p4(7))-

Finally we need to calculate the Euler class in each diagram. For the first case
we have

(E% O % O L)*(TX> — — >T;(Melxeoﬂ)xyM

*OL\L

J12XJ23

E%l lelXeo
TX--------~- - X < X x X

and
e (TX) - = =PXM X Pxy M~ PXM x Pxy M

gool J{Glxeo

TX------- - X R X x X

We note that € (TX) = (e% ox0)"(TX). Then F; = 0.
The second case has associated the next diagrams

(E% O*OLI)*(TY)——>3)XyM€1X TYM

€Y g
J/ J12Xj23
Pxyy M Pxy M x Pyy M
G%J/ ineo
7Yy ----=-=---- =Y X Y xY
and
€L (TY) = — — = = Py My, x oY M P Y pp s oy
eool iGOXQ
Y - - === =Y N Y xY

As the same as before it holds the identity €_(TY) = (e% oxo!)*(TY). Then
Fy, = 0.
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To finish the proof we only need to check that v, = 0. For this, we construct
the next homotopy:

H: Ix(PXMoxqPxyM) — Pxy M XegPyM x I
(57 (Oé,ﬁ)) — (ﬂ7E*p9*1<a)*p971(B)78)
where € : [ X PxyM — M is given by €(s,5) := [B(s). The next pullback
square proves that W := Pxy M xP,M x I is an infinite manifold.

W = TxyMEXEO’J)gM X ]H:PX}/M X g)gM x I

eooxll iexeoxl

M x T Aol Mx Mx1T

Similarly, the next pullback square

Zs = Pxy M Xe,PgM x {s} —=PxyMex PgM x 1

ESX{S}\L lexl

M x {s} M x I

proves that Z, is a sub-manifold of codimension one of W for all s.
Note that the homotopy H satisfies that

H(07 (avﬁ» - _ (ﬁapg’l(a)) = (1 X pgfl)OT<a76)
H(L(avﬁ)) = (ﬁaﬁ*pg_l(a)*pg_l(ﬁ» = 90(0476)
Then, in particular we have the next situation
T;(MelngfPXyM ??queoipxyM
(1><Pg—1)07’ diffemorphism :Z> ©
Z() = fpxyMel XEO:P;M Z1 = ?XYMel XeOfP;/M

Since V(1xp, _1)or = 0 then v, = 0 and e(v,,) = 1.

7. Cardy condition

(1 )
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g2 TYX M

\

/

W(jm
PxyvxM Pyxy M
/}’(X o(1xpg)o(3x7) % &

TxxM :PyxM X iPXyM {-PXXM

In this particular case, the maps are illustrated in the figure|6.14], and they are
homotopic to the cobordism illustrated in the figure [6.15] We will suppose

Figure 6.15: The cobordisms associated to the compositions.

that the intersection X NY is non-empty, this because if it is empty then the
two composition maps are zero. In the second cobordism the composition is
zero by definition, and in the first this is because for an empty intersection the
composition of the umhker maps is zero since the tubular neighborhoods are
disjoint.

We prove that P M and P} M are homotopically equivalent spaces. First
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we describe the maps between the spaces. Suppose that z € X NY, and if we
take M arco-connected then for x € M exists n: I — M such that n(0) = z
and n(1) = .
p: PYYM — Py M
o — ok QUk
(I TngM — fP;mYM
) > 1 x0k pg-1(7)

The composition maps are
popla)=tY(axtxa)=nraxq*xaxp,-1(n) ~n*p,-1(7) = a.

o th(8) = p(n* 6% pyg1(7])) =106 % py-1(7) * pg-1(n) % 0 7 % 1% & % py1(Tj)
k0 x py-1(7]) 6.

The composition with the external maps is the following. First we note that
the maps fi : PY"™ M < PxxM, g1 : Py M — Pyy M and g : PYy M —
Pxx M are natural inclusion maps. Finally, the map f5 : fP;fYM — Pyy M is
given by fa(a * 3) = py(B) * a. Then

P _ 1 —
§ == 1% 6 % py1 (1) 5 1 % 6 % pya (7)) =6

5+ 6
5»Ln*5*pg_1(ﬁ)@n*é*pg_l(ﬁ):n*a*ﬁ*pg_l(ﬁ):pg(ﬁ)*a
5:a*ﬁrﬁ>pg(5)*a
a s o
o asxarar axara~a
S

a— «

a@a*@*a@pg(&*a)*aza

Now we need to determine the Euler class for this case. First, we calcule that
e(vy) = 0. Let be the homotopy

(5,0) = (ns*0%pg-1(7s),s)

where s : I — M 1is given by n,(t) = n((1 — s)t + s), then n,(0) = n(s) and
ns(1) = n(1). See figure |6.16]
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T P g (ns)

Figure 6.16: The homotopy H.

Note that H(0,0) = (1o * ¢ * p,-1(7),0) = (9% * p,—1(7) = (5), and
H(1,0) = (m %0 * pg—1(71),1) = § = 1d(9). Then, we have the next situation

Py M Py M
Id :Z> P
ZO - ?in Zl - :P?ﬂYM

For the space Z, := P5 M X {s} = {0, * 6 pg-1(7;) : 6 € P)y M} x {s} C
W =Pl xMxT ={n,+d%pg1(7;) : s €I}xIwehave Z is a submanifold
of W of codimension one. This is because the next diagram is a pullback

square.
Zs =Py x M x {s} —= P! M x I
eoox{s}l J/eoon
X x {s}¢ X xI
It is clear that WV is a manifold of infinite dimension. Then v = v1q = 0 and
e(vy) = 1.

Finally, we need to determine the Euler class of the following two diagrams.
The first diagram is

hlvia) —=PX M

PYM —— P, M

Via Y M

12
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and the second

€ (viy) — PXOV N X pX g

eol ieo

Vi, XﬂY(T)X

If we suppose that X MY then e(ef(vi,)) = e(ef(v4,)), and Fy = 0.
In the second case we have

ES(V(M%)) — :P;fYM — PxyxM

EO\L \LeoXel

V(1xag) X X x X

and
J/f=*0(pgxl)070(ij)

(PYXyMH:PyxM X :PXyM

€
%J/ inGo

TX X —— X x X

Note that f*€} (T'X) ~ €;(V1xa,), this is because v(1xq,) = TX. Then I, = 0.
2

L J



Chapter 7
2D OC-TFT of the derived
category of a Calabi-Yau manifold

Associated to a Calabi-Yau manifold X there is a standard 2D-OC-TFT com-
ing from string theory, the boundary conditions are supposed to be generated by
complex submanifolds of X so the boundary conditions are taken to be complexes
of coherent sheaves on X; the open string category is then supposed to be the
derived category of coherent sheaves on X. The closed string part ¢ should be
Hombp vy x)(Oa, Oa), in other words, the Hochschild cohomology HH*(X) of X.
This example is developed in [CW07].

First we describe briefly the concept of derived category.

7.1 Derived categories

Derived and triangulated categories were introduced by Grothendieck and Verdier
in the early sixties in order to establish a relative version of Serre duality for a “nice”
morphism f : X — Y of schemes, [Ver96]. The Grothendieck-Verdier duality theory
involves the construction of derived categories D(X) and D(Y'), whose objects con-
sist of complexes of sheaves with quasi-coherent cohomology, together with a derived
push-forward functor Rf, : D(X) — D(Y) and a right adjoint f': D(Y) — D(X).

Let A be an abelian category and denote by Kom(A) the category whose objects
are complexes of objects in A and whose morphisms are maps of complexes. Kom(A)
is again abelian.

Denote by K(A) the homotopy category of A, which has the same objects as
Kom(A), but whose morphisms are homotopy classes of maps of complexes. K(A)
is not abelian in general (the component-wise kernel in Kom(A) is not well-defined
up to homotopy). There is a natural functor Kom(A) — K(A) which is the identity

159
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in objects and sends a morphism to its homotopy class.

Theorem 7.1.1. Given an abelian category A, there exists a category D(A), called
the derived category of A, such that

1. There is a functor @ : Kom(A) — D(A) which sends quasi-isomorphisms to
1somorphisms.

2. The functor @ is universal with respect to property 1.: given any category
B and any functor .# : Kom(A) — B which sends quasi-isomorphisms to
isomorphisms, there is a unique functor 9 : D(A) — B such that the following
diagram commutes:

Kom(A)
RN

A very good reference for this topic is the book [GMS()].

Now we give a short description of Serre functors, this is a principal property
which derives in our example in a Frobenius structure.

7.2 Serre functors
One of the most useful theorems in algebraic geometry is Serre duality, which is
formalized in the following way:.

Definition 7.2.1. Let ¥ be a Hom-finite k-linear category. A Serre functor is a
k-linear equivalence

§:¢€ —%C

together with isomorphisms
Hom(F,G) — Hom(G, SF)* (7.1)
natural in F', G € .

Letting G = F, the image of 1 € Hom(F, F)) under the isomorphism gives a
canonical trace element
Trp : Hom(F,8F) — k.

The composition of morphisms followed by the trace,
Hom(G, $F) @ Hom(F, G) — Hom(F,SF) =5 k,

is a non-degenerate pairing and realizes the duality in
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Definition 7.2.2. A triangulated category .7 with Serre functor S is called an
n- Calabi- Yau (n-CY) if there is a natural isomorphism of functors S ~ [n].

Remark 7.2.3. When Serre functors exist, they are unique up to natural isomor-
phism.

To understand the concept of a triangulated category you can see [GMS80] or
[Cal05a] and for more detail about Serre functors you can see [Bra0§].

7.2.1 The Serre functor on D(X)

If X is a space, we can consider an associated derived category. This is the derived
category of coherent sheaves on X, D°(Coh(X)). We denote this category as D(X).
In this case we can define the Serre functor as follows

$:D(X) = DX); & wy[dimX]® &,

where wyx is the canonical bundle of X. Serre duality gives natural, bifunctorial
isomorphisms
Ne,.7 HOHl@(X)<5>, 52.) = Hom@(X)(ﬁ, 85)*

for any objects &,.% € D(X), where * denotes the dual vector space.
From this data, for any object & € D(X), the Serre trace is defined as follows:

Tr: Hom(&,88) — k;  Tr(a) :=ne s (Ids) ().
Note that from this trace we can recover 7s #, because
ne,#(0)(8) = Te(B o ).
We also have the identity
Tr(5 o) = Tr(Sa o ).
Another way to encode this data is as a perfect pairing, the Serre pairing:

(,)s:Hom(&,.#) ®@ Hom(.#,8&) = k; (a,f)s :=Tr(Bo ).

7.2.2 Serre kernel and functor on D(X x X)

Definition 7.2.4. For a space X, the Serre kernel X x is defined to be A,wx[dim X] €
D(X x X), where A : X — X x X is the diagonal map and A, : D(X) —

D(X) ® D(X) is the induced map in the derived category. Similarly the anti-Serre

kernel X" is defined to be A,wy!'[—dim X] € D(X x X).

Proposition 7.2.5. For spaces X and Y the Serre functor Sxy : D(X xY) —
D(X xY) can be taken to be Xy o — o Xx.

The next section gives us the Frobenius structure in the closed part of the theory.
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7.3 The Hochschild structure

For a space X, we denote by Idx and X' the objects of D(X x X) given by
Idy := A,0Ox and E)_(l = A*w;(l[— dim X]

where A : X — X x X is the diagonal map, and wy' is the anti-canonical line
bundle of X.
The Hochschild structure of the space X consists of the following data:

e the graded ring HH*(X), the Hochschild cohomology of X, whose i-th graded
piece is defined as

HH'(X) := Homi, y, ) (Idx, Idx),

e the graded left HH*(X)-module HH,(X), the Hochschild homology module
over X, defined as

HH;(X) := Homy ., (25", Idy),
e a non-degenerate graded pairing (, )y : HH.(X) ® HH,.(X) — C, the gener-
alized Mukai pairing.

The definition of the Mukai pairing the Hochschild homology is quite subtle and we
refer the reader directly to [CWQT].

The above definitions of Hochschild homology and cohomology agree with the usual
ones for quasi-projective schemes (see [Cal05h]).

7.4 Open-closed 2D TFT from a Calabi-Yau man-
ifold

Finally we complete the structure of this example for a Calabi-Yau manifold X.
For each & and .%, we have the pairing

Homyj, (&, .F) ® Homj, y)(F, &) — k[dim X]

which comes from the Serre pairing as a Calabi-Yau manifold.

As X is Calabi-Yau, a trivialization of the canonical bundle induces an isomor-
phism between Hochschild cohomology and Hochschild homology, up to a shift. This
means that the closed string space € has both the cohomological product and the
Mukai pairing, and these make % into a Frobenius algebra.
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We need to specify the algebraic maps ts : € — Oge. These are
te : Hom™(On, Opn) — Hom™ (&, &)

which can be given by interpreting & as a kernel pt — X and taking e to be
convolution with the identity on &.

The other map is ¢4 : Hom*(&,&) — Hom™(Oa, Oa), which is given by taking
the trace. This definition relies on the fact that X is Calabi-Yau.

In the case of a general manifold X we have the next result. This is a baggy Cardy
condition. In the particular case that X is Calabi-Yau this property is equivalent
to the Cardy Condition.

Theorem 7.4.1 (Theorem 15 of [CWO0T7]). Suppose that O is a Calabi- Yau category
and € is an inner product space, such that for each A € O there are adjoint maps
i Opq — € and 1y : € — Opn. Then the Cardy condition

'ugBOTOA/BLA:LBOLA

15 equivalent to the following equality holding for all a € Onn and b € Ogg, where
the map ;myp 1S the map obtained by pre-composing with a and post-composing with
b:
(P— M=V =Tr_m_.
The alternative condition given in the above theorem holds for the derived cat-
egory and Hochschild homology of any space: in particular, the Cardy Condition
holds for Calabi-Yau spaces.

Proposition 7.4.2 (Theorem 16 (The Baggy Cardy Condition) of [CWO0T]). Let X
be a space, let & and F be objects in D(X) and consider morphisms

e € Hompx)(&, &) and f € Homqx)(F, 7).
Define the operator
fMe Hom%(x) ((507 g) — Hom%(X)(éd, 9)

to be post-composition by f and pre-composition by e. Then we have

24

Treme = <L£(e)a v (),

¢, 17 are the maps defined previously, and Tr denotes the (super)trace.

where ¢

We finish this chapter with a conjecture. We proved before that the cohomology
of non-compact manifold satisfies the axioms of a nearly Frobenius algebra, which
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is the same as an ordinary TFT. In this chapter we have seen how to a Calabi-Yau
manifold one can associate a 2D-OC-TFT using the derived category.

Question: Is it true that the derived category construction applied to a non-
compact Calabi-Yau manifold (orbifold)associates to it a 2D-OC-TFT with positive
boundary satisfying the definition given in this thesis?

It does not seem impossible for the answer to be affirmative. We will return to
this issue elsewhere.



Chapter 8
Appendix 1
Monoidal categories

A monoidal structure in a set is known as a monoid (or semigroup). More explic-
itly, a monoid is an algebraic structure with an associative binary operation and an
identity element. In category theory, a monoid can be regarded as a category with
only one object.

The extension of this concept to an additional degree of complexity is known as
a monoidal category. Similarly, a monoidal category can be regarded as a 2-category
with only one object (or bicategory). Then, this concept is a bridge between the
category theory and the theory of 2-categories.

Monoidal categories were introduced in the 1960s by Bénabou, Lane and others.

Definition 8.0.3. A monoidal category (or tensor category) consists of a category
C, a functor ® : € x € — €, called the monoidal product(or tensor product), an
object u € Ob(C), called the unit and natural isomorphisms

© 0, 2R (Y®z2) — (TRY) ® 2,
e )\, u®x —> x,
® V0, T R®U— X,

called associativity, left unit and right unit such that the following diagrams com-
mutative:

Az,y,wQz ARy, w,z

x®(y®l(w®z)) (r®RY)®(we z) ((x@y)fw)@z

@ (y@w)®2) (r®yow)®z

Qz,yQw,=

165
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z® (r@u)®y
1

(u®y)
TRy

for z,y,w, z € Ob(C€), and also
Ay = Pu i U QU — U.

A monoidal category is called strict monoidal category, if the morphisms «, A, p are
the identity morphisms.

8.0.1 Monoidal Functors

Definition 8.0.4. Let (C, ®e¢, ue) and (D, ®p, up) be monoidal categories. A monoidal
functor is a functor F': € — D together with natural isomorphisms

o {yt F(2) ®p Fy) — F(r Qe y)
° fo:uD—>F(ue)

which satisfy the following commutative diagrams:

1®p&y, = Ez,y@ez
—— " 5

F(z) ®@p (F(y) ®p F(2)) F(z) @p F(y ®e 2) F(z ®e (y ®e 2))
aF(w),F<y>,F<z)i lF(az,y,z)

(F(z) @p F(y)) @ F(2) F((z ®e y) @p F(2) F((r ®ey) @e 2)

Ez,y®n1 §Z®ey72
&®Rpl Su,z
up @p F(z) F(ue) @p F(z) F(ue ®e )
AF(z) F(Az)

1® Ezu
_
M F(pz)

The functor is called strict monoidal functor if £ and &, are the identity morphisms.
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Remark 8.0.5. For any monoidal functors F' : € — D and G : D — €. Let
(&,&0) and (&',&)) the natural isomorphisms of F' and G, respectively. The natural
isomorphisms (£”,&[]) for the composition F'o G : € — & are defined by

GoF(QZ)@&GOF(y)LG(FCE) ®®F(y))cﬂ>G0F(JJ®ey>

\—//

é-ll

ue —% Glun) 2L o Flue)
&

Example 8.0.1. The most important ones are

(Set, x, {x}), the category of sets with the cross product.
(Set, L1, (), the category of sets with the disjoint union.
(Vecty, ®, k), the category of vector spaces with the tensor product over k.
op, X, %), e category of topological spaces wi e cross product.
T the cat f topological ith th duct
(Ab,®,7Z), the category of abelian groups with the usual tensor product over Z.
(nCob, L, 0), the category of n-cobordisms whit the disjoint union.

8.0.2 Monoidal Natural Transformation

Definition 8.0.6. Let F, F’ : € — D monoidal functors. A natural transformation
o : F = I’ between monoidal functors is called a monoidal natural transformation
if the diagrams

Ez,y
F(r) @p F(y) —— F(z ®c y)
O':E@Dayl laﬂc@Cy

Fix) @p F'y) ;— F'(x Qe y)

!
éz,y

u—% F(u)

-
€

F(u)

commute.

Let € and D monoidal categories. A monoidal functor F' : € — D is called a
monoidal equivalence if there exists a monoidal functor G : D — € and monoidal
natural isomorphisms ¢ : Go F = 1lg and ¢ : F o G = 1.
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8.0.3 Braided Monoidal Categories

A braided monoidal category consists of a monoidal category C together with a
braiding, which is defined by a family of isomorphims

Sey - TRQY — Y.

They are natural for x and y in ., and satisfy for the unit u the commutative
diagram
T®u u®x

R

z,

Moreover the maps ¢, ,, with the associativity «, make commutative the following
hexagonal diagrams:

(2®y) ® =z 2@ (x®y)

e
L
"
/

TR (y® 2) (zRr)yY

(r®2)

&
=

T® (2 ®y)

T®(y®z) (y@z)@x

@\
Q

Q

N

(z®y) Y@ (2@ x)

s®1 1®s

(yor) Q=2 —— Y@ (r® 2).

8.0.4 Symmetric Monoidal Categories

A symmetric monoidal category is a monoidal category with a braiding, which
satisfies the identity
Sy O Szy = L.
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8.0.5 Symmetric monoidal functor

Let F' be a monoidal functor between two symmetric categories (€, ®,u,<) to
(¢, &, u',¢"). The functor F' is a symmetric monoidal functor if F(g) =<'

8.0.6 Symmetric monoidal natural transformation

A symmetric monoidal natural transformation is a monoidal natural transforma-
tion between symmetric monoidal functors.
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Chapter 9
Appendix 2
Some technical lemmas

This chapter is dedicated to describe some technical lemmas that we use through-
out the thesis. In what follows we will suppose that all the manifolds are almost
complex manifolds. We use this only to avoid carrying signs in the calculations.

9.1 Cohomological results

Let Y, Z be closed submanifolds of X which intersect cleanly, that is, W =Y NZ
is a submanifold of X and at each point x of W the tangent space of W at x is
the intersection of the tangent spaces of Y and Z. Let F be the excess bundle of
the intersection, i.e., the vector bundle over W which is the quotient of the tangent
bundle of X by the sum of the tangent bundles of Y and Z restricted to W. Thus
F =0 if and only if Y and Z intersect transversally. If the relevant inclusion maps

are denoted
W Z
Y

j/
—_—

_—

J

then F' fits into an exact sequence
0—>yi/—>j'*yi—>F—>0.
We call this square Quillen’s square [Qui71].

Proposition 9.1.1. If z € H*(Z), then

/

Jhin(z) = ii(e(F) - j7(2))

in H*(Y'), where a is the real dimension of v;.

171
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Proposition 9.1.2. For the diagram

classes eg, € H*(B;) and ep, € H*(D;), let be ¢ = aye;, b = §;&; and
€B;,D; = gj(eDz)e(Fl)sj(eBz)

where e(F;) is the excess intersection class of the Quillen square. Ifep, p, = eg,
then for z € H*(A) we have the identity

0t (e, i, (B! (e, 00,(2)))) = 0! (e, 7, (B! (08,0, (2))))

Proof. We use the projection formula f!(z)y = f!(zf*(y)). Then the Quillen formula
is

,D;

12172

0i! (ep,v; (Bt (ep,0i(2)))) = 0t (ep,&i! (e(Fi)e; (es,27(2))))
= 0! (ep,&i! (e(Fi)e (es,)#"(2)))
= 016! (& (ep;e(Fi)ei(es, )™ (2)))
= Y& (ep,Je(Fi)ei(es, )" (2))

9.2 Homological results

In this section we describe the analogue result of the last section but in homology
in al little more general way.

Lemma 9.2.1. Let i : Z — X an inclusion of manifolds with k = dim X —
dim Z.Then, for z € H,(Z)
ili(z) =e(v;) Nz,

where v; is the normal bundle of the inclusion 1.

Proof.
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In homology is

Sx ¢

/\

il H(Z) s Ho (X))~ H (X, X — ) — S H(E(v), E(wi)o) ™™ H,_(E(ry)) ———H,_4(2)

z i (2) 1 S«(2)1 7(ThNs,.(2))

Note that we can give another expression for m,(ThNs.(z)), that is
Te(ThNs.(2)) = mes.(s*(Th) N z) = (mos)u(e(r;) Nz) = (Id)(e(v;) N 2) = e(y;) Nz,
where e(v;) = s*(Th) because in cohomology the umkehr map is

i H(Z) —> H* (13, 1) —— H(X)

ar———> ThUa+——7"(ThUa)

Then i*(7*®(1)) = i*i,(1) = e(v;),
(10d)"(®(1)) = s*(®(1)) = s*(Th).

Finally we obtain that z'z*(z) e(v;) Nz, for z € Ho(2).

by Quillen’s result. In the other hand, i*(7*®(1)) =

L J

Proposition 9.2.2. Let Y, Z be closed submanifolds of X which intersect cleanly
and W =Y N Z s a submanifold of X such that at each point of W the tangent
space of W at x is the intersection of the tangent spaces of Y and Z.

Wz (9.1)

and z € H,(Z), then
lis(2) = i (e(F) N j'1(2))
where
0—>1/7;/—>j’*ui—>F—>0

1S an eract sequence.

Proof. We can replace X by a tubular neighborhood of W. Thus we may suppose
that [9.1] is of the form

-/

w Ey

EzﬁEl@E2@F
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where E; is a complex vector bundle over W with zero section j’, Fs is a complex
vector bundle with zero section ', and i and j are the obvious inclusions. Let
te : B> Ei® FEy,e=1,2and k: E; ® Ey — E; & E5 @ F be the inclusion map.
Hence

Jlis(z) = QoK kyiq.(2) = io!l(e(vg) Nix(2)) by the lemmal9.2.1
= dlin(ie(vg) Nz) = i j'Nife(vy) Nz) by affirmation 1
= LW (7*(e(F)) N z) by affirmation 2
= . (e(F)nj'(z)) by affirmation 3

o Affirmation 1: We consider the next commutative diagram

Es

/| | o)

Eli)EIEBEQ*I:EIEBEQ@F
J

Then i5liy, = 7,7'!. To prove this we check that the next diagrams commute
in homology.

1 Ey 1

Ey

| e ]

Ei®FEy o~ _ FEy E
E — 1 EB E2 4>7_2 El@Ez—m‘Q - El_”]j/ @ 2 4>2 E2

The first commutes by definition of the maps, and the second commutes by
the following:

Letz € H. (52, then o, (Thy N (2)) = maulu (1*(Thy)N) = iy, (1" (Tha) )
.T,') = i;ﬂl* (Th1 ﬂa:')

Finally, if © € H,(E1): mo.(Thy NTosiq.(x)) = mou(Thy N7, (7))

= Mol (I*(The) N T.(2)) = i, (Thy N7 (). Then, ixli.(z) = i,j'!(z).

o Affirmation 2: The bundles i} () and 7*(F’) coincide, in particular i} (e(vg)) =
T (e(F)).
To prove this, we consider the pullback square

m(F)——F

E,——W
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where 7*(F) = {(z,2) € Ey x F': w(x) = np(z)} = Ey @& F bundle over Ej.
Hence is enough to prove if(v) = E1 @ F. First we note that the next diagram
commute

EaF—2 Uk

NS Tk

Ey E, @ Es

where k : 1 ® Ey — E1® Ey, ® F, m : E1 & F — FE; is the projection and
j:E1®F — v is given by j(x,y) = (2,0,y) € 1.

This square commute by iy o m(z,y) = i1(x) = (2,0) and 7 o j(x,y) =
Wk(xa 07 y) = (‘Tﬂ O)

To finish we need to check that E; @ F' is the pullback square of the maps

Vg

Tk

ElﬁE1@E2

Let Z be a manifold such that

Z
\
NEoF 12y
Tl Tk
FEy Ey @ Ey

mrog =110 f. Wedefine h: Z — Ey @ F by h(z) = (f(2), 73 09(2)).

Note that mp0g(z) = (f(2),0) since myog =iy0 f. Then joh(z) = j(f(z),m30
9(2)) = (f(2),0,m3 0 g(2)) = (m(9(2)2),m3(9(2))) = 9(2), and m(h(2)) =
m(f(z m(9(2)))) = f(2).

o Affirmation 3: If ¢ € H*(W) and z € H.(Ey) is j'{(7*(p) N 2) = ¢ N j'I(2).
This is an immediately consequence of the definition of the umkehr map, that
P

o E
is: j/: W — E; and B, —> Erlnj/ —W.

Then

pNjl(z) =  eNp(Thnr(z)) = p(p*(p) N ThN1(2))
(T*p* () N2)) = p(ThNr(r*(p) N 2))

I
3
*
—
B
D
)
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L J

Proposition 9.2.3. For the diagram

let be p; = auei, Wy = 6;§; such that (p1)! = (p2)!, (Y1)« = (Y2). and e(F1) = e(F3)
where e(F;) is the excess intersection class of the Quillen square. Then for z € H,(A)
we have the identity

01+ (! (Bre (11(2)))) = 024 (72! (P2x (2!(2))))

Proof. We use the Quillen’s formula, then

01x (11! (Brs (a1!(2)))) = 01s (€14 (e(F1) Nerl(1!(2))))

where the squares are Quillen’s squares, i.e. the intersection of B; and D; is clean
and the spaces Zy and Zy are homotopically equivalents,

f
Zy . o
f2
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such that
Zy
©2 flT lfQ wz
Z
>N
Y
A E

commutes up to homotopy. Then, if f5(e(vy, @ F1)) = e(F2), for z € H.(A) we have

015 071! 0 Bra 0 a1l(2) = d2s 0 V2! 0 Fas 0 a0!(2).

Proof.

I« 071! 0 Bra 0 agl(2) = 01.&14 (e(F1) Ner!(aq!(2))) property of Quillen
= V1. (e(F1) Np1l(2)) by 0161 ~ Y1, 1061 ~ ¢y
= o f14 (€ (Fl)mfl pa!(2)) by 1 >0 f1,01 = 20 fi
= Yo fre (f1 f3e(F1) N filpa!(2)) by fao f1 ~1

= o (f5(e(F1)) N frefil(¢2!(2))) by the projection formula

Now we need to understand the map f, o f!: H.(B) — H.(A) — H,(B), where
f: A— B. First we consider the next Quillen’s diagram.

AVA“iA
N,

For the Quillen’s property we have f!f.(z) = e(vy) Nz, where z € H,(A) and vy is
the normal bundle of the map f: A — B.

filficfou(2) = [il(2) by fisfor = 1d,
e(vy) N fa(2) = fil(2) using that fi!fi.(z) = z Ne(vy,),
fie(e(ve) N fou(2)) = frefil(2) composition with fi,,
fl*(fffz*( (V1) 0 f2(2)) = frafil(z) using that f7 f3 =1d,

f5(e(vs)) N frefou(2) = frufil(2) by the projection formula,
frle(vy)) Nz = fifil(2) using that fi.fo. = 1d.
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Then fi.fi1!(z) = f5(e(vy)) Nz, for all z € Ho(B).

Finally, returning to the calculations, we have

Vo (f3(e(F1)) N frefrl(02!(2))) = Yau (f3(e(F1)) N f5(e(v,)) N p2!(2))
= Yo ((f3(e(F1)) U f3(e(vy,))) N@al(2))
= Yo (f3(e(F1) Ue(vy)) Npal(2))
= Yo (f3(e(vy, ® F1)) Npal(2))

Since f5(e(vy, @ F1)) = e(F3) then

Pax (p2!(2) N fo(e(vp, F1))) = o (02!(2) Ne(Fy)) = 020 0 72! 0 Bas 0 a!(2).

In particular we have the next result.

Corollary 9.2.5. In the hypothesis of the last corollary, if Z1 and Zy are diffeo-
morphic spaces, where f1 : Z1 — Zy is the diffeomorphism between them, then the
identity e(Fy) = e(Fy), implies
015 071! 0 Bra 0 a1l(2) = 2s 0 72! 0 Fas 0 an!(2).
Proof. This is because if f; is a diffeomorphism then vy = 0.
L J

Theorem 9.2.6. Let f,g : A — X be cofibration maps, and H : A x1 — X an
homotopy between them, i.e H(x,0) = f(z) and H(z,1) = g(z) for x € A. Then

fl=g¢!:Hi(X)— H.(A)
Proof. Remember that the umkehr map f! is defined as the next steps

Step 1: We consider the projection map

X

Tf:X%—X—Uf@‘l)

where 7y is the tubular neighborhood of f.
Step 2: We use the exponential function (E(e), Ey(¢)) — (ng,ny — A) C (X, X — A)

and by excision we have the next isomorphisms
H*<X7X - A) = H*<E<5)7 EO(Z':)) = H*(E7 EO)

then
Thom

H.(X/(X — A)) = H.(E/Ey) — H.x(4)



9. Appendix 2
Some technical lemmas 179

Finally, the next diagram gives the umkehr map

HL(X) P25 L (X /(X — A)) = Ho(B) Ep) 2 H, i (A)

\\\\\\\\%»T»M////////

Note that (X, f(A)) and (X, g(A)) are good pairs, i.e. f(A) — X and g(A) — X
are cofibrations. Then the homotopy

H': f(A) xI— X
given by H'(f(x),t) = H(x,t) extends to X such that
Hl|'r)f><{1} = ng

and
HI‘AX{O} = f7 H/’Ax{l} =g
Set by f':= H'(—,0) and ¢’ := H'(—,1).

Let a € H.(X) with o = fL(8) + 7, where 8 € Cy(ny), v € Cx(X — A) and
fx is the map induced in the chain complexes. This is posible by the using of the

barycentric subdivision Cx(ny + (X — A)) =5 C4(X). Since we have the Quillen

/\
\/

then f{f.(5) = Be(vy).

Finally
flla) = fI(fi(B) +7) = Be(vy) + fI(7)

where we note that f/(y) =0 because v € Cx(X — A). Then fi(a) = Be(vy).
In other hand, using the homotopy H' : X x I — X we can find a new representant
of ain Cy(ny + (X — g(A))) of the form g7, (8) + ' with 5" € Cy(n,) and v €
Cu(X —g(A)). Then

919 () +1") = 919.(8) + 9/(') = 91g.(8") = Be(vy) = Be(vy).
Therefore f(a) = g{(a), and in particular fi(a) = gi(«).
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