
� � � � � � � � � � � � � 	 � �
 �
 � � � � � � � �� ! � � � � �" # $ % & ' () & # * + , - . - / 0

1 2 3 4 5 6 7 8 9 : ; < 3 2 9 4 = < > 3 ? <
@ A B C D B D E E F E G A H I J K L M N O

P Q R S T U V W R X Y S Q Z [V \ S T V]^ _ ` a b c d e ` f g a _ h i d j a b d k

l m m l

n o p q r s t u p v p w q x y z { | q } x ~ z � y ~ y � �� �� �� � � � � � � � � ¡ ¢ £ ¢ ¤ ¥ ¦ �§ ¨ © ª « ¬ © ® ¯ ® ® « ° ¯ ± « ² ³ ´ ° © µ ¯¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À ¼ · Á Â ¾ » Ã · » Ä À Å Æ Å ¾ Ç

Abstract

Parallelism is a Computer Science discipline that is gaining a more important place in data
centers. Since mid-nineties parallel computers built out of commodity components and free
software started to show up and introduced new challenges to computer industry. Before that time,
parallelism and supercomputing were almost constraint to multi -milli on projects on aerospace,
milit ary simulations, meteorology, etc. Since Beowulf experiences and GNU/Linux success as a
solid OS, the paradigms started to change and several government and private initiatives
demonstrated that this kind of parallel system can be exploited. Several new applications are
arising also. We understood that it was important to develop mathematical basis that help in the
task of building this kind of parallel systems andassist the hardware architect to devise an optimal
parallel machine. This work presents a set of model templates that can be instantiated so as to
model and predict performance estimators for given applications running on specific hardware.
The spaceof parallel applications is partitioned using an adequate taxonomy anda model template
is built for each classof the taxonomy. The mathematical abstraction used for the models are the
Stochastic Petri Networks. Two real application examples are analyzed in depth so the model usage
is shown.

El paralelismo es una disciplina Informática que está ganandoun lugar más importante en los
centros de cómputos. Desde mediados de los noventa aparecieron computadoras paralelas
construidas con componentes estándar de bajo costo y software libre que presentaron nuevos
desafíos a la industria de la computación. Antes de ese entonces, el paralelismo y el procesamiento
en supercomputadoras prácticamente estaba restringido a proyectos multimill onarios de la
industria aeroespacial, simulaciones milit ares, meteorología, etc. Desde las experiencias de
Beowulf y el éxito de GNU/Linux como un sistema operativo sólido, los paradigmas comenzaron a
cambiar y múltiples iniciativas privadas y gubernamentales demostraron que este tipo de sistemas
paralelos pueden ser aprovechados. Nuevas aplicaciones se están creando para estos sistemas.
Consideramos que era importante desarrollar bases matemáticas que ayuden en la tarea de
construir este tipo de sistemas paralelos y asistir al arquitecto de hardware para crear una
máquina paralela óptima. Este trabajo presenta unaserie de plantill as de modelos que pueden ser
instanciados de forma de modelar y predecir estimadores de desempeño para aplicaciones
específicas ejecutadas en ciertas máquinas. El espacio de aplicaciones paralelas es particionado
de acuerdo a una taxonomía y una plantill a de modelo se construye para cada clase de la
taxonomía. La abstracción matemática utili zada para los modelos son las Redes de Petri
Estocásticas. Dos ejemplos de aplicación se analizan en profundidad para mostrar el uso de los
modelos.

Keywords

Parallel performance evaluation, cluster computing, parallel programming, Stochastic Petri
Networks, parallel programming taxonomy,

Evaluación de desempeño paralelo, computación en grupos, programación paralela, Redes de
Petri Estocásticas, taxonomías de programas paralelos.

È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ë Ê Ñ Ì Ö Õ × Ë Ø Õ Ù É Ø Ð Ô Ø Ô Ì Ì Ë Ì Ñ É Ú Û Ö × Í Î Ï

i. Contents

i. Contents...4
ii. Preface..5
iii . Assumed Knowledge..6
iv. Organization...6
v. Acknowledgments...7

1 - Introduction...9
1.1 - Generals..9
1.2 - Commodity-Based Parallel projects...10
1.3 - Scope and work environment..12
1.4 - Summary...13

2 - Taxonomy and Parallelism..15
2.1 - Problem determination..15
2.2 - Problem Definition and Taxonomy analysis...17
2.3 - Performance modeling abstraction and tool...20
2.4 - Summary...22

3 - Modeling Distributed.net's RC5..23
3.1 - Introduction..23
3.2 - Conclusions of RC5 modeling...33

4 - Model templates for general parallel applications..35
4.1 - Performance Indexes...35
4.2 - Task-Farming (or Master/Slave)...37
4.3 - Single Program Multiple Data (SPMD)...45
4.4 - Data pipelining..53
4.5 - Divide & Conquer...59
4.6 - Speculative Parallelism..67
4.7 - Hybrid models...72

5 - Case Studies...73
5.1 - Introduction..73
5.2 - SPMD example application: Mat...73
5.3 - Task-Farming example application: SN metaheuristic..93
5.4 - Annex on single CPU multitasking observations..110

6 - Conclusions & future work...113
7 - Bibliography...117

Ü Ý Þ ß à á â ã Þ ä å ß Ý æ ç â è ß à â é ê ë ì í î ï ð ñ ð ì ò ó ô õ

ö ÷ ø ù ú û ü ý þ ÿ � � � � ù ø ÿ ú � � � ù � � � ÷ � þ � � � ú ú ù ú ÿ ÷ � 	 � � û ü ý
ii . Preface

This document is a master degreethesis on the field of parallelism. It is a partial result within
an initiative of commodity parallelism studies started back on 1997 at the CeCal (Centro de
Cálculo – Numerical Analysis Department – Facutlad de Ingeniería – Universidad de la
República) when a tanker spill ed milli ons of liters of petroleum near Punta del Este, an
important seaside resort in our country. CeCal already modeled the flows of the Río de la Plata
and had a cluster (FDDI/Power/AIX) with four nodes and 7 CPUs that could help with the
modeling of the pollutant dispersion. With that accident and parallel experiences in mind a
group was set up under the name ParEnO to study the possibili ties of parallelism over standard
and available everywhere computing components. The group initially existed within the CeCal
but later the CeCal and the InCo (Instituto de Computación – Computer Science Institute –
Facutlad de Ingeniería – Universidad de la República) were merged within the Engineering
Faculty into the InCo and different people moved to different groups. People working with
algorithms joined the Programming groups while people dealing with modeling and simulation
moved to the Optimization group.
At that time the availabili ty of Pentium based PCs was growing and the raw numerical
performanceof such processors seemed enough for number crunching. Also the first papers of
Beowulf results started shocking the parallel community. It started to become clear that mass
market forces were able to producestandalone systems that could be compared with high end
ones. On the other hand, networking technologies were also making high speed switched
standard networks available. Also initiatives from the FSF, GNU and the Linux community
turned into complete free software solutions that solves not only the OS but compilers,
libraries, development environments, schedulers, etc.
The ParEnO group realized that there was a potential parallel cluster almost in every officeand
different study branches started from there on. Some study groups analyzed the possibili ties of
porting parallel software to the available OSs (most generally Windows), others worked on the
idea of multiple OS booting systems that can flip from commercial functions during office
hours to parallel clusters during the night.
Along with this different branches grew the need for modeling these parallel systems.
Researching this area, we found that several authors have already modeled the performanceof
groups of systems addressing parallel problems but from specific aspects, like those on
[ABC1], [BUY1], [BRO1], [LIN1] and others. There exists excellent models that deal with the
impact of network aspects (speed, latency, reliabili ty, etc.) on the overall performance of a
system, or maybe the impact of multiple processors sharing resources. Also other approaches
to performance were done from the point of view of the parallel algorithms and comparisons to
classic uniprocessor implementations. We found that there was no modeling of both the system
and the algorithm implementation as a whole. As we were evaluating parallelism as a tool to be
applied to particular projects, we understood that there was a need for such kind of system
performance modeling. We believe that it is important to model performance descriptors that
allows a company to build a cluster that helps solving some problem and decide if it is better to
invest in few high-power CPUs or multiple low cost ones or invest in network hardware, etc.
Funding for this line of research came from the Clemente Estable under project number 4072
named “Modelado y construcción de una máquina paralela virtual con componentes de
bajo costo (1999-2001)” (Modeling and construction of a parallel virtual machine with low
cost components). The project built a tiny cluster for theoretical performance research,
education on several grade curses and grade thesis at the University and was used for several

 � û ù ú � � � û ý � ù � ÷ � � ù ú � � � ü ÿ ÷ � þ ù � ù ÿ û � � �

� � � � � � � � � � � � � � � � � ! " � # $ � # � � # � � � � � � � % & ! " � � �

performance tests.
System performance evaluation or algorithm performance evaluation are beyond the scope of
this study. Joint system and algorithm performanceevaluation are considered the target of this
work. The present thesis work goal is to obtain an overall system performance modeling that
can be used to predict particular algorithm execution times and also to assist in the
construction of clusters.

iii . Assumed Knowledge

Readers would be required to have basic knowledge of computer and processor architecture,
computer networks, Petri networks, parallelism and parallel tools. Background in different
operating systems is also advisable.

iv. Organization

1: Introduction: Here we present the background, motivations and scope of current research.
It presents some commodity computing projects and introduces motivations for continuing
the research and development of such technologies.

2: Taxonomy and Parallelism: This chapter introduces many of the concepts that are used in
the rest of the work. It defines different parallel computing scenarios and determines the
specific scope of parallel problems addressed. The parallel problem taxonomy, mathematical
abstraction used and simulation tools chosen for analysis are also introduced here.
Knowledge of basic and stochastic Petri networks is assumed. For the reader not familiar
with Petri networks, we suggest the reading of [SAB1].

3: Modeling distr ibuted.net's RC5: We selected a popular worldwide commodity parallel
initiative to discusssome relevant aspects that will prove useful when we present later the
detailed analysis of each class of parallel applications. This chapter fundaments some
technical aspects of our analysis and discusses specific modeling scale details. This problem
is useful to help separating relevant performance aspects from non relevant ones. It shows
why it is necessary to collapse multiple very small details into single performance
descriptors when whole application execution is aimed at.

4: Model templates for general parallel applications: This chapter is very ambitious and is
the core of our research. It applies systematically all aspects of our study to all classes of
parallel applications introduced in the second chapter and explains how to ascertain two
specific estimations of performance: Total Execution Time (TET) and Mean Execution
Speed (MES). This chapter presents methods for constructing Petri nets that models each
specific problem on specific hardware configurations out of model templates. It also
explains how to determine relevant performance figures and shows how to compute our
performance estimators.

' # � � � (�) � � ! � # � * � + � � � , - � � � � � � . � � � � � /

0 1 2 3 4 5 6 7 8 9 : ; < = 3 2 9 4 > = ? 3 @ = A 1 @ 8 < @ < 4 4 3 4 9 1 B C > ? 5 6 7

5: Case studies: Here we present two case studies of two different problems of different
parallel classes: task farming and SPMD. In both studies we follow the procedure suggested
in the third chapter strictly so as to determine the performance estimation parameters TET
and MES. Single processor execution was performed to obtain required individual
performance parameters of the system. Parallel execution was both simulated and
benchmarked and numerical results were compared and discussed.

6: Conclusions and future work: Here we summary the work, analyze application
environments for the developed template models and present related future work and
projects.

v. Acknowledgments

This is a difficult paragraph in which one is supposed to recall all the people that helped in this
work, which is not simple as it spanned over so many months. Many people always help
indirectly and is not mentioned. If you are reading this and feel that helped me, be sure I feel so
too, and that I am infinitely grateful.
But my week memory is able to keep some people in mind, here I go. First I would like to
thank Héctor Cancela, my patient tutor that helped me so much all way long. I would also like
to say thanks to all the people at the Investigación Operativa department, the former CeCal
and the In.Co. that directly or indirectly helped also. Thank you people, it is a great honor to
work with you all.
I would like to mention the Clemente Estable Institute, whose funding sustained an important
part of this research.
I would also like to say thanks to Prof. Willi am H. Sanders and his team from the Center for
Reliable and High Performance Computing, Urbana, Illi nois for lending us the UltraSAN tool
that we used extensively in this work.
All my gratitude to all the people that contributes on the Beowulf discussion list who shares so
much knowledge, expertise and know-how. Thank you Raykumar Buyya for the copy of your
book “High performance cluster computing” , that was really helpful.
I would also like to thank Sebastián Urrutia and Irene Loiseau who sent us a pre-published
copy of your metaheuristic paper [URR1]. You gave us a very good parallel application to
work with.
At last, but not at least I would like to thank all the support from my friends and family that
sacrificed so many weekends and hours so I could do this. Thank you Olga, Baby and María
Eugenia.

D @ 5 3 4 E < F 5 7 > 3 @ 1 G < H 3 4 < I J 6 9 1 : 8 3 K 3 9 5 ; < L

M N O P Q R S T U V W X Y Z P O V Q [Z \ P] Z ^ N] U Y] Y Q Q P Q V N _ ` [\ R S T

a] R P Q b Y c R T [P] N d Y e P Q Y f g S V N W U P h P V R X Y i

j k l m n o p q r s t u v w m l s n x w y m z w { k z r v z v n n m n s k | } x y o p q

1 - Introduction

This chapter will introducemotivations for this research and for parallelism, helping the reader
to find out why single processing power might never be enough for all applications. First it will
discuss the availabili ty of standard software and hardware, then we will present some
commodity-based parallel initiatives and after that we will bound the objectives of this
research.

1.1 - Generals

The Supercomputer concept is evolving rapidly. There have been many recent successful
experiences of commodity-based supercomputing that have proved –beyond doubt- that
Beowulf and Beowulf-like [BEO1] clusters are the way to go when considering
price/performance ratio. Free and open operating systems are the generalized choice. Mass-
market forces led companies like Intel and AMD to the high performance processor market.
Each processor inside a personal computer has capabili ties and performancesimilar to that of a
highly expensive scientific workstation. Even though massmarket computer industry still runs
on 32 bits processors, 64 bit commodity processors are showing up. Freeopen source 64-bit
operating systems are already there and projects like K42 are preparing supercomputing on
that platform. The gap between cutting edge supercomputers and commodity ones is getting
increasingly smaller.
On the other hand, Microsoft was able to make the phrase “Windows everywhere” real.
Microsoft Windows is the de facto personal computer operating system. Microsoft operating
systems are growing older and a little bit more mature version after version. There are good
software development environments and many professionals working for the Windows market.
Another key factor that is important is the growing presenceof Linux in the operating system
market. Even though it is a free operating system it counts with many adepts from the
academic side and the companies are starting to use it without shame. In the last years, there
has been a significant movement towards the cut of software licensing expenses and Linux
plays a key role in this effort. Companies like IBM, Oracle, Computer Associates, etc. are
offering services and support for their products also in Linux, and promoting Linux as an “as
good as others” platform.
A significant percentage of all the personal computers have x86 compatible processors and use
Windows operating system. The server market counts also with a high proportion of x86
processors, but Linux is an alternative to Windows. Linux got an important placewithin the
server market and is very common to find environments with Linux servers feeding Windows
clients. The object of this study is to present some models that help evaluating the performance
of parallel clusters based both on Windows nodes, Linux ones and heterogeneous
environments. Regardlessof the fact that this was the configuration in mind and the one used
during the tests, nothing prevents the usage of the presented models on other environments.

~ z o m n � v � o q x m z k � v � m n v � � p s k t r m � m s o u v �

� �

At the beginning of the nineties, Thomas Sterling and Donald Becker coined the term
“Beowulf” . According to the accepted definition [BEO2]:

� Beowulf is a kind of high-performance massively parallel computer
� It consists of a cluster of PCs or workstations dedicated to running high-

performance computing tasks
� built primarily out of commodity hardware components
� running a free-software operating system like Linux or FreeBSD
� interconnected by a private high-speed network1

From the very beginning a cluster running other proprietary operating system, by definition, is
not a Beowulf, thus it can only inherit a part of all the technology developed under that effort.
Nevertheless, it can inherit everything what is related to hardware: processors, network
interfaces, memory, etc.; thus, the theoretical performance of any cluster based on the same
hardware is potentially the same, if we only consider hardware power.
With this –naive– thoughts on mind, we started working towards the development of a model
that can estimate, compare and predict the performance of a cluster based on commodity
operating systems.
There are many freeavailable tools used both on commodity and proprietary parallel systems
like PVM, MPI, HPF, CORBA, LiPSand RMI. They are both tools for implementing parallel
paradigms and they define de-facto parallel standards.

1.2 - Commodity-Based Parallel projects

Several initiatives exists that try to harnessthe power or commodity-based equipment to solve
different problems. Some of them try to use idle CPU cycles of computers all over the world,
other try to reduce supercomputing costs, etc. In this section we will present a few of this
initiatives. The numerical data presented here will always be outdated as this is only a snapshot
of one day, so please refer to the original authors of this information.

SETI@home

“ SETI@home is a scientific experiment that harnesses the power of hundreds of
thousands of Internet-connected computers in the Search for Extraterrestrial
Intelli gence (SETI)” [SET1]. The way this project works is distributing an application
that runs as a screen saver or a background task that periodically gets some work unit,
solves it and returns some answer to the server. The task itself consists of searching for
particular electromagnetic signals within a certain region of the spectrum called "the
water hole", from 1.42 to 1.64 GHz.
The SETI@home project does one of the most detailed and finely tuned searches ever
attempted. Each computer will "listen" to the sky for signals as narrow as 0.07 Hz.
Data is recorded on high-density tapes at the Arecibo telescope in Puerto Rico, filli ng

1 High-speed here does not refer to any particular network technology. At the beginning, plain Ethernet networks were considered high speed
ones. Current state of the art defines high speed as Gigabit Ethernet or even 10 Gigabit Ethernet. At least threeorders of magnitude in
network speed separatesoriginal beowulf clusterswith current ones. As in many other technological situations speed concept is state-of-the-
art dependent.

� � � � ¡ ¢ £ � ¤ ¥ � � ¦ § ¢ ¨ � ¢ © ª « ¬ ¦ ® � ¯ � ¬ � ° ¢ ± ²

³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À ¶ µ ¼ · Á À Â ¶ Ã À Ä ´ Ã » ¿ Ã ¿ · · ¶ · ¼ ´ Å Æ Á Â ¸ ¹ º

about one 35 Gbyte DLT tape per day. Because Arecibo does not have a high
bandwidth Internet connection2, the data tape must go by snail-mail to Berkeley. The
data is then divided into 0.25 Mbyte chunks (which we call "work-units"). These are
sent from the SETI@home server over the Internet to people around the world to
analyze.
Current statistics are quite astonishing. There have been a total of 1.388.514 users by
11/7/2000 that submitted 149.496.680 results. They performed
298.993.400.000.000.000.000 floating point operations during 330662,52 years of
aggregate CPU time, an average of 4,4 Gflops per user or an aggregate of 12,33TFlops
worldwide. If we go to the Top500list [TOP1] and get the system on top, we get the
ASCI Red [ASC1], from Sandia National Laboratories. The theoretical peak
performance of that system is of about 1,8 Tflops, only 15% of what SETI@home is
doing. There are many things to say. ASCI Red is a supercomputer, while the bunch of
Internet-interconnected computers that compose the SETI initiative are not. ASCI Red
has 9,326Pentium Pro processors inside each of them capable of performing up to 193
MFlops.

RC5-64

25th September 2002the distributed.net organization announced that they accomplished
RSA Lab's RC5-64 challenge [RSA1] on 12 August 2002. Using the key
0x63DE7DC154F4D039 the text “some things are better left unread” is produced from
the encrypted message. The method applied is brut-force. It took 1.757 days and
58.747.959.657 work unit tests so as to find the right one. A grand total of
15.769.938.165.961.326.592 keys were tested, at a mean speed of 103.883.000.840
keys/s by a community of 331.252 participants worldwide.
As it is read from distributed.net's press room announcement: “the RC5-64 project
clearly demonstrates the viabili ty of long-term, volunteer-driven, internet-based
collaborative efforts.”

Loki

In September 1996, Loki’s architecture and pricewere presented [WSB1]: $51.379 for
a 16 processor system with 2GB of memory and 50 GBytes of disk space. Using that
system, between April 25 and May 8, a N-body simulation code using 9,7 milli on
particles ran continuously, with no restarts. The entire simulation of over 1000
timesteps performed a total of 1.2x1015 floating point operations, approximately 1.03
GFlops.

Something can be said out of this. The fastest supercomputer in the world in 1999and third
one in 2002 is the ASCI Red, is built with the same family of processors than most of the
personal computers of the world (more than 85%). That means that the technology involved is
the same. On the other hand, most of them lay on desktops and most of their CPU cycles are

2 At least by year 2000.

Ç Ã ¸ ¶ · È ¿ É ¸ º Á ¶ Ã ´ Ê ¿ Ë ¶ · ¿ Ì Í ¹ ¼ ´ ½ » ¶ Î ¶ ¼ ¸ ¾ ¿ Ï Ï

Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Ó Ò Ù Ô Þ Ý ß Ó à Ý á Ñ à Ø Ü à Ü Ô Ô Ó Ô Ù Ñ â ã Þ ß Õ Ö ×

idle. It is fairly common to seeoffices with tens or hundreds of systems, each of them, much
more powerful than those used in Loki. There are many differences, but there is a substantial
computational power unused there. Is it possible to use it for useful tasks? Can we push the
COTS (Commodity of the shelf) concept one step further? Can we adopt not only the
hardware, but also the software? Of course, we are not building a Beowulf cluster. Maybe we
can make a MSwulf system.
Microsoft is already sponsoring multiple universities to research on parallel scientific clusters
over their platform. August 5 2002, the CTC (Cornell Theory Center announced a U$S 60:
agreement with Intel, Dell and Microsoft to develop and deliver CTC High Performance
Solutions over four years [CTC1]. On the other hand, commodity parallel initiatives keep
pushing with Linux. Los Alamos National Laboratory is buying (september 2002) a $6 milli on,
2,048-processor Linux supercomputer to run its nuclear weapons simulation software.

1.3 - Scope and work environment

As it was presented in the preface, this research is motivated within the initial scope of the
ParEnO initiative, a broader initiative that intend to generate a multidisciplinary group of
people with several interests and approaches to parallelism. The goal of ParEnO is to generate
a task force on the area of parallelism at the service of Uruguayan´s National University
(UDELAR), the Engineering Faculty and the industry. Within the scope of that ambitious goal,
the objective of this work is to gain knowledge and objective mathematical tools on the cluster
construction discipline. We identified the cluster building stage as an important stage that is
sometimes not fully considered when building a parallel machine out of commodity
components. Generally speed is associated with CPU MHz, but that is not always true. Adding
a faster CPU in a network congested scenario does not always prove a wise decision.
Experienced system administrators and parallel programmers know all this concerns, but we
found no tool adequate for overall parallel system performance analysis. This does not mean
that do not exist good system performance evaluation tools and works. There exist excellent
papers and works, but they focus on general system performance, comparisons of memory or
disk technologies or on algorithms. When we tried to apply this techniques to particular
problems and technologies we found that their usage is cumbersome: they generally do not
provide an overall system model including algorithms and they mostly emphasize some aspect
of the performance. We devised the need of a higher level mathematical tool that is lessbound
to fine performance details but provides an overall system and algorithmic model. This
approach does not replace other models. The other way round. It complements them.
Generally other models help taking particular decisions but not overall decisions. The aim of
this study is to be able to provide the researcher building a cluster, tools that unambiguously
help him to determine which decisions are better for his particular application more than the
general benchmarking problem.
At the beginning of current research, several parallel taxonomies were analyzed until we found
one that fitted our needs of one that is not specialized only on the hardware or software and
that is versatile enough to model properly most parallel scenarios. Chapter 2 presents the
results of that research: the taxonomy chosen for this study.

ä à Õ Ó Ô å Ü æ Õ × Þ Ó à Ñ ç Ü è Ó Ô Ü é ê Ö Ù Ñ Ú Ø Ó ë Ó Ù Õ Û Ü ì í

î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ñ ð ÷ ò ü û ý ñ þ û ÿ ï þ ö ú þ ú ò ò ñ ò ÷ ï � � ü ý ó ô õ

The mathematical model selected for performancemodeling are the Stochastic Petri Networks.
The successof Petri nets is mainly due to the simplicity of the basic mechanism of the model,
which on the other hand present drawbacks on the description of large systems. Several
authors extended the basic Petri net models introducing the notion of time. Timed Petri nets
can be used for quantitative performanceanalysis of systems. When random variables are used
to specify the time behavior of the model, timed Petri nets are called stochastic Petri nets
(SPN). The complexity of the Petri networks we have to work with determined the need for a
tool that allows Petri net simulations of several types. Multiple tools (both commercial and
academic) exists that represent and solve Petri networks. During 1999we found 44 different
tools for Petri net simulations, 30 of them were freeof charge or had some academic discount.
We had to discard many of this tools because they did not offer Stochastic modeling or solvers
needed. After an extensive research we selected the UltraSAN tool [USAN], which we used
extensively all through the research for simulation and as a drawing tool for the diagrams
presented in this work. We gratefully recognize the value the tool provided to us.
After finding an adequate taxonomy, a mathematical abstraction that is good for performance
modeling and a tool we built performance models for each classof the taxonomy. Chapter 4
presents this generic model templates for each parallel problem of each class, how to build
them and how to compute performanceestimations that help deciding which is the best option
for a particular problem. The model templates presented describes how to build a Petri net that
models almost any parallel problem generically, and particularly shows how to determine two
performanceestimators selected. This performanceestimators that can be computed out of the
resolution of the network provides objective performance measures that can be used to
compare parallel machines.
After describing the theoretical model templates we analyze two real parallel application
examples with those templates to show their intended usage. The examples and their
application is carried out on chapter 5. The examples are analyzed in depth showing how to
benchmark relevant factors, how to apply models and how to predict performance estimators
for the execution in certain parallel machines. Afterwards, the estimations are compared to real
parallel execution in these machines.

1.4 - Summary

This chapter presented a brief overview of the reasons for using COTS clusters in parallel
computing, a few examples of successful parallel applications and problems solved using this
approach. In the last years a great deal of effort was invested developing software for
harnessing the computational power of all kind of parallel systems. Many advances and
knowledge has been gained through the experiences, but there is still a considerable amount of
research to perform in the next years to exploit parallelism even more, to gain deeper
knowledge of performance improvements and also to develop more automated tools and
compilers to abstract the underlying hardware. In the following chapters we will try to
contribute with the parallel community proposing a set of model templates that help in the task
of system performance evaluation. We will also introduce their usage through instantiation of
two templates with real parallel applications.

� þ ó ñ ò � ú � ó õ ü ñ þ ï � ú � ñ ò ú � � ô ÷ ï ø ö ñ 	 ñ ÷ ó ù ú
 �

� � � � � � � � � � � � � � � � � � �

 � � � � ! � " � � � � � # � $ � � � % & � � � � � ' � � � � � ()

* + , - . / 0 1 2 3 4 5 6 7 - , 3 . 8 7 9 - : 7 ; + : 2 6 : 6 . . - . 3 + < = 8 9 / 0 1

2 - Taxonomy and Parallelism

The chapter is divided intro threesections and it accurately defines the target and the scope of
this work. The first section bounds the set of parallel systems modeled from the point of view
of the hardware and the grain of the parallelism studied. The second section introduces the
taxonomy for classifying the spaceof parallel applications and the last section introduces the
notation that we used throughout this work for the Petri networks and the modeling and
simulation tool that we use, the UltraSAN.

2.1 - Problem determination

When we talk about parallelism, implicitly we refer to a group of CPUs cooperating to a
common task in some way. Many different schemes for describing parallel systems have been
proposed, but none of them was widely accepted and the concept has evolved through time
and technology. One of the most used is the one proposed by Flynn (1972). Flynnselected two
characteristics to classify systems: the number of instruction flows and the number of data
flows. The characteristics have deep roots in the basics of Von Neumann architecture. The
Harvard architecture, implemented in many of current microprocessors, separates the cache
memory in two disjoint and independent areas: one for the instructions and one for the data.
Flynn divided both flows in single and multiple, thus, there are four groups of machines: single
instruction single data, single instruction multiple data, multiple instruction single data and
multiple instruction multiple data3.
Flynn's approach does not get too deep inside parallel systems: it only identifies them. On
[TAN1] one step further is taken and a division of MIMD machines is done. From there, we
took the following figure:

3A good description of the categories can be found in [TAN1]. It is important to note that single processor personal computers are still SISD
machines even though their microprocessors have parallel execution units: they guarantee the semantics of a standard processor. Processors with
MMX extensions also present the semantics of a SIMD on particular operations.

> : / - . ? 6 @ / 1 8 - : + A 6 B - . 6 C D 0 3 + 4 2 - E - 3 / 5 6 F G

Parallel and
distributed
computers

Multiprocessors
(shared memory)

Multi computers
(private memory)

Tightly
coupled

Loosely
coupled

Bus Switch Bus Switch

SMP Supercomputer Computers on a
LAN

Beowulf

H I J K L M N O P Q R S T U K J Q L V U W K X U Y I X P T X T L L K L Q I Z [V W M N O

Beowulf systems, the examples presented and the target of this study fall within the loosely
coupled branch. SETI@home is a clear example of a extremely loosely coupled system, and
the connection speed of systems there is, in most cases, many orders of magnitude slower than
the speed of a LAN. Beowulf systems use a wide variety of interconnection devices and
technologies, like channel bonding of standard Ethernet NICs, proprietary Myrinet, hyper-cube
topologies, etc. to speed up the inter-node communication speed, reducing communication
latency.
Not all algorithms have the same characteristics. Their codes have different levels of
granularity and parallelism can be exploited at different levels. Starting from the data paths
where multiple signals travel in parallel, we get to CPUs where multiple functional units
execute in parallel different instructions. Multiple I/O functions that not colli de themselves can
be issued to different devices like a SCSI bus, DMA operations, etc. Tasks are allocated to
CPUs in SMP systems and also over nodes on a cluster.
Levels of parallelism can also be based on pieces of code that can become parallel. The basic
idea behind most methods is to avoid idle CPU cycles. Is the basis of multiprogrammed
systems: while one task go to wait state (any I/O request), the scheduler allocates the CPU to
another task of the ready queue. It is also the ideathat leads to the instruction pipeline inside
the processors.
On the following table, we present how parallel pieces of code is exploited at different levels:

Parallel processing is important at every stage and level, because huge programs have
repetitive blocks that are executed many times, and invoke standard one-page functions, which
have several loops or instruction blocks. This observation created a tremendous wave that,
since the eighties, changed the way computers are conceived. This observation changed the
way processors are designed (RISC), and the way the locality is exploited. We will briefly
present some of the problems and the way they are addressed.

Fine and very fine grain
It involves the processor, because it is where instructions are executed. The goal is to
have the pipeline always out of the stalled state. It is important to avoid hazards, to be
able to feed it with data and instructions, to have enough functional units available.
Many techniques like prefetching, out of order execution, register renaming, branch
prediction, etc. have been used for many processor generations now.
Even though it is not directly related to parallelism, it has a key role in performance:
memory bandwidth. If we think about a 32 bits RISC 600MHz processor that can
execute –without blocking- 4 instructions per cycle, we have a monster that requires a
memory bandwidth of 8.9 GB/s . With a memory bus of 100MHz, the memory system

\ X M K L] T ^ M O V K X _ ` T a K L T b c N Q _ R P K d K Q M S T e f

Grain Size Code I tem
Very fine Instruction Processor
Fine Loop/Instruction block Processor/Compiler
Medium Standard one-page function Programmer

Large Programmer

Parallelized by

Program-separate
heavyweight process

g h i j k l m n o p q r s t j i p k u t v j w t x h w o s w s k k j k p h y z u v l m n

can deliver only 400-550MB/s4[INT1], at least one order of magnitude slower than the
core processor speed.
Most of our code has a property called locality: certain portions of the code are
executed repeatedly before achieving the result. With a compiler that is smart enough
to keep needed results in fast memory (i.e. processor registers), significant speedups are
obtained.
This is not possible when large amounts of data and instructions need to be brought to
the processor. Now it is important the amount of data that can be accessed by the
processor. To increase memory bandwidth, memory hierarchies are introduced and
different levels and types of cache memories show up. This helps to speed up problems
in which processor registers are not enough, but loops do exist. Depending on which
cache has a valid reference to the memory, the number of cycles it takes to retrieve it:
from one cycle to as many as 40.
Compilers must be able to help the processor to exploit parallelism at instruction level.
Many techniques like register renaming, fetch-ahead, branch prediction only give
significant speedups when the compiler takes full advantage of them. The compiler has
to make the best out of the code.

Medium grain
There are different programming models and tools that help the programmer deal with
parallelism in the code, but it is the compiler the one that deals with it at the block level.
Different techniques are applied here to achieve locality and to parallelize the usage of
the different functional units. Loops are adapted to increase the accuracy of the branch
prediction algorithms, instructions are interleaved so as to avoid pipeline stalls, function
calls are replaced in-line to avoid context switches and to maximize locality, etc.
This level can be –and should be- in most cases exploited automatically by processors
and compilers alone.

Large grain
Here is where programming tools and models are used, and it is the target of our study.
Here the programmer does not deal with instruction in a pipeline, but distributing parts
of the problem among different CPUs. The main concern at this level is to find an
adequate way to partition the problem, to communicate the parts and to get the result.
The programming models help to give foundations partitioning the problem so as to get
the result and the tools makes parts of the work easier.

2.2 - Problem Definition and Taxonomy analysis

We will focus our study on large grain parallelism on loosely coupled multicomputers
interconnected with high-speed switches. We will build our classification of parallel systems on
standard programming paradigms, skeletons and tools. Amongst all possible classifications of

4 Synchronous DRAM (SDRAM)
•Synchronous with system bus
•Supports 66 MHz and 100 MHz bus speeds
•400-550 MB/s bandwidth

{ w l j k | s } l n u j w h ~ s � j k s � � m p h q o j � j p l r s � �

� �

the programming paradigms, we considered useful for our analysis to mainly characterize the
parallelism by two factors: decomposition and distribution of the parallelism [RAY1]. We will
base our classification and taxonomy of parallel programming paradigms according to:

• Task-Farming (or Master/Slave)
• Single Program Multiple Data (SPMD)
• Data Pipelining
• Divide and Conquer
• Speculative Parallelism
• Hybrid models

Task-Farming (or Master/Slave)

In the task-farming paradigm we can identify two entities (group of entities): master
and slaves (or for performance reasons, group of masters and groups of slaves). The
master is responsible for decomposing the problem into small tasks, distributing them
among the slaves, collect results and assemble the problem solution. Slaves perform a
simple sequence of steps: get a message with the task, process the task and send the
result to the master. In most cases, there is no communication among slaves.
This kind of problems are easily scalable (adding more slave CPUs) and their speedup is
quasi-linear. The bottleneck that might arise at the Master is solved making farms with
master servers.
The work is statically decomposed and dynamically distributed.

Single Program Multiple Data (SPMD)

It is the most commonly used paradigm. Each processexecutes basically the same code
on a different portion of the data. Due to the division of the problem data among
available processors, it is also referred as geometric parallelism, domain
decomposition or data parallelism. The decomposition is usually ground on regular
geometric structure of underlying physical problems, thus allowing uniform distribution
of data among processors. Each processor would need to communicate with its
neighbor whenever its calculation needs information held on the neighbor’s memory. It
might be necessary to provide further synchronization periodically among processors.
The communication pattern is usually highly structured and extremely predictable. The
data might be self-generated or read from some storage. There is a highly dependence
to the processors, and the loss of one of them leads to deadlock states.
The work is decomposed and distributed statically.

� � � � � � ¡ ¢

£ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ¦ ¥ ¬ § ± ° ² ¦ ³ ° ´ ¤ ³ « ¯ ³ ¯ § § ¦ § ¬ ¤ µ ¶ ± ² ¨ © ª

Data Pipelining

It is based on a functional decomposition of the parts of the algorithm that are capable
of concurrent operation. It is a lower level approach in which different processors
execute a small part of the whole algorithm. The communication pattern is simple: data
flows in one direction among adjacent processors and it can be completely
asynchronous. The efficiency is directly dependent on the abili ty to balance the load
across the stages of the pipeline. The robustness against reconfiguration can be
achieved providing multiple independent paths across the stages. It is mostly used in
data reduction and image processing.
The work is decomposed and distributed statically.

Divide and Conquer

This approach is widely known in sequential algorithm development: a problem is
divided into two or more subproblems, each solved independently and their results are
combined to give the final result. In most cases, small problems are just small instances
of the original, rising recursive solutions. In parallel divide and conquer, the
subproblems can be solved at the same time, given sufficient parallelism. Because the
problems are independent, no communication is necessary between processes working
on different problems. There are three generic operations: splitting, computing and
joining5.
The work is decomposed and distributed dynamically.

Speculative Parallelism

It is used when it is not possible to obtain parallelism using the previous models. Some
problems have complex data dependencies, which reduces the possibili ty of exploiting
parallel execution. In this cases, an appropriate solution is to execute the problem in
small parts but use the some speculation or optimistic execution to facili tate the
parallelism. Another use of this paradigm is to employ different algorithms for the same
problem; the first one to give the final solution is the one that is chosen.

Hybrid models

Real applications not always lie exactly within the definition of the previous groups or,
in some cases, it is useful to mix different elements of the different paradigms. They are
not generally found on small applications, but in situations where it makes sense to mix
them in different parts of the same program.
The distribution of the work and its decomposition is problem dependent.

5Task farming can be seen as a slightly modified, degenerated, one level form of divide and conquer.

· ³ ¨ ¦ § ¸ ¯ ¹ ¨ ª ± ¦ ³ ¤ º ¯ » ¦ § ¯ ¼ ½ © ¬ ¤ « ¦ ¾ ¦ ¬ ¨ ® ¯ ¿ À

Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ä Ã Ê Å Ï Î Ð Ä Ñ Î Ò Â Ñ É Í Ñ Í Å Å Ä Å Ê Â Ó Ô Ï Ð Æ Ç È

2.3 - Performance modeling abstraction and tool

The mathematical model selected for performancemodeling are the Stochastic Petri Networks
and the tool used is UltraSAN. Petri net were introduced by C. A. Petri en 1962. The
theoretical grounds for Petri nets theory have been deeply investigated and today build a
formal structure with a well assessed theory and a broad range of applications. The successof
Petri nets is mainly due to the simplicity of the basic mechanism of the model, which on the
other hand present drawbacks on the description of large systems. Several authors extended
the basic Petri net models introducing the notion of time. Timed Petri nets can be used for
quantitative performance analysis of systems. When random variables are used to specify the
time behavior of the model, timed Petri nets are called stochastic Petri nets (SPN).
The SPN capabili ty of describing simultaneously both parallelism and synchronization will be
exploited all over this work when modeling parallel problems and algorithms. Even though the
nature of this work is mainly theoretical, a tool was used not only to draw our networks, but
also to test the models with real examples. After researching multiple available tools for
working with SPNs we selected the UltraSAN tool, from the Center for Reliable and High
Performance Computing, University of Illi nois. This tool developed by Prof. Willi am H.
Sanders et. al. proved very important in our research. UltraSAN provides a graphical editor for
the networks and a set of solvers that allows general problem resolution. UltraSAN also
provides some extensions to the standard and stochastic Petri nets which will be used in this
work.
The UltraSAN model shares the basic elements with the standard Petri nets: places, arcs and
transitions represented with the following graphical elements:

Time modeling is introduced with the timed transitions, represented with the following
graphical variant of an instant transition:

UltraSAN introduces the gate concept. Gates are used to control token movement and logic
associated to transitions. There are two gates defined, input and output gates, represented with
the symbols:

The gates we use in our models are input gates. Input gates need to be connected with arcs to

Õ Ñ Æ Ä Å Ö Í × Æ È Ï Ä Ñ Â Ø Í Ù Ä Å Í Ú Û Ç Ê Â Ë É Ä Ü Ä Ê Æ Ì Í Ý Þ

ß à á â ã ä å æ ç è é ê ë ì â á è ã í ì î â ï ì ð à ï ç ë ï ë ã ã â ã è à ñ ò í î ä å æ

all places considered and also to the transition that is governing. Time parameters are
represented with the transition while token movement and conditions that fire the transition are
modeled with the input gate. The logic of the gates is expressed with the following dialogs:

As the tool translates all statements into GNU C, the syntax and possibili ties are C ones. The
expressions can use specially named macros to refer to defined places, the number of tokens
present in them, etc. Detailed information can be found in UltraSAN's documentation.
UltraSAN is an extension of a standard Petri net, thus, all Petri networks are UltraSAN
networks. The following simple example helps understanding the input gate extension. We will
use the input gate to explicitly code the movement of tokens in a timed transition. Lets call A

and B to a couple of places and T to a transition that moves tokens from A to B. The standard
Petri net representation for this scenario follows:

We will placean input gate, named gate , replacePetri arcs with connectors to the gate and a
connector linking the gate and the transition:

With this representation all token movement depends on the gate coding. Our predicate
indicates that we must have at least one token in placeA so it can be moved. The function
indicates that one token is removed from A place and one token is inserted into B place.

ó ï ä â ã ô ë õ ä æ í â ï à ö ë ÷ â ã ë ø ù å è à é ç â ú â è ä ê ë û ü

ý þ ÿ � � � � � � � � � 	
 � ÿ � � �
 � �
 � þ � 	 	 � � � � � þ � � � � � � �

The macro MARK(<place>) returns in runtime the marking of the place<place> . The value
can not only be inspected but modified. We will exploit several of this capabili ties in the rest of
the work. An issue that has proven important is the abili ty of drastically reduce the spacestate
of a problem using gates. In situations where n tokens have to be moved from one placeto
another, the use of a single gate that moves all tokens at onceturns a state spaceof n+1 states
into a 2 states one.

2.4 - Summary

This chapter has defined the scope of this study within the field of parallel systems and
applications both from the point of view of the systems involved and from the point of view of
the application or algorithm used for solving the problem. We will focus our analysis on the
exploitation of large grain parallelism using loosely coupled parallel systems. This chapter also
presented a taxonomy for the classification of parallel algorithms that considers the distribution
and decomposition of the work statically or dynamically.
We also presented here the formal structure (SPNs) used for modeling parallel machines and
algorithms that will be used in this work. Also UltraSAN tool and the basis of its notation were
introduced in this chapter.

� � � � � 	 � � � � � þ � 	 � � � 	 � � � � þ � � � � � � � � 	 � �

� � � � � � ! " # $ % & ' � � # � (') � * ' + � * " & * & � � � � # � , - () � !

3 - Modeling Distr ibuted.net's RC5

We will present in this chapter many concepts used in the rest of the work, using the
distributed.net (http://www.distributed.net) RC5 project as a case-study. We will try to model
the problem ranging through different scales, discussing the trade-of of detail vs. abstraction at
every stage introducing Petri networks that models each. The reader that is already familiar
with performanceindexes, parallelism, modeling with Petri Networks and execution simulation
can skip this chapter and continue reading from the following chapter on. Reading of this
chapter is also useful for understanding the kind of decisions, trade-offs and considerations
used not only in the modeling but in the practical examples analyzed in the following chapters.

3.1 - Introduction

When the RC5-DES 64 bits encryption scheme was launched, a challenge was presented by the
RSA: a message encrypted with such technology was posted and a prize of U$S 10.000 was
offered for the group that decodes the message[RSA1]. Many groups started working on this
challenge. One of them, known as distributed.net addressed the challenge using idle CPU
cycles from internet connected systems. They offer an executable that can be easily installed on
computers ran by people willi ng to share their CPUs with distributed.net people. They will get
20% of the prize if their CPU is the one that finds the key to the message.
The whole Distributed.net's RC5 project is based on the ideaof parallelizing the task of testing
the key-space. Current electronic technology and processing speeds does not allow a single
CPU computer to solve it within a lifetime. The method chosen for solving the RC5 - 64 bits
challenge is the brute force, that is, to try each and every key in an orderly fashion. A server
distributes “packets” or collections of work units to machines that request them and wait for
the answers. The job is done when a client finds the key.
The whole space of solutions is divided into
68.719.476.736 (236) work units with 268.435.456 (228)
keys each. A computer based on a Intel Celeron
Mendocino processor (CPU family 6, model 6, stepping 5)
of 466MHz and 128 KB of L2 Cache can try 1,2 milli ons
of keys every second while editing text. Such a machine
can exhaust all the keys within the next 490 centuries
without overclocking.
The distributed.net's RC5 client software (dnetc or
rc5des.exe) runs on multiple systems. On Windows
systems it has a really low impact on the user perceived
performance of the system. The task is highly CPU-bound
and there is really very little I/O associated with it:
retrieving work units and sending results over the internet
and storing the work done locally. The whole application
fits in RAM and allocates quite little memory, thus, adding very little overhead on the memory
and IO subsystem. It runs with the lowest priority available on the system. The combination of

. * � � � / & 0 � ! (� * � 1 & 2 � � & 3 4 # � $ " � 5 � # � % & 6 7

8 9 : ; < = > ? @ A B C D E ; : A < F E G ; H E I 9 H @ D H D < < ; < A 9 J K F G = > ?

this factors, and the lowest priority available on the OS, makes this application have no
perceivable impact on an interactive system, thus, is designed to run all day long as a
background process. On a system running this application, there are almost no idle CPU
cycles.
The problem itself is rather peculiar because all the experiments are independent and the results
are only dependent on themselves. No communication needs to take placebetween clients,
only between the client and the server. Further more, no previous information needs to be
considered for any calculation. The only two states that have to be considered are if the
solution has been found or not.

We are going to use a simplified RC5 system as a model to study and discuss the impact of
different parameters on the problem.
We will use the same pseudo-code as a simplified algorithm that describes the RC5 system:

Master Slave

while not solution-found While not solution-found
wait for connection; connect to key server;
send message; receive message of the day;
receive results and store; send results;
send blocks to test; receive blocks;
close connection; solve blocks;

We will assume that the server is absolutely devoted to its task and the systems that run the
RC5 client software are used for interactive (user) applications during the day. We are going to
use Petri Nets to model the problem.

We need to find an adequate model not only for the client and the server but for the integrated
system. We need to find an adequate unit to represent both the time and the work done by the
system. We should not choose it too small, because the number of states in our system would
burst; we should not choose it too coarse, otherwise we would lose too much detail in our
model. We will try to determine the most appropriate unit for this problem.

The server model

We will start presenting a simple net that models the behavior of the server:

The tokens that will represent the “state” of the server can be in three places: Ready ,
Connected and Sent . They will be “waiting” in Ready place until a client makes a request and

L H = ; < M D N = ? F ; H 9 O D P ; < D Q R > A 9 B @ ; S ; A = C D T U

V W X Y Z [\] ^ _ ` a b c Y X _ Z d c e Y f c g W f ^ b f b Z Z Y Z _ W h i d e [\]

after that, it will receive (when available) the portion of the problem solved by the client and
will send a new part of the problem for solving. The name of these places are meaningful from
the client's point of view.
The problem of concurrent accessof many clients can be modeled using multiple tokens on the
ready place. The number of tokens on the ready place represent the maximum number of
concurrent connections that the server accepts. The time spent on SendResults and
ReceiveBlocks transitions should depend on the number of tokens currently present on the
system.
The placeKeySpace contains a token for each block to be solved, a total of 236 tokens, that
will be adapted to the client work units on the client's subnet. In this way we represent the
evolution of the solution: as tokens are consumed from the KeySpace place, the key-spaceis
being exhausted. The client arrival will be modeled on the following paragraphs.

The client model

The work-unit given by the CPU instruction cycle

The smallest unit that we can choose is the instruction of the processor where the client
software runs. Even if we assume that the instructions require a fixed amount of time (the x86
family remains CISC), this is a far too small unit and leads to a great deal of problems even in
the case of our simplified model like idle CPU cycles, pipeline stalls due to cache misses, page
faults due to swap-outs and context switches, etc. We prefer to have a coarser measure of the
performanceof each individual system like the MFLOPSor MIPS, which tries to give a figure
that summarizes these and other aspects like memory bandwidth, cache size, etc. Even if we
would like to consider this unit we would find some problems with all the CPU-cycles that
have to be considered. If we assume a 500 MHz processor, we have approximately 5x108

cycles every second, 3x1010 cycles every minute, 1,8x1012 cycles every hour, 4,3x1013 cycles
every day and 1,8x1016 cycles per year that each system is running. If we assume
approximately 50.000systems working daily on this problem6 we should consider 9x1020 CPU-
cycles for every year of work. Far too much.
We can seethis problem if we compare the order of magnitude of our single task unit and the
time it would take a single machine to linearly solve the problem: 2,15x10-9s and 1,5x1013s
respectively. The difference is of 22 orders of magnitude.

The work-unit given by the OS timeslice

A logical aggregation of CPU-cycles is given itself by the operating system as timeslices, that
is, the maximum amount of time that the CPU is exclusively allocated to a particular task by

6 The number of systems that helped with the challenge each day can be found in distributed.net's web site.

j f [Y Z k b l [] d Y f W m b n Y Z b o p \ _ W ` ^ Y q Y _ [a b r s

t u v w x y z { | } ~ � � � w v } x � � � w � � � u � | � � � x x w x } u � � � � y z {

the operating system. In a system that is running mainly user jobs like a word processor, there
are very few processor interruptions other than those generated by the system timer. A fast
operator can generate bursts of 280keyboard interruptions every minute that go directly to the
keyboard processor queue and then can be retrieved by the processor. If all the keystrokes
would generate an interruption in the processor, there would be several millions of CPU cycles
to handle the character, do the context-switch and allocate the CPU back to the RC5 code.
The system timer interrupts the processor many times every second to run the system
scheduler. The quantum of time that the processor is assigned to a thread depends on the
flavor of Windows that the system is running [RUS1], but it varies from approximately 7 to 15
ms. Assuming that nearly all the interrupts come from the system timer we can think of a
model in which we allocate the processor fixed amount of times to different tasks.
Based on empirical measures, we found that, for office environment desktop computers, the
CPU is most of the time allocated to the idle task: 90% of the time or even more. On a system
running the rc5des.exe program, the idle CPU time is given to the rc5des.exe program. We
represent that giving 90% probabili ty of allocating the CPU to the CPURC5placeand 10% to
the CPUuser .
We should estimate which portion of the block is solved in a timeslice so as to “consume”
tokens from the placeWorkUnits and represent completion of the block. Doing that, we can
divide the solution of the problem into a certain number of allocations of processors to the
RC5 task. The key server would distribute parts of the problem and each CPU on the network
will consume them.7

With this approach, we have skipped many details of the system, and we can get a higher level
of abstraction. Within our work-unit, we collapsed many factors of the system like the
instruction-set of the processor8, memory bandwidth, sizeof caches, etc. and we get an overall
indicator of the low-level system performancethat describes which portion of the problem can
be solved during that period of time. For a theoretical analysis we need to use measures like
MIPS, MFLOPS or other indicator of expected system performance where our algorithm
would run. This is a good model of a single system, but in the real case there are many
different systems with different performance indexes. We must group them into classes of
equivalence according to the speed they solve RC5 blocks, study a representative and model
the interaction of the classes, biased with the cardinal of each class of equivalence.
The following figure presents a model for the client:

7 This would be true having a network with homogeneous machines. In the case of Internet and the real RC5
project, there is a great variety of systems. The analysis remains valid making different classes of systems,
each of them, with equivalent processors.

8 e.g. Availabilit y of MMX extensions

� � y w x � � � y { � w � u � � � w x � � � z } u ~ | w � w } y � � � �

� � � � � � � � � � � � � � � � � � � ¡ � ¢ � £ � ¢ � � ¢ � � � � � � � ¤ ¥ ¡ � � �

We are using UltraSAN [USAN] as a drawing, modeling and simulating tool for Petri Nets
thus, we adopted the input and output gates as a tool for controlli ng arbitrary changes in the
marking of places. The use of gates replaces inhibiting and multiple arcs, replacing a graphical
notation with expressions and formulae.
There are two input gates, AllocateCPU and AllocateGet that are used within the RC5
algorithm to decide if we need to fetch more work units9 or we still need to compute more.
The activation predicate for AllocateCPU is:

(MARK(CPURC5)>0) & (MARK(WorkUnits)>0)

which means that we allocate the CPU to a WorkUnit . The function of the gate is to decrement
the marking of both places in one. In this way, consuming tokens from WorkUnit , we represent
that we have solved another part of our system.
The activation predicate for AllocateGet is:

(MARK(CPURC5)>0) & (MARK(WorkUnits)==0)

which mean that we cannot allocate the CPU to a WorkUnit because we need to fetch more.
The function of the gate is to decrement the marking of CPURC5 in one. In the real case, the
CPU would issue the “connect” primitive, return to the scheduler, switch to “waiting for I/O
place” and would be re-allocated to another ready task. We are not trying to represent the
whole allocation algorithm, but the allocation of the CPU to the parallel application. That is
why our simplified model of the OS remains valid.
There is only one output gate in our system: Received. It receives a token from the server,
returns the CPU to the scheduler and puts the retrieved work units in the “to do” queue.
The definition of the gate is as follows:

MARK(CPUs)=1;
MARK(WorkUnits)=MULT;

The factor MULT depends on the processor speed, the timesliceof the OS and has to be either
empirically or theoretically estimated. We define MULT, for the general case, as the number of
timeslices needed to solve an individual work unit.
The other factor that has to be determined is the probabili ty that has the CPU to be allocated to
a user task.
In the following figure, we introduce a Petri Net that shows the interaction of the server and
one client:

9 In this case our work units are different from the blocks distributed by the RC5 server. Our work units
represent the average number of timeslices the CPU is assigned to a block so as to solve it.

¦ ¢ � � � § � ¨ � � � ¢ � © � ª � � � « ¬ � � � � � � � � � � � ® ¯

° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ³ ² ¹ ´ ¾ ½ ¿ ³ À ½ Á ± À ¸ ¼ À ¼ ´ ´ ³ ´ ¹ ± Â Ã ¾ ¿ µ ¶ ·

Since the token leaves the place, wait for connecting until new blocks reach WorkUnits place,
the client is mostly blocked for I/O and the dominant factor in the analysis is given by the token
evolution within the server model.

So as to take advantage of UltraSAN's composed model feature, we need to introduce an
auxili ary place: Done. The purpose of such state is to have two states in common for the client
and the server, so as to detach them, but also, to be able to combine them with the modeling
tool.

The following figure shows the final model for the server:

Every time that a token leaves the Sent place, a token is moved to Ready and another to Done

places. The following figure shows the resulting model for the client:

The following figure represents the composed model:

Ä À µ ³ ´ Å ¼ Æ µ · ¾ ³ À ± Ç ¼ È ³ ´ ¼ É Ê ¶ ¹ ± º ¸ ³ Ë ³ ¹ µ » ¼ Ì Í

Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ñ Ð × Ò Ü Û Ý Ñ Þ Û ß Ï Þ Ö Ú Þ Ú Ò Ò Ñ Ò × Ï à á Ü Ý Ó Ô Õ

These models remain valid considering that all the computers have the same numerical power.
A better model can be represented modeling the spaceof computers with different classes of
equivalence. The members of those classes provide the same MIPSto the RC5 challenge. With
the UltraSAN this can only be modelled defining different Client models like Client01,
Client02, etc. and joining them.
Even though we have developed a full model for the application, the state-space of this
problem is once again far too big: even if it is theoretically possible to model a system this way,
it is not numerically adequate for calculation purposes. As mentioned before, a computer based
on an Intel Celeron Mendocino processor (CPU family 6, model 6, stepping 5) of 466 MHz
and 128KB of L2 Cache can try 1,2 milli ons keys every second while editing text. On average,
it gets 110 to 120 timeslices every second, thus, it can try approximately 10 thousand keys
every timeslice. As we have noted before, a block consists of 228 keys to be tested or, what is
the same, 26.850 CPU timeslices (around 4 minutes of CPU time). As the key-space was
divided into 236 blocks, the model should consider at least 1,8x1015 states representing the
evolution of the problem. The space-state is too big to be analyzed, and a new aggregation
needs to be used.
Once again, if we compare the order of magnitude of our single task unit (in this case, a
timeslice) and the time it would take a single machine to linearly solve the problem: 8,33x10-3s
and 1,5x1013s respectively. The difference is of 16 orders of magnitude.

A few kilobytes are transmitted each time communication needs to take placeand the whole
communication processtakes no more than a few seconds even over a slow line. A practical
example is taken as a reference. The transmission required to obtain a group of 10 RC5
packets took only 17 seconds using a 33.600bps modem. 2.775bytes were transmitted during
the session (1.306bps), including the DNS query. That very small amount of information was
enough to communicate the key server the results of the work done during the last period of
time and to retrieve work for the next four hours. The relation between processing time and
communication time is very high: around 800 times, nearly 3 orders of magnitude.
At this point we can depict some performance limits on the RC5 architecture. RC5 relies on
TCP/IP as a transport/network protocol suite and connect to the not so well-known-port 2.064
on the key server. There is a limit of 65.536concurrent connections to one port due to the 16
bit socket identifier (handle). This limits how many machines can simultaneously fetch keys
because standard Berkeley sockets cannot deal with more than 216 clients talking to a server on
one port. Handling 65.536 clients is a very important load on any system. The memory
overhead on the operating system would be significant and all the operations related to the
network would experience important delays.
Another notorious problem comes with the need of bandwidth: 1.306 bps are necessary for
each concurrent client retrieving keys to test. If the server is using a T1 line, only about 1.150
clients can retrieve keys simultaneously, or what is the same, 1,65x107 machines can fetch keys

â Þ Ó Ñ Ò ã Ú ä Ó Õ Ü Ñ Þ Ï å Ú æ Ñ Ò Ú ç è Ô × Ï Ø Ö Ñ é Ñ × Ó Ù Ú ê ë

ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ï î õ ð ú ù û ï ü ù ý í ü ô ø ü ø ð ð ï ð õ í þ ÿ ú û ñ ò ó

once every four hours. This is a limit to how much we can paralelli ze this problem: adding
more machines would only lead to waiting without processing until a connection can be made
to the key server. Anyway, if we are able to put 1,65x107 Celeron 466MHz machines to work
together, we would be able to solve the RC5 challenge in 10 days, 18 hours and 48 minutes.
This “virtual machine” would achieve a crunching speed of 19.8 Tkeys/s, each key involving
tens of integer instructions.

If Mooré s Law stays the same for the next twenty five years, the whole RC5-64 bits challenge
could be solved with a M2COTS cluster with 32 Intel Pentium XV processors of 40,32 Tkeys/s
each. It would take no more than four hours to exhaust the key-spaceand could be a nice
examination for a student to solve a crypted message given by the lecturer.

The work-unit given by the solution of a RC5 packet

Another meaningful aggregation is given by the way in which the problem is divided and
distributed to the clients: the time for solving RC5 packets. Each packet consists of a group of
one or more work units, generally eight. A typical connection to the key server retrieves 60
work units in 8 or 9 blocks to be solved, that is about 1,61x1010 keys to be tested. At a rate of
1,2 milli on of keys per second, that gives us about 4 hours of Celeron-crunching between
transmissions. The RC5 client can be configured in many ways, according to the Internet
connection available. We will model hosts with permanent Internet connections.
With this new quantum of problem-solving, we are taking a coarser approach: we are
representing a time evolution that is 1.7x106 times bigger10 than the previous one or, what is
the same, we are representing the solution of a set of blocks as a whole, instead of keys. We
are not concerned with OS details or what is the user doing, but with the average time the
CPU was assigned to the RC5 client, and thus, the time spent solving a block. As in the
previous case, the clients will fetch blocks from the key server, solve them and return the
results but we will not model details within the client. We will consider only a couple of
different CPU usage profiles on the client.
The first usage profile considered is the idle system, that means, a machine already booted,
either with a user logged in or not that is not doing any batch task like disk optimization or
virus scanning. As its name says, this profile represents a system that is doing nothing but
running rc5des.exe. The only interference to a 100% rc5 dedicated system is caused by the
scheduler overhead.
The second usage profile considered is the interactivesystem: a system whose primary task is
to run user processes, generally, with higher priorities than rc5's priority. The consequence is
that the CPU is given to the rc5des.exe processonly after all the user's CPU needs are fulfill ed:
no other task with higher priority can be in the ready queue if the rc5 is to be scheduled.
If we plan not to break the solution of blocks into smaller work units, we need to represent the
different profiles in a way that is independent of task execution interleave, level of user activity
or virus detection. We must collapse all these factors into a simple and handy unit of work
evolution.
Lets choose any processor as a referenceprocessor and use it to turn solution-spaceremaining

10 This factor is calculated with reference to the 466 MHz Celeron processor, but will vary on different
systems: the OS's timeslice is independent of the numerical power of the processor.

� ü � � � � ø � � � ú � ü � � ø 	 � � ø
 � � � � � � � � � � ø � �

� � � � � � � � � � � � ! � � � � " ! # � $! % � $ � $ � � � � � � & ' " # � � �

into time-to-exhaust-solution-space using a theoretical dedicated system based on the reference
processor. It is clear that both representations model the evolution towards the solution of the
problem. Using the time evolution approach it is simpler to represent different CPU
contributions: different CPUs with different loads can consume tokens faster or slower than
our reference processor according to their speed and load.
As we saw on the previous section, the time spent on communication for retrieval of new work
units is almost 3 orders of magnitude smaller than the time needed for solving the whole
packet, and can be omitted.
The following figure represents a model based on systems delivering approximately the same
CPU time to the RC5-64 problem.

The system has three main places: Clients , TimeToGo and Working . Like in the previous
models we have a placewhose tokens represent the evolution of the keyspaceto be checked,
in this case, TimeToGo. The place Clients collects the idle clients ready to work.
There is a timed activity, Arrival that models the arrival of new CPUs wishing to cooperate
and depends on publicity and other social issues. The clients face regularly the decision of
continuing working or leaving the project. That is the meaning of the instant activity
Decision . The reason why a client leaves the challenge could be many, like the frustration of
so much CPU hours and so little reward or simply forgetting about the challenge one year later
when the hard drive had to be formatted. The Decision could lead to Departure or Stay

places. As soon as a token gets to Departure it is removed from the system: Bye instant
activity.
For clients that still wish to solve the challenge, the Work instant activity removes a token from
TimeToGo, allocates it to the client and puts it in the Working place. The tokens are removed
from the Working placeas soon as they spend there a certain amount of time, equivalent to the
one needed for our reference processor to solve our work unit.
This is valid for homogeneous processors with similar system load, but it is not clear how to
handle the variety of processors available with diverse load.
We will make classes of equivalencewithin the Internet hosts spaceand give different number
of representatives to each class. Based on a reasonable inverse linear behavior of the key-space
solution speed with respect to the CPU load on equivalent systems, we can say that a system
with a CPU that is equivalent in performance to our referenceprocessor will spend double the
time with a system load of 50% of the CPU time assigned to other tasks than the rc5 software.
A system with double CPU power will need half of the time if it gives its 100% of CPU to the
rc5 task, and so on11.

11 This is not totall y true due to the impact of context switches in the overall system performance caused by
missing localit y within the processor's complex cache systems and other performance factors.

($ � � �) * � � " � $ � + , � � - . � � � � � � / � � � � 0 1

2 3 4 5 6 7 8 9 : ; < = > ? 5 4 ; 6 @ ? A 5 B ? C 3 B : > B > 6 6 5 6 ; 3 D E @ A 7 8 9

With this perspective of CPU time assigned to the rc5 problem, we can classify systems
running the rc5 client according to the time they can give to the problem resolution depending
on load and CPU power. Each of these classes would have different number of members.
We noticed that this last aggregation is not suitable again for performance prediction using
Petri nets for the same reason: excessive complexity of the numerical solution. With a level of
granularity of approximately four hours it is not possible to model OS details and small factors
of interactive tasks but it is also too small with respect to the whole solution time. Onceagain
the order of magnitude of our single task unit compared to the order of magnitude the time
needed to solve the whole keyspaceis quite too big: 112 and 6,87x1010. The difference is 10
orders of magnitude.
Even though it could be possible to try further aggregations of the problem, we believe that
they are not meaningful and they cannot give richer information about the evolution and
predict the performance of the system than the arithmetical calculation depicted recently.

Processing speed determination method.

We have so far tried to model the complete resolution processand we were able to produce
accurate models that are numerically far too complex. In the previous section we mentioned
the possibili ty of some kind of analytical resolution based on the concept of “resolution speed”.
We will use this concept for the problem resolution.
This approach differs from the previous one, as it does not try to model the complete problem
resolution, but to determine which portion of the whole problem can be solved within a certain
amount of time. Then it is straightforward to determine the time it will take to our system to
fully solve the problem, provided that the estimated “speed” remains constant for the whole
process.
As we mentioned before, we will partition the spaceof CPUs according to their approximate
contribution to the problem resolution and estimate the number of CPUs in each class.
Knowing this two figures in all cases we can estimate the contribution of each class to the
problem resolution and consequently. The construction of a Petri network for this purpose is
straightforward as is very similar to the last one built, but it is not interesting in the current
context. Lets assume that we are modeling a RC5 work unit with our token, then, the token
consumption speed for each equivalenceclassis a direct function of the number of elements in
the classand the estimated speed of each element. Now we have the token consumption speed
of each class, then the overall token consumption speed is the sum of individual classspeed.
This single figure is our token consumption speed and should be an upper bound for the real
system speed, as we are not modeling any kind of delays blocking, etc. that would lead into
unused clock cycles, and thus, slower overall resolution speed.
In this case the analysis of the Petri net that we would have constructed suggested a particular
analytical way to estimate a particular measure, the system's processing speed. Using this
measure is possible to determine the time it would take to the system to exhaust the tokens
that models problem's complexity. In this way we have simplified the system, as we do not
have to model the whole resolution, but we can estimate it out of an intermediate estimation.

12 We have chosen our unit as the time needed for our reference processor to solve a work unit.

F B 7 5 6 G > H 7 9 @ 5 B 3 I > J 5 6 > K L 8 ; 3 < : 5 M 5 ; 7 = > N O

P Q R S T U V W X Y Z [\] S R Y T ^] _ S `] a Q ` X \ ` \ T T S T Y Q b c ^ _ U V W

3.2 - Conclusions of RC5 modeling

During the last paragraphs we proposed several Petri Net models of the RC5 system that
generates models with different level of accuracy of the system but that they all impose
practical problems to the resolution: in all cases the number of states in our Petri Net grows
beyond what we can handle or would like to use to predict the system performance. It makes
no sense to use a system for prediction that is more complex and more inaccurate than the real
system. We were not able to break the problem into pieces that are small enough to keep rich
details about the problem and also that are big enough so as not to make the number of states
in the Petri Net be reasonably bounded.
As we tried through the different levels of aggregation we were able to identify key
interactions of the client and the server that helped us understand why this problem can be
solved using a highly de-coupled set of computers like the Internet: absence of interaction
among clients and the huge difference between the time spent processing and the time spent
sending results and retrieving more work.
We were also able to settle, at least, some theoretical and practical limits imposed by the
operating system, Internet and communication state-of-the-art.
We finally presented an arithmetical way of predicting the performance of the system that
distributed.net is using to address the RC5 challenge. With simple arithmetic it is possible to
calculate numerical throughput and time needed to exhaust the solution space. Anyway, in
such an uncontrolled system like the Internet, a key issue to answer the time needed to solve
the problem is a social issue: how many people would like to lend their CPUs to
distributed.net.
Another problem that this particular simulation faces is the technological evolution. It took
almost 5 years to solve the challenge so, using Moore's law the industry doubled the
performance3 times, so state of the art the systems that helped in the last period of time were
eight times faster than the ones that started the challenge. This kind of long term simulation
faces evolution problems of the hardware, specially in highly heterogeneous and uncontrolled
system like Internet. It is far beyond the scope of this work to model this kind of long term
system evolution. The models that we will present in the following chapters assume constant
the system performance during the problem resolution.

d ` U S T e \ f U W ^ S ` Q g \ h S T \ i j V Y Q Z X S k S Y U [\ l l

m n o p q r s t u v w x y z p o v q { z | p } z ~ n } u y } y q q p q v n � � { | r s t

� } r p q � y � r t { p } n � y � p q y � � s v n w u p � p v r x y � �

� �

4 - Model templates for general parallel
applications

In the second chapter we presented the fundamental reasons why we divided the set of parallel
problems into five groups: task farming, single program multiple data, data pipelining,
divide & conquer and speculative parallelism. During the following sections we will discuss
the main issues that have to be considered for each group and we will depict the way in which
a model can be built so as to represent a specific instance of a program of a parallel group
running on a particular system.
It is a well known fact that the performanceis not exclusively system dependent. The software
that runs on a particular system plays a key role on the performance evaluation of the system.
Efforts like SPEC rely on statistical analysis of which different kinds of codes run on the
average system. The people that compare their system with SPEC agree with those
generalizations of the average software execution profiles. A higher SPEC index does not
guaranteethat a particular software will be faster on the new system. That is why we do not
concentrate only on the topology and performance of the hardware but also on the software
structure, inter process communication, etc.
We have done an exhaustive analysis of a master-slave process when we analyzed the RC5
model in the previous chapter. We will generalize what was done and introduce parameters
that were omitted due to peculiarities of the RC5 problem scale.
When representing a system, we must choose the level of detail to be included in our model.
Too little detail means that there will be important characteristics of the real system that will
not be included in our model. Too much detail means that we will need to measure and
calibrate many parameters of the model; also, the numerical methods available for computing
interesting performance measures from the model may be too slow or too imprecise to be
useful. Unlesswe consider particular cases in which the parallelism is highly exploitable, a lot
of effort has to be placed when building the model in order to ascertain its validity.
One useful technique is to introducesmall variations in the data to test stabili ty of the model
and to learn about the tolerance of the model to changes.
Finally, if the results of the simulation are not conclusive or the complexity of the model
precludes its numerical solution, it might be useful to make a prototype of the system and run
it. This prototype usually would include more detail than a numerical model, in order to
provide better information about the real system.

4.1 - Performance Indexes

Another important point that must be decided before building models for each of the classes of
parallel problems is to choose a set of performance parameters or indexes to be evaluated. The
need for these indexes is to have concrete meaningful, problem independent indicators of the
system performance, that have deep roots in both the software that will run on the system and
the system itself.

� � � � � � ¡ � � � � � � ¢ � £ � � � ¤ ¥ � � � � � � ¦ � � � � � § ¨

© ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ ¬ « ² · ¶ ¸ ¬ ¹ ¶ º ª ¹ ± µ ¹ µ ¬ ² ª » ¼ · ¸ ® ¯ °

This has important effects on the models we will build, as a model appropriate for evaluating a
steady state parameter of the system may not be useful to compute transient performance
measures.

We have chosen to study the following parameters:

a) The Total Execution Time (TET): is the execution time of the problem, from the
initialization phase until the processreaches its ending. This is a transient measure,
which is particularly important in real-time or quasi real-time parallel systems, but it
is generally important on every system that we code: we would like to know how
long it will take to find a solution to our problem.

b) The Mean Execution Speed (MES): if we can measure the problem size in some
work unit (say for instance number of floating point instructions, blocks to solve,
etc.), we can think of an important parameter which is the speed at which our
system (measured in work units per time units) solves the problem. This allows us to
estimate the system's processing capacity. We define MES as the sizeof the problem
(represented in work units) divided by the TET .

We will discusslater foundations for these definitions, specifically for the second one. We will
see that under specific situations one measure can be easier to determine than the other.
Furthermore we will see that in many cases, if we can estimate properly the MES and we
determine the size of the problem, then we can estimate the TET directly from the MES
definition and viceversa.

According to the MES definition, we can represent it using the following equation:

We will be interested on systems in which the TET can be divided in the next sequence of
stages:

a) initialization,
b) regimen,
c) ending;

and their associated times: Ti, Tr and Te. When we introduce the concept of a “regimen stage”
we are facing the ideaof a stationary phase, which would lead us to the problem of defining
properly what is a stationary phase in our particular networks. This is difficult to determine in
the general case of our problem, specially due to the fact that we move tokens from a initial
placeto a final place. If we think of infinite times and we follow a scheme similar to that one
presented when studying the RC5 problem, we find that the stationary phase would consist of
the state in which all tokens are moved into the final absorbent place. Our concept of “regimen
stage” differs from the stationary phase mentioned before and refers to the constant problem
solving phase found between the initialization and the ending. We will not try to formalize
more this concept for the moment.
Assuming the previous considerations, we can expressthe Total Execution Time as the sum of
the Initialization, Regimen and the Ending Times like:

½ ¹ ® ¬ ¾ µ ¿ ® ° · ¬ ¹ ª À µ Á ¬ µ Â Ã ¯ ² ª ³ ± ¬ Ä ¬ ² ® ´ µ Å Æ

MES ÇÇÇÇÇÇ
WorkUnits

TET

È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ë Ê Ñ Ì Ö Õ × Ë Ø Õ Ù É Ø Ð Ô Ø Ô Ì Ì Ë Ì Ñ É Ú Û Ö × Í Î Ï

TET = Ti + Tr + Te

Replacing this equation on the MES definition we get:

Our study will focus on situations where Tr >> Ti and Tr >> Te, thus, it is valid that TET ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT rrrrrrrrrrrrrrrrrr

. We can conclude that:

Using any of these measures, we may study if it is possible to obtain any speedup with a
parallel execution scheme replacing a single processor one, to obtain expected order of
execution time and the numerical speed of our system solving the particular problem. We will
use the terms system, cluster and group of CPUs basically interchangeably because we are not
tying ourselves to a particular hardware configuration, even though the base of this study is
commodity components. The analysis can be applicable to a set of interconnected uniprocessor
systems, interconnected multiprocessor systems, NUMA machines, etc.

We will present a way of modeling each problem within the five groups discussed and how to
obtain the general performance indexes that describe the numerical performance of a system
conformed by certain hardware solving a particular problem. We will depict which parameters
have to be estimated so as to model the system, but it is impossible to generalize how to
estimate each parameter for each parallel group. Each time that a particular system is modeled,
it has to be decided how to estimate and calibrate the constants needed for the model to predict
properly the behavior of the system.

4.2 - Task-Farming (or Master/Slave)

In the task-farming paradigm we can identify two entities or groups of entities: masters and
slaves. There may be only one master or a group of them; there may also be different groups of
slaves, but essentially, we are facing the same problem that might have been partitioned due to
performancereasons. Either way we will model a virtual uniprocessor master serving a farm or
group of slave systems.
The master is responsible for decomposing the problem into smaller tasks, distributing them
among the slaves, collecting results and assembling the problem solution. It is important to
note that all this means overhead. Decomposing a problem, even picking up ranges without
performing any processing to the data set results in extra administrative work. Keeping track
of which parts were allocated to which slaves and, depending on the situation, deciding that

Ý Þ ß à á â ã ä ß å æ à Þ ç è ã é à á ã ê ë ì í ç î ï à ð à í ß ñ ã ò ó

MES ôôôôôô
WorkUnits
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT iiiiiiiiiiiiii

õõõõõõõõõõõõõõõõõõõ
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT rrrrrrrrrrrrrr

õõõõõõõõõõõõõõõõõõõ
TTTTTTTTTTTTTTTTTTTTTTTTTTTTT eeeeeeeeeeeeee

MES öööööö
WorkUnits

TET
öööööö

WorkUnits
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT iiiiiiiiiiiiiiiii

õõõõõõõõõõõõõõõõõõõõ
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT rrrrrrrrrrrrrrrrr

õõõõõõõõõõõõõõõõõõõõ
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT eeeeeeeeeeeeeeeee

÷÷÷÷÷÷÷÷÷÷÷÷ WorkUnits
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT rrrrrrrrrrrrrrrrr

ø ù ú û ü ý þ ÿ � � � � � � û ú � ü � � � û � � 	 ù � � � � � ü ü û ü � ù
 � � � ý þ ÿ

there was a problem with that slave (maybe the answer did not arrive within a certain
acceptable amount of time) and allocating the same part of the problem to a different slave
means extra CPU operations that have to be considered as overhead.
Slaves perform a simple sequenceof steps: get a part of the problem, processit until a solution
is found and send the result to the master. In most cases, there is no communication among
slaves.
This kind of problems are easily scalable (by means of adding more slave CPUs) and their
speedup is quasi-linear as there is little or no interaction among slaves. The bottleneck that
might arise at the master is solved (if possible) making farms with master servers. If we apply a
state-of-the-art layer 7 traffic redirector, the logic and intelli gence that the slaves need to
choose the appropriate master can be collapsed within a hardware device that can become a
commodity component soon. State of the art network manufacturers are including redirection
and load-balancing facili ties into their boxes. Layer 7 traffic redirecting devices have a
monetary cost similar to multiple slave nodes together and the problem can be solved with
more intelli gence on the software at the master nodes.
We will represent both processes with a high level pseudo-code that makes clear the
interaction between both the master and the slave, leaving problem complexity bound to
process , partition and assembleSolution functions. The pseudo-code follows:

master
receive P (size n=|P|)
partition P into P 1, P 2, , P n

k=1
repeat asynchronously

{send P k; k+=1}
{receive R j ; process(R j)}

until #{R j }= n
assembleSolution
fin

slave
repeat

get P i

Ri = process(P i)
send R i

until ! ∃ Pi

fin

The partitioning of the problem is a major issue, not only for its inherent difficulty but for the
consequences on the solution process. It is important to note the difference between the
processpartitioning and the modeling work-unit election: the first one is a design decision that
deals with the problem resolution while the work-unit election summarizes what we consider
relevant and what we can abstract so as to model the system.
The asynchronism of the repeat loop in the master represents the fact that there is no particular
sequenceof send and receive in the general case. We expect that the master processdelivers
n pieces to the slaves and collects n solutions from them. Maybe the master creates a thread for
each Pj allocated to a slave, maybe sends all Pjs and then waits for the results, etc.
The collection of results could include some fault toleranceon the clients. The master can set
timers when delivering problems to clients, so if a time-out condition arises, then the problem
is allocated to another client willi ng to solve it. There is no problem if multiple solutions are
returned for a given problem, only one is stored.

System modeling

We base our Petri net model on the previous pseudo-code. We are representing a set of CPUs

� � ý û ü � � ý ÿ � û � ù � � � û ü � � � þ � ù � � û � û � ý � � � �

� � � � � � � � � � ! " # � � � � $ # % � & # ' � & � " & " � � � � � � () $ % � � �

that will act as slaves that will loop until there is no more work to be done and a master that
dices the problem into adequate pieces and delivers them to slaves.

Masters model

The following net represents the master process:

The initial configuration of the network is with all places empty but the Problem_input one.
A token is placed there representing the initial problem P that is going to be solved. There is a
timed activity, Partition , that represents the main initialization task: partition the problem
into the tasks that will be solved individually by each slave. We use the input gate defined by
the UltraSAN package to manage the extension in the functionality of a regular timed
transition. Instead of removing one token form the Problem_input placeand placing it into
Problem_partitioned place, we place factor tokens into Problem_partitioned place.
Factor is a global variable which we use to set different initial conditions in our simulations.
Varying this factor, we can modify the size of the problem to be solved by each slave. It
generally has a correlation with the time in which an individual task is completed, which is
represented in the slave model.
The Problem_partitioned placeholds all the tokens that represent the problem partitioned
and the Send timed activity delivers pieces to slaves ready to work. The distribution function
for the Send activity represents the time involved in the processof accepting a connection and
sending the necessary information for the slave to start working. Generally this function
summarizes operating system, network availabili ty and communication issues. It is possible to
placean input gate that pauses the Send activity if more than a certain number of tokens are
already placed in the SND_Buf place. This is useful to achieve a closer representation to reality
and to bound the number of different states on the Petri net, which is useful for the numerical
resolution of the problem.
The timed activity Fault represents the lack of completion of slave tasks due to hardware
problems, blackouts, system crashes, etc. As there is a high independence among slave tasks,
the missing one is placed back in the Problem_partitioned place. All that has to be done
afterwards is Send it and allocate it to a slave. Generally, the rate for this activity is extremely
small, which represents the rare event of a problem in a slave. Even though the stabili ty of
commodity systems today is very high (comparable to workstations a decade ago), when
considering a cluster with an important number of slaves or mistakes caused by improper user
handling of their systems, the joint probabili ty of a single (any) system crash grows to a level
that might be considered. The existence of the Fault activity has an important impact on the
numerical solution of the theoretical model: even though the rate for the distribution function is
very small, there is a non zero probabili ty that an arbitrary big number of failures occur within

* & � � � + " , � � $ � & � - " . � � " / 0 � � � � � 1 � � � ! " 2 3

4 5 6 7 8 9 : ; < = > ? @ A 7 6 = 8 B A C 7 D A E 5 D < @ D @ 8 8 7 8 = 5 F G B C 9 : ;

a bounded interval of time. The consequence of this fact is that the number of states of the
network is unbounded, thus, many of the solving algorithms can not be applied with this
activity. If the resolution algorithms need to calculate the state-spaceprior to the numerical
resolution of the networks, then they can not be applied. In this kind of networks simulated
results prove adequate.
The results coming from the slaves are placed on the RCV_Buf place. We are not modeling
post-client processing, thus we only consume tokens without representing any particular
activity13. There are some cases that can be mentioned here. For example, it is possible that the
master needs to communicate something to the running slaves related to the received result:
this is the case for example in a branch and bound algorithm when a new partial solution was
found. There also exists the possibili ty that the answer from the slave results in new tokens
added to the Problem_partitioned place. Either way, the final post-processing changes the
completion time with a bound and well known factor. In case that this factor needs to be
included in the network, a timed activity assembleSolution can be introduced that removes
all nodes from RCV_Buf place when processing is done.
One aspect that has to be considered when building the network is to keep it as simple as
possible, while modeling all the relevant information. If the model gets too complex, it will be
extremely time-consuming to solve it.
At this point we can note that there is lossof information from the master's point of view: as
soon as all nodes have been removed from the SND_Buf, it is not possible to determine if the
processing is done or some slave is still processing. We can always inspect the slaves to check
if any one is still processing, but it might not be practical in all situations.
When asyntotic behavior is analyzed, current network is adequate. When terminating
simulations are needed, when a master-slave network needs to be integrated into another
network or for synchronization means, we need to introduce a new placein the network that
lets us keep track of all the pieces of work delivered to the slaves. The following net
represents the master process with the new place introduced:

As pieces of work are sent to the SND_Buf, they are also copied to the placeWork_Not_Done .
As soon as processing is done, tokens are removed both from the RCV_Buf and from the place
Work_Not_Done . With this new network it is easy to determine if all the slaves finished with
their pieces of work. If no tokens remain in Problem_partitioned and Work_Not_Done

places, then all processing is done.

13 We use a instant activity for representing it. Due to constraints in the tool we are using for modeling, we
can not have a model running with a instant activity after a place used for joining two networks. When
doing real simulations, tokens can be consumed on the slave or a timed activity can be used instead of the
instant one.

H D 9 7 8 I @ J 9 ; B 7 D 5 K @ L 7 8 @ M N : = 5 > < 7 O 7 = 9 ? @ P Q

R S T U V W X Y Z [\] ^ _ U T [V ` _ a U b _ c S b Z ^ b ^ V V U V [S d e ` a W X Y

Slave models

The slavemodel is a little bit simpler, because the slave's structure is also simpler as the logic
of the problem resolution resides on the master. The main complexity (if any) that exists at the
slave is the procedure to solve pieceof problem that is allocated to it. The slaves only retrieve
pieces of work to be done, solve them and send the results back to the master. The following
net represents each slave process:

The name of SND_Buf and RCV_Buf are named from the master's point of view, not from the
client's. It is needed due to UltraSAN constraints for joining nets: Places should be named the
same on joined networks, and we selected the master's perspective.
The rest of the processing on the client is straightforward: a token is removed from the buffer
and allocated. Then the client spends some time processing and then the token is returned to
the master. The input gate CheckAllocation is responsible for not allowing more than one
token inserted on the Alloc placebecause we model the allocation and solving of one pieceof
problem at a time. It is also possible to model multiprocessor systems or groups of systems
with equal performance to be modelled as tokens allowed by the CheckAllocation input
gate.
Even this network is adequate for our purposes, the design is somehow influenced by the tool
we are using: the input gates are an addition to classical Petri networks done by the UltraSAN
tool that allows very powerful and expressive operations over a network. What we mean at
this point is to move only one token at a time, because our nodes will consume only one work
unit at a time.
We can model the same behavior replacing the input gate with a node called CPU, initialized
with one token. Arcs should connect this node with activity Get and the activity Process with
node CPU. With this network we represent the allocation of pieces of work to CPUs. When
both a CPU and a work item are available together, they are both consumed. When processing
is done, the CPU is released (token returns to CPUplaceand is again allocable) and a token is
placed at RCV_Buf, indicating that some result was obtained. The following figure represents
the network:

Both networks can be used interchangeably.
It is good to mention now that in the case of multiprocessor systems there are two alternatives:

f b W U V g ^ h W Y ` U b S i ^ j U V ^ k l X [S \ Z U m U [W] ^ n o

p q r s t u v w x y z { | } s r y t ~ } � s � } � q � x | � | t t s t y q � � ~ � u v w

either initialize as many tokens in the CPU place as processors the system has and add only one
slave network to the systems network or to add as many slave networks as CPUs to the
network that models the whole system.
The estimation of the processing time is a important factor for the predicting capabili ty of the
model. Particular information of the specific system being modeled should be represented at
this stage.

The complete system is modeled joining a set of slaves with a master. Unless we face particular
sick configurations and problem scales, bandwidth and processing capacity of the master
should not be a bottleneck in our systems: processing and communications capabili ties should
be considered enough, at least, at the beginning. In general, Task-farming problems are more
CPU-bound than I/O-bound, thus, CPU is much more a bottleneck than the network speed.
Another factor that has to be considered is that raw communication speed is not a problem
currently as 10GigabitEthernet is already available. The problem is that the processing
overhead to process10Gigabit (up to 20 milli on Ethernet packets per second) is too much for
a single CPU. Master's burden must be split not because of pipes width, but because of CPU
might not be enough if processing at the master is considerable at high network speeds.
We use the following composed model to represent the conjunction of a master and multiple
slaves in a single network:

The Rep box represents the replication of the Slave network. We use the Join box to combine
a set of slaves with the master.
This system represents a set of systems that deliver approximately the same CPU power to the
resolution of the problem. Heterogeneous systems could be represented either calculation
complex distribution functions for the Process activity or using multiple groups of slaves,
each of them with equivalent CPU power available for the problem resolution. We represent
such heterogeneous systems with the following composed model.

Each SlaveX network is exactly the same as the others, but differs on the distribution function
for the Process timed activity. On the replication box, we use different numbers to represent

� � u s t � | � u w ~ s � q � | � s t | � � v y q z x s � s y u { | � �

� ¡ � � � � �

the different number of instances of the different processing speed.

Performance parameters

We have already presented a method for modeling master-slave systems. We still need to
provide means that help deciding how to architect the system and how to develop the software.
The final goal of the modeling is to determine as early as possible the best way to engineer a
certain parallel system, to reduce the complex set of different ways in which the system can be
designed, or answer if current technology can address certain particular problem within
particular time restrictions..
We will present now how to estimate the MES (Mean Execution Speed) and TET (Total
Execution Time) based on the model described before.

Total Execution Time

As we have previously defined, the total execution time of the problem is the time from the
initialization phase until the processreaches its end. Based on our system, we can calculate this
measure as the time it takes to the system to move all tokens out of the system. This implies
that we have to simulate the whole resolution of the system, that means, we have to model the
whole system described before, placethe tokens in the initial placeand run a simulation until
all tokens are removed away from the system.
Not all simulation tools allow this kind of estimation. If the tool that is being used allows to
calculate network's steady state, we can introducea variation in the network's layout. We can
make a cycle from the final state, the absorbent configuration, to the initial one, so after the
processing is done, the network is restored to the initial configuration. The process of restoring
the initial configuration must have an associated timed transition with a known amount of time.
We can simulate this new network in the steady state and measure the fraction of time that the
network spends restoring the initial configuration. From that value we can then estimate the
counterpart, that is the TET.
It is not always possible to ascertain this measure basing our forecast on simulation due to the
complexity of the numerical solution. It can be the case that it might take too long to calculate
the TET out of a complete execution simulation. If it was possible to compute the MES for
that system, then it is possible to estimate the TET as the complexity of the problem divided by
the MES, that is, how long it will take our system to consume all tokens at the processing
average speed provided that most of the execution time is spent on the regimen phase. On
average, this estimation is adequate, but it does not consider the behavior before and after the
regimen phase. A source of error to this estimation is due to the time the system runs out of
the steady state. If the regimen state takes most of the execution time, then the estimation is
adequate, otherwise, it has to be specifically considered.

Mean Execution Speed

If we are calculating the MES after the calculation of the TET, then with only an additional

¢ � � � � £ � ¤ � � � � � � ¥ � ¦ � � � § ¨ � � � � � � © � � � � � ª «

¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ ¯ ® µ ° º ¹ » ¯ ¼ ¹ ½ ¼ ´ ¸ ¼ ¸ ° ° ¯ ° µ ¾ ¿ º » ± ² ³

arithmetic operation it is possible to compute MES according to the definition. On the other
hand, if it is not feasible to directly compute the TET, then it is possible to try estimating the
MES before and afterwards, based on that value, to determine the TET.
As we discussed before, we need to estimate MES. We will estimate the regimen problem
solving speed of our system (measured in work units per time units), what we call that
estimation MES. This allows us to estimate the processing capacity of the system and also to
estimate the time in which the stationary phase of the problem can be attained.
The time in which the regimen phase is attained has to be calculated in some way that is
problem dependent. After the system is in its regimen phase, one of several standard techniques
(regenerative simulation, batch means, etc.) can be applied to determine the MES. Changes in
the network can be done to simplify the determination of the steady state like adding infinite
initial tokens or making cycles so as to keep the overall number of tokens constant according
to the time evolution. The last alternative is generally preferable for the sake of numerical
simplicity.
If the system was modeled according to the previous recommendations, there has to be a
couple of states, called SND_Buf and RCV_Buf that permit the uncoupling of the master and the
slave. The evolution on the part of the network that models the master process does not
present a steady state behavior: tokens will be consumed from the Problem_input placeuntil
there is no token remaining.
We can concentrate on the set of slaves that consume tokens from the SND_Buf and their
induced Petri net, a subset of the original net. We will estimate how fast the slave nodes
consume tokens. Even though we can theoretically analyze the processing speed based on an
infinite set of tokens in the SND_Buf place, it is numerically simpler in our Petri Net to model a
finite number of tokens being reinserted after they are processed in the initial placeso as to
keep constant the number of tokens on the network and also to keep bounded the total number
of states of the system. The average number of tokens that cycle the network in a certain
period of time should be called MES. It can be determined as the differencebetween the total
number of tokens in the network and the average number of tokens in the SND_Buf place. This
is equivalent because all the tokens that are not in the SND_Buf placeare cycling the network
accordingly to the definition. The advantage of this alternative is that is simpler to compute the
average number of tokens in one place than the number of tokens cycling.
As a rule of thumb, it is important that on the regimen state there is always more than one
token on the SND_Buf place. If all tokens are consumed, it is possible that a slave is willi ng to
process, but there is nothing to process. If there are always tokens on the SND_Buf place, it
means that there is always more work to be done than slaves to accomplish it, and thus, there
is no idle slave. In that situation, we are solving the problem as fast as we can. Generally it is
wise to have more tokens tham CPUs willi ng to solve pieces of work.
It is a general fact in this kind of systems that the regimen state is reached quite soon. As there
is little or no interdependence between slaves, there are generally no constraints that prevents
slaves from getting their work. In that scenario, the most likely event that would stop a slave
from getting more work to be accomplished is a bottleneck on the server side. It could be of
many different types like CPU when it is preprocessing the job, maybe splitting it into smaller
tasks; it could be a network bottleneck due to the fact that a high number of clients are all at
once eager to get their jobs, and as they were spawned together, they colli de trying to access
the server, etc. After all the clients get their pieces of work they are all working on they will
keep their pace, only interfered by eventual bottlenecks on the server side.
This final estimation of the MES will be greater than the one calculated from the TET as it
does not consider the initialization and post-processing times. In a way, it gives the fastest

À ¼ ± ¯ ° Á ¸ Â ± ³ º ¯ ¼ Ã ¸ Ä ¯ ° ¸ Å Æ ² µ ¶ ´ ¯ Ç ¯ µ ± · ¸ È È

É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö Ì Ë Ò Í × Ö Ø Ì Ù Ö Ú Ê Ù Ñ Õ Ù Õ Í Í Ì Í Ò Ê Û Ü × Ø Î Ï Ð

processing speed that the system can achieve from the slaves point of view.

4.3 - Single Program Multiple Data (SPMD)

It is the most commonly used paradigm. In most cases, the problem suggests how to distribute
the problem to each CPU. Each process executes basically the same code on a different portion
of the data. Generally the differences are due to boundaries of the spacebeing modeled like the
walls of a nuclear reactor, height of a layer of air in the atmosphere in a shallow-water model
or the limit of a geographic region considered for the dispersion of pollutants. In all these
cases, something special has to be done so as to preserve physical constants/values of the
system like entropy, energy, mass, etc. For example, when we consider a fine-grain
atmospherical model of the winds over a city, Corioli 's forceis applied to all points of the grid,
but the system modelled is not a closed one: the winds entering and leaving the region
(differences in atmospheric pressure) have to be modelled in the boundary with functions
which evolve in time.
Due to the division of the problem data among available processors, it is also referred as
geometric parallelism, domain decomposition or data parallelism. The decomposition is
usually ground on regular geometric structure of underlying physical problems, thus allowing
uniform distribution of data among processors.
Each processor would need to communicate with its neighbor whenever its calculation needs
information held on the neighbor's memory. In many cases, with the model we represent a
pieceof the universe in a given time t0 and we use the models to predict how our universe will
be at time tf. To speed-up the calculation of the evolution of our modeled universe as time
evolves, we partition the initial state within a set of processors and parallelize the time
evolution from t0 to t1. After the processing, each processor has computed his associated part
of the universe in the time t1.
Nothing can travel faster than light and all the forces in nature have different strengths
according to what is considered and distance14. That is why there is a cone of influence
implicitly associated to every point of the universe and to what is going on there. Lets think
about two points, X and Z that are separated more than c(t1-t0), where c is the constant
representing the speed of light. Nothing has to be considered in Z from X in the instant t0 to
calculate the state t1 and viceversa. If two points X and Y are separated less than c.(t1-t0) it
might be necessary to exchange information between both of them so as to calculate the next
state. What defines the interaction within the model is the model itself, what is being modeled,
what is considered relevant and what can be obviated. There is no general rule that can be
usually applied to determine a fixed set of neighbors.
It might be necessary to provide further synchronization (barriers or other methods)
periodically among processors. As the processing is relatively similar between all processors
the synchronization is not a waste of time and it can be used for checkpointing, very useful in
cases of crash-recovery. On the other hand, it leads to problems mixing CPUs of different
power or time-shared systems with different loads because in most cases it will lead to systems
with the performance of the slowest CPUs.
The communication pattern is usually highly structured and extremely predictable. According
to the problem itself, the data might be self-generated or read from some storage. There is a

14 At least in the four-dimensioned universe that A. Einstein helped us understanding.

Ý Ù Î Ì Í Þ Õ ß Î Ð × Ì Ù Ê à Õ á Ì Í Õ â ã Ï Ò Ê Ó Ñ Ì ä Ì Ò Î Ô Õ å æ

ç è é ê ë ì í î ï ð ñ ò ó ô ê é ð ë õ ô ö ê ÷ ô ø è ÷ ï ó ÷ ó ë ë ê ë ð è ù ú õ ö ì í î

high dependenceto the processors, and the lossof one of them leads to deadlock states. There
has been an enormous amount of work improving reliabili ty on clusters, facili tating process
migration between CPUs, fault tolerance, etc., but until now, the best price/performance ratio
is obtained on non-redundant systems, fault intolerant.
The modeling of these systems is not as straightforward as the previous case. The
communication plays a more important role on these problems and the way the communication
pattern takes place within this models determines the way the net's graph lies.
Before the processbegins, there is a stage of division of the initial condition of the problem
between the processors. The interrelations of the processes are obtained from the model and
the communication pattern is known. We can determine the neighbors of each processor,
understanding neighbors as two processes that share memory.
There is an initial stage in which the original problem is divided in small parts and the
interaction between processes/processors is defined.
We represent that stage with the following piece of code:

Initialization
receive Problem Pt0

divide Pt0 into { P1,t0 , P2,t0 , P3,t0 ,..... , Pn-1,t0 , Pn,t0}û
P j ,1 ü j ü n ,V ý P j þ ÿ � Pk1

,Pk2
,Pkm �

The function V returns the set of neighbors of a given subproblem. We assume the general case
in which the neighborlinessis reciprocal, and thus Pi � V � P j � means P j � V � Pi � 15. Each
processitself executes basically a simple sequence of stages, represented by the next pieceof
pseudo-code:

process
receive subproblem Pi,t0
set k=1
repeat

Ri,t = process(Pi,t)
for Pj in V(Pi)

async send(Pj, Ri,t)
for (Pj in P) / Pi ∈ V(Pj)

Rj = receive(Pj, Rj,t)
Pi,t+1 = Ri,t ∪ Rj1,t ∪ Rj2,t ∪
k++

until k=max (or other suitable condition)
end

The processes are mainly loops that run until a certain condition is verified. Checkpointing was
skipped for the sake of simplicity, but on long runs it is a must. Checkpointing would consist of
storing state information in a (maybe safer) permanent storage that can be used for resuming in
the event of a system failure.
The processreceives the initial condition of the problem to be solved and runs the appropriate
algorithm on it, producing a certain result Ri,t . The result is communicated to the neighbors
and neighbors results are received. When we use async send we do not constrain ourselves to a
particular routine, but with the general concept that the produced result is sent and local
computation is not suspended until the neighbor receives it. The result can wait on the
neighbors protocol stack, could be written to disk or can be held until the neighbor polls for it.

15 This has a solid physical ground on the way natural forces operate. If a processor holds information
that has to be taken into account when determining the next time-step of a neighbor, it will need the
information from his neighbor to compute his own next time-step.

� � 	
 � � � 	 � �
 � � � �
 � � � � � � � �
 �
 � 	 � � �

� � ! " # $ % & ' () * + ! ' " , + - ! . + / � . & * . * " " ! " ' � 0 1 , - # $ %

The specific implementation is not a main issue here.
The process of getting neighbors results is blocked because we can not continue computing
until we have all the information needed to compute the following step. After we have all the
information needed, that means, our result plus our neighbors results, we assemble the data set
that is going to be used to compute the next time-step, and so on.
Not all the algorithm implementations of SPMD problems are exactly written this way, and a
wide variety of particular solutions exist. The processdoes not have to have all the information
needed to compute the next time step when it starts, it can poll for it whenever it is needed.
This lazy approach is highly algorithm dependent, because neighbors memory could be
required any time. Another problem with not so structured approaches is the problem of
deadlock states, which are avoided in a structured design.
What our general pseudo-code represents is that we need information from our neighbors to
compute each time-step, and also that we need to share with them some of our own results and
so on. The data exchange here plays a key role. Neither our neighbors nor us can compute
results without the other, and the data exchange processslows down overall calculation power
of the system. It could be the case of a problem in which too much time is spent on
communication and a single processor system could perform better due to the lack of
communication overhead.
We will represent the system and the data exchange with Petri nets.

System modeling

On first high-level thoughts, we can make an abstraction of this system as a set of CPUs and a
set of work pieces. Each CPU gets a pieceof work processes it and gets ready for the next
pieceof work. The network that represents this would consist of one placewhere all pieces of
work are represented with tokens, another placewhere available CPUs are also modeled with
tokens, a timed activity that models the allocation of a piece of work to a CPU and its
resolution and finally a placethat receives all solved pieces of work. The following network
represents this:

Studying this network layout, we can see that we have completely lost all inter-process
communication modeling. The Process activity simply removes CPUs, but there is no
modeling of the fact of available CPUs that can not get a pieceof work allocated because
information from the neighbor is not available yet. When we want to represent this system on a
Petri Net, we find that it is not possible to sketch a single network layout in which we have a
pool of CPUs and a set of tasks to be accomplished because we lose the interaction and
interleaving of processing and sharing information. In these systems, it is important not only

2 . # ! " 3 * 4 # % , ! . � 5 * 6 ! " * 7 8 $ ' � (& ! 9 ! ' #) * : ;

< = > ? @ A B C D E F G H I ? > E @ J I K ? L I M = L D H L H @ @ ? @ E = N O J K A B C

that processing and communication takes place, but in which order and how much time is spent
waiting for synchronization. We concluded that we can not depict a general network layout, as
it was done with the task-farming classof parallel problems. We present here a procedure for
constructing the Petri Net associated to a given SPMD algorithm, the kind we described
before. We will have to construct networks for each particular problem.
Let us first introduce the definition of the places and transitions that will conform our net. Each
processPj will basically be processing or waiting for others results. Lets call init_P j to the
initial placewhere the token representing the state of the process Pj is and proc_P j to the
timed transition that represents the processing at process Pj.
Each time that processing is done, a token is removed from work_P j . The tokens in the place
work_P j represent the remaining work of the current run. After the processing is done, the
token goes to the placewait_P j . The token is also “copied” to fictitious places that represent
the asynchronous communication between processes. The instant transition sync_P j removes
the token from the place wait_P j and puts it again in place init _Pj where cycle continues.
We introduced the fictitious places to represent the asynchronous interchange of information.
We call snd_P j Pk to the placeused to represent that information sent from Pj to Pk is queuing,
waiting to be retrieved by Pk. An instant transition16, sync_P j is used to continue processing
only after the processing of Pj is done and also that Pj's neighbors have sent their information.
The following procedure is used to partially define the Petri Net associated to a given problem:

Let the processes be PP Q R P1 ,P2 ,Pn S and lets define the function V:: PP T UPn as
V V P j W X Y Pk1

,Pk2
,Pkm Z [P j ,1 \ j \ n

For each process Pj in]P
add a place labeled work_Pj.
add a place labeled init_Pj.
add a timed transition labeled proc_Pj

add an arc from init_Pj to proc_Pj.
add an arc from work_Pj to proc_Pj.
add a place labeled wait_Pj.
add an arc from proc_Pj to wait_Pj.
add an instant transition labeled sync_Pj

add an arc from wait_Pj to sync_Pj.
add an arc from sync_Pj to init_Pj.
for each process Pk ^ Pk _ V ` P j a

add a place labeled snd_PjPk

add an arc from proc_Pj to snd_PjPk.
add an arc from snd_PjPk to sync_Pk.

With the previous procedure we defined the layout of the network, the places, activities and
transitions. Some parameters of the network still need to be defined. To have a fully defined
network, we still need to determine the distribution functions for the timed transitions and the
number of tokens. Before following with the definition of the network, we need to state
something about its complexity. The complexity of the network can grow considerably. For
each process three places, two transitions and five arcs are added without considering
neighborliness, that might easily add four more places and eight arcs for each process. The
resolution of the resulting network can consume some CPU power and could take significant
effort. The processof constructing such network on a tool proves also difficult. For complex
systems it is a good thing to have some kind of automated interface(not only the graphical

16 It can be argued that synchronization is or is not something instantaneous, as it requires interprocess
communication of some kind. In our model, we are not placing the cost of synchronization in this activity.
We are only modeling the blocking.

b c d e f g h i d j k e c l m h n e f h o p q r l s t e u e r d v h w x

y z { | } ~ � � � � � � � � | { � } � � � | � � � z � � � � � } } | } � z � � � � ~ � �

one) that can be programmed for constructing these networks.

Lets apply the procedure to a simple configuration. Our example configuration consists of four
nodes corresponding to a domain distribution that divides a space in four areas. The
communication pattern is a square. The following figure represents the division in four regions
and the arcs between nodes represent the data interchange.

Applying the procedure we get the following network:

The complexity of the network can grow significantly as the number of nodes grow. Current
Beowulf projects facehundreds or even thousands of nodes that can lead to extremely large
nets.

To continue with the definition of the network, we will determine the number of tokens for
each place. Places proc_P j , wait_P j , sync_P j and all snd_P j Pk start with zero tokens. All
init_P j places start with one token, representing the processor ready to be allocated. Even
though multiprocessor systems can be used, multiple tokens can not be placed on the init_P j

places, as the lack of synchronization problem would arise. We represent each processor on its
own, even if it shares resources with others on a SMP. The work to be done itself is
represented by the work_P j place. We must place there as many tokens as necessary to
represent the solution of the problem. The key issue at this stage is to determine a meaningful
work unit for the problem.

� � ~ | } � � � ~ � � | � z � � � | } � � � � � z � � | � | � ~ � � � �

P
1 P2

P4

P3

� � � � � � � � � ¡ ¢ £ ¤ � � � ¥ ¤ ¦ � § ¤ ¨ � § � £ § £ � � � � � © ª ¥ ¦ � � �

The rule-of-thumb for SPMD problems is to represent each time-step with a token17, thus, if
we want to calculate the final state of our study universe after 10.000 time-steps, 10.000
tokens should be placed on each work_P j place if we want to model the execution of the
system until time 10.000. The execution stops when all init_P j tokens return to place init_P j

and work_P j places are empty. The execution halts because not all predecessors of proc_P j

transition are fulfill ed.
With the previous kind of simulation, we simulate the whole execution of the system. If we
want to calculate the asymptotic state of the system, we would delete the work_P j place, and
on the resulting network leave the simulation running until it stabili zes so performanceindexes
can be retrieved.

The remaining aspect of the network is the definition of the timed transitions. At this point
something has to be known about the execution times of each time-step. Based on the
complexity of the problem, the estimated number of operations and performance indexes of
processors, it is possible to estimate the distribution function of each time step for each
processor. Lest we have some practical/empirical information about the execution times,
normal distribution can be used for modeling. If the prediction should be accurate, a small
prototype of a real execution of one time-step might be coded and measured.
If we take an analytical approach to the performanceprediction, we estimate the complexity of
the problem and use benchmark figures to predict execution times, we will get one figure:
average/expected execution time for each loop/work-unit. From strictly theoretical analysis we
will not get variances or other indicators. After that we can discussif our system will run on a
dedicated set of machines or on interactive systems. If we run on dedicated machines, that do
not execute regular intensive administrative tasks, then the only interference comes from the
operating system, which can be considered constant for work-units comprising more than a
few seconds. On those cases deterministic execution times can be chosen for modeling. This
would lead to simple systems and the prediction can be considered optimistic. On the other
hand, if the system provides different amounts of CPU times to our processdue to any reason,
we have to estimate the execution time based only on one figure: the expected execution time.
As we only have the expected “mean” execution time, but no variance or other value, the
exponential distributions appears both as simple and pessimistic, due to its inherent variance.
On most cases we can consider that the times predicted using the theoretically estimated times
with exponential random variables is a worst-case bound for the real system execution times.
The expected execution time should lie between both estimations. Better accuracy can be
achieved prototyping.

It is important to note that there is a high interdependence among processes and processors.
Let's suppose that two adjacent processors18, A and B, have different performance(maybe they
belong to different processor generations, have different clock speeds or belong to different
manufacturers with different design technologies) and they need to exchange information
before computing the next time-step due to boundary calculations. Lets suppose that A works
twiceas fast as B. This means that processA will finish its calculation, send its results to B and
block itself waiting for its neighbors, particularly B, results before continuing calculating. As B
is about half of the execution time, A will spend about the other half of B's execution time

17 If the number of time-steps is too big, maybe each token represents multiple time-steps. If we take this
approach, much care has to be taken because we miss individual blocking/interleaving of processes.

18 Not physicall y adjacent, but respecting to blocking. We consider two processors adjacent if they share
information for their results.

« § � � � ¬ £ � � ¥ � § � ® £ ¯ � � £ ° ± � � ¡ � � ² � � ¢ £ ³ ´

µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â ¸ · ¾ ¹ Ã Â Ä ¸ Å Â Æ ¶ Å ½ Á Å Á ¹ ¹ ¸ ¹ ¾ ¶ Ç È Ã Ä º » ¼

waiting for B to complete computing. During that interval of time A's processing power is
either allocated to other tasks or is wasted idle looping or twiddling its sili con thumbs. It will
not be possible to take any profit of A's speed for out problem in this situation.
Furthermore, if we extend this reasoning to all processors in a run, we seethat if one processor
is faster, there will be no benefit, as it will wait for its neighbors. Even worse is to consider the
effect of having n-1 fast processors and 1 slow processor: after some time-steps, all the
processors will be waiting for the slow one, and will have no effect on the overall performance.
The speed of the system will be bounded by the slowest processor, the weakest link.
It is possible to think about distributing the sizeof the data set of the problem assigned to each
processor, but it is not easy to manage heterogeneous processors. Even if we can divide the
regions allocated to each processor according to its computing power, the impact on the
complexity of the communication pattern and the coding is generally not worth.

Performance results

We have already presented a method for modeling SPMD systems. We still need to provide
means that help deciding whether it is convenient the parallel execution vs. the single processor
one. The final goal of modeling is to determine as early as possible the best way to engineer a
certain parallel system, to reduce the complex set of different ways in which the system can be
designed, or answer if current technology can address certain particular problem.
We will present now how to estimate the MES (Mean Execution Speed) and TET (Total
Execution Time) based on the model described before.

Total Execution Time

Based on our system, we can calculate this measure as the time it takes to the system to move
all tokens out of the system. This implies that we have to simulate the whole resolution of the
system.
If the system was modeled accordingly to our recommendation, then there exists a set of states
named work_P j where tokens representing the amount of work to be addressed by processor
Pj are placed when the simulation begins. Let's call Tj to the number of tokens corresponding to
the partition of the whole problem that is allocated to the process j. The system has to be
simulated until the places work_P j run out of tokens, which means, that all the work allocated
(Tj tokens) to them is exhausted. Successive terminating simulations could be run to determine
the approximate elapsed time until the execution ending (batch means) if the simulation tool
does not determine how long it takes to reach the absorbent state.
Not all simulation tools allow this kind of estimation. If the tool that is being used allows us to
calculate network's steady state, we can introducea variation in the network's layout. We can
make a cycle from the final state, the absorbent configuration, to the initial one, so after the
processing is done, the network is restored to the initial configuration. Simply adding a timed
activity that monitors all work_P j places and when they all get empty simply places all initial
tokens back, we get a network that does not fall into an absorbent configuration. The process
of restoring the initial configuration must have an associated timed transition with a known
amount of time. We can simulate this new network in the steady state and measure the fraction

É Å º ¸ ¹ Ê Á Ë º ¼ Ã ¸ Å ¶ Ì Á Í ¸ ¹ Á Î Ï » ¾ ¶ ¿ ½ ¸ Ð ¸ ¾ º À Á Ñ Ò

Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à Ö Õ Ü × á à â Ö ã à ä Ô ã Û ß ã ß × × Ö × Ü Ô å æ á â Ø Ù Ú

of time that the network spends restoring the initial configuration. From that value we can then
estimate the counterpart, that is the TET.
There is a theoretical lower bound for the TET that could be computed from the resulting
network after removing all the snd_P i Pj places and their associated arcs. The resulting network
is the junction of n models of different uniprocessor systems without connection running
independent processes. In this particular case, we have each processor consuming tokens at the
speed given by their processing capabili ty, represented by the timed transition labeled proc_P j .
For each processor, and according to the distribution function associated to proc_P j activity
we can compute the average processing time Aj . This calculation is problem dependent and
there is no general rule. If the distribution functions were calculated already, then the only
thing to do is to apply the appropriate formula. Then, for each processor j, the average
execution time would be estimated multiplying the amount of work times the average time for
accomplishing it: Aj x Tj

The total execution time for this system would be:

We will now explain why this is a lower bound for the original system. When we removed all
snd_P i Pj places and their associated arcs, we removed all the interrelation among processors.
Specifically, that means that we stopped modeling all the time intervals in which every
processor is idle, but it can not continue computing because they have to wait for adjacent
processors to share their information. The original system models this information also, thus, it
can never be faster. In the particular case that it is never necessary to wait for a neighbor, the
TET of both systems would be the same.

It is not always possible to ascertain this measure due to complexity of the numerical solution.
It can be the case that it might take too long to calculate the TET out of a complete execution
simulation. If the modeled system presents a stationary behavior and it was possible to
compute the MES for that system, it is possible to estimate the TET as the complexity of the
problem divided by the MES, that is, how long it will take our system to consume all tokens at
the processing average speed.
On average, this estimation is adequate, but it does not consider the behavior before and after
the stationary phase. A sourceof error to this estimation is due to the time the system runs out
of the steady state. If the stationary state takes most of the execution time, then the estimation
is adequate, otherwise, it has to be specifically considered.

Mean Execution Speed

If TET calculation was possible, then the MES calculation can be done just by applying the
definition. If this was not the case, it is possible to estimate a value for the MES in this kind of
networks. In the following section we will describe how this is done.
If the system was modeled according to the previous recommendations, for each processor Pi

there has to be a state called init_P i . The work_P i placeholds the tokens that model the
problem space. While evaluating this measure, we are not interested in the whole problem
itself. We can obviate this places, and thus, the whole problem evolution. Generally this is the
case as we are not calculating the MES after the TET. We will study the sub-network obtained
from the removal of work_Pi places. In the resulting network, tokens only cycle as fast as the
interlocking permits. Each cycle of a token represents the completion of a work-unit, that

ç ã Ø Ö × è ß é Ø Ú á Ö ã Ô ê ß ë Ö × ß ì í Ù Ü Ô Ý Û Ö î Ö Ü Ø Þ ß ï ð

max ñ A j ò T j ó

ô õ ö ÷ ø ù ú û ü ý þ ÿ � � ÷ ö ý ø � � � ÷ � � � õ � ü � � � ø ø ÷ ø ý õ � � � � ù ú û

means, if we are able to count the number of cycles that all tokens perform within a certain
period of time, then we know the number of work units that can be solved on that period of
time. We can count the number of cycles associating signals to a specific place(i.e init_P i).
Afterwards, using the batch means method we can estimate the MES.
It is a general fact for this kind of systems, that before reaching the regimen state the system
has to cycle many times, generally more cycles than states. Depending on the level of
interdependenceamong slaves, there are generally no rules that describe how to propagate the
delays among slaves. This is the main reason while it is not possible to mathematically
formulate the accumulation of delays interleaved with the processing. In that scenario, the most
common reason for idle CPU time is the need for neighbor data. If we analyzethis recursively,
one process could be waiting for data from a neighbor who is also waiting for data from
another neighbor, who is also waiting for data from another neighbor, and so on. This could be
as deep as the whole number of processors. In the worst case, it is possible that n-1 processors
are waiting for 1 processor. In a controlled situation this situation is very rare or even less
improbable, but if the algorithms applied by each CPU has a high variance, it is possible to
have many idle CPUs per time interval.
The accumulation of this effect is the reason why the estimation of the TET described before is
a lower bound for the real TET. All the combined effect of this makes the MES calculation
difficult.

4.4 - Data pipelining

The data pipelining paradigm is based on a functional decomposition of the problem, in which
different tasks of the algorithm are identified which are capable of concurrent operation. Each
processor executes a small part of the total algorithm. Each processcorresponds to a stage of
the pipeline and is responsible for a particular task. The communication pattern can be very
simple, since the data flows between the adjacent stages of the pipeline mostly in only one way,
thus, this paradigm is sometimes referred as data flow parallelism. If we facea pipelinable
problem, that means, separable in sequential stages, each with a relatively high computation-to-
data ratio, it is possible to build a pipeline with different stages on different machines.

As in all pipelines, the efficiency is directly dependent on the abili ty to balance the load across
the stages as the performance is bounded by the slowest stage. If there exists a stage that is
considerably slower than the rest, and there is no dependency between consecutive tasks in the
pipeline, we can allocate multiple processors (as much as necessary) to that intermediate task,
that will work in parallel, so as to obtain similar execution times on all stages. Another
workaround to this problem, when parallel execution on the slow task is not possible, is to
share processors among fast stages.

Let's call Si at the processthat addresses the stage number i of the pipeline. It receives either
the input of the pipeline or the result of the previous stage Pi-1 and produces its result, Pi,
which is obtained after the stage's own processing and is delivered to the next stage for further
processing, or is the result as the last stage of the pipeline that is stored, displayed on screen or

� � ù ÷ ø 	 �
 ù û � ÷ � õ � � � ÷ ø � � ú ý õ þ ü ÷ � ÷ ý ù ÿ � � �

� � � � � � � � � � � � � � � � � � � ! � " � # � " � � " � � � � � � � $ % ! � � �

whatever.

We represent every stage with the following piece of pseudo-code:

process Si

repeat
receive subproblem Pi-1

Pi = process(Pi-1)
send subproblem Pi

until ! ∃ Pi-1

end

It is possible to think of the whole n-stages pipeline as a single algorithm like the following
one:

process pipeline
repeat

receive subproblem P0

P1 = process(P0)
P2 = process(P1)
....
....
Pn-3 = process(Pn-4)
Pn-2 = process(Pn-3)
Pn-1 = process(Pn-2)
Pn = process n(Pn-1)

until ! ∃ P0

end

or to think about it as a composition of functions in the following way:

Pn = process n (process n-1(process n-2(process n-

3(...(((process 2(process 1(P0)))))...))))

where P0 represents the input of the pipeline and Pn represents the output, each process m

represents the processing at each stage. The intermediate variable assignments in the process
and the functional composition in the functional representation represents the data exchange
between the stages.
Using this approaches, we fail to represent aspects of the communication like bandwidth
between adjacent processes, execution times, concurrency of multiple problems in the pipeline,
etc. We only represent the resolution of a single problem using the pipeline, which is not
enough.

System modeling

The simplest pipeline consists of only one stage but we will consider only pipelines with two or
more stages, where parallel execution takes place.
As the data pipelining parallelism paradigm is based on the functional decomposition of the
problem, the pipeline structure, number of stages, resolution time of each stage and other
parameters are highly dependent on the particular problem that is being solved. There is no

& " � � � ' � (� � � " �) � * � � � + , � � � � � � - � � � � � . /

0 1 2 3 4 5 6 7 8 9 : ; < = 3 2 9 4 > = ? 3 @ = A 1 @ 8 < @ < 4 4 3 4 9 1 B C > ? 5 6 7

individual Petri Net that can represent all data pipelines. The following network is a general
representation of a data pipeline

We see that this system receives tokens on ProblemInput placeand moves them until they
reach Poutput . The timed activities Si represent the processing time at each stage. The input
gates Ii governs the tokens movements along the pipeline, moving only one at a time.
The time distribution functions that govern each timed activity must be determined either
empirically or from measures of prototypes from relevant stages. If the only estimation
available for a stage is the expected mean execution time, we can use either deterministic time
or exponential time distribution function. Using the exponential distribution function, we obtain
a pessimistic approach to the execution time, due to its variance. On the other hand, using
deterministic times we get optimistic execution times, because there is no CPU performance
loss due to pipeline stalls caused by unexpected delays on particular stages.
If we assume deterministic execution times we can calculate the throughput of the pipeline.
Lets call t0, t1,, tn, toutput to the execution times of each stage, and lets suppose that we have a
set of tokens in the placeProblemInput . Let us consider first a pipeline consisting of only two
stages19. After a time t0, a token is removed from ProblemInput placeand moved to P1. At
that moment, two activities can be executed simultaneously: S1 and S2. Two execution times
have to be considered now: t0 and t1. Lets suppose that t1 is greater than t0. A token can be
moved from ProblemInput to P1 at time t0 representing that the task has S1 been
accomplished. At time 2.t0 a token could be removed from ProblemInput but as S2 is not done
yet, the token has to wait t1 -t0 until S2 is done and P1 is ready to accept a new task. If we
suppose that t0 is greater than t1, a token is removed from ProblemInput at time t0 and placed
in P1. Even though the token is removed from P1 at time t0 +t1 , the secondstage, represented by
will be idle until 2.t0 when the first stage finishes itspart and starts again its processing. In both
cases, the slowest stage slows down the throughput of the pipeline and introduces idle CPU
cycles. We can seethat in steady state, the system can only produceone result every max(t0 ,t1).
Repeating this reasoning, wecan seethat, for thegeneral problem, the throughput will be lower
bounded by max(t0 ,t1,...., tn, toutput), which means that we will not processfaster than the slowest
stage of the pipeline, the weakest link.
In many cases the inherent complexity of a single stage is very important and other actions
have to be taken so as not to waste CPU power of other stages. Basically two approaches are
taken: parallelize the slow stage or share CPUs on fast stages. We will analyze both options.

On the first case we have a stage whose resolution time is significantly longer than the rest and
for some reason (i.e. real-time or simulation constrains) we need to speed it up. We are
considering the case where money just cannot buy a faster CPU for that stage or the state of
the art in microprocessors cannot solve the stage with a single CPU, no mater the chip

19 It is not diff icult to see that with deterministic times, the throughput of a single stage pipeline is 1/t0.

D @ 5 3 4 E < F 5 7 > 3 @ 1 G < H 3 4 < I J 6 9 1 : 8 3 K 3 9 5 ; < L L

M N O P Q R S T U V W X Y Z P O V Q [Z \ P] Z ^ N] U Y] Y Q Q P Q V N _ ` [\ R S T

manufacturer we are considering.
What we need is the particular stage considered to be able to produceapproximately the same
number of results per unit of time than the other stages. The only option for tackling this
problem is to use in parallel multiple CPUs within the stage. The particular way of parallelism
chosen for the stage has to be considered for each particular problem, but if there is no
correlation among the stages of the pipeline, it is possible to use a master-slavestrategy for the
stage, as there will be no communication between consecutive tasks20. The following Petri net
represents a general pipeline with a master-slave parallelism on the second stage.

As it is done with the individual stages, the input gate controls the blocking of different stages,
but it also controls the allocation of tasks to CPUs of the stage with multiple processors.
We are not speeding up the processing of each activity, but there is always a processor that can
be allocated to a new incoming task and there is always a processor of the stage finishing with
its task that can feed the next stage on the pipeline. If the processing takes equal times for the
different input data possibili ties, then we will even preserve the input order. It is very simple to
achieve even more processing throughput simply allocating more processors to the stage. With
this approach, we are not solving each input faster, but we are increasing the number of
problems solved per unit of time.

It is possible to use an alternative representation for the previous case, in which we use
multiple CPUs to increase the throughput of a stage. It is possible to model the stage with a
pool of CPUs that are available for processing. Some modeling possibili ties are lost, like CPUs
with different numerical power, etc., but the system is adequate for equal processors.

The place CPU_pool was added to represent the set of processors that will address the
paralleled stage. The input gate I2 will check for the availabili ty of CPUs or block until there is
an available CPU, as it is done at all levels. As soon as the processing is done, the CPU is
returned to the pool, making it available for reuse.
If there is some kind of correlation between consecutive stages in which the result of the stage

20 Not only master-slave can be used here, all other kinds of parallel classes can be applied.

a] R P Q b Y c R T [P] N d Y e P Q Y f g S V N W U P h P V R X Y i j

k l m n o p q r s t u v w x n m t o y x z n { x | l { s w { w o o n o t l } ~ y z p q r

depends not only on the current data set that is being solved but on the result of the previous
one, it is not possible to use a straight master-slave approach; it is necessary to solve the data
exchange between stages in some other way, maybe even using speculative parallelism or to
address the problem really reducing the time of that stage.
It is possible to implement parallel execution of stages on more than one stage, and the
parallelism used in each stage could be different stage to stage, leading to complex networks.

If the approach is not to make the slow stage faster, but to reduce the number of CPUs, it is
possible to allocate multiple fast stages to only one processor. This would lead to sharing not
only CPU cycles but memory, network bandwidth and other resources among the processes
allocated simultaneously to one system. Depending on the set of processes joined many
different kinds of interactions could happen. Depending on the length of the execution times, it
is possible to simulate the concurrency of the processes (as it was done when modeling RC5)
on the system or to simulate the real execution with prototypes so as to obtain good
estimations of performance. With the previous data, we build a pipeline, like in the first case.
Modeling the complexity of the pipeline plus the interaction within the shared system is
theoretically possible, but numerically extremely intensive.

Performance results

We have already presented a method for modeling data pipelining systems. We still need to
provide means that help deciding if the pipelined parallel execution vs. the single processor is
convenient. The final goal of modeling is to determine as early as possible the best way to
engineer a certain parallel system, how to design the pipeline, which way to partition the
original problem into pieces, which of them to combine and which to separate into different
stages, so as to reduce the complex set of different ways in which the system can be designed,
or answer if current technology can address certain particular problem.
We will present now how to estimate the MES (Mean Execution Speed) and TET (Total
Execution Time) based on the model described before.

Total Execution Time

Based on our system, we can calculate this measure as the time it takes the system to move all
tokens out of the system. This implies that we have to simulate the whole resolution of the
system. It would consist of placing as many tokens as necessary so as to represent the whole
problem and let the system run until all tokens are moved from ProblemInput to Poutput

place.
An alternative way of calculating the TET comes from network's steady state analysis. If we
address the problem in this way, we can introduce a variation in the network's layout that
avoids the absorbent configuration. We can make a cycle from the final state, the absorbent
configuration where all tokens are placed at Poutput , to the initial one with all tokens placed
at ProblemInput place, so after the processing is done, the network is restored to the initial
configuration. Simply adding a timed activity that cycles all tokens to the initial configuration,
we get a network that does not fall into an absorbent configuration. The processof restoring

� { p n o � w � p r y n { l � w � n o w � � q t l u s n � n t p v w � �

� �

the initial configuration must have associated timed transition with a known amount of time.
We can simulate this new network in the steady state and measure the fraction of time that the
network spends restoring the initial configuration. From that value we can then estimate the
counterpart, that is the TET.
It is not always possible to calculate this measure due to complexity of the numerical solution.
It can be the case that it might take too long to calculate the TET out of a complete execution
simulation. If it was possible to estimate MES for the system, then it is possible to estimate the
TET as the complexity of the problem divided by the MES, that is, how long it will take our
system to consume all tokens at the processing average speed. On average, this estimation is
adequate, as it was described before. For real time systems and highly complex pipelines that
could consider pipeline halts, discarding tokens or other complex operations it is important to
consider that it does not consider the behavior before and after the stationary phase. In the
particular case of a pipeline, it is particularly important to have it running as long as possible on
regimen state so as to take the better benefit of the execution. If the regimen state takes most
of the execution time, then the estimation is adequate, otherwise, it has to be specifically
considered.

Mean Execution Speed

If it is the case that we are calculating the MES after the calculation of the TET, then it is only
an arithmetic operation remaining to compute MES according to the definition. On the other
hand, if it is the case that computing the TET is not feasible, then it is possible to try estimating
the MES before and afterwards, based on that value, to determine the TET.
As we discussed before, we need to estimate MES. We will estimate the regimen problem
solving speed of our system (measured in work units per time units), that we call MES. This
allows us to estimate the processing capacity of the system and also to estimate the time in
which the stationary phase of the problem can be fulfill ed.
The time in which the regimen phase is reached has to be calculated in some way that is
problem dependent. After the system is in its regimen phase, one of several standard techniques
(regenerative simulation, batch means, etc.) can be applied to determine the MES. Changes in
the network can be done to simplify the determination of the steady state like adding infinite
initial tokens or making cycles so as to keep the overall number of tokens constant according
to the time evolution. The last alternative is generally preferable for the sake numerical
simplicity.
If the system was modeled according to the previous recommendations, there has to be a
Probleminput placewhich holds the tokens that model the problem space, and a Poutput ,
that models the pieces of the problem leaving the pipeline.
Even though we could theoretically analyze the processing speed based on an infinite set of
tokens in the Probleminput place, it is numerically simpler in our Petri Net to model a finite
number of tokens cycling through all the stages. To achieve this, it is useful to add an instant
transition from Poutput place to Probleminput place. Keeping the number of tokens
constant, we can estimate how much time it takes a token to do a cycle after the steady state is
reached. This time is the MES.
Each cycle of a token represents the completion of a work-unit, that means, if we are able to
count the number of cycles that all tokens perform within a certain period of time, then we
know the number of work units that can be solved in that period of time. We can count the
number of cycles associating signals to a specific place(i.e Poutput). Afterwards, using the

� � � � � � � � � � � � � � � ¡ � � � ¢ £ � � � � � � ¤ � � � � � ¥ ¦

§ ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ ª © ° « µ ´ ¶ ª · ´ ¸ ¨ · ¯ ³ · ³ « « ª « ° ¨ ¹ º µ ¶ ¬ ®

batch means method we can estimate the MES.
It is also possible to perform the same study that was depicted when analyzing the TET with a
timed activity instead of an instant one and indirectly determining the MES.
As a rule of thumb, it is important that on the steady state there is always more than one token
on the Probleminput place. If all tokens are consumed, it is possible that a stage is willi ng to
process, but there is nothing to process. If there are always tokens on the Probleminput

place, it means that there is always more work to be done than the pipeline can process, and
thus, there is no idle stage due to token shortage. In that situation, we are solving the problem
as fast as we can.
Another simpler way of estimating the MES while in regimen state is based on the slowest
stage. As it was seen before, the throughput of the pipeline is one of its slowest stage, and
hence, its MES. This measure is even a rougher estimation, but is useful when facing complex
pipelines as it gives a simple to calculate and at-hand estimation.

4.5 - Divide & Conquer

This approach is widely known in sequential algorithm development: a problem is divided into
two or more subproblems, each solved independently and their results are combined to give the
final result. In most cases, the subproblems are just smaller instances of the original problem
(and can be solved using the same algorithm, working on a smaller set of data). This gives
leads to recursive solutions implemented with stack structures for recording execution
evolution and invocations, etc.. In parallel divide andconquer, the subproblems can be solved
at the same time, given sufficient parallelism. Because the problems are independent, no
communication is necessary between processes working on different problems.
There are three generic operations: splitti ng, computing and joining, which are organized
particularly on each algorithm. The general structure is that, first of all, each algorithm receives
a pieceof work to be solved. It does some processing so as to determine if it is going to
address the resolution of that piece of work by its own or if it is going to spawn child
processes. Before spawning, splitting takes placeand the sub-problems that will be allocated to
children are created with some particular problem dependent criteria. If child processes are
spawned, then before processing goes on, it is necessary to wait for children to finish
processing and return their results. Joining the children results and producing the final result of
the stage follows. If spawning did not take place, local processing would take placeand the
final result would be the one locally obtained.
The execution of divide and conquer algorithms leads to tree-like structures (in many cases
binary trees). The following algorithm represents a single node process, that, depending on the
input may act either as an inner node or a leaf node:

process divide-and-conquer
repeat

receive subproblem P0

if condition(P0) then
R0 = process(P0)
send(R0)

else

» · ¬ ª « ¼ ³ ½ ¬ ® µ ª · ¨ ¾ ³ ¿ ª « ³ À Á ° ¨ ± ¯ ª Â ª ° ¬ ² ³ Ã Ä

Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò È Ç Î É Ó Ò Ô È Õ Ò Ö Æ Õ Í Ñ Õ Ñ É É È É Î Æ × Ø Ó Ô Ê Ë Ì

(P01, P02, , P0n) = split(P0)

for i in 1..n
send(P0i)

for i in 1..n
R0i = async receive(P0i)

R0 = join(R01, R02, ,R0n)
endif

until ! ∃ P0

end

The resulting shape of the treeand structure of the resulting execution depends not only on the
problem, but also on the data set that the algorithm receives. There is no single scheme
representation for the classof divide and conquer parallel applications that covers the general
case. As we can not depict a single network that describes this problem, we will determine how
to build one. Different algorithms may vary on the number of nodes that the split process
produces and may even introduce extra communication to the vertical one established by the
split-compute-join sequence, leading to graphs in which communication pattern may become
more complex. On the other hand, the same algorithm with a different input may lead to
significant differences in size, which involve detailed considerations related to system
resources.
As a consequence, it is not always possible to determine exact shape and size of a particular
divide and conquer algorithm until de data set and the algorithm are known.
Another factor that is normally controlled is the spawning of tasks. The number of tasks on a
divide and conquer strategy grows exponentially on the depth of the tree, leading to extremely
fast exhausting of resources if the spawning of new tasks is not under control. In most of the
cases the metrics used for splitting take into consideration the number of nodes the cluster has,
so as not to outnumber the processors with tasks. If we build a system with n processors, the
general rule is not to have more than n processors doing heavy computation. Different
strategies can be used to limit the number of processes running. If the algorithm we are
building spawns p children at each level, processing is only done at the leaf nodes and we
have m processors, then we can limit the depth of our treeto logp

Ù
mÚ if we want to have

all processing nodes running at once. If this is not possible due to memory or other constrains,
then it is possible to control the number of concurrent running processes and use some strategy
like DFS to traverse the resolution tree.

System modeling

When we want to represent this system on a Petri Net, we find that it is not possible to sketch
a net in which we have a pool of CPUs and a set of tasks to be accomplished because we lose
the interaction and interleaving of processing and sharing information, as we found out when
discussing SPMD class. We present here a procedure for constructing the Petri Net associated
to a given divide andconquer algorithm that executes simultaneously all the processing nodes
on separate processors. We will refine this algorithm further so as to consider the execution
under spawning controlled conditions.

Û Õ Ê È Ü Ý Ñ Þ Ê Ì Ó È Õ Æ ß Ñ à È Ü Ñ á â Ë Î Æ Ï ã È ä È Î Ê Ð Ñ å æ

ç è é ê ë ì í î ï ð ñ ò ó ô ê é ð ë õ ô ö ê ÷ ô ø è ÷ ï ó ÷ ó ë ë ê ë ð è ù ú õ ö ì í î

We will introduce first the definition of the places and transitions that will conform our net.
Each process will cycle once through the sequence split, compute and join, and will be
represented by threeplaces. We do not model re-use of places like re-use of processes because
the most general divide and conquer situation comprises processdisposal after its cycle. We
will call Sij the placethat represents a processthat is in its splitting stage, and is the number j
on the i th level. We will call SPij the timed activity that represents the time spent during the
splitting process.
After a certain amount of splitting, the problem is sufficiently reduced and computing can take
place. At the last level, the processing is represented with places labeled Cj and timed activities
labeled Cmpij . For each placeSij representing the splitting there is a J ij placerepresenting the
joining that happens after the children have ended up and the stage's recursion ends.
The processes will either be represented by a Sij - Jij couple if it is an inner node or by Cj if
it is a leaf node.

Lets call Ch to the number of child that a node can spawn in the recursion

for i in [1..(depth-1)]
for j in [1.. Chi-1]

add a place labeled Si-1,j

add a timed transition labeled SPi-1,j

add an input gate IS i-1,j

add a place labeled J i-1,j

add a timed transition labeled JP i-1,j

add an input gate IJ i-1,j

add an arc from S i-1,j to SPi-1,j

add an arc from JP i-1,j to J i-1,j

add an arc from Is i-1,j to S i-1,j

add an arc from J i-1,j to IJ i-1,j

add an arc from Is i-1,j to SPi-1,j

add an arc from IJ i-1,j to JP i-1,j

if i > 1
add an arc from S i-1,j to I Si-2, û j/Ch ü
add an arc from SPi-2, ý j/Ch ü to S i-1,j
add an arc from J i-1,j to I J i-2, ý j/Ch ü
add an arc from J i-1,j to J Pi-2, ý j/Ch ü

þ ÿ � � � � � � � � � � ÿ � 	 �
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � ! " � � � � # " $ � % " & � % � ! % ! � � � � � � ' (# $ � � �

for j in [1..Ch depth]
add a place labeled Cj

add an arc from SP depth-1,) j/Ch * to C ,j

add an arc from C j to JP depth-1,) j/Ch *
add an arc from C j to IS depth-1,) j/Ch *
add an arc from C ,j to IJ depth-1,) j/Ch *

Some parameters of the network still need to be defined. To have a fully defined network, we
still need to determine the distribution functions for the timed transitions and the number of
tokens in the initial configuration. Before going on to the definition of the network, we need to
state something about its complexity. The complexity of the network can grow considerably.
For each process21 two places, two transitions, one input gate and six arcs are added. The
resolution of the resulting network can consume some CPU power and could take significant
effort.

Lets apply the procedure to a simple configuration. Our example configuration consists of a
spacethat is going to be solved using a divide and conquer approach. The depth of the tree
will be threelevels and each spacedivision will partition the spaceinto two similar subspaces,
thus there will be four computing nodes and three join-split processes, leading to six places.
The following figure represents the successive division of the spaceuntil the splitting reaches a
level that makes it addressable for a single process.
The first oval represents the problem-spaceto be
solved, that is addressed by the processnumbered
“01". Applying some problem dependent metric, it
determines that there has to be splitting so as to
partition the space and solve it in parallel.
At the next level, the problem is
partitioned in two subproblems,
numbered “11” and “12” . Each of
this processes are again too big to
be addressed by a single
processor, and thus, they execute
the partition step, splitting
themselves into two subproblems
each.
At the next level, the subproblems “21” , “22” , “23” and “24” are small enough, according to
the metric, to be addressed by a single processor, so they are solved in parallel. After the
computation finishes, the results are returned and the hierarchy is traversed upwards, joining
branches, until the final solution is found.

Applying the procedure, we get the following network

21 except Cj ones.

+ % � � � , ! - � � # � % � . ! / � � ! 0 1 � � � � � � 2 � � � ! 3 4

242424242424242424

232323232323232323

222222222222222222

212121212121212121
121212121212121212111111111111111111

010101010101010101

5 6 7 8 9 : ; < = > ? @ A B 8 7 > 9 C B D 8 E B F 6 E = A E A 9 9 8 9 > 6 G H C D : ; <

What we have now is a picture of inter-process communication schema. As we want to
represent the problem resolution, we need to represent the problem evolution through the
network. We have to choose a representation for the problem space. The complexity of the
network can grow significantly as the number of nodes grow. Current Beowulf projects face
hundreds or even thousands of nodes that can lead to extremely large nets.

What we did with the previous models was to determine a certain adequate processing unit in
which we partitioned the problem, determined the expected time for a certain system to
process that unit, represented by a token. Making those tokens run through the network we
model the problem resolution. We choose tokens that represent the same portion of the
problem throughout the network.
Following that kind of reasoning we can partition the problem into units that represent the
fraction of the problem that would be addressable by a single process, a Ci place. The problem
would be then partitioned into Chdepth pieces. All the tokens would be initially placed in the
placenamed S01 and the simulation ends when all tokens reach J01 place, representing that all
the partial solutions finally were joined back into the initial, 01, process.
The intermediate timed activities control the movement of tokens and synchronization. We
have to use them because we need to alter the behavior of the standard Petri net. In our case,
when tokens are moved, they are all moved at once, that is, when the problem is partitioned
into n pieces, each piece(consisting of one n-th of the tokens) is moved “as one” to the child
processthat is going to solve it. If we use plain Petri nets, each token is moved independently
of the rest, losing the meaning of the partitioning we intend, and increasing also the number of
states to be considered in the resolution. If we allow individual token moving, we will maintain
the proper semantic. All the input gates are introduced to preserve this: IS xx input gates control
the partitioning associated with SPxx activities while IJ yy input gates control the joining
associated with JPyy activities.
SPxx activities will split the problem, generally in equally sized pieces. If the sizeof the problem
is a factor that influences the communication time between S places, then the activity SPxx can
use the number of tokens on place SPxx as an input that determines the time spent on that
activity.
JPdepth-1,y activities represents the processing done on processing nodes. We are representing
the time spent on two processors with only one activity instead of one timed activity per
processor. If the problem is equally distributed among processors and they have similar
processing power, then the modeled system will behave as the real system.

I E : 8 9 J A K : < C 8 E 6 L A M 8 9 A N O ; > 6 ? = 8 P 8 > : @ A Q R

S T U V W X Y Z [\] ^ _ ` V U \ W a ` b V c ` d T c [_ c _ W W V W \ T e f a b X Y Z

The tokens that moves through J places represent solved parts of the problem that are joined
together. The timed activities represent the time spent joining and the communication among
the different processes, until the tokens reach the J01 place. Once again, the input gates are
used to alter the behavior of a standard Petri net and move sets of tokens at once.
In the case that the joining stage simply moves back single tokens, representing maybe single
solution values, the input gates could be removed, leaving the standard Petri net behavior.
Whenever this is possible, it should be done, so as to simplify the resulting network.

There is another way to represent this, but it does not correspond to the way we have been
representing the problem within the system. It is possible to use a single token moving from
stage to stage that represents different parts of the problem on different places. Up to now we
have been working basing our modeling of the problem with tokens that represent certain
“work units” that are solved as they are moved through the network. In a way we are giving an
invariant value to the token all through the network. The problem evolution is represented with
the consumption of this tokens, until there is no token left. The timed activities here that
represent the computation are proportional to the CPU power of the system being modeled.
Using the alternative approach described, we can think of tokens as marks that represent only
completion of stages, but have no relation with portions of the problem independent from the
position they occupy. One consequence is that the timed activities can not be uniform in
relation to tokens. Depending on the placeof the network, they are placed, the completion of
each task could take different amounts of time, leading to higher complexity in the calculation
of the distribution functions for each activity.
Another problem is that the system behavior has to be well known so as to write a static
network to simulate the resolution of the problem. It is necessary that the process
intercommunication and solution evolution is known before the model could be written. As this
is the most general case with divide and conquer parallel systems, it is possible to model them
with this approach.
The resulting network is simpler from the point of view of number of arcs and also input gates,
as they disappear. The computing resources needed to solve them also decrease, as the number
of states of the network falls dramatically.
From the point of view of the tuning and adjustment of the parameters it might be more
difficult to calculate all parameters associated to each process at each level/place.
The following procedure can be used to create a network that represents the resolution of a
divide and conquer parallel problem using the previous approach:

Lets call Ch to the number of children that a node can spawn in the recursion

for i in [1..(depth-1)]
for j in [1.. Chi-1]

add a place labeled Si-1,j

add a timed transition labeled SPi-1,j

add a place labeled Ji-1,j

add a timed transition labeled JPi-1,j

add an arc from Si-1,j to SPi-1,j

add an arc from JPi-1,j to Ji-1,j

if i > 1
add an arc from SPi-2, g j /Ch h to Si-1,j
add an arc from Ji-1,j to JPi-2, g j /Ch h

for j in [1.. Chdepth]
add a place labeled Cj

add an arc from SPdepth-1, g j /Ch h to C,j

i c X V W j _ k X Z a V c T l _ m V W _ n o Y \ T] [V p V \ X ^ _ q r

s t u v w x y z { | } ~ � � v u | w � � � v � � � t � { � � � w w v w | t � � � � x y z

add an arc from Cj to JPdepth-1, � j /Ch �

The previous procedure can be seen as the first one presented for this model with all the steps
regarding to input gates deleted.
The resulting network of applying the procedure to our example follows:

As we discussed before, a single token represents the whole problem and should be initially
located at place S01. SPxx activities represent splitting and communication time as the token
moves processes while partitioning. The number of tokens grow in this network, and can reach
a maximum of Chdepth when all tokens are in Cj places.
JPdepth-1,y activities represent the processing done in processing nodes. We are representing
the time spent on two processors with only one activity instead of one timed activity per
processor, as we did in the previous model. If the problem is equally distributed among
processors and they have similar processing power, then the modeled system will behave as the
real system. The JPdepth-1,y activities definition is the same in this model and in the previous
one for divide and conquer parallel algorithms.
The tokens that move through J places represent solved parts of the problem that are joined
together. The timed activities represent the time spent joining and the communication among
the different processes, until the tokens reach the J01 place, when all the splitting, computing
and joining cycle is finished.

Performance results

We have already presented a method for modeling divide and conquer systems. We still need
to provide means that help deciding if the parallel execution vs. the single processor is
convenient. We will present now why it is not possible to estimate the MES (Mean Execution
Speed) out of the Petri Net and how to estimate TET (Total Execution Time) based on the
model described before.

Total Execution Time

The total execution time of the problem is the time from the initialization phase until the

� � x v w � � � x z � v � t � � � v w � � � y | t } { v � v | x ~ � � �

� � � � � � � � � � � � � � � � � ¡ ¢ � £ ¤ � £ � � £ � � � � � � � ¥ ¦ ¡ ¢ � � �

processreaches its ending. This is a transient measure, which is particularly important in real-
time or quasi real-time parallel systems, but it is generally important on every system that we
code: we would like to know how long it will take to find a solution to our problem.
Based on our system, we can calculate this measure as the time it takes the system to move all
tokens out of the system, from S01 to J01. This implies that we have to simulate the whole
resolution of the system, that means, we have to model the whole system as described before,
placea number of tokens in the initial placewhich represent the problem in our selected work
unit size and run a simulation until all tokens are removed away from the system.
Not all simulation tools allow the determination of the time elapsed to reach a specific state. If
the tool that is being used allows us to calculate network's steady state, we can introduce a
variation in the network's layout. We can make a cycle from the final state, the absorbent
configuration, to the initial one, so after the processing is done, the network is restored to the
initial configuration. No matter which of the suggested work decomposition schemes was used
the cycle would consist of a timed activity that moves tokens from the placeJ01 to S01. The
number of tokens moved depends on the semantics given to the tokens according to which
scheme was used. In the first case, all tokens that model the problem must be placed back in
the initial state, while in the second scheme, only one token ought to be placed in the placeS01.
The processof restoring the initial configuration must have an associated timed transition with
a known amount of time. We can simulate this new network in the steady state and measure
the fraction of time that the network spends restoring the initial configuration. From that value
we can then estimate the counterpart, that is the TET.
It is not always possible to ascertain this measure basing our forecast on simulation due to the
complexity of the numerical solution. It can be the case that it might take too long to calculate
the TET out of a complete execution simulation. An obvious lower bound for this system
could be estimated multiplying the total number of work units to be solved by the average time
it takes for a processor to solve that work unit divided by the number of processors addressing
the problem. This is a far too rough estimation that could even present errors of orders of
magnitude with a finer lower bound. If no other lower bound is available, it could be used with
extreme care, but is not completely meaningful. It obviates all communication times, network
and other devices latency, all system overhead, all partitioning and joining times, etc. It only
gives what is related to processor performance, but it does not take into consideration the rest
of the parallel system components.

Mean Execution Speed

If we are calculating the MES after the calculation of the TET, then it is only an arithmetic
operation remaining to compute MES, according to its definition.
As it was said before, we need systems that present a stationary behavior so as to estimate the
average number of pieces of work that are solved in a unit of time. According to the way we
modeled the system, there is no such thing as a regimen behavior that can be studied. The
evolution of the system implies tokens passing through the network dynamically, without any
token feedback or loop that can be used to get an average measure. Furthermore, the network
we presented has only one set of processes that perform the resolution, whilst the rest do the
partitioning and the joining.
Even though we could not determine the MES out of the net, we can theoretically analyze the
processing speed based on the processing capabili ty of the processing nodes, which was known
when we calculated the rate of JPx,y activities, and the total number of tokens at the C nodes,

§ £ � � � ¨ � © � � ¡ � £ � ª � « � � � ¬ � � � � � � ® � � � � � ¯ ¯

° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ³ ² ¹ ´ ¾ ½ ¿ ³ À ½ Á ± À ¸ ¼ À ¼ ´ ´ ³ ´ ¹ ± Â Ã ¾ ¿ µ ¶ ·

where processing takes place. The average number of nodes processed at that stage is what we
can call MES out of this system. The main problem is that we are obviating the partitioning
and joining times. As we said before, we are able to perform this simplifications where Tr >> Ti

and Tr >> Te, thus, it is valid that TET ÄÄÄÄÄÄÄÄÄÄÄÄÄ TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT rrrrrrrrrrrrrrrrrr . In this kind of parallel systems this is not valid
on most cases and we can conclude that estimating the TET out of a MES like the one
described before could be done on a small number of particular problems.

4.6 - Speculative Parallelism

This approach is used when the previous parallel models are extremely hard to use or
implement. The situation arises either due to complexity of the data interdependence among
different processors or when unpredictable and diverse times of tasks completion generates
excessive execution processors stalls and forces the parallelism system to assume most
probable counterpart result to follow its calculation. If the optimistic execution results is
confirmed, current state is check-pointed and execution continues. If the optimistic result
assumed was assumed wrong, then the current state of the system is rolled back to the
previous check-pointed state and execution is resumed from there, but following the right
execution path. In some asynchronous problems like discrete-event simulation, the system will
attempt the look-ahead execution of related activities in an optimistic assumption that such
concurrent executions do not violate the consistency of the problem execution.
Another possible use of this scheme is to address a problem with different algorithms,
generally, not deterministic ones or a mix of deterministic and simulated ones. Whenever a
solution (or an appropriate estimation) is found, the rest of processors are stopped, the
solution is shared and they follow up from there on. We can exploit the benefits of many
algorithms this way. It is very easy to use this technique to speed up simulated-annealing,
Monte Carlo, Tabou search and GRASP simulations just choosing proper random number
generators for each system.
According to the way we are modeling the systems, we do not model stages on the process
resolution but amount of work remaining. It could have been possible to use colored tokens or
other Petri net extension to make differences on the tokens that could both differentiate them
and put extra semantics there. For our purposes there was no need to take that approach so as
to represent the system evolution. In this case, when a roll-back situation needs to be modeled,
it is quite intuitive at first sight to think of colored tokens to represent the regression to a
previous state, but the method we used in dealing with the state regression is to put more
tokens on the place that represents a process's remaining work when another process,
associated to it, violates a constrain and regression occurs. We do not model which part of the
work has to be done again, but we represent the amount of work added after a rollback. All we
need to know is how often it happens and the average amount of work rolled-back.

Lets assume that we have a function V which returns the set of neighbors of a given processor
Pi. Using these functions, we know which processes to signal when we solve a part of the
problem. Knowing our timestamp22 they can decide their execution violates any constraint or

22Not only time evolution can be used for synchronization. We base our analysis on this figure knowing that

Å À µ ³ ´ Æ ¼ Ç µ · ¾ ³ À ± È ¼ É ³ ´ ¼ Ê Ë ¶ ¹ ± º ¸ ³ Ì ³ ¹ µ » ¼ Í Î

Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ò Ñ Ø Ó Ý Ü Þ Ò ß Ü à Ð ß × Û ß Û Ó Ó Ò Ó Ø Ð á â Ý Þ Ô Õ Ö

not so as to rollback or continue. In our case, we will randomly decide if rollback occurs or not
because we can not model an algorithm that we do not know precisely. This random
generation of rollbacks has to be controlled carefully as is an important sourceof error: if it is
too often, the system will be doing little; if it is to seldom, we will model a system that
outperforms the real one.
Each process itself executes basically a simple sequence of stages, represented by the next
piece of pseudo-code:

process speculative-parallelism, Pi

thread0
repeat

retrieve subproblem P0

R0 = process(P0)
Update local simulation time
for Pj in V(Pi)

send(Pj, R0,timestamp)
until ! ∃ P0

end
thread1

repeat
receive(V(Pj), Rx,timestamp)
if check(P0, Rx, timestamp)

rollback(P0, Rx, timestamp)
forever
end

The execution is represented as two concurrent threads, one responsible for the execution itself
and the second one is listening to adjacent processes results checking for violations of the
constraints.

System modeling

We want to represent a general speculative parallelism problem using Petri nets. We found it is
not possible to use a specific Petri net to represent all cases because an important part of the
information would be lost, specifically processinterlocking, communication, splitting, etc. We
will present a procedure that produces a Petri net that models a given specific problem.
Something has to be said regarding the execution and problem representation. Whenever we
are using heuristics or simply algorithms whose execution time can not be estimated as a
function that depends on processing speed and problem size, we are facing a situation in which
we can not specify clearly the problem size. Lets say that we are modeling an optimization
algorithm that is going to use a GRASPheuristic and we want a solution with a certain level of
quality. We cannot state how long it will take the algorithm to reach the level of quality
expected. As we cannot control the random component in this solutions, we can not assert if
the solution is going to be obtained within a certain number of operations or within a specified
period of time. It is possible that we find not only a valid solution but the optimal solution with
our first heuristic execution, and it is also possible that after an arbitrarily long period of time,
no acceptable solution is found.
When we model this problems we have to have a certain level of confidence in our heuristics,

other parameters can be used.

ã ß Ô Ò Ó ä Û å Ô Ö Ý Ò ß Ð æ Û ç Ò Ó Û è é Õ Ø Ð Ù × Ò ê Ò Ø Ô Ú Û ë ì

í î ï ð ñ ò ó ô õ ö ÷ ø ù ú ð ï ö ñ û ú ü ð ý ú þ î ý õ ù ý ù ñ ñ ð ñ ö î ÿ � û ü ò ó ô

and we must have an estimation of the number of experiments we should run to obtain a
solution. Maybe running some more experiments we get a better solution, but we must be
confident that after a certain number of experiments it is most probable that we have a
solution. With this assumption we now have a problem that we can measure and represent. We
can estimate number of experiments, estimated time for each, etc. Problems like SETI@home23

(even though they are not using heuristics for each experiments) rely on many random factors
like the existence of extraterrestrial intelli gence, etc., so the problem size cannot be
determined. What can be determined is the amount of data gathered by the telescope daily, but
it is not possible to determine how much data and processing is going to be needed for the
problem resolution: we do not even know if there is a solution. What we can model is the
speed at which daily information can be processed, etc. We can estimate MES but not TET in
this situation.
In our study of speculative parallelism analysis, what we will model is the resolution of an
amount of work that we believe will be enough for us to get a solution. With that concrete
problem sizeestimation we will proceed with problem partitioning in tokens as we do with all
problem classes.
So as to model this system, we will present firstly the definition of the places and transitions
that will conform our net. Each processwill cycle on its main loop solving pieces of work until
there is no more work to be done. We will model the thread0 of each processas a placeand a
timed activity that removes tokens from the place, representing the evolution in the process
resolution. thread1 will be modeled as a place, fed by processes neighbors with an instant
transition associated which will model the checking for the need of rolli ng back, in our case,
choosing randomly if rollback would happen.
Lets call Pi the placewhere the tokens representing the work remaining for processi would be
placed, and lets call Wi the timed activity that removes tokens from Pi as they are completed and
the associated processed are signaled. The signals arriving from neighbors reaches a placeSi ,
where an instant transition, Ri determines if rollback occurs or not. We also have a function V
that returns the set of indexes of the adjacent processes to a given one.

Let m be the number of processes

for i in [1..m]
add a place labeled Pi

add a place labeled Si

add an instant transition labeled Ri with two cases
add a timed transition labeled Wi

add an arc from Pi to Wi

add an arc from Si to Ri

add an arc from the second case of Ri to Pi

for J in V(Pi)
add an arc from Wi to SJ

Some parameters of the network still need to be defined so as to have a fully defined network.
We still need to determine the distribution functions for the timed transitions and the number of
tokens. The complexity of the network will be much more controlled than in previous cases.
The resolution of the resulting network will not consume as much CPU power and time as
other methods, but the drawback is that due to the situations this method is applied, not much

23 It must be kept in mind that SETI@home does not fall within Speculative Paralleli sm class and we are only
using it as an example of an unbounded problem.

� ý ò ð ñ � ù � ò ô û ð ý î � ù � ð ñ ù � � ó ö î ÷ õ ð � ð ö ò ø ù 	

� � � � � � � � � � � � � � �

level of detail can be achieved.
To complete the network definition we need an appropriate distribution function that models
the expected time spent by each processor solving every time-step and the distribution function
that models if a solution found by a neighbor is better than his own. Generally, this second
estimation will be assumed as uniformly distributed for the neighbors. With this functions
estimated for all neighbors the net is fully defined.
Lets apply the previous procedure to a set of threemachines solving a problem performing a
discrete-event simulation. Lets suppose that the system designers are planing to simulate the
time evolution using three systems: one of them running a Monte Carlo simulation, another
simulated annealing the problem and the last of them using batch means. Each of them uses its
own method for simulating each time-step. They try to addressthe problem, finding a solution
that lies below a certain level of acceptable error. All problems will find their solution at a
different pace, as they are addressing them on different ways. The overall solution will pick the
best solution found by each processor each timestep and will make them go from there on. The
optimistic presumption that each processwill assume is that its solution is the best and they
will continue with their solution lest they get a better one from other. The rollback means
discarding their findings and restart from the best time and solution given by a neighbor. The
amount of work to be accomplished by every processis represented by tokens, each of them
plays the part of a time-step and the number of initial tokens is calculated dividing the
simulation time by the time-step time. After each process finds his solution, it shares its
findings with the two remaining processes. All processes have the same average speed to solve
each time-step. Assuming that each of them have the same probabili ty to find the best solution,
the probabili ty that there occurs a rollback is of two thirds and the average rollback is of one
token back.

The following Petri net represents the system:

Performance results

We have already presented a method for modeling systems that use parallelism for their
resolution using the speculative parallelism paradigm. We still need to provide means that help

� � � � � � ! � � � � � � " � # � � � $ % � � � � � � & � � � � � ' (

) * + , - . / 0 1 2 3 4 5 6 , + 2 - 7 6 8 , 9 6 : * 9 1 5 9 5 - - , - 2 * ; < 7 8 . / 0

deciding if it is convenient the parallel execution vs. the single processor one. We will present
now how to estimate the TET (Total Execution Time) and the MES (Mean Execution Speed)
based on the model described before.

Total Execution Time

The total execution time in this kind of problems may vary something from the general
definition, as we are not sure that within that time we will certainly solve the problem. In this
case, the total execution time is the time from the initialization phase until the processperforms
all the work that we are confident is needed to find an acceptable solution, even if the actual
solution is not found.
Based on our system, we can calculate this measure as the time it takes the system to move all
tokens away from the system, out of Pi places. This way of calculating it implies that we have
to simulate the whole resolution of the system.
If the tool that is being used allows us to calculate network's steady state, we can introducea
variation in the network's layout. We can make a cycle from the final state, the absorbent
configuration, to the initial one, so after the processing is done, the network is restored to the
initial configuration. We can introduce an activity with an associated input gate that monitors
activity in the network. If all processing is done, that is, no token remains in the network, the
initial configuration is restored. The processof restoring the initial configuration must have an
associated timed transition with a known amount of time. We can simulate this new network in
the steady state and measure the fraction of time that the network spends restoring the initial
configuration. From that value we can then estimate the counterpart, that is the TET.
If we have already estimated the MES for that system, it is possible to estimate the TET as the
complexity of the problem divided by the MES, that is, how long it will take to our system to
consume all tokens at the processing average speed. On average, this estimation is adequate,
but it does not consider the behavior before and after the regimen phase.
An important source of error to this estimation is due to the time the system runs out of the
steady state. In general, the MES will soothe this effect because it will correspond not only to
an average of multiple run but an average of different algorithms.

Mean Execution Speed

If it is the case that we are calculating the MES after the calculation of the TET, then it is only
an arithmetic operation remaining to compute MES according to the definition. On the other
hand, if it is the case that computing the TET is not feasible, then it is possible to try estimating
the MES before and afterwards, based on that value, to determine the TET.
As it was said before, try to estimate the average number of pieces of work that are solved in a
unit of time, and that is what we call MES. This allows us to estimate the processing capacity
of the system and also to estimate the time in which the stationary phase of the problem can be
fulfill ed.
The time in which the stationary phase is reached has to be calculated in some way that is
problem dependent, but in general, successive terminating simulations can be run until the
terminating state falls within the boundaries of the regimen state. In most cases, the regimen
state is reached in short periods of time due to the loose interleave of processes.

= 9 . , - > 5 ? . 0 7 , 9 * @ 5 A , - 5 B C / 2 * 3 1 , D , 2 . 4 5 E F

G H I J K L M N O P Q R S T J I P K U T V J W T X H W O S W S K K J K P H Y Z U V L M N

Even though we could theoretically analyze the processing speed based on an infinite set of
tokens in the Pi place, it is numerically simpler in our Petri Net to model a single token cycling
through all the stages. If no rolli ng back occurs, the speed is one of the fastest processes, and
no simulation would be needed. This particular calculation is a simple one and is a lower bound
for the MES.
The need for simulation arises due to rollbacks. It is useful to make a small modification on the
net so as to estimate the number of rollbacks. Lets add a couple of places Rol i and Donei for
each process, one arc from Wi to Donei and another arc from the second case of Ri to Rol i .
Performing transient simulations is is possible to count the number of tokens collected on the
places Rol i and Donei for each process, representing the number of rollbacks and solved time-
steps respectively. The differencebetween Donei and Rol i is in successive time intervals is the
MES for each process or MESi . The systems MES is calculated from the individual ones
according to the particular relation of the processes, but weighting MESi with processing speed
and number of rollbacks of each processor.

4.7 - Hybrid models

This approach is taken when real applications do not lie exactly within the definition of the
previous groups or, in some cases, it is useful to mix different elements of the different
paradigms. They are not generally found on small applications, but in situations where it makes
sense to mix them in different parts of the same program.
The way this systems are modeled consists of isolating the different conceptual models,
modeling them according to their corresponding models. The partial models are coupled back
together completing the whole system. If the modeling is done using UltraSAN, then the
individual models can be joined using the composed models. This is useful to keep the
individual networks corresponding to each model separated from the whole, keeping them
simpler and conceptually properly corresponding to their identified stages.

[W L J K \ S] L N U J W H ^ S _ J K S ` a M P H Q O J b J P L R S c d

e f g h i j k l m n o p q r h g n i s r t h u r v f u m q u q i i h i n f w x s t j k l

5 - Case Studies

5.1 - Introduction

The objective of this chapter is to ill ustrate the usage of the previous models on real parallel
applications. We will compare predicted performance estimation of the models with actual
system performance. We will choose some parallel applications arbitrarily, we will fit them
within the proper classof parallel application, we will apply the corresponding procedure to
obtain a Petri Net that models it and then we will estimate the performance of the system
analytically and contrast the estimation with ground measures from real systems running the
applications we picked.
The objective of these studies is not to develop benchmarking or cluster loading tools or
industrial parallel applications. We try to explore some cluster performance aspects, isolate
them and apply our theoretical analysis. We need simple, understandable and predictable
problems that can be addressed easily under different conditions like number of CPUs, etc. The
final goal is to code simple parallel algorithms (accessible and easily comprehensible while
parallel) that would help to understand complex interactions of the system performance.
The first experiment will consist of a domain-decomposition application that will perform
operations over a matrix. The second experiment will consist on the heuristic resolution of a
np-complex problem using a metaheuristic.
At the end of this chapter we present the results of a small test performed to overload a system
with an excessive number of tasks that allows us to understand the cost of assigning more than
one CPU bound task to a system. This study will be presented as an annex because no
modeling or parallel execution was performed.
It can be seen that the selected experiments are very different one from the other. The first one
is classically coded on C + PVM and run on Linux (even though not on a Beowulf cluster).
The second experiment exploits parallelism through parallel threads invoking remote objects
through RMI in JAVA. We shall show that the models introduced work in both scenarios. This
is important, as the model templates are not tied to particular hardware, software or algorithm
configurations and can be used in many heterogeneous situations.

5.2 - SPMD example application: Mat

This application solves the general case of a time series of matrixes of dimensions m
y

n in
which any point can be calculated as a function of itself and its immediate adjacent in the
previous point in time. Lets represent a point with coordinates i,j at time t0 with x

z
i,j { t0

.
The mat program can be used to solve problems where the following equation holds:

| u j h i } q ~ j l s h u f � q � h i q � � k n f o m h � h n j p q � �

� �

x � i,j � tn � 1 � f � x � i,j � tn
,x � i 1 ,j 1 ¡ tn

,x ¢ i 1 ,j ¡ tn
,x ¢ i 1, j £ 1 ¡ tn

,x ¢ i,j 1 ¡ tn
,...,x ¢ i £ 1 ,j £ 1 ¡ tn

¡
The implementation considers the wrapping of the matrix, both horizontally and vertically that
permits simpler coding for topographically closed scenarios mapped to matrixes (ie. Geoides
bodies to matrixes for weather analysis). The border conditions or wrapping is determined by
the f function, that determines what to do with wrapped neighbors. We can rewrite previous
equation to consider wrapping the following way:

x ¢ i,j ¡ tn ¤ 1 ¥ f ¢ x ¢ i,j ¡ tn
, x ¢ modm ¢ i 1 ¡ ,modn ¢ j 1 ¡ ¡ tn

,x ¢ modm ¢ i 1 ¡ ,j ¡ tn
,x ¢ modm ¢ i 1 ¡ ,modn ¢ j 1 ,

It is possible to generalize this problem to more complex scenarios considering more intricate
patterns of neighbors and also more points in time, but current mat program suffices for a
relatively interesting set of problems, and gives us an understandable and simple framework for
analyzing the parallel execution of this set of problems. This application is also interesting from
the point of view of the CPU load it obtains on the system. The complexity can grow as much
as we need with pretty small matrixes. The program is written in C and can be linked to any
object that exports a function called doprocess that implements the time evolution function f.
The library used to perform the interprocess communications is PVM.

The processcan be invoked both through the command line and a PVM console. It requires
two parameters and a third one is optional. The first parameter, partes, is a number and it
counts the number of parts (horizontal and vertical) in which the input matrix is going to be
splitted. The problem would be solved by partes2 concurrent cooperative processes. The
second parameter, cant is the amount of time steps that the parallel system will be run. The last
and optional parameter is the pathname to the data file. If omitted, the data will be read from a
file called datos in the execution directory. This parameter could become important if the
initial data set is big. The data could be copied to machine local directories so there is no
overload on a file server at start up. The output, a matrix with the dimensions of the input one,
then is written to the file /tmp/salida in the machine where the parent process runs.

The program has an initialization stage in which the initial process, the father, generates partes2

child processes, assign them a position inside the main matrix (m¦ n) and communicates
the PIDs of their neighbors to all of them. Each portion of the matrix is assigned a number
starting from 0 on the upper left corner and increasing by one from left to right, top down
according to the schema. The numbers are Real numbers represented internally as double
precision (64bit) float.
From the general formula we have presented, we can determine the pattern of communication
that will occur. The function uses at most all adjacent points in the matrix to a certain one to
calculate the next value of that point. Whenever a child processis calculating a point inside the
matrix, it always has all the necessary information so as to finish the calculation, but when we
are considering a point in the border, then the information necessary can be shared with up to
threeother neighbors when we consider the information needed to calculate the elements in the
corners of the matrix. We will analyze deeper this point later.

§ ¨ © ª « ¬ ® © ¯ ° ª ¨ ± ² ³ ª « ´ µ ¶ · ± ¸ ¹ ª º ª · © » ¼ ½

¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Á À Ç Â Ì Ë Í Á Î Ë Ï ¿ Î Æ Ê Î Ê Â Â Á Â Ç ¿ Ð Ñ Ì Í Ã Ä Å

After the initialization stage finishes, the system
loops cant times performing this simple sequence
of steps: transmit, receive, process. We organized
the communication pattern relying on the
semantics of PVM. We used non-blocking send
primitives and blocking receive primitives. This
allowed us to code the processes so that they can
share results with neighbors regardless of their
situation: the messages will wait in communication
buffers until the receiving process needs them,
without blocking the sender; the sender will block
himself until he has all the information needed to
do his computation thoroughly. When the process
tries to fetch the information needed it checks orderly the messages from neighbors. If a
message is already there it is processed, but if the expected message is not there, the process
gets blocked until the message comes. At that point he has already sent all the information
needed by their neighbors, and thus, there is no deadlock situation possible in normal operation
conditions. If one processdies (i.e. is kill ed, the machine hangs, etc.) the whole system falls in
a deadlock condition. We will not consider here the reliabili ty of the system. After all the
necessary information is gathered, the processing can be performed, and the loop restarted.

The following pseudo-code represents the structure and logic of the mat program

process
if parent()

spawn partes*partes child processes
assign every child process a piece of work
for each row of children

do
for each children of the row

receive row
save to disk

end for
while not end

end for
else // this is a child process

receive piece of work
repeat cant times

send boundaries
receive neighbor information
doprocess

for each row
send row to parent

end for
end

The parent automates the creation of children, distributing the work and collecting results.
Children processis structurally simple: receive a pieceof work and do a certain processing to
it cant times. After each processfinishes its looping, it starts sending the results to the parent.
As soon as each finishes the communication, they quit. The parent collects the pieces of
problem solved by each process, assembles them back in the right order and write the result
matrix to disk. When this is done, the father process finishes its execution.

Ò Î Ã Á Â Ó Ê Ô Ã Å Ì Á Î ¿ Õ Ê Ö Á Â Ê × Ø Ä Ç ¿ È Æ Á Ù Á Ç Ã É Ê Ú Û

0 1 2

partes

partes-1

partes+1 partes+2 2xpartes-1

2xpartes

partes²-1

Ü Ý Þ ß à á â ã ä å æ ç è é ß Þ å à ê é ë ß ì é í Ý ì ä è ì è à à ß à å Ý î ï ê ë á â ã

Before going on with the modeling of the system, there are some aspects regarding this
particular scenario that are worth considering. We can seethat every processhas information
needed by its neighbors and viceversa, it needs information from their neighbors. The amount
of information needed is proportional to the submatrix size24. Each submatrix needs

2
partes

ð
mñ n ñ 2partes ò elements from its neighbors for each computation. The whole

matrix needs 2.partes
ð
m ñ n ñ 2partes ò individual element communications from neighbors

so as to complete a time step and 2.cant.partes
ð
mñ n ñ 2partes ò for the total execution. On

the other hand, the computation needed to solve a time step in a submatrix compromises

k ó mó n

partes2 operations, where k is a constant determined by the f function. We can seethat

for a given mó n matrix, the amount of elements that have to be transmitted grows
proportional to the square of the number of pieces partes that the matrix is split into. On the
other hand, the number of operations needed to be performed by each processor decreases
proportionally to the square of the number of pieces (partes) that the matrix is split into.

The model

We can seeclearly that this problem falls within the classof SPMD parallel programs as the
processing is the same, results are shared between processes and the role played by the parent
processis the administrative role of processcreation and solution assembly. As we saw on the
taxonomy analysis for this kind of problems, there is no general network that can help us
determining performance indexes. We need to first determine the parallel system in which the
program will run and then we can obtain a Petri network where to simulate the real execution.
First we need to determine a function f so as to have an algorithm to code, and thus, to
instantiate the doprocess function so as to have a running program.
Lets call n(x(i,j)t0) to the set of adjacent elements in the matrix to a given element at time t0.
We will use the following function:

x
ð
i,j ò tn ô 1 õ 1

2

ð
x

ð
i,j ò tn

ñ
ö

y ÷ n ø x ø i,j ù t n
ù y

8 ú
This function performs a very local smoothing effect on each element of the matrix considering
only the adjacent elements: it weights the average of all elements and the value itself of the
point considered equivalently.
We will run this system using an image as the input matrix. The format of the image is 24 bits
RGB (256 shades of red, 256 shades of green and 256 shades of blue per pixel), thus, the
weighted average should be calculated for each color layer of each pixel. If we average the 24
bits number without considering the color layering, we get an undesired distortion of the
image. The average should be calculated three times per pixel: once for each color layer.
Another point to keep in mind is that the operations will i nvolve integer arithmetic, since that is

24 Rightmost and bottommost submatrix dimensions must add the reminder of the integer division of n and m by partes to their height and
width respectively. When partes does not divide exactly m or n, the number of elements needed increase something.

û ü ý þ ÿ � � � ý � � þ ü � � � � þ ÿ � � 	
 � � � þ � þ � ý � � � �

� � � � � � � � � � � � � � � � � � � ! � " � # � " � � " � � � � � � � $ % ! � � �

the format of the image chosen.
We can seethe chosen image of Garfield (Jim Davies) as the
input matrix. The image is 807pixels in width times 976pixels in
height. The image format is 24 bits colour RGB25. The image was
digitalized in black and white and later converted to the RGB
format. All the pixels are either 0x000000 or 0xffffff . Each
calculation has to be performed to each one of the 7.87x105

pixels and has to consider all eight neighbors. We can see that
there will be 7.87x105 memory writes, 7.09x106 memory reads
and, at least, 11 arithmetic operations per pixel. These operations
should not be understood as assembler or processor operations
but high level ones.
There exists two numeric format conversions, one when the pixel is retrieved and another
when stored into memory as a double precision float. In this case of RGB image these
operations have to be performed on each color layer, thus, we have to separate the three
layers, perform operations and then combine them back. We can then seethat there have to be
at least 40 elementary operations on each pixel, and thus, 3.2x107 operations at least so as to
compute every time-step. This lower level operations should almost match assembler or
processor operations. We should also note that the matrix uses 6.0 MB of system memory
when loaded as double precision float. No MMX extensions were used or considered. The
goal here is not to obtain the best implementation of this problem for the specified system, but
to have a tool for analysis.

Now that we have a fully defined algorithm, we shall model it according to our
recommendation for SPMD class of problems. As there is no network that can model the
general case, we have to explicitly define hardware configuration of the system that will run the
problem.
We shall start addressing this problem with two CPUs: this is the simplest parallel scenario
(more than one CPU) that we can consider. As our problem splits the original matrix in partes2

pieces, we will choose the smallest partes that will partition the matrix in a number of pieces
that is multiple of two: in this way we will allocate equal number of processes to each CPU26.
As we saw before, there is very little overhead due to the allocation of multiple tasks to a
single CPU, so sharing a CPU does not slow down the execution considerably. There is
another important fact to consider, which is the fairness of the allocation of the CPU. We
found that concurrent tasks with the same execution profile and same priority share the system
resources fairly under Linux.

Based on the previous considerations, we will think of four CPUs, paired, each of them with
half the power of the original CPU. We will obviate the overhead of context switches in this
case. With this configuration, whichever matrix we address will be divided in four parts.
Considering the wrapping of the general problem, we get the following scheme of
neighborliness, and thus, process intercommunication:

25 We humbly accept the fact that the original Garfield paperback magazines came in black and white.
26 We will study later the allocation of single tasks to CPUs.

& " � � � ' � (� � � " �) � * � � � + , � � � � � � - � � � � � . .

/ 0 1 2 3 4 5 6 7 8 9 : ; < 2 1 8 3 = < > 2 ? < @ 0 ? 7 ; ? ; 3 3 2 3 8 0 A B = > 4 5 6

The white cells represent the matrix divided into four parts, while the shaded ones represent
the neighbors due to the wrap. In this “extended” matrix we can seethat all processes need to
send information (twice) to all the others and need to receive information (twicealso) from all
the others. Let

C
P be the set of submatrixes:

C
P D E

0,1,2,3 F . We define then the function
V::

C
P G HPn based on the communication pattern in the way that it associates each element to

the subset to its complementary subset on
C
P : V D E I

0,
E
1,2,3 F J ,

I
1,

E
0,2,3 F J ,

I
2,

E
0,1,3 F J ,

I
3,

E
0,1,2 F J F

Now we can apply the procedure described in the taxonomy section so as to define the
associated Petri net to the algorithm. The following figure represents the resulting network:

We can seethat there is much interdependenceand interlocking at the communication stage, as
we saw before. We now need to determine the computing power of each CPU so as to
determine the remaining information and to fully define the Petri Net: we need to determine the
distribution functions for each proc activity.

We will run the system on individual CPUs so as to determine their performance indexes. We
will make successive terminating simulations, measure them and then, determine an index that
represents the amount of work that the system can perform in a convenient period of time.
Before going on with the system analysis, we present here the result of the execution of mat on
our example matrix.

What we have got here is the distortion produced on the image in 1, 30, 50 and 200iterations
respectively. We can see that this algorithm performs a blur operation on the image. We can
seealso a 45º darkening effect due to the equal propagation of the color to diagonal adjacent
pixels. It is possible to smooth this effect with a more realistic effect weighting the diagonal

K ? 4 2 3 L ; M 4 6 = 2 ? 0 N ; O 2 3 ; P Q 5 8 0 9 7 2 R 2 8 4 : ; S T

3 2 3 2

1 0 1 0

3 2 3 2

1 0 1 0

U V W X Y Z [\] ^ _ ` a b X W ^ Y c b d X e b f V e] a e a Y Y X Y ^ V g h c d Z [\

values with 2 .

Parameter fitt ing

Experimental data
In this section we will determine empirically the needed parameters to complete the definition
of the Petri Net. The way in which we determine the performanceparameters is based on some
particular features of both the application we are running and the input data: the parallel
application can be run as a standalone program on a single machine without changes; the
matrix we are using fits in system´s memory. These two facts allow us work on the same code
and data that will run in parallel when measuring performance. This gives us a good level of
accuracy.
We ran the simulation on x86 machines. The first system that we chose has a Pentium MMX
processor running at 166MHz, configured with 96 MB of RAM memory. We have enough
memory to hold the whole matrix in memory for the calculations sinceit takes 6 MB of RAM.
The memory usage was obtained inspecting the OS's performance indexes. The code and data
representation was not optimized for either this kind of application or data. We have to
determine how fast this system completes the execution of a time-step and then, scale the
problem so as to determine the average processing speed of the proc activities.
We ran our mat program twelve times with different iteration arguments so we can calculate
individual iteration time. The magic number twelve proved adequate when we plot the results
and observed very stable and smooth results. It is straightforward to seethat the time behavior
is linear on the number of iterations, so we model the curve of this experiment as a straight line
y=ax+b where x shall be the number of iterations and y is the elapsed time. In this coordinate
system the x axis represents the amount of work while the y axis represents the time needed to
solve it. In this scenario, we can seethat the constant a represents the inverse of the processing
speed (measured in iterations per time unit) while the constant b represents the time spent
splitting and joining in the process. We can understand b as a fixed amount of time the system
will be performing tasks before and after the processexecution. We can seethis tasks as work
that has to be done (load into memory the parent process, processarguments, spawn children,
communicate parameters, read matrix into memory, make the parent collect results from
children, write results to disk) when no iteration takes place.
We took care to run the system on controlled conditions so as to get measures as stable as
possible, to prove correctness of the model and also to be able to reproduce the execution
conditions in further experiments. The system in which the process was run was not

i e Z X Y j a k Z \ c X e V l a m X Y a n o [^ V _] X p X ^ Z ` a q r

s t u v w x y z { | } ~ � � v u | w � � � v � � � t � { � � � w w v w | t � � � � x y z

performing other task that operating system processes, that were also sleeping due to
inactivity. No X server was running and the submission of tasks was done trough a Telnet
session. No other users were logged or running processes at that time. No activity started by
the cron ran at that time.
The following table shows the experimental data:

The time represents wall-clock elapsed time and not CPU allocation time. Using the least-
squares method we determined that the curve that best adjusts to the data set is:

y = 11.4 x + 21.5

where x counts iterations and the time (y) is measured in seconds. We can see that the
processing speed of this system is around 5.28 iterations per minute (8.81x10-2 iterations per
second) and that it takes almost 4.33x10-1 minutes (21.5 seconds) to split the processamong
the children and to join the answers back and write them to disk. According to our estimations,
this 5.28 iterations per minute comprises 1.69x108 operations per minute, 2.81x106 operations
per second.
The following graph plots the experimental data and the curve we determine. The plus signs
represent the experimental data.

The second system that we chose is a Pentium Celeron processor running at 333MHz,
configured with 128 MB of RAM memory. We have more than enough memory to hold the
whole matrix in memory for the calculations since it takes 6 MB of RAM to hold the whole
matrix. We also ran the system on controlled conditions so as to get measures as stable as

� � x v w � � � x z � v � t � � � v w � � � y | t } { v � v | x ~ � � �

Iterations Iterations
1 00:31 5 01:16
10 02:16 15 03:11
20 04:13 25 05:03
30 06:10 35 06:57
40 07:55 45 08:51
50 09:49 55 10:45

time(mm:ss) time(mm:ss)

� � ¡ � ¢ � ¡ � � ¡ � � � � � � � £ ¤ � � � �

possible to prove correctness of the model and also to be able to reproduce the execution
conditions in further experiments. The system in which the process was run was not
performing other task that operating system processes, that were also sleeping due to
inactivity. No X server was running and the submission of tasks was done trough a Telnet
session. No other users were logged or running processes at that time. No activity started by
the cron ran at that time.
The following table shows the experimental data gathered:

Using the root-min-square method we determined that the curve that best adjusts to the data
set is:

y = 7.46 x + 6.78

where x counts iterations and the time (y) is measured in seconds. We can see that the
processing speed of this system is around 8.05 iterations per minute and that it takes almost
0.11 minutes (7 seconds) to split the processamong the children and to join the answers back
and write them to disk. According to our estimations, this 8.05 iterations per minute
comprises 2.58x108 operations per minute, 4.3x106 operations per second.
The following graph plots the experimental data and the curve we determine. The plus signs
represent the experimental data.

We can also note that processing speed does not scale well on MHz. Other processor and
system's architecture details have to be considered so as to predict variations in speed basing
ourselves on the processor. If systems processing speed was directly connected to the
processors MHz, then our processing speed would be around 10.6 iterations per minute. We

¥ ¡ � � � ¦ � § � � � � ¡ � ¨ � © � � � ª « � � � � � � ¬ � � � � � ®

Iterations Iterations
1 00:14 5 00:45
10 01:21 15 01:58
20 02:36 25 03:13
30 03:51 35 04:28
40 05:05 45 05:42
50 06:20 55 06:57

time(mm:ss) time(mm:ss)

¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ² ± ¸ ³ ½ ¼ ¾ ² ¿ ¼ À ° ¿ · » ¿ » ³ ³ ² ³ ¸ ° Á Â ½ ¾ ´ µ ¶

only got 76% of that performance increase on the system.

Parameter determination

Based on the information we collected from the experiments we will calculate performance
indexes for the Petri Net. Even though we have measured empirically the processing speed of
our full-size problem on our target systems, that is not the size of problem that they will
addresswhen working in parallel: the parallel system will split the problem in four pieces and
PVM's scheduling algorithm allocates two of them to each processor. Each portion of the
problem will be one fourth of the measured problem and each processor would be addressing
simultaneously two of these problems. With our rough estimation of the number of operations,
we can say that the number of operations needed to complete each sub-matrix is of about 8
milli on operations.
It can be seen directly that the number of operations needed to solve this sub-problem are one
fourth of the original one, and thus, the same CPU takes one fourth of processing time. On the
other hand, the sub-problem will not be the only processrunning on the system: it will have to
share the resources with one of his “brothers” . They have the same execution profile, they are
both CPU bound and they both fit in memory simultaneously. As we saw when analyzing
primos program, the fairnessof CPU allocation is very high in this situation and we can think
as of two independent CPUs, each with half the processing speed.
We will merge these two observations into single performance indexes. If we change the
original work unit (the whole matrix) by one that is one quarter, it is quite straightforward to
see that the processing speed will be four times the measured one. On the other hand, two
processes will be spawned on each CPU, and thus, each process will receive half the
processing speed of the CPU. We can conclude that the processing speed of each processor
should double the measured speed. The distribution functions for the timed activities on our
model are calculated on this basis.

We have gathered all the necessary information so as to model the parallel system. Now we
have to determine what is going to be modeled by the tokens and the values for the distribution
functions. As we said before, the tokens represent work units that are relevant to the problem.
In our case, the work unit chosen will be the resolution of one fourth of the original matrix, or
the matrix allocated to each CPU. When we initialize the Petri Net we will placeas many
tokens in the work_i places as iterations the system is going to model. The total number of
tokens in the work_i places will be four times the number of iterations performed to the
original matrix. init_i places are marked with one token, as the systems have only one CPU.
The rest of the places count zero marks.
proc_i activities model our four “virtual” processing units, our two real multiplexed
processors. As the sub-problem allocated to each processor is one fourth of the measured one,
the processing speed of each of the original processors should be four times faster if we
measure iterations per second. On the other hand, as the processors are multiplexed and their
power is distributed equally, to both processes, so each virtual processor gets half the
processing speed of the original. The resulting processing speeds are 10.6 iterations per second
for the Pentium 166MHz system and 16.1 iterations per second for the Celeron 333MHz
system.

Ã ¿ ´ ² ³ Ä » Å ´ ¶ ½ ² ¿ ° Æ » Ç ² ³ » È É µ ¸ ° ¹ · ² Ê ² ¸ ´ º » Ë Ì

Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Ð Ï Ö Ñ Û Ú Ü Ð Ý Ú Þ Î Ý Õ Ù Ý Ù Ñ Ñ Ð Ñ Ö Î ß à Û Ü Ò Ó Ô

Performance estimations

We shall now use our network to predict the performanceof the parallel system. The problem
itself of finding the most appropriate distribution functions might even imply a deeper study at
this point, but we will use two distribution functions for our study: exponential and
deterministic. As we stated before, they represent a pessimistic and an optimistic
approximations. If the gap between these estimations is acceptable, then we can presume that
the system performancewill lie in between. These two distribution functions have also another
benefit: we only need to determine one value to define them. Let's begin with the pessimistic
estimation.

We have already determined the processing speed of our processors, or, what is the same, the
time they spend solving each matrix. The figures are 11.4 seconds for the Pentium 166MHz
and 7.46 seconds for the Celeron 333A processor. Our conceptual modeled system would
consist of four processors, two with an estimation of 5.68 seconds per processed submatrix
and another two of 3.73 seconds per processed submatrix. In this pessimistic scenario with

exponential distribution functions, the rates would be
1

5,68
and

1
3,73

 respectively.

We shall determine TET and MES for this system. It would be much easier if we had a tool
that ran the system until it got to the steady-state and determines the elapsed time: the TET
The tool we are using, the UltraSAN, is capable of determining the steady-state out of a Petri
Net, but it does not account for the time, thus another method has to be applied. As we
suggested before, we will use batch-means as a method for determining the TET

Lets assume that we plan to estimate the Total Execution Time of 50 time steps, then we have
to place50 tokens on each work_i place. We will execute successive terminating simulations
until we determine that all the tokens were consumed. We need to monitor the number of
remaining work units, for this reason we specify a performabili ty variable that counts the
number of tokens in the work_ i places. We will monitor the evolution of this variable through
the different terminating simulations so as to determine when there is no more work to do, and
thus, the processing has been done. From the single processor executions analyzed before, we
can see that the Pentium 166MHz system solved 50 time steps in 9 minutes and 49 seconds
while the Celeron 333A system did it in 6 minutes and 20 seconds, that means, 589 and 380
seconds respectively. We will study the remaining number of tokens with successive
terminating simulations separated 50 seconds each. The following table summarizes the
simulation data:

á Ý Ò Ð Ñ â Ù ã Ò Ô Û Ð Ý Î ä Ù å Ð Ñ Ù æ ç Ó Ö Î × Õ Ð è Ð Ö Ò Ø Ù é ê

50 179,17 27,58 100 159,19 56,64

150 139,22 85,71 200 119,24 114,77

250 99,26 143,84 300 79,29 172,91

350 59,31 201,96 400 39,36 228,65

450 20,29 210,24 500 6,4 93,05

550 1,07 15,03 600 0.0897 1,03

650 0.0039 0.037 700 0.0001 0.0008

Iterations Work remaining Variance Iterations Work remaining Variance

ë ì í î ï ð ñ ò ó ô õ ö ÷ ø î í ô ï ù ø ú î û ø ü ì û ó ÷ û ÷ ï ï î ï ô ì ý þ ù ú ð ñ ò

The following figure plots the data:

This plot was created with the following Matlab command:
plot(t,zeros(size(t)),'w-',t,zeros(size(t)),'w+',t,w+sqrt(v),'b-',t,w-

sqrt(v),'b-',t,w,'r-',t,w,'r+') , where the vector t represents the number of iterations
simulated, w the expected values for the corresponding number of iterations and the vector v
holds the values for the variance. The bounded connected component by the blue curves is the
zone that holds the most likely values for the system performance.
From the graph it is easy to know that there exists a problem with the method: when we get
close to the x axis, the linear behavior is lost. Apparently, the X axis becomes a limit for the
expected value and, there is no expected zero value, but only arbitrarily small values. We used
batch means trying to determine the time when we get to consume all tokens, but there is
always a probabili ty of having some token. This is because there is a very small probabili ty of
arbitrarily long execution times on every step due to the exponential distribution function. We
can explain the source of error better with the following observation.
Given any arbitrarily big amount of time T, we can estimate a lower bound for the probabili ty

P

ÿ
T
n � � 0 that any time step can take longer than

T
n

to complete its execution.

Therefore, there is a non-zero probabili ty that the whole execution takes more than any
arbitrary big amount of time summing this arbitrarily long execution times of individual steps.
This is not a consequence of the real phenomena we are studying, but a drawback of the
distribution function we picked up.
We can now seethat batch means alone is not a way to determine the TET for this problem. A
workaround to this problem is to extrapolate the region where we observe the linear behavior
and determine where it intersects with the X axis. We shall be able to say that the determined
value is the TET for this problem.
From the inspection of the estimated curve, we can conclude that until t=450, the behavior can
be considered pretty linear either for the red and the blue curves. Applying the root-mean-
square method27 to each of the curves we get the three following straight lines equations for
the green and blue curves respectively:

(i). y(x)=-0,399x+199
(ii). y(x)=-0,429x+196
(iii). y(x)=-0,369x+203

27 There is no specific background to model blue lines as straight lines but their shape and simplicity of linear
approximation.� � � � � � � 	 �
 � � � � �

� � � � � � � ! " # $ % & � � " � ' & (�) & * �) ! %) % � � � � " � + , ' (� �
Equation (i) approximates the curve of expected values while equations (ii) and (iii)

approximates the blue curves. The solutions,
x

y - x . / 0 for each of the equations follows:

(i). x = 499
(ii). x = 456
(iii). x = 549

A joint plot for all the curves follows:

We can determine [456 ; 549] as the mostly probable interval where the execution time of the
real experiment must fall, while 499 seconds or 8m18.99s is the expected Total Execution
Time. From this plot we can also get another estimation: the mean execution speed. It is
straightforward to realize that the tangent of the first line is a good estimation for the MES.
Remembering that the tokens used in the simulation represent one quarter of the original
matrix, we can say that the MES of this system is 0.399submatrixes per second or, what is the
same, 9.98x10-2 matrixes per second. A better time unit for expressing the processing speed is
the minute. The processing speed or MES is of 5.99 matrixes per minute.

Another way to estimate the TET comes out of a different approach. We determined the TET
first and after that we determined the MES. We will try now to determine the MES of the
system and then the TET.
As we saw before, there was a systematic error in the previous procedure, an error that
becomes relevant when we try to determine TET itself, but that is not a drawback for finding a
stable stage that allows us to extrapolate the behavior. We want to determine the processing
speed of our system during that stable stage. As we suggested in previous chapters, we can
modify the Petri net that represents the problem by removing the work_i places. We can see
that the resulting Petri net will loop forever without any fixed token configuration: all tokens
will l oop their own path. The following diagram represents the resulting Petri net.

0) � � � 1 % 2 � ' �) � 3 % 4 � � % 5 6 � " � # ! � 7 � " � $ % 8 9

: ; < = > ? @ A B C D E F G = < C > H G I = J G K ; J B F J F > > = > C ; L M H I ? @ A

We want to determine the MES for this Petri net. We need to account the number of times the
tokens cycle the network in a period of time so we can average the
processing speed: the MES We defined a performabili ty variable vueltas
that is associated to the processing activities, signaling a unitary value
with each submatrix processing. We shall then simulate the execution with
the Accumulated Reward Solver simulator provided by the UltraSAN

tool. The number obtained is the number of submatrixes solved within a certain period of time,
four times the processing speed of the system in that period of time, as a full original matrix is
represented by four of these tokens.
The result of the simulation after 104 seconds is 3.99x103 tokens, 3.99x10-1 tokens per second,
9.99x10-2 matrixes per second or, expressed in a more convenient unit of time, 5.99 matrixes
per minute. The simili tude with the previous estimation is remarkable.
It is important to note that it is valid to associate 4 tokens, one in each init_i placeto a
matrix without losing the resolution semantics of the resolution due to the synchronization
performed at sync activities. This synchronization ensures that no other portion of the problem
is solved until the directly connected places finishes their work. We can see that all four
processors will work tightly coordinated, waiting for the slowest one after the completion of
the assigned pieceof work: each process waits for the information form its adjacent before
iterating again one step of time. This behavior is the same all the execution long, and, at the
instant of time 104 some processes might be waiting for others, but all of them will be either
solving the same time-step or they will be waiting for the others before computing the next. It
is under these considerations that computing back from tokens to matrixes is valid.

We now need to determine an optimistic estimation for the system performance. As we stated
before, we shall use deterministic distribution functions to estimate TET and MES for our
system configured for running the previous matrix fifty time steps. The simulation tool we are
using does only provide simulators for determining the steady state out of a network but not
the elapsed time. Furthermore, if the net contains a distribution function that is not exponential
or instantaneous, transient measures cannot be obtained. We shall now study the evolution of
the network analytically.
We are assuming that there are fifty tokens into each work_i placeand one token into each
init_i placeat time t0

28. Lets assume that proc_1 activity and proc_3 have deterministic
values 5.68 while proc_0 and proc_2 have values 3.73. All proc_i activities are enabled and
thus, their execution begins at time t0. At time t0 + 3.73 both activities proc_0 and proc_2

complete their execution and individual tokens are placed into wait_0 , snd_01 , snd_02 ,
snd_03 , wait_2 , snd_20 , snd_21 and snd_23 places. As no activity remains enabled the state

28 We assume that all remaining places have 0 marks.N J ? = > O F P ? A H = J ; Q F R = > F S T @ C ; D B = U = C ? E F V W

X Y Z [\] ^ _ ` a b c d e [Z a \ f e g [h e i Y h ` d h d \ \ [\ a Y j k f g] ^ _
remains the same until time t0 + 5.68 where activities proc_1 and proc_3 become enabled.
Tokens are then moved to places wait_1 , snd_10 , snd_12 , snd_13 , wait_3 , snd_30 , snd_31

and snd_32 . At this very moment, activities sync_0 , sync_1 , sync_2 and sync_3 are
enabled. Tokens are removed from all previous places and individual tokens are placed back in
init_0 , init_1 , init_2 and init_3 places. We can seethat current system state differs from
the initial state because it holds 49 marks into each work_i placeinstead of 50. We can also
seethat if we call t i

' to time t0+ 5.68, we can seethat at time t i
' l 5.68m t0

l 2 n 5.68 there
will be 48 marks into each work_i place.
We can seethat tokens are consumed 4 every 5.68 seconds, or one every 1.42 seconds: 42.3
tokens every minute. As we saw before, each matrix consists of 4 tokens, thus, the predicted
processing speed, the MES is of 10.6 matrixes per minute.
Now that we know the MES, we can estimate the time it will take the system to consume all
tokens. Knowing that the system holds 200 tokens, representing 50 matrixes, it will take 284
seconds, or 4m43.90s, the TET
It is also quite noticeable why the slowest CPU is driving the performance of this kind of
parallel systems. We can seethat during the interval (t0+ 3.73 ; t0+ 5.68) the only CPU activity
comes from the slowest CPUs while the faster ones remain idle, waiting for the slow to finish.
It is straightforward to see that this computation pattern prevails even when the number of
CPUs and work units grow. The execution of faster CPUs will be “bursty” and periodical,
while slowest CPUs will run continuously. It is also noticeable that the effective processing
speed of all CPUs shall be equal to the processing speed of the slowest, thus, the optimistic
approach for this case suggests that the processing speed of the system shall be at most as fast
as n times the speed of the slowest CPU, the weakest link, where n is the number of CPUs in
the system.

Now we have an upper and lower bound for the expected system performance based on the
pessimistic and optimistic estimations obtained before. We have determined the following
intervals for our performance parameters:

TET 284s – 499s
MES 5.99 – 10.6 matrixes/minute

We would like now to test the estimated performance against our measures from the real
system execution. We run once again the mat program, but this time, with PVM's virtual
machine configured for running over the two processors. The execution time was of 5 minutes
and 8 seconds (308 seconds), which falls within the predicted interval. The MES for this
system is of 1.62x10-1 matrixes per second or 9.74 matrixes per minute, value that also falls
within the expected interval for the performanceparameter. It is also important to note that the
estimated performance falls within the first quarter of the predicted interval, closer to the
optimistic estimation. It is a reasonable behavior as both systems were devoted to this task: no
other process was run meanwhile.

We repeated the previous tests on our system, for a broader set of intervals ranging from one
to 55 iterations, as for other measures acquired. The following table shows the collected data
from the execution:

o h] [\ p d q] _ f [h Y r d s [\ d t u ^ a Y b ` [v [a] c d w x

y z { | } ~ � � � � � � � � | { � } � � � | � � � z � � � � � } } | } � z � � � � ~ � �

The following graph plots all the collected data against individual system performance and
estimated performance boundaries given by optimistic and pessimistic estimations:

We can see the linear behavior found again in this observation, plotted in red. The blue and
green lines plots optimistic and pessimistic estimations respectively. We shall mention that in
this scenario where two systems are involved we can observe a much higher initialization time
than in the single CPU scenario. There is an extra load on the file server at startup, when it has
to serve the program and the data to both CPUs. It is also noticeable that the experimental
behavior is reasonably similar to the one of the optimistic estimation; it is something that we
expected from a dedicated system. The model represents the behavior of this system properly.

Limits for the model' s predicting capabili ties

We shall discuss some aspects to be considered when using the previous models regarding
their predicting capabili ties. We will try to be practical when considering this matter.
There are several considerations regarding the individual system performance, which are
beyond the scope of this study, but should not be omitted in order to get accurate estimations.
The concept “system performance” is difficult to ascertain, but we can simplify it just
considering it as how fast a system can perform certain task for us. This simple assumption is

� � ~ | } � � � ~ � � | � z � � � | } � � � � � z � � | � | � ~ � � � �

Iterations Iterations
1 00:46 5 00:52

10 01:26 15 01:51
20 02:19 25 02:47
30 03:15 35 03:43
40 04:13 45 04:39
50 05:08 55 05:37

time(mm:ss) time(mm:ss)

� � � � � � � � � � ¡ ¢ £ � � � � ¤ £ ¥ � ¦ £ § � ¦ � ¢ ¦ ¢ � � � � � � ¨ © ¤ ¥ � � �
compatible with our system performance concept for the parallel system and is good enough
for individual system performance.
It is very difficult to speak about system performance (generally wrongly associated to MHz)
without considering any particular task. According to our very informal definition of
performance, we cannot speak about performance without specifying a particular task. There
exists also a problem when we try to compare performance but measuring different tasks29.
Shouldn't we have a single performance indicator for a system regardless the task we are
considering? We believe that it is not correct to go that way. Lets think two different
implementations for a same problem, one that is 8086compatible and another that uses MMX
if available, extensions for video decompression. If we are comparing two systems a and b, b
has a clock that is 16.66% faster than a, same vendor, but a with MMX extensions and b
without them. If we compare them according to the first implementation it is most likely that b
proves faster than a, but if we compare them according to the second implementation, the
opposite result is the most probable. It is very unlikely that we can describe all the parameters
regarding system performancewith a single figure. If we gathered only one performanceindex
for a system then we would not be able to make a difference if the problem is optimized for
certain kind of operations or not: either a would be faster/slower/equivalent to b for all tasks,
but we can see that it does not model all possible performance behaviors.
Another problem arises when we are considering both different systems and different tasks.
This is the case we facewhen we use our models to predict the performance of the parallel
system: the tasks will be different (at least the input problem would be scaled) and the first test
systems themselves will be, most probably different30 to the production ones.
We shall now introduce an informal concept: input-execution equivalence. The aim is to
partition the task spaceaccording to its execution profile, based on their execution and IO
blocking interleave. Interruption-level events, memory swapping, IO were discussed when
analyzing distributed.net's approach to the RC5 challenge and were discarded out of the model
and summarized into the distribution function that models the processactivity. The fact that
these factors were not modeled does not mean that they are not important. They are too small
to be considered in out Petri network but they have to be taken into account when estimating
performance: if possible, they should remain invariant in the benchmarked systems and the
constructed parallel system.
Some metrics could be developed to quantify these concepts like number of IO requests per
time unit, number of swap-in, swap-out pages per time unit, etc. but are beyond the scope of
this analysis. To be able to exhaust the different levels of input-execution equivalence, locality
has to be taken into account. Even though there might be no interrupt level blocking due to IO
operations, there is another kind of blocking, this time caused by pipeline stalls due to memory
accesswhen cache misses occur. Whenever we crossa border of the memory hierarchy of a
system there is a tremendous performance price to pay. The following table summarizes few
performance data gathered from some of our test systems31:

29 We will consider different tasks same algorithms applied to different data sets.
30 Lets remember that this tools would most probably be used when designing the parallel system rather than

first buying nodes and later benchmarking.
31 The measures were gathered using memtest 2.75 and are intended only as examples just to show some

empirical data.ª ¦ � � � « ¢ ¬ � � ¤ � ¦ � ¢ ® � � ¢ ¯ ° � � � � � ± � � � ¡ ¢ ² ³

´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á · ¶ ½ ¸ Â Á Ã · Ä Á Å µ Ä ¼ À Ä À ¸ ¸ · ¸ ½ µ Æ Ç Â Ã ¹ º »

We can see that there is about one order of magnitude of memory bandwidth loss when we
misson L1 cache and another order of magnitude when we missthe L2 cache. This means that
if our loop fits inside the L1 cache, it can produce/consume data at a rate of gigabytes per
second, if it fits the L2 cache, it can produce/consume data at a rate of hundreds of megabytes
per second while if our data set is so big that we always get cache misses, our data
produce/consume rate would be of tens of megabytes per second. The case of virtual memory
and disk access to retrieve a virtual memory value is even worse. Even though today hard disks
can transfer data at a speed equivalent to the memory, the seek latency (which is measured in
milli seconds) and the block transfer throws down the effective speed to thousands, tens or
even few kilobytes per second.
On the other hand, knowing more details about our code can help us decide which processor is
“better” for our application. For example, lets assume that our code is 90% of the time
executing a loop that is 350KB long. Lets also assume that there is no inner sub-loop that
presents a local behavior. For both Celeron processors in our figure, data accesswould mean
memory access, and thus, the speed would be around 100MB/s. On the other hand, that piece
of code would fit in the Pentium II L2 cache, which would yield at least four times the memory
bandwidth of the DRAM memory. For this particular case, it seems that the 400 MHz
processor would perform faster than the 800 MHz processor. Once again, these issues are
highly coupled to the problem itself and cannot be separated from it.
With the concept of input-execution equivalence we try to consider these facts as much as
possible out of different program execution and try to state that both executed in pretty
equivalent conditions. What would be the point of estimating the performance of a parallel
system if we measured individual systems running at L1 speed while the estimated cluster will
do excessive swapping?
Lets see the impact of these considerations with some figures. We will try to force our test
systems acrosssome of this performanceboundaries. We produced a set of input matrixes with
the following dimensions: 500x500, 1000x1000, 2000x2000, 3000x3000 and 4000x4000,
which were run 5 iterations on our mat program. The following table summarizes memory
usage per CPU and elapsed execution time:

The basic calculations on the memory used by the process data considers two complete
matrixes of double precision real numbers. There is no elapsed time measure for the individual
systems with matrix of 4000x4000 elements because the runs did not finish: Pentium's hard
drive failed after ten days of processing and we did not let the processrun on the Celeron for

È Ä ¹ · ¸ É À Ê ¹ » Â · Ä µ Ë À Ì · ¸ À Í Î º ½ µ ¾ ¼ · Ï · ½ ¹ ¿ À Ð Ñ

Processor PII 400 MHz
System clock 66MHz 100MHz 100MHz

Cache L1
Speed 3300 MB/s 4100 MB/s 6300 MB/s
Size 32 KB 32 KB 32 KB

Cache L2
Speed 830 MB/s 590 MB/s 950 MB/s
Size 128 KB 512 KB 128 KB

DRAM Memory Speed 61 MB/s 88 MB/s 158 MB/s

Celeron 333 MHz Celeron 800 MHz

P 166 + Cel 333A
96 MB RAM 128 MB Ram 96 + 128 MB RAM

500 47 s 24 s 26 s
memory (MB) 3,83 3,83 1,91 + 1,91

1000 187 s 96 s 108 s
memory (MB) 15,29 15,29 7,64 + 7,64

2000 738 s 387 s 403 s
memory (MB) 61,1 61,1 30,55 + 30,55

3000 4424 s 2028 s 828 s
memory (MB) 137,42 137,42 68,71 + 68,71

4000 - - 3723 s
memory (MB) 244,26 244,26 121,13 + 121,13

Pentium 166MHz Celeron 333A

Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß Õ Ô Û Ö à ß á Õ â ß ã Ó â Ú Þ â Þ Ö Ö Õ Ö Û Ó ä å à á × Ø Ù
more that 5 days. In either case, hard drive led was all time red due to permanent swapping
(trashing describes better the situation) and CPU allocation to the task was at most, 1 or 2
percent of the time. We can see that while the problem fitted in RAM memory, the elapsed
time grew quadratically on the size of the matrix (for individual systems, 500, 1000and 2000
elements). For 3000x3000, as swapping starts, there is an over-quadratic growth on the
execution time. This is due to a change in the input-execution profile: when data is needed and
page faults occurs, execution is blocked until some page is removed from the RAM, written to
disk, the page is tagged as available and the needed data is retrieved from the hard disk. Due to
the high frequency of these faults, the performance drops.
It is also good to noticethat on the combined system, the elapsed time still grows quadratically
for 3000x3000 matrix: sub-problem still fits in RAM.
Lets assume that we are trying to predict the combined system performance for the execution
of a 3000x3000elements matrix. Lets assume also that we did not considered the concept of
input-execution equivalence and that we made individual system performance measures with
3000x3000 input matrixes. After simulating the Petri Net, we would have predicted an
optimistic execution time of 2190seconds, while the observed execution is of 828 seconds,
almost threetimes shorter. This is due to the lack of input-execution equivalence. If we predict
using the 2000x2000single processor execution times, we get the right estimation. We can see
that memory usage of the 2000x2000 matrixes in the individual systems is similar to the
memory usage of each individual system on the 3000x3000 experiment on the combined
system.
The lack of quadratic growth in the elapsed time for the 4000x4000experiment is due to the
growth in the memory usage, specially on the Pentium system: swapping was needed.

There exists another important reason for execution stalls that arises due to excessive
communication amongst processing nodes: if the ratio between remote and local data needed
to perform a processing stage is not reduced, the amount of time spent in communication
threatens the time won parallelizing the application. Whenever we have to access to
information that is stored on other processmemory, the data transfer speed drops compared to
memory accessspeed. Even if we are using a high speed network (i.e. 10 Gigabit Ethernet)
what we can do is to reduce transmission time, but there is an important price to pay in O.S.
calls, switch contexts memory accessblocking, etc. It is difficult to minimize latency. We have
to balance the amount communication time vs. processing time.
We ran again simulations with mat program, but this time fixing the size of the problem and
varying the number of processes solving the problem both on individual systems and on two
computer system. We solved a 500x 500matrix over 20 time steps using 1, 4, 16, 36, 64, 100,
144, 196and 256processes. Unfortunately we had no massive parallel system to run our tests,
so most of the communication happened over UNIX sockets instead of TCP/IP ones, but we
were able to see the effect of communication on the processing time anyway.
First of all we see the amount of communication that takes placefor each experiment. The
following equation approximates the number of cells exchanged on every iteration, where i is
the number of parts (horizontal and vertical) in which the input matrix is going to be diced:

4 æ ç 500
i è 1 é æ i2

We gathered data from our test systems, the Pentium 166MMX and the Celeron 333A alone
and then solving together the problem using both a 10 Mbps and 100Mbps Ethernet LAN.ê ë ì í î ï ð ñ ì ò ó í ë ô õ ð ö í î ð ÷ ø ù ú ô û ü í ý í ú ì þ ð ÿ �

� � � � � � � � 	
 � � � � �
 � � � � � � � � � � 	 � � � � �
 � � � � � � � �

When solving the problem using both systems, experiments contained more than one process.
The following table shows the experimental data:

It is easy to note that in all cases, as the number of processes grows, the elapsed time grows
too. We added a column, “Per process communication overhead” that calculates the overhead
introduced by each process, considering that a single process has 0 overhead and

understanding processoverhead as
singleProcessTime � experimentTime

numberOfProcesses
. We can seethat

as the number of processes grows, the per-processoverhead somehow stabili zes32. We can see
that in the multiple systems experiment the network speed has almost no influence on the
execution time. In this case, the overhead is almost completely due to OS calls and protocol
overhead. We used the same NICs so as to keep the driver overhead time constant.
These figures help us understand that we have to pay a price in terms of overhead whenever
we add a process, and it has to be worth doing so. We can seethat it is easy to spend more
time communicating than processing, in other words, for each problem, system and algorithm,
there is a speedup limit that can be obtained out of parallelism. Also, we can figure out that
adding CPUs might not always result in speedup: if the overhead introduced is bigger than the
speedup, then no speed is gained.

32 This behaviour should be somehow consistent while the input-execution equivalence prevails.

� � � � � � � � � � � � � � � � � � � �
 � � 	 � � �
 � � � �

Partes

1 01:37 0 97 00:58 0 58
2 01:43 1,5 24,25 01:01 0,75 14,5 00:51 0 12,75 00:51 0 12,75
4 02:17 2,5 6,06 01:13 0,94 3,63 01:07 1 3,19 01:08 1,06 3,19
6 03:11 2,61 2,69 01:30 0,89 1,61 01:37 1,28 1,42 01:37 1,28 1,42
8 04:30 2,7 1,52 01:56 0,91 0,91 02:29 1,53 0,8 02:30 1,55 0,8
10 06:02 2,65 0,97 02:30 0,92 0,58 03:23 1,52 0,51 03:23 1,52 0,51
12 08:12 2,74 0,67 03:10 0,92 0,4 04:28 1,51 0,35 04:27 1,5 0,35
14 10:24 2,69 0,49 03:58 0,92 0,3 05:42 1,48 0,26 05:40 1,47 0,26
16 13:29 2,78 0,38 04:55 0,93 0,23 07:15 1,5 0,2 07:13 1,49 0,2

Pentium 166MMX Celeron 333A Lan 10 Lan 100

Elapsed time
(mm:ss)

Per process
communication

overhead (s)

Estimated
execution
time (s)

Elapsed time
(mm:ss)

Per process
communication

overhead (s)

Estimated
execution
time (s)

Elapsed time
(mm:ss)

Per process
communication

overhead (s)

Estimated
execution
time (s)

Elapsed time
(mm:ss)

Per process
communication

overhead (s)

Estimated
execution
time (s)

 ! " # $ % & ' () * + , - # ") $. - / # 0 - 1 ! 0 (, 0 , $ $ # $) ! 2 3 . / % & '

5.3 - Task-Farming example application: SN metaheuristic

This JAVA application implements the SN metaheuristic proposed by Sebastian Urrutia and
Irene Loiseau [URR1] to solve the Steiner Problem in Graphs (SPG).
The SPG consists of finding a sub-network that covers a subset of nodes of a given network
with minimum cost. SPG models adequately communication scenarios, specially multicast
ones. Research on the field was pushed in the last decade by the telecommunication industry.
Sometimes the SPG problem is also referred as SPN or Steiner Problem in Networks.
A formal definition of the problem follows:
Let G=(V,E) be a connected undirected graph, where V is the set of nodes and E denotes the
set of edges. Let w be a non-negative weight function w:E 4 5 6

that associates the set of
edges with positive real values and a let X be a subset X 7 V of nodes called terminal
nodes. Let nX 8

9
X

9
be the number of terminal nodes. The Steiner problem SPG(V, E, w, X)

consists of finding a minimum weight connected subgraph of G spanning all terminal nodes in
X. The solution of SPG(V, E, w, X) is a Steiner minimal tree(SMT). The non-terminal nodes
that are part of the solution are called Steiner nodes. This problem is inherently complex (from
the point of view of computation). Karp proved that SPG is NP-Complete in the general case,
thus, a fast parallel metaheuristic solution is helpful in the field.
Lets introduce an example of a small SPG. The graph used, a HEIDI graph named gD-

T1a10.exp , which has 20 nodes. The following is as graphical representation of it where
circled in red nodes are terminal nodes.

The following table defines w function for all edges:

edge w

17-8 0.798440
5-7 0.277775
10-13 0.513401
18-13 0.141603
1-6 0.804177
9-3 0.998925
11-17 0.296032
11-10 0.292517
11-16 0.891529
8-16 0.069755
11-3 0.663227
8-2 0.457702
6-19 0.850920
11-8 0.512535
11-2 0.931835
15-6 0.639979
14-4 0.880075

edge w

19-12 0.858676
19-9 0.684219
10-5 0.920128
16-7 0.226107
6-12 0.169607
10-15 0.935004
8-15 0.294160
16-4 0.074530
15-13 0.639458
3-4 0.078232
2-4 0.204329
3-20 0.870540
1-19 0.180372
8-18 0.359095
12-10 0.099640
15-7 0.576971
19-18 0.979434

edge w

18-20 0.497259
17-18 0.649707
13-5 0.316867
5-2 0.223656
11-19 0.546107
3-10 0.944318
7-17 0.003231
12-17 0.675476
10-7 0.182556
2-9 0.673936
8-5 0.627158
13-6 0.087644
18-14 0.111276
14-6 0.288379
5-20 0.827391
5-9 0.918930
14-3 0.383832

edge w

11-7 0.909643
17-10 0.180421
15-4 0.492422
4-8 0.931895
13-17 0.496074
8-14 0.258906
2-3 0.363598
7-3 0.934495
9-17 0.244327
4-9 0.783282
10-20 0.210883
17-3 0.382896
13-16 0.051508
10-16 0.442560
11-12 0.304285
10-4 0.525747
12-5 0.070090

edge w

19-4 0.225491
7-8 0.344251
14-2 0.778257
9-7 0.230996
11-4 0.014579
11-18 0.809785
7-13 0.532960
11-9 0.718867
1-7 0.655368
4-7 0.879009
7-18 0.157139
17-14 0.191112
5-19 0.933420
13-20 0.324541
12-13 0.775421
8-13 0.143982
6-9 0.717597

edge w

16-12 0.477361
19-15 0.438562
18-16 0.536742
10-19 0.884318
18-5 0.865434
12-2 0.563617
1-8 0.923692
10-6 0.122326
4-5 0.176239
6-18 0.190709
9-16 0.356383
6-4 0.058052
19-2 0.469050
12-4 0.476355
14-13 0.269022

Given all the previous data we determined that the optimal solution cost is 1.5963689, and that

: ; < = > ? @ A < B C = ; D E @ F = > @ G H I J D K L = M = J < N @ O P

10

5

8
1412

18
1

34

7

11

9

13
19

17
15

16

2

6

20

Q R S T U V W X Y Z [\] ^ T S Z U _ ^ ` T a ^ b R a Y] a] U U T U Z R c d _ ` V W X

nodes 19, 16 and 12 are Steiner nodes. The following graph is the solution:

The SN metaheuristic transforms the SPG into an iterating set of decision problems based on
SPG heuristics. Each of these iterations is highly decoupled and can be easily parallelized, as
the authors suggest on [URR1].
The idea behind the SN metaheuristic is both simple and powerful as it turns optimization
problems into decision ones extracting information for successive decisions from possibly
inaccurate results of heuristic resolution. The following pseudo-code is extracted from [URR1]
and describes SN's basic scheme:

While it is possible to divide Q into subproblems q1..qn do
For i from 1 to n do

Solve qi heur isticall y to obtain si and cvi

End For
Obtain i with maximum cvi

Modify Q using the information provided by qi and si

End While

The method assumes that the problem Q can be divided into n subproblems q1,...qn. Using the
heuristic we can obtain a certain solution si with an associated cost cvi. After determining the
optimal heuristic solution, the problem Q is modified into Q' that should be simpler, according
to some heuristic's metric.
The Departamento de Investigación Operativa at the Instituto de Computación, Facultad de
Ingeniería has developed a C++ tool for graph handling: Heidi. The development of this line of
investigation is founded by CONICYT. The tool has been evolving since 1993 through
successive individual grade students thesis works. This evolution started with a graphical
system based on Motif and Sun's C++ compiler. Each successive work added not only
functionality, but new implementations for the graphs and translations from one stage to the
other.
One approach to our development could have been choosing the most adequate graph classes
in C++ and develop it within Heidi's environment, but that would have constrained us to Sun
systems. This is fine within Heidi's framework, but this research has to consider specifically
COTS hardware and software. Even though Solaris runs on PCs, it is not either a standard
parallel or a commercial environment. We could have developed a set of PVM or MPI routines
from scratch and interfacethem with C++ graphs from Heidi. In this approach we could obtain
portabili ty, even through different platforms, but the marshalli ng and unmarshalli ng of
information would be our responsibili ty: we would have to consider aspects like big & little

e f g h i j k l g m n h f o p k q h i k r s t u o v w h x h u g y k z {

10

5

8
12

1

34

7

9

19

16

2

6

| } ~ � � � � � � � � � � � � ~ � � � � � � � � � } � � � � � � � � � � } � � � � � � �

endians and bitwise operations, data formats, etc. Message passing libraries offer a very low
level support for information interchange, not adequate for complex data structures like
graphs. We followed this approach with the Mat application, but the information interchanged
were vectors of double precision float numbers.
Most of these problems are solved using Java, a younger alternative to Object Oriented
Programming. Java is inherently platform independent and the bytecode can be run in any
system where exists a Java Virtual Machine. A significant drawback is that the JVM's
operations, the bytecode, is interpreted, and thus, slower than the object code produced out of
a C++ compilation. Other compilers produceexecutables with the JVM embedded that can be
run directly as a regular application, but loosing portabili ty. At this point we decided to work
with Java. The interfacewith Heidi is the edu.fing.inco.math.util.HeidiGraphFileIO

class that reads and writes files with graphs understandable by Heidi.
The problem of exchanging information between programs is redefined in Java as referencing
remote objects using RMI (Remote Method Invocation). A simple way to think about this
problem is that one object happens to live in another machine, and that you can send a message
to that object and get a result as if the object lived on your local machine. RMI makes heavy
use of interfaces. When a remote object is created, the underlying implementation is masked by
passing around an interface. Thus, when the client gets a handle to a remote object, what it
really gets is an interfacehandle, which happens to connect to some local stub code which
talks acrossthe network. The only difference is that the remote object is boundto a variable
instead of created as a regular object. From then on, it behaves as any regular object. Another
important factor is that most objects can be used this way. The only requirement is that the
object implements the java.lang.Serializable interface and uses Serializable objects.
Since Java 1.1 object serialization was introduced. It makes it possible to take any object that
implements the Serializable interfaceand turn it into a sequenceof bytes that can later be fully
restored into the original object. This is even true acrossa network and different Java Virtual
Machines, which means that the serialization mechanism automatically compensates for
differences in operating systems and hardware platforms. Serializing an object is quite simple,
as long as the object implements the Serializable interface(this interfaceis just a flag, and has
no methods). In Java 1.1, many standard library classes have been changed so they’re
serializable, including all the wrappers for the primitive types, all the collection classes, and
many others.
A particularly clever aspect of object serialization is that it not only saves an image of the
object directly referenced, but it also follows all the handles contained in the object and saves
those objects, and follows all the handles in each of those objects, etc. This is sometimes
referred to as the “web of objects” that a single object may be connected to, and it includes
arrays of handles to objects as well as member objects. More details can be found on the Java
documentation (http://java.sun.com).
We can seethe importance of this approach: as far as we can serializeall our objects, we can
run them remotely on any remote Java Virtual Machine. We can concentrate on graph
algorithmic instead of communication and synchronization.
Another reason is the possibili ty of having a multi-platform parallel tool available for running
experiments and test our models also in a non-standard parallel environment. Our analysis
considers the platform, the algorithm, the communication pattern, etc., but does not constrain
to standard parallel environments.

The SN algorithm is implemented as a method in a class. It receives a weighted graph, the
subset of terminal nodes, a heuristic, a criteria and returns the resulting tree. The metaheuristic

� � � � � � � � � � � � � } � � � � � � � � � � } � � � � � � � � � � �

� � � � � � ¡ ¢ £ ¤ ¥ ¦ § � � £ � ¨ § © � ª § « � ª ¢ ¦ ª ¦ � � � � £ � ¬ ¨ © � ¡

converts the problem into a succession of sets decision problems: at each iteration, the “best”
decision is taken, until the solution is found. This general metaheuristic can be applied to
almost any problem that accepts a compositional solution. In the case of the SPG, the decision
consists of determining at each stage for every non terminal node will or will not be part of the
solution. Each individual decision is taken considering the heuristic applied to the graph
considering that the decision has already been taken. The “best” option, according to the
heuristic, is taken at each stage, “fixing” each non-terminal node as a Steiner node or removing
it from the solution. Let m® ¯ V ° X ± be the number of non-terminal nodes in the graph.
Each iteration invokes twicethe heuristic for each non-terminal node at each stage. We can see
that the full solution of the problem takes m ² m³ 1 ´ invocations of the heuristic.

The following pseudo-code represents the implementation:

process
initialize remote object threads
for (i=0;i<cantTermNodes;i++)

build set of graphs
apply remote object threads to set of graphs
pick best solution
replace current graph with best graph

end
determine min coverage tree

Java makes the use of multithreading simple. We use a thread to control each remote object.
The threads accessa common set of graphs to solve, pick some of them, submit the job to the
remote object, gather the result and send more jobs until no other graphs are there for solving
using the heuristic. The resolution of the heuristic takes place remotely, but the
synchronization and access to the information is solved within the same Virtual Machine,
which makes it simpler to coordinate execution. Instead of having different programs running
in different memory spaces, we have a set of threads running with the same permissions in the
same virtual machine. The set of remote objects do not interact amongst them, but through the
master process.

Complexity

The way we parallelized the algorithm, the same suggested by the article's authors, consists in
running in parallel all the heuristics that cooperate to take each decision. The most simple
approach is to take single CPU heuristics and run them in parallel. This is the approach we
followed. We used single-threaded heuristics to solve each decision problem, while running
sets of them in parallel33. The metaheuristic imposes a limit in the speedup: we can not spawn
more than 2m, twice the number of non-terminal nodes, decision problems at the same time,
even though there are m(m-1) heuristics to solve. We have to take one decision at a time so as
to build the solution. At the following iteration there will be two heuristics less to run, we
already took a decision. Each iteration will require less computations to solve, until the last

33 The validity of this analysis remains even if the heuristics are solved in parallel by fixed sets of computers
also.

µ ¶ · ¸ ¹ º » ¼ · ½ ¾ ¸ ¶ ¿ À » Á ¸ ¹ » Â Ã Ä Å ¿ Æ Ç ¸ È ¸ Å · É » Ê Ë

Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ï Î Õ Ð Ú Ù Û Ï Ü Ù Ý Í Ü Ô Ø Ü Ø Ð Ð Ï Ð Õ Í Þ ß Ú Û Ñ Ò Ó

decision when we have to decide if the remaining node shall be present or not in the solution,
leading us to computing two heuristics. We can seethat the usage of computational resources
decreases in time. If we have as many as 2m CPUs, only one iteration would use them all.
Following iterations would use successively two CPUs less than the previous iteration.
It is evident now that even if we count with m(m-1) CPUs we will not be able to solve all
heuristics at once. A first lower bound for the speedupof the problem is given by the sequence
of stages. If a single system attempts to solve the problem, it will have to solve m(m-1)
heuristics. If we have enough CPUs to tackle all heuristics in a stage at a time, we will be able
to solve all stages in the time of m heuristics plus the administrative time of splitting and
joining the solutions. With non-parallel heuristics, this is the fastest we can solve this problem.
This speedupis a good one. We can turn a quadratic problem into a linear one, on the number
of heuristics.
The number of subproblems (decisions) into which we divide a Steiner problem is m = n – nX.
The complexity of each subproblem depends on the heuristic used. In our initial tests we used a
very simple heuristic that we called DijkstraPlusPrune . It consists of picking randomly an
initial node and determining the Dijkstra treefrom that node. It is a solution because it is a tree
that covers all the Terminal nodes, since the Dijkstra tree covers all nodes in a connected
graph. After finding the tree, we proceed pruning all non terminal nodes with degreeone, that
means, unnecessary nodes for the connectiveness of the terminal nodes. The cost of
determining the Dijkstra tree is O(n2).
Since every decision takes 2nX executions of the heuristic, we can determine that the order of
each decision is O(n3). Now we can see that the order of execution of the whole SN
metaheuristic is O(n4).
Being more precise, the execution order is O((n-nX)2 n2) that is equivalent to O(n4) when n >>
nX. This is the most general case in STP resolution. We can also seethat if n ≈ nX we will not
get an O(n4) execution time but it will approximate to O(n2). If n = nX our Steiner Problems
turns into SPG(V, E, w, V) that is equivalent to Dijkstra(V, E, w), whose resolution time is
O(n2).

The model

We can seeclearly that solution method problem falls within the classof master-slaveparallel
programs, thus, we will apply the general procedure for building a network that represents the
system. As we saw on the taxonomy analysis for this kind of problems, they can be represented
by the junction of two basic networks, one for the master and other for the slaves as follows:

First model

Master Slave

à Ü Ñ Ï Ð á Ø â Ñ Ó Ú Ï Ü Í ã Ø ä Ï Ð Ø å æ Ò Õ Í Ö Ô Ï ç Ï Õ Ñ × Ø è é

ê ë ì í î ï ð ñ ò ó ô õ ö ÷ í ì ó î ø ÷ ù í ú ÷ û ë ú ò ö ú ö î î í î ó ë ü ý ø ù ï ð ñ

We can seethat the resolution of the whole problem consists in mþ ÿ V � X ÿ decisions, one
for each non terminal node. There exists an implicit synchronization after each of this decisions
while the master determines the best decision. This means that there is an outer iterative stage
at the master that controls the serial completion of decisions. A more accurate network that
models the master process follows:

Second model

Master Slave

We will use this second experiment to test how important is to be able to model the
synchronization in this particular problem. We will try to predict parallel system performance
without modifying the general network for this kind of problems, initializing it with m(m-1)
heuristics to solve. With this general network we will miss m synchronizations amongst all
processors. We will try evaluate for this particular case expressiveness vs. simplicity.
It is worth mentioning that this might be interesting considering when the number of decisions
outnumbers the CPUs. Lets say that we have k CPUs and m non-terminal nodes. If k>>m we
can always addressall heuristics needed to take each decision in parallel, but no other decision
can be taken until we have taken the decision, that is, k-2m CPUs will be idle because we can
not start solving further heuristics until we take a decision. In this case, if we model the system
with our first model, not considering the blocking between decisions, we will estimate a
performancethat exceeds the real performanceof the algorithm. We will study a case in which
k<<m.

First experiment: Heterogeneous, single OS, two machines cluster

The first of our experiments will be run in parallel in two CPUs, the simplest parallel non-SMP
scenario. Both systems will be booted on Windows ME (4.90.3000) and the virtual machine
used is Sun Microsystem's Java 2 Standard Edition 1.4.0 (build 1.4.0-b92).
Trying to get a clearer graphic representation of the network, we shall assemble a single
network with the master and the two slaves instead of using the join capabili ty of UltraSAN.
For bigger networks this is recommendable, even though there should be as many slaves as
“classes” of CPUs, and as many tokens into the CPUplaces as processors in each one of the
classes.
A couple of minor changes were made to the suggested network, mainly due to the iterative

� ú ï í î � ö � ï ñ ø í ú ë � ö � í î ö � � ð ó ë ô ò í � í ó ï õ ö 	

� � � � � � � � � � � � � � �

nature of the problem. First of all, we considered no faults, and thus, fault activity was
removed. A placecalled Decisions_Taken was added to “count” the number of iterations,
and thus decisions that have been taken so far. Also a placecalled Sync was added so as to
synchronizethe movement of tokens “out” of the network to the Decisions_Taken place. All
this modifications make it possible to model properly the blocking of the different stages of the
problem in the network. It is also possible to skip the usage of the Sync place and to
complicate the logic of the input gates that control the movement of the tokens along the
network. We preferred this option because we believe the semantics of the network are much
clearer, making it more understandable. It is also important to mention that these places do not
increase the state-spaceof the network and do not make it more complex for a system to solve
it.

Another modification was performed on the network: Problem_Partitioned place was
removed from the network and the tokens are moved directly to their destinations instead of
through it. The reason for the removal is not semantical, but to cut down the number of states
generated. Considering this placewe would need to consider processresolution as tokens are
being moved to the SND_Buf: slaves might start solving pieces of work while the SND_Buf

placeis being fed. Even though the inclusion of this placemakes a theoretically more accurate
network, we found it better to remove it as problem generation times would be too small, and
prediction would become inaccurate and state-space would grow significantly.
Returning to the first model, the naive one, for the two host experiment, we condensed the
first model into one complete network for the same reasons.

It is clear to notice that the level of blocking in the second network is smaller than the one of
the first network. It is clear that the second network does not model the real execution, but we
want to determine how inaccurate it is to apply the model directly without considering the
particular interaction details of this problem.

Parameter fitting

We have the layout of the network that models the system. We need now to determine the
performance indexes of the timed activities and the number of slaves available for solving
heuristics. The distribution functions that need to be defined according to empirical data are
the ones associated with the following timed activities: Partition , Fault , Send, Remove, Get

and Process . We will model a perfect system, one in which no Fault occurs.

Experimental data

In this section we will empirically determine the required parameters to complete the network
definition. As we stated before in the taxonomy analysis, we need to determine both hardware
performance indexes and problem complexity, specified in some adequate, problem dependent
unit.
We based our tests on the B series of the SteinLib [KMV1]. We worked with the first 7
problems of the suite. The following table resumes some relevant characteristics of the
problems:

� � � � � � ! � � � � � � " � # � � � $ % � � � � � � & � � � � � ' '

() * + , - . / 0 1 2 3 4 5 + * 1 , 6 5 7 + 8 5 9) 8 0 4 8 4 , , + , 1) : ; 6 7 - . /

The first three columns show parameters that determine the complexity of the network,
parameters that determine directly the sizeand connectivenessof the graph. The following two
columns, Decisions and Theoretical show the complexity of the algorithm measured in the
number of decisions that would be taken through the resolution and the number of heuristics
that have to be solved in the worst case. The next column, Solved, shows the average number
of actual invocations to the heuristics routine in our studies. The differenceis explained due to
non-connected graphs that are discarded without being considered when exploring the decision
space. In the worst case of a fully connected graph, these two figures will be the same.

We performed the first set of our tests on two machines, two similar Celeron systems, one with
1 GHz processor and the other with a 1,1 GHz processor, both of them running Windows 9x
OS. The tests consisted of running the master and the slave process locally in each machine
threetimes for each of the seven selected problems. The original codes were slightly modified
so as to get timing information. The slave processes were coded so they can measure the time
elapsed for each invocation, and the time is printed on the standard output. The master process
was modified so it prints on his standard output the time spent partitioning the problem. That
allowed us to collect detailed execution data: text files later analyzed. The execution conditions
were kept as stable as possible (no other processes were running on the systems), but very high
variance was obtained in the measures, suggesting a certain lack of stabili ty in the OS's CPU
allocation times.
The following table resumes the information gathered

Apart from the data shown in the previous table, there are some numerical aspects that should
be taken into consideration. The first thing that has to be considered is that in general, the
decision resolution time decreases as the problem resolution takes place. This happens because
the problem itself becomes smaller after each decision.
As soon as a decision is taken, one fewer node has to be considered in the next iteration. If the
node remains, the graph stays the same, but if the decision consists in removing the node, then
the graph that must be considered in the next iteration counts one fewer node and all its
incident edges. It is quite reasonable to find this behavior in the general case as the algorithm
proceeds pruning the graph until a minimal set of nodes remains, and then only a coverage tree

< 8 - + , = 4 > - / 6 + 8) ? 4 @ + , 4 A B . 1) 2 0 + C + 1 - 3 4 D E E

b01 b02 b03 b04 b05 b06 b07

1.1GHz
Total Time 438853 ms 442550 ms 252397 ms 736583 ms 603103 ms 339767 ms 3267740 ms
Master 443 ms 469 ms 357 ms 661 ms 606 ms 483 ms 1332 ms
Remote 285 ms 336 ms 383 ms 427 ms 415 ms 509 ms 950 ms

1.0GHz
Total Time 543740 ms 475527 ms 271900 ms 813377 ms 702697 ms 407567 ms 3355377 ms
Master 520 ms 506 ms 388 ms 707 ms 686 ms 552 ms 1369 ms

Remote 355 ms 357 ms 421 ms 468 ms 482 ms 593 ms 991 ms

Heuristics
Nodes Terminals Edges Decisions Theoretical Solved

b01 50 9 63 41 1640 1360 82,91%
b02 50 13 63 37 1332 1194 89,61%
b03 50 25 63 25 600 571 95,22%
b04 50 9 100 41 1640 1563 95,30%
b05 50 13 100 37 1332 1308 98,22%
b06 50 25 100 25 600 587 97,83%
b07 75 13 94 62 3782 3252 85,98%

F G H I J K L M N O P Q R S I H O J T S U I V S W G V N R V R J J I J O G X Y T U K L M

is saved. Even though there are particular sick-situations where nodes and edges are not
removed (i.e. a tree with terminal nodes as leaves), the general case consists of successive
smaller graphs, which lead to smaller execution times.
The following graphs plots the data gathered out of a single execution of the b01 problem. The
data itself is not relevant, but the general behavior is. The graph on the left represents the
execution times of the problem partitioning at the master processwhile the graph on the right
plots the times thrown at the RemoteGraphSolver , slave process's CPU time. We can seethat
clock resolution is about 50-60 ms. The lack of smoothnesson both graphs shows the lack of
stabili ty of the OS.

Even though we found that the average on these measured times is suitable for our studies, it is
possible to use other functions to estimate problem resolution time expected values every time.
In our study variancevalues are extremely high and are not considered. It might be of interest
to use a function of the number of decisions or invocations instead of a constant one. Such
function would fit better the gathered data and should be a better model of the reality: as nodes
and edges are removed, each heuristic resolution is applied to a smaller graph, thus it's
resolution is simpler than the previous one.

We have collected relevant performancevalues that should sufficeto estimate the performance
of the parallel system. As suggested, we will use deterministic and exponential distribution
functions on our networks to model optimistic and pessimistic executions respectively. We will
determine first the optimistic execution times and later, the pessimistic ones.

We will use deterministic functions to estimate TET and MES for this problem. As was stated
before, the tool we are using does not provide all the simulators we would like for working
with deterministic functions in our particular networks34. We shall now study the network
analytically.
First of all, we will study how tokens are moved from Parallel_Problem_Input placeto
Decisions_taken . We can isolate this study because, until all tokens are removed from this
sub-network, Sync placewill hold a token, and the activity Convert_To_Decisions will be
paused. When all work is done, the sub-network will be “re-set” , a new token will be set at
Decisions_Taken place and the token will be removed from the Sync place.
Lets assume that we have n tokens at Parallel_Problem_Input place. Partition activity
becomes enabled and after tmaster ms all tokens are doubled and moved at once to SND_Buf

place, modeling all possible decisions. After that, both get1 and get2 activities are enabled,

34 Maybe we still do not know an equivalent way to compute our results within the tool.

Z V K I J [R \ K M T I V G] R ^ I J R _ ` L O G P N I a I O K Q R b c b

0

100

200

300

400

500

600

700

800

900

Invocations

Ti
m

e
(m

s)

0

200

400

600

800

1000

1200

1400

1600

Decisions

Ti
m

e
(m

s)

d e f g h i j k l m n o p q g f m h r q s g t q u e t l p t p h h g h m e v w r s i j k

CPU1 and CPU2 get allocated and then, Process1 and Process2 get enabled. As soon as
these activities are finished (tremote1 ms and tremote2 ms respectively) CPUs are de-allocated and
tokens moved to RCV_Buf place. From that moment on, both CPUs will compete consuming

tokens from SND_Buf placeand placing them RCV_Buf placein at a speed of
1000
tremote1

and

1000
tremote2

tokens per second respectively. As the token consumption is taken place

simultaneously, all tokens will be removed approximately after
tremote1 x tremote2 x ny

tremote1 z tremote2 { x 1000
seconds. Considering the master partitioning time, we can state that all tokens are removed in

tmaster

1000z tremote1 x tremote2 x ny
tremote1 z tremote2 { x 1000

seconds35.

We should modify this optimistic estimation: it is indeed pessimistic. We realized before that
this is the worst case, in which all decisions lead to connected graphs. As we observed in the
problems we studied, there are generally problems that are discarded at the master and never
solved remotely, thus, the number of tokens solved are smaller than n, and it is given by a
factor. The following formula could be considered and optimistic-average-case estimation:

tmaster

1000z tremote1 x tremote2 x n x factory
tremote1 z tremote2 { x 1000

seconds

Now we know how fast tokens are removed from Parallel_Problem_Input place. Every
time n tokens are placed in Parallel_Problem_Input place, a token is removed from
Problem_Input place. The following formula predicts optimistically the time spent solving
the network

n x tmaster

1000z |
i } 1

n tremote1 ~ tremote2 ~ i ~ factor�
tremote1 � tremote2 � ~ 1000

seconds

or

n ~ tmaster

1000� tremote1 ~ tremote2 ~ factor�
tremote1 � tremote2 � ~ 1000~ n

�
n � 1 �
2

seconds

From this formula, we can seethat the speed of the master only affects the linear component of
the equation. The n2 component is only driven by the remote processing speed.
The following table shows the numerical results:

35 This is not absolutely true. The last token can not be partitioned between both CPUs. Only one of them
would get the allocation, and thus the last piece of the resolution would happen only at the processing speed
of that CPU instead of the sum of both speeds. We accept this littl e extra error that simpli fies the analytical
study.

� �

� � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ � � ¤ � © ¨ ª � « ¨ ¬ � « £ § « § � � � � ¤ � ® © ª ¡ ¢

The difference between both columns is problem dependent, but we can see that the “more
connected” the graph is, the closer the average case is to the worst case. If a deeper study is
done on this particular problem, the average case should be related better to the worst case
with some theoretical background. Maybe residual connectivenessreliabili ty values should be
used, as they give a good index for graph discarding.
The figures shown on the table are the TET for the optimistic approach using the detailed
network. We will base our estimation for the MES on the previous results. The unit will be the
number of decisions taken per unit of time. For that average we have estimated the time in
which the whole problem is solved and we do know the number of decisions taken for both the
worst and the average case, thus, we can simply determine the worst and average MES for this
problem. The following table shows the numerical results:

When we first stared at the data, it seemed something wrong: why the number of decisions per
second figure is bigger on the worst case than in the average case? That is because the
partitioning time is independent from the number of graphs discarded due to lack of
connectiveness. This factor makes the average case “slower” or, in other words, the time
spent at the master “affects” more fewer decisions.
We also suggested the ideaof using a naiveapproach for the model. Let us now estimate the
TET and MES for that approach. It is straightforward to seethat the naive network is a sub-
network of the detailed network, and thus, the equation that describes how long it takes for the
system to solve the problem is:

tremote1 ¯ tremote2 ¯ factor°
tremote1 ± tremote2 ² ¯ 1000̄

n
°
n ³ 1 ²
2

seconds

We already know the number of tokens (decisions) that need to be consumed (taken) for each
of the b0x problems. The following table resumes the results of applying the previous formula
to each problem:

´ « � � µ § ¶ ¢ © � « � · § ¸ � � § ¹ º ¡ ¤ � ¥ £ � » � ¤ ¦ § ¼ ½ ¾

MES
Optimistic (s)

Worst-case Average-case
b01 277 233
b02 248 224
b03 129 124
b04 393 376
b05 320 314
b06 176 173
b07 1917 1660

TET
Worst-case Average-case

b01 5,914 5,835
b02 5,373 5,330
b03 4,641 4,625
b04 4,170 4,156
b05 4,168 4,163
b06 3,400 3,395
b07 1,973 1,959

Optimistic (decisions/s)

¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Â Á È Ã Í Ì Î Â Ï Ì Ð À Ï Ç Ë Ï Ë Ã Ã Â Ã È À Ñ Ò Í Î Ä Å Æ

Thus, the MES Table follows.

It should be quite straightforward to see that the MES is the same for both the average and
worst case: no master partitioning time is considered, thus, the only relevant time here is the
processing one.
Now that we have estimated the optimistic behavior, not only on the detailed approach but also
the naive one, we shall study the pessimistic one. This study presents some details that are
worth mentioning. On our previous study we were able to estimate our performanceindicators
due to the particularly small size of the network: 751 states. The previous models lead to
networks with one order of magnitude of states more. This networks become slower to
estimate and other approaches were used. The kind of study based on successive terminating
simulations made the estimation very time consuming and error prone. This time a modification
of the network was performed, so it continuously loops. The modified network follows:

This network avoids the absorbing marking produced when all tokens are moved to
Decisions_Taken place in the original network. We added a known time to the activity
Feedback , associated to the transition from the “last” to the “first” state. This transition let us
study how long, in average, the network will be performing the Feedback activity, and thus,

Ó Ï Ä Â Ã Ô Ë Õ Ä Æ Í Â Ï À Ö Ë × Â Ã Ë Ø Ù Å È À É Ç Â Ú Â È Ä Ê Ë Û Ü Ý

TET
Optimistic (s)

Worst-case Average-case
b01 259 215
b02 231 207
b03 120 115
b04 366 349
b05 297 292
b06 164 161
b07 1834 1577

MES
Worst-case Average-case

b01 6,328 6,328
b02 5,778 5,778
b03 4,985 4,985
b04 4,479 4,479
b05 4,482 4,482
b06 3,650 3,650
b07 2,062 2,062

Optimistic (decic./s)

Þ ß à á â ã ä å æ ç è é ê ë á à ç â ì ë í á î ë ï ß î æ ê î ê â â á â ç ß ð ñ ì í ã ä å

how long it will be doing the processing we need to estimate. In this case, our tool gives us
very good assistance, provided that it calculates our performance variables on the Direct
Steady State Solver with a good level of accuracy.
We defined a performance variable, probability , as an impulse reward. Lets call Tc to the
total cycle time, Tp to the problem time and Tf to the feedback time. The total cycle time is the
sum of both problem time and the feedback time: Tc = Tp + Tf . The value estimated at the

simulation is
1

T c
thus, we can calculate Tp as

1
probabilit y ò T f .

The following table resumes the pessimistic estimations for each network, both the reward
variable estimated and our estimation for the Tp.

In the same way that we estimated the optimistic performance indexes with both the detailed
and the naive Petri network, we shall now present the results of studying exponential
distribution functions on the modified naive network. The modifications performed on the
network have the same nature than the ones performed on the detailed network: avoid the
absorbing marking when all tokens are located at the RCV_Buf place. A feedback activity is
added so as to re-cycle the tokens from the absorbent marking to the initial marking in a
known time. The following network represents the modified network:

We ran the simulation for all the tests. The following table presents the data gathered for both,
the worst and the average cases:

ó î ã á â ô ê õ ã å ì á î ß ö ê ÷ á â ê ø ù ä ç ß è æ á ú á ç ã é ê û ü ý

Pessimistic - Worst Case
Probability (1/s) Pessimistic(s) TET

b01 3,65948E-03 272
b02 3,73238E-03 267
b03 6,90997E-03 144
b04 2,37100E-03 421
b05 2,89707E-03 344
b06 5,06343E-03 196
b07 4,97679E-04 2008

Pessimistic – Average Case
Probability (1/s) Pessimistic(s) TET

b01 4,01148E-03 248
b02 4,16707E-03 239
b03 7,35991E-03 135
b04 2,50383E-03 398
b05 2,98603E-03 334
b06 5,26087E-03 189
b07 5,77176E-04 1732

þ ÿ � � � � � � � � � 	
 � � � � � � � � � � � ÿ � �
 �
 � � � � � ÿ � � � � � �

Lets now present in condensed tables all the estimations performed for the TET for the
detailed and naive networks:

We also present here the MES estimated:

Observing the last table we seethat the four calculations determine the same MES estimated
value for each of the different predictions. This is due to the lack of blocking in the whole
execution. The other naive estimations differ in values as they consider different number of
tokens.
The following table presents the experimental data collected from the parallel resolution of the
problem:

Analyzing the numerical data gathered we can seethat the naiveapproach is almost as good as
the detailed one, and is always a lower bound for the detailed one. It is good to note that the
naive estimation is within the same order of magnitude of time than both the detailed
estimation and the numerical solution. We believe that it is also an acceptable performance
estimation and in the event of too complex numerical simulations, it could be used.

� � � � � �
 � � � � � � ÿ �
 � � �
 � � � � ÿ � � � � � � � 	
 � � �

Probability (1/ms) Pessimistic(s)

b01 3,84233E-03 259
b02 4,32153E-03 230
b03 8,27571E-03 120
b04 2,72310E-03 366
b05 3,35645E-03 297
b06 6,06341E-03 164
b07 5,44321E-04 1836

Worst Case - naive
Probability (1/ms) Pessimistic(s)

b01 4,63279E-03 215
b02 4,82058E-03 206
b03 8,69527E-03 114
b04 2,85716E-03 349
b05 3,41798E-03 292
b06 6,19746E-03 160
b07 6,33134E-04 1578

Average Case - naive

b01 b02 b03 b04 b05 b06 b07

D
et

ai
le

d Optimistic
Average 233 224 124 376 314 173 1660
Worst 277 248 129 393 320 176 1917

Pessimistic
Average 248 239 135 398 334 189 1732
Worst 272 267 144 421 344 196 2008

TET (s)

b01 b02 b03 b04 b05 b06 b07

N
ai

ve

Optimistic
Average 215 207 115 349 292 161 1577
Worst 259 231 120 366 297 164 1834

Pessimistic
Average 215 206 114 349 292 160 1578
Worst 259 230 120 366 297 164 1836

TET (s)

b01 b02 b03 b04 b05 b06 b07
267 250 135 371 362 197 1781

5,09 4,76 4,20 4,13 3,60 2,96 1,82
TET (s)
MES (s)

b01 b02 b03 b04 b05 b06 b07

D
et

ai
le

d Optimistic
Average 5,84 5,33 4,63 4,16 4,16 3,40 1,96
Worst 5,91 5,37 4,64 4,17 4,17 3,40 1,97

Pessimistic
Average 5,48 5,00 4,23 3,93 3,92 3,11 1,88
Worst 6,03 4,99 4,17 3,90 3,87 3,06 0,89

MES (s)

b01 b02 b03 b04 b05 b06 b07

N
ai

ve

Optimistic
Average 6,33 5,78 4,99 4,48 4,48 3,65 2,06
Worst 6,33 5,78 4,99 4,48 4,48 3,65 2,06

Pessimistic
Average 6,33 5,80 5,01 4,48 4,48 3,67 2,06
Worst 6,33 5,79 5,00 4,48 4,48 3,66 2,06

MES (s)

� � � ! " # $ % & ' () * � & ! + * , - * . � - %) -) ! ! ! & � / 0 + , " # $

Second experiment: Heterogeneous, two OSs, five machines cluster

We performed the second set of our tests on five machines configured as follows: 1 Pentium
III 933Mhz, 512MB RAM, Linux 2.4.18; 3 Pentium II 400MHz, 256MB RAM; 1 Pentium II
400MHz, 256 MB RAM Windows NT 4.0. The virtual machine used is Sun Microsystem's
Java 2 Standard Edition 1.4.0 (build 1.4.0-b92) on windows and linux systems.
The tests consisted in running the master and the slave processlocally in each machine three
times for each of the seven selected problems. The execution conditions were kept as stable as
possible without modifying the standard system configuration excessively.
The following table resumes the information gathered.

We only had to introduce a modification in the Petri Network that models the threedifferent
classes of equivalence of CPUs present in this problem, the resulting network follows:

The number of tokens in the CPU places will not be one as in the previous network, as there is
one CPU classwith threeelements. Once again, it could be possible to compose the network
using three smaller networks, one for each CPU class and use the joining and replication
capabili ty of the tool, but we preferred a simpler construction for this sizeof network. For the
complexity of this network, and considering that we can numerically simulate the detailed
network, we will not perform the naive analysis, on this occasion.

1 - " ! 2) 3 " $ + - � 4) 5 !) 6 7 # & � ' % 8 & " () 9 : ;

b01 b02 b03 b04 b05 b06 b07
Total Time 573578 ms 518439 ms 282640 ms 862685 ms 735778 ms 435485 ms 3662427 ms

Remote 373 ms 385 ms 433 ms 495 ms 509 ms 634 ms 1082 ms

Master 585 ms 551 ms 432 ms 792 ms 759 ms 622 ms 1580 ms

Total Time 1032942 ms 941410 ms 527672 ms 1594033 ms 1397483 ms 761562 ms 7227974 ms

Remote 678 ms 715 ms 822 ms 938 ms 982 ms 1119 ms 2141 ms

Master 1007 ms 985 ms 772 ms 1418 ms 1429 ms 1090 ms 3135 ms

Total Time 1214830 ms 1012375 ms 612495 ms 1894883 ms 1595808 ms 821483 ms 7937792 ms

Remote 792 ms 799 ms 953 ms 1086 ms 1115 ms 1207 ms 2312 ms

Master 1199 ms 1149 ms 961 ms 1788 ms 1689 ms 1262 ms 3570 ms

P III 933 Mhz –
Linux – 512 MB

RAM

P II 400 Mhz –
Windows – 256

MB RAM

P II 400 Mhz –
Linux – 256 MB

RAM

< = > ? @ A B C D E F G H I ? > E @ J I K ? L I M = L D H L H @ @ ? @ E = N O J K A B C

We have collected relevant performancevalues that should sufficeto estimate the performance
of the parallel system. As suggested, we will use deterministic and exponential distribution
functions on our networks to model optimistic and pessimistic executions respectively. We will
determine first the optimistic execution times and later, the pessimistic ones.

We will first use deterministic functions to estimate TET and MES for this problem so as to
get our optimistic estimations. First of all, we will study how tokens are moved from
Parallel_Problem_Input placeto Decisions_taken . We can isolate this study because,
until all tokens are removed from this sub-network, Sync placewill hold a token, and the
activity Convert_To_Decisions will be paused. When all the work is done, the sub-network
will be “re-set” , a new token will be set at Decisions_Taken placeand the token will be
removed from the Sync place.
Lets assume that we have n tokens at Parallel_Problem_Input place. Partition activity
becomes enabled and after tmaster ms all tokens are doubled and moved at once to SND_Buf

place, modeling all possible decisions. After that, all get i activities are enabled, CPUi gets
allocated and then, Process i get enabled. As soon as these activities are finished (tremote1 ms,
tremote2 ms and tremote3 ms respectively) CPUs are de-allocated and tokens moved to RCV_Buf

place. From that moment on, all CPUs will compete consuming tokens from SND_Buf place

and placing them RCV_Buf place in at a speed of
1000
tremote1

,
1000
tremote2

and
3000
tremote3

tokens

per second respectively. As the token consumption is taken placesimultaneously, all tokens
will be removed approximately after

tremote1

P
tremote2

P
tremote3

P
nQ

tremote2
P

tremote3 R tremote1
P

tremote3 R 3
P

tremote1
P

tremote2 S P
1000

seconds. Considering the master

partitioning time, we can state that all tokens are removed in
tmaster

1000R tremote1
P

tremote2
P

tremote3
P

nQ
tremote2

P
tremote3 R tremote1

P
tremote3 R 3

P
tremote1

P
tremote2 S P

1000
seconds36.

Now we know how fast tokens are removed from Parallel_Problem_Input place. Every
time n tokens are placed in Parallel_Problem_Input place, a token is removed from
Problem_Input place. The following formula predicts optimistically the time spent solving
the network

n
P tmaster

1000R T
i U 1

n tremote1
P

tremote2
P

tremote3
P

nQ
tremote2

P
tremote3 R tremote1

P
tremote3 R 3

P
tremote1

P
tremote2 S P

1000
seconds

or

n
P tmaster

1000R tremote1
P

tremote2
P

tremote3
P

nQ
tremote2

P
tremote3 R tremote1

P
tremote3 R 3

P
tremote1

P
tremote2 S P

1000
P n

Q
n V 1 S
2

seconds

From this formula, we can seethat the speed of the master only affects the linear component of
the equation. The n2 component is only driven by the remote processing speed.

36 This is not absolutely true. The last token can not be partitioned between both CPUs. Only one of them
would get the allocation, and thus the last piece of the resolution would happen only at the processing speed
of that CPU instead of the sum of both speeds. We accept this littl e extra error that simpli fies the analytical
study.

W L A ? @ X H Y A C J ? L = Z H [? @ H \] B E = F D ? ^ ? E A G H _ ` a

b c d e f g h i j k l m n o e d k f p o q e r o s c r j n r n f f e f k c t u p q g h i

The following table shows the numerical results:

Now that we have estimated the optimistic behavior, we shall study the pessimistic one. As it is
suggested in the taxonomy analysis, we modified the network so it continuously loops avoiding
the absorbent configuration that arises after the processing is done. The modified network
follows:

This network avoids the absorbing marking produced when all tokens are moved to
Decisions_Taken place in the original network. We added a known time to the activity
Feedback , associated to the transition from the last to the first state. This transition let us
study how long, in average, the network will be performing the Feedback activity, and thus,
how long it will be doing the processing we need to estimate. In this case, our tool gives us a
very good assistance, provided that it calculates our performance variables on the Direct
Steady State Solver with a good level of accuracy.
We defined a performance variable, probability , as an impulse reward. Lets call Tc to the
total cycle time, Tp to the problem time and Tf to the feedback time. The total cycle time is the
sum of both problem time and the feedback time: Tc = Tp + Tf . The value estimated at the

v r g e f w n x g i p e r c y n z e f n { | h k c l j e } e k g m n ~ � �

Optimistic
MES

b01 122 13,44
b02 104 12,81
b03 53 11,32
b04 165 9,94
b05 140 9,51
b06 75 8,00
b07 790 4,79

TET (s)

� �

simulation is
1

T c
thus, we can calculate Tp as

1
probabilit y � T f .

The following table resumes the pessimistic estimations for each network, both the reward
variable estimated and our estimation for the Tp.

The following tables present a comparison that collects our pessimistic and optimistic
estimations together with experimental data obtained on experiments. For our experiments we
present the minimum, maximum and average values. The first table presents the TET and the
second the MES.

We can see that in this case, we obtain a speedup with 5 slower systems than with 2 fast ones if
we compare the two experiments.

5.4 - Annex on single CPU multitasking observations

One of the tools developed is the “primos” program. The program finds the prime numbers
within a given interval. Determining if a number is prime or not is a simple mathematical
problem that has algorithmically been solved since 230 BC by Eratostenes, but there is no
equation that can be used to determine if the given number is a prime number or not: it has to
be tested. IsaacAsimov wrote about this problem in his essay “Prime quality” in 1966[ASI1]

� �

Pessimistic
MES

b01 345 4,75
b02 288 4,63
b03 170 3,53
b04 469 3,50
b05 402 3,31
b06 229 2,62
b07 2134 1,77

TET (s)

b01 b02 b03 b04 b05 b06 b07

T
E

T
 (

s)

Pessimistic 345 288 170 469 402 229 2134
Max 250 207 127 342 306 193 1399
Average 232 198 120 329 281 187 1360
Min 218 191 114 309 257 184 1332
Optimistic 122 104 53 165 140 75 790

b01 b02 b03 b04 b05 b06 b07

M
E

S

Pessimistic 4,75 4,63 3,53 3,5 3,31 2,62 1,77
Max 6,55 6,44 4,71 4,79 4,35 3,11 2,70
Average 7,06 6,71 5,01 4,99 4,73 3,21 2,78
Min 7,52 6,96 5,27 5,31 5,19 3,27 2,84
Optimistic 13,44 12,81 11,32 9,94 9,51 8 4,79

 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ £ ¢ © ¤ ® ¯ £ ° ± ¡ ° ¨ ¬ ° ¬ ¤ ¤ £ ¤ © ¡ ² ³ ® ¯ ¥ ¦ §

and depicted some ways to discard numbers that cannot be prime ones, but there is no known
way better than testing. Current technology has developed highly sophisticated techniques to
help discarding numbers that are not prime with fewer operations that simple brut-force
testing. In our case we want to load CPU, so we did not care about optimization aspects.

The algorithm that we choose to determine if a number is prime is not only simple but
inefficient: try all numbers smaller than its half to see if someone is a divisor and is different

from number one. When a prime n is tested,
n
2

integer divisions have to be done, which is

the worst case. Whenever a number that is not prime is tested, fewer divisions are done. If we

try to determine the prime numbers in a given interval ´ x0 ,xn µ , xn

¶
xn · 1 ¸

4 · x0

¶
x0 · 1 ¸

4
operations need to be done in the worst case. Here is an upper bound to the complexity of the
problem.
We want to distribute the task of finding the prime numbers of an interval among different
processes that can be run on different processors or on different processes instances on the
same system regardless the number of processors available. We can achieve this dividing the
interval in smaller intervals, solving each subinterval and joining the results.
We did it applying bipartition. The first code simply divided the interval in two by the middle.
It works fine, but the work load on each interval is different, thus the CPU time needed to
solve each part is different. We obtained speedups, but there was a period of time in which
there was only one processrunning and the rest of the CPUs waiting for its result. We tried to
find a partitioning that divides the problems in two pieces with approximate complexity.
As we stated before, the worst-case number of divisions that have to be done in a given

interval ¹ x0 ,xn µ is given by ops
¶
x0 ,xn ¸ º xn

¶
xn · 1 ¸

4 · x0

¶
x0 · 1 ¸

4
. We want to find x j

belonging to the interval ¹ x0 ,xn µ that verifies » ops ¼ x0 ,x j ½ ¾ ¿ 1 À Á Â ops ¿ x j ,xn Â . We

introduced α so as to have a control in the way we partition the interval. Choosing Á Ã 1
2

we are partitioning the interval in two subintervals with approximate worst-case complexity.

Solving the equation we found that x j Ã ¿ 1 Ä 1 À 4 ¿ Á ¿ x0 À x0
2 Ä xn

2 À 1 Â À xn
2 Ä xn Â Â

2
is a proper

value for our purpose, being xj a closer integer to the real result of the equation.
We implemented a small C – PVM application that receives the interval, α and the worst case
number of operations that can be done by a single processwithout spawning child processes to
solve subintervals.
Our first experiment was to determine the overhead of context switches in the operating
system. We tested the prime numbers in the interval Å 1,200000Æ with a single system and

using Á Ã 1
2

.

Our test consisted in spawning the same problem, for the same interval, but with a different
parameter for the partitioning. Successive executions shrinks the maximum number of allowed
operations so each child process has to be fragmented one step further. The value for the
parameter, named Complexity as it represents the maximum subproblem number of operations
allowed for a single process, is calculated so as to reach the specific number of partitions
desired. The following table shows the times for different execution times on Linux systems

Ç È É Ê Ë Ì Í Î É Ï Ð Ê È Ñ Ò Í Ó Ê Ë Í Ô Õ Ö × Ñ Ø Ù Ê Ú Ê × É Û Í Ü Ü Ü

Ý Þ ß à á â ã ä å æ ç è é ê à ß æ á ë ê ì à í ê î Þ í å é í é á á à á æ Þ ï ð ë ì â ã ä

running SuSE 6.3:

The first column shows the parameter passed to the program as the worst case number of
operations allowed to perform without dividing, the second column is the number of processes
involved in the solution. We measured the time elapsed in seconds and averaged threeruns for
each experiment to minimize OS and other tasks interference. We calculated the per-process
overhead as the difference in time divided by the number of processes. We see that this
parameter stabili zes as the number of processes grows.
The system configuration imposes some limits to the number of processes that can be run on a
single system. The complexity could not be subdivided further because deadlock situations or
hangs arise randomly.
We can also seethat under controlled conditions, the overhead we have to pay for excessive
CPU allocation can be predictable (in our case 0,02 or 0,04 ms per process) and can be
controlled. For scenarios in which the number of processes spawned exceeds the number of
available CPUs we can assume quite straightforwardly that we can assign more than one
process to a single CPU and we can expect pretty fair allocation times for each processand
model it as different CPUs with the adequate fraction of the original CPU power.

ñ í â à á ò é ó â ô ë à í õ ö é ÷ à á é ø ù ã æ õ ç å à ú à æ â è é û û ü

Celeron 533MHz, 192 MB RAM Pentium 166MHz, 64 MB RAM

Complexity Time Time

9999950000 1 58,3 0,00 284,33 0,00
4999975000 3 59,0 0,22 284,67 0,11
2499987500 9 59,0 0,07 284,67 0,04
1249993750 17 59,0 0,04 285,33 0,06

624996875 33 60,0 0,05 287,33 0,09
312498438 65 60,0 0,03 287 0,04
156249219 129 61,3 0,02 288,67 0,03

78124610 257 62,3 0,02 293,33 0,04
39062305 513 67,7 0,02

Number of
processes

Overhead per
process

Overhead per
process

ý þ ÿ � � � � � � � � � 	
 � ÿ � � �
 � �
 � þ � 	 	 � � � � � þ � � � � � � �

6 - Conclusions & future work

The present document summarizes almost three years of part-time research in the field of
parallelism, that begun at the CeCal and finished at the InCo. The main objective of this work
is the applied theoretical performance evaluation of large grain parallelism on loosely coupled
multicomputers, with private memory, bonded with high speed networks.
The investigation started up with a research of parallel performance evaluation tools and
methods that help designing and constructing a parallel cluster and found that there were no
complete performance evaluation methods available that help designing a parallel cluster. The
objective then moved into the construction of the theoretical bases and models that help
achieving objective performance estimations of applications running on particular hardware
configuration with the purpose of helping the designer of the parallel machine determining the
best configuration.
The mathematical tool selected are the Stochastic Petri networks and the design and simulation
tool used was the UltraSAN.
On the previous chapters we introduced the grounds for this analysis and work and also
presented the model templates that can be applied to almost any parallel problem solved using
parallel hardware. It is important to keep in mind that the target of this study is the large grain
parallelism, not the fine grain one. Factors like network speed, processor speed and family,
amount of memory, etc. are collapsed within one figure that represents each processor speed.
This decision seemed strange at the beginning even to us, but as it was seen during RC5
analysis, the level of detail corresponds with the sizeof the grain of the parallelism addressed.
In our case, we are modeling resolution-wide parameters and large grain parallelism. We have
to make an abstraction of each piece of the parallel machine performance, thus many
parameters that affect individual node performance are collapsed into a single figure that
represent each node's processing power. This imposes some constraints on the level of detail of
each processing node and will impose some limits to the problems where we can use the
templates. There is no direct way to model the memory accessspeed, number of bits in the
data-path of the PCI bus, etc. Other models ought to be used for this analysis. All this kind of
details collapse within a single figure. Our models does not help deciding if it is better to have
faster RAM, bigger L2 cache etc. for achieving that single figure, but they compare the
effective system performance for the particular problem and the interaction the multiple
systems addressing in parallel a task. Particular system details should be analyzed by other
means.
After presenting the model templates we applied them in two specific example problems so as
to show the way they can be used to predict performance estimators TET and MES The two
applications studied were correctly estimated in standard and non standard parallel
environments, both with homogeneous and heterogeneous platform characteristics. Even
though the sizeof the problems and the number of systems were relatively small, we were able
to gather good predictions for our performance estimators. We modeled the execution using
both optimistic and pessimistic approaches, modeling individual resolution times with
deterministic and exponential distribution functions respectively. We also found that the
general assumption of optimistic behavior associated to deterministic distribution functions and
the pessimistic behavior associated with exponential distribution functions is also valid in this
models, as we were able to bound the real execution measures with the optimistic and
pessimistic estimations. We believe that it might be worth continuing the evaluation of other

� � � � � 	 � � � � � þ � 	 � � � 	 � � � � þ � � � � � � � � 	 � � �

� � � � � ! " # $ % & ' (� � $ �) (* � + (, � + # ' + ' � � � � $ � - .) * ! "

distribution functions that can fit better the real execution.
We found several practical problems in the process of solving built models regarding to the
Petri network resolution. The main issue was the spaceof states. Many of the solvers need to
generate all possible network configurations before they really solve the network. The
complexity of this problem can grow considerably as the number of combinations and options
grow. In our examples37 we had resolution times of several minutes, which generates some
problems when the system we model consists of hundreds of nodes. This is the reason why
multiple details collapsed within a single figure. We believe that our model templates are
detailed enough to capture problem logic and hardware performance but also controls the
complexity of the numerical resolution of the generated Petri networks.

It is important to note that the models presented themselves do not build a parallel machine for
a certain purpose but help the designer deciding benefits and drawbacks of decisions taken by
means of estimation of relevant performance descriptors.
The intended application scenario for these models are small companies or research groups that
build their own parallel machines for solving particular problems. In this environments the tools
will prove useful helping designers either determining that existing hardware is enough for
performance requirements or for justifying investment on newer hardware. This models can
also help research groups explore convenience of different algorithms for solving determined
problem on certain hardware. This model templates provide means for predicting performance
estimators for different algorithms solving the same problem on the same hardware, that can
help identifying the best algorithm that can be run on specific hardware to solve a problem
when more than one algorithm is available for solving a problem. This is also useful for early
algorithm comparisons that may complement complexity analysis as it comprises also blocking
and other execution events that slows down execution.
We believe that this theoretical result should be the basis for the development of specific
performanceanalysis tools that can be combined with existing Petri networks. We believe that
the next logical step for this research is the construction of an automatic tool for the
construction of the Petri network. We can seethat it is possible to automate the construction
of the Petri network that models the particular problem with a Wizard-based interfacethat
collects information from users, automatically applies the templates and generates the Petri net,
that is fed to a tool like UltraSAN that is used to estimate TET and MES. This small step
automates one step further current tool, as it isolates the user from building the Petri network
and using the simulation tool.
Another usage for this model templates is to build an automatic cluster building tool that can
decide the best hardware configuration possible for a particular problem, given certain
constraints. It is possible to devise a set of rules that defines how to assemble parts so as to
build a computer, a network and finally a cluster. This rules shall describe properly parameters
like the number of PCI slots, clock rates at which motherboard operates, types of memory,
number of ports in switches and so on. Non directly performance related parameters like heat
dissipation, volume occupied, power consumption and cost of the equipment must be
considered. It should be also possible to describe rules for joining this parts in a way that only
the right number and type of processors are used, the proper media is selected for network
cards, the switches are dimensioned for the right number of nodes, etc. Then we should
provide “validation” rules that help checking factors like heat dissipation, connectivenessof the
solution, etc.: it is not valid to have 10 slaves that cannot connect to a master because the

37 The practical examples analyzed differ in up to 3 or 4 orders of magnitude in the number of nodes with cutting edge commodity parallel
projects.

/ + � � 0 ' 1 ") � + � 2 ' 3 � � ' 4 5 ! $ � % # � 6 � $ & ' 7 7 8

9 : ; < = > ? @ A B C D E F < ; B = G F H < I F J : I A E I E = = < = B : K L G H > ? @

number of ports in the switch are not enough. After having the hardware and the problem
definition, the automatic Petri network construction and resolution takes place, and then we
can predict performance estimators for our system. This sort of cluster building intelli gence is
fed with all available components that can be found with their associated parameters and is also
fed with a problem definition and a set of constraints and it can produce the finite list of
clusters that can address the specified problem with the given constraints and the TET and
MES associated. If this list is not short enough for complete evaluation, it is possible to think
of GRASPlike algorithms that can search locally optimal solutions starting from random ones.
To be able to do this it is necessary to define the neighborlinessconcept for clusters and we are
done. Other heuristics like Tabou search, simulated annealing are applicable.

Parallelism is a mature and strong area that has multiple industrial applications and is only
starting up in the officeenvironment. Multi-terabytes officeenvironments are predicted for the
years to come and software being able to search, index, retrieve and in general process that
amount of information will benefit from parallelism. Future parallel environment will differ
from current ones and we believe this sort of coarse parallel analysis and tools will become
desktop tools for system administrators.

M I > < = N E O > @ G < I : P E Q < = E R S ? B : C A < T < B > D E U U V

W X Y Z [\] ^ _ ` a b c d Z Y ` [e d f Z g d h X g _ c g c [[Z [` X i j e f \] ^

k g \ Z [l c m \ ^ e Z g X n c o Z [c p q] ` X a _ Z r Z ` \ b c s s t

u v w x y z { | } ~ � � � � x w ~ y � � � x � � � v � } � � � y y x y ~ v � � � � z { |

7 - Bibliography

[ABC1] M. Ajmone Marsan, G. Balbo, G. Conte – “Performance Models of Multiprocessor
Systems” – MIT Press – ISBN 0-262-01093-3 – 1986

[ASC1] http://www.sandia.gov/ASCI/ (20/9/2002)

[ASI1] Isaac Asimov - “The left hand of the electron - The solar system and back - From earth
to heaven” – Alianza Editorial Madrid – ISBN 84-206-1653-2 – 1972

[BEO1] http://www.beowulf.org (20/9/2002)

[BEO2] Bewoulf How-to http://www.canonical.org/~~kragen/beowulf-faq.txt (20/9/2002)

[BEO3] D. Becker, T. Sterling, D. Savarese, J. Dorband, U. Ranawak, C. Packer “Beowulf: A
Parallel Workstation For Scientific Computation” , Proceedings, International Conference on
Parallel Processing, 1995, http://www.beowulf.org/papers/ICPP95/icpp95.ps (20/9/2002)

[BEO4] C. Reschke, T. Sterling, D. Ridge, D. Savarese, D. Becker, P. Merkey “A Design
Study of Alternative Network Topologies for the Beowulf Parallel Workstation” , Proceedings,
High Performance and Distributed Computing, 1996
http://www.beowulf.org/papers/HPDC96/hpdc96.ps (20/9/2002)

[BEO5] D. Ridge, D. Becker, P. Merkey, T. Sterling, P, Merkey “Beowulf: Harnessing the
Power of Parallelism in a Pile-of-PCs”, Proceedings, IEEE Aerospace, 1997,
http://www.beowulf.org/papers/AA97/aa97.ps (20/9/2002)

[BUY1] Rajkumar Buyya. “High PerformanceCluster Computing” . PrenticeHall. ISBN 0-13-
013785-5 – 1999

[BRO1] Robert G. Brown. “So, you want to build a Beowulf? Workload profili ng and beowulf
design” . http://www.phy.duke.edu/brahma/profili ng.ps (20/9/2002)

[CAF1] Christopher D. Carothers, Richard M. Fujimoto “Efficient Execution of Time Warp
Programs on Heterogeneous, NOW Platforms”, IEEETransactions on Parallel and Distributed
Systems, Vol 11, No. 3, March 2000http://dlib2.computer.org/td/books/td2000/pdf/10299.pdf
(20/9/2002)

[CTC1] http://www.ctc-hpc.com (20/9/2002)

[ECK1] B. Eckel. “Thinking in JAVA”. http://www.eckelobjects.com (20/9/2002)

[HWG1] J. Hill , M. Warren, M. P. Goda. “I'm not going to pay a lot for this supercomputer!”
Linux Journal, 1998 http://www.linuxjournal.com/article.php?sid-2392 (20/9/2002)

� � z x y � � � z | � x � v � � � x y � � � { ~ v � } x � x ~ z � � � � �

� � � � � � � � � � � � � � � � � ¡ ¢ � £ ¤ � £ � � £ � � � � � � � ¥ ¦ ¡ ¢ � � �

[INT1] http://developer.intel.com/design/chipsets/440bx (20/9/2002)

[KMV1] T. Koch, A. Martin, S. Voss. “SteinLib: An Updated Library on Steiner Tree
Problems in Graphs” Konrad-Zuse-Zentrum für Informationstechnik, Berlin –
ftp://ftp.zib.de/pub/zib-publications/reports/ZR-00-37.pdf (20/9/2002)

[LIN1] Christoph Lindemann – “Performance Modelli ng with Deterministic and Stochastic
Petri Nets” – 1998 – ISBN 0 471 97646 6

[MAR1] S. L. Martins, P. M. Pardalos, M. G. C. Resende, C. Ribeiro “Greedy Randomized
Adaptative Search Procedures for the Steiner Problem in Graphs” – DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 43 (1999), 133-146 – http://www-
di.inf.pvc-rio.br/~celso/artigos/gspg.ps (20/9/2002)

[MAR2] S. L. Martins, C. Ribeiro, M. C. Souza“A Parallel GRASPfor the Steiner Problem in
Graphs” – Workshop on Parallel Algorithms for Irregular Structured Problems (1998), 285-
297 – http://www-di.inf.pvc-rio.br/~celso/artigos/par_grasp_steiner.ps (20/9/2002)

[PVM1] http://www.netlib.org/pvm3/ (20/9/2002)

[PVM2] “PVM A Users Guide and Tutorial for Networked Parallel Computing”
http://www.netlib.org/pvm3/book/pvm_book.ps (20/9/2002)

[PVM3] M. Fischer, J.Dongarra. “Another Architecture: PVM on Windows 95/NT”
http://www.netlib.org/pvm3/win32/nt_paper.ps (20/9/2002)

[QCC1] Francesco Quaglia, Vittorio Cortellessa, Bruno Ciciani “Trade-Off between
Sequential and Time Warp-Based Parallel Simulation” , IEEE Transactions on Parallel and
Distributed Systems, Vol 10, No. 8, August 1999 –
http://dlib.computer.org/td/books/td1999/pdf/10781.pdf (20/9/2002)

[RIB1] C. Ribeiro, M. C. de Souza “Improved Tabu Search for the Steiner Problem in
Graphs” – Working paper, Catholic University of Rio de Janeiro, Department of Computer
Science (1997) – http://citeseer.nj.nec.com/47337.html (27/9/2002)

[ROB1] F. Robledo “Diseño topológico de redes: casos de estudio 'The generalized Steiner
Problem' y 'The Steiner 2-Edge-Connected subgraph problem'” . Tesis de Maestría en
Informática, PEDECIBA 2000. Facultad de Ingeniería, Universidad de la República,
Montevideo, Uruguay.

[RSA1] http://www.rsasecurity.com/rsalabs/callenges (27/9/2002)

[RSHD] – “WIN32 - RSHD: A BSD compliant RSH Daemon / RSH Service for Microsoft's
WIN32 Architecture” – http://www.winrshd.com (27/9/2002)

[RUS1] - Mark Russinovich – “Inside Win2k Scalabili ty Enhancements, part 2” –
http://www.winntmag.com/Articles/Content/7597_01.html (27/9/2002)

§ £ � � � ¨ � © � � ¡ � £ � ª � « � � � ¬ � � � � � � ® � � � � � ¯ ¯ °

± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ´ ³ º µ ¿ ¾ À ´ Á ¾ Â ² Á ¹ ½ Á ½ µ µ ´ µ º ² Ã Ä ¿ À ¶ · ¸

[SAB1] – Ariel Sabiguero – “Nomenclatura y definiciones básicas de Redes de Petri” –
Reporte Técnico Nro. 02-18” – Instituto de Computación – Facultad de Ingeniería –
Universidad de la República - 2002

[SW1] J. Salmon, M. S. Warren. “Parallel out-of-core methods for N-body simulation” 8th
SIAM Conf. On Parallel Processing for Scientific Computing, Philadelphia, 1997
http://www.cacr.caltech.edu/~johns/pubs/siam97/salmon.pdf (27/9/2002)

[SET1] http://setiathome.ssl.berkeley.edu/index.html (27/9/2002)

[TAN1] Andrew S.Tanenbaum “Distributed operating systems”. Prentice Hall. ISBN 0-13-
219908-4 – 1995

[TOP1] http://www.netlib.org/benchmark/top500/top500.list.html (27/9/2002)

[URR1] S. Urrutia, I. Loiseau “A New Metaheuristic and its Application to the Steiner
Problems in Graphs” – XXI International Conferenceof the Chilean Computer ScienceSociety
(SCCC'01) (7-9/11/2001) Punta Arenas, Chile –
http://dlib2.computer.org/conferen/sccc/1396/pdf/13960273.pdf (27/9/2002)

[USAN] - W.H. Sanders – http://www.crhc.uiuc.edu/UltraSAN (27/9/2002)

[WBG1] M. S. Warren, D. J. Becker, M. P. Goda, J. K. Salmon, T. Sterling “Parallel
supercomputing with commodity components” Proceedings of the International Conferenceon
Parallel and Distributed Processing Techniques and Applications (PDPTA'97) 1997http://loki-
www.lanl.gov/papers/pdpta97/pdpta97.ps (27/9/2002)

[WSB1] M. Warren, J. Salomon, D. Becker, M. Goda, T. Sterling, G. Winckelmans. “Pentium
Pro Inside: I. A Treecode at 430Gigaflops on ASCI Red, II . Price/Performanceof $50/Mflop
on Loki and Hyglac” http://loki-www.lanl.gov/papers/sc97/ (27/9/2002)

Å Á ¶ ´ µ Æ ½ Ç ¶ ¸ ¿ ´ Á ² È ½ É ´ µ ½ Ê Ë · º ² » ¹ ´ Ì ´ º ¶ ¼ ½ Í Í Î

