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Abstract

Parallelism is a Computer Science discipline that is gaining a more important place in data
centers. Since mid-nineties parallel computers built out of comnodity comporents and free
software started to show up and introduced new chall enges to computer industry. Before that time,
parallelism and supercomputing were almost constraint to multi-milli on projeds on aerospace,
military simulations, meteorology, etc. Snce Beowulf experiences and GNU/Linux success as a
solid OS the paradigms started to change and seveal government and private initiatives
demonstrated that this kind of parallel system can be exploited. Several new apgications are
arising also. We understood that it was important to devdop mathematical basis that help in the
task of building thiskind of parallel systems and asgst the hardware archited to devise an optimal
parallel machine. This work presents a set of model templates that can be instantiated so as to
model and predict performance estimators for given apgications runnng on spedfic hardware.
The space of parallel apdicationsis partitioned using an adequae taxonamy anda model template
is built for each classof the taxonamy. The mathematical abstraction used for the models are the
Sochastic Petri Networks. Two real apgication examples are andyzed in depth so the model usage
is sown.

El paralelismo es una disciplina Informéatica que estd ganandoun luga mas importante en los
centros de computos. Desde mediados de los noventa aparederon computadaras paralelas
construidas con comporentes estanda de bao costo y software libre que presentaron nuewvos
desafios a la indwstria de la computacion. Antes de ese entonces, €l paralelismoy el procesamiento
en supercomputadaras practicamente estaba restringido a proyedos multimillonarios de la
indwstria aeroespacial, simulaciones militares, meteorologia, etc. Desde las experiencias de
Beowulf y e éxto de GNU/Linux como un sistema operativo solido, los paradigmas comenzaron a
cambiar y multi ples iniciativas privadas y gubernamentales demostraron que este tipo de sistemas
paralelos pueden ser aproveadacs. Nuevas aplicaciones se estan creando para estos sistemas.
Consideramos que era importante desarrollar bases matematicas que ayuden en la tarea de
construir este tipo de sistemas paralelos y asistir al arquitedo de hardware para crear una
maquina paralela optima. Este trabgo presenta una serie de plartill as de modelos que pueden ser
instanciados de forma de modelar y prededr estimadaes de desempefio para aplicaciones
espedficas g eautadas en ciertas maquinas. El espacio de aplicaciones paralelas es particionado
de acuerdo a una taxonamia y una plantila de modelo se construye para cada clase de la
taxonamia. La abstracddén matematica utilizada para los modelos son las Redes de Petri
Estocadticas. Dos gemplos de aplicacion se andizan en profunddad para mostrar € uso de los
model os.

Keywords

Parallel performance ewaluation, cluster computing, parallel programming, Stochastic Petri
Networks, parallel programming taxonamy,

Evaluacion de desempefio paralelo, computacion en grupcs, programacion paralela, Redes de
Petri Estocasticas, taxonamias de programas paralelos.
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Il. Preface

This document is a master degreethesis on the field of parallelism. It is a partial result within
an initiative of commodity parallelism studies started bad on 1997 at the CeCal (Centro de
Célculo — Numericd Anaysis Department — Faautlad de Ingenieria — Universidad de la
Republica) when a tanker spilled millions of liters of petroleum nea Punta del Este, an
important seaside resort in our country. CeCal aready modeled the flows of the Rio de la Plata
and had a cluster (FDDI/Power/AlX) with four nodes and 7 CPUs that could help with the
modeling of the pollutant dispersion. With that acadent and parallel experiences in mind a
group was set up under the name ParEnO to study the possbhilities of parallelism over standard
and avail able everywhere computing components. The group initialy existed within the CeCal
but later the CeCal and the InCo (Ingtituto de Computaddn — Computer Science Institute —
Faautlad de Ingenieria — Universidad de la Republica) were merged within the Engineaing
Faaulty into the InCo and different people moved to different groups. People working with
algorithms joined the Programming groups while people deding with modeling and smulation
moved to the Optimization group.

At that time the availability of Pentium based PCs was growing and the raw numericd
performance of such processors seemed enough for number crunching. Also the first papers of
Beowulf results started shocking the paralel community. It started to become clea that mass
market forces were able to produce standalone systems that could be compared with high end
ones. On the other hand, networking technologies were also making high speed switched
standard networks available. Also initiatives from the FSF, GNU and the Linux community
turned into complete free software solutions that solves not only the OS but compilers,
libraries, development environments, schedulers, etc.

The ParEnO group redized that there was a potential parallel cluster amost in every office and
different study branches started from there on. Some study groups analyzed the posshili ties of
porting parallel software to the available OSs (most generally Windows), others worked on the
idea of multiple OS boating systems that can flip from commercia functions during office
hoursto parallel clusters during the night.

Along with this different branches grew the need for modeling these parallel systems.
Reseaching this area we found that several authors have already modeled the performance of
groups of systems addressng paralel problems but from spedfic aspeds, like those on
[ABC1], [BUY 1], [BRO1], [LIN1] and others. There exists excdlent modelsthat ded with the
impad of network aspeds (speed, latency, reliability, etc.) on the overal performance of a
system, or maybe the impad of multiple processors sharing resources. Also other approades
to performance were done from the point of view of the parallel algorithms and comparisons to
classc uniprocessor implementations. We found that there was no modeling of both the system
and the algorithm implementation as a whole. As we were evaluating parallelism asatoal to be
applied to particular projeds, we understood that there was a need for such kind of system
performance modeling. We believe that it is important to model performance descriptors that
allows a company to build a cluster that helps solving some problem and dedde if it is better to
invest in few high-power CPUs or multiple low cost ones or invest in network hardware, etc.
Funding for this line of research came from the Clemente Estable under projed number 4072
named “Modelado y construcdon de una maquina paralela virtual con componentes de
bajo costo (19992001)" (Modeling and construction of a parallel virtual machine with low
cost comporents). The projed built a tiny cluster for theoreticd performance reseach,
education on several grade curses and grade thesis at the University and was used for several
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performancetests.

System performance evaluation or algorithm performance evaluation are beyond the scope of
this study. Joint system and algorithm performance evaluation are considered the target of this
work. The present thesis work goal is to obtain an overall system performance modeling that
can be used to predict particular algorithm exeaution times and also to assst in the
congtruction of clusters.

il . Assumed K nowledge

Readers would be required to have basic knowledge of computer and processor architedure,
computer networks, Petri networks, paralelism and paralel tools. Badkground in different
operating systems is also advisable.

iv. Organization

1: Introduction: Here we present the badkground, motivations and scope of current reseach.
It presents some commodity computing projeds and introduces motivations for continuing
the research and development of such technologies.

2: Taxonomy and Parallelism: This chapter introduces many of the concepts that are used in
the rest of the work. It defines different parallel computing scenarios and determines the
spedfic scope of parallel problems addressed. The parallel problem taxonomy, mathematicd
abstradion used and smulation tools chosen for anaysis are also introduced here.
Knowledge of basic and stochastic Petri networks is assumed. For the realer not familiar
with Petri networks, we suggest the reading of [SAB1].

3: Modeling distributed.net's RC5: We seleded a popular worldwide commodity parallel
initiative to discuss some relevant aspeds that will prove useful when we present later the
detaled analysis of ead class of paralel applicaions. This chapter fundaments some
technicd aspeds of our analysis and discusses spedfic modeling scde details. This problem
is useful to help separating relevant performance aspeds from non relevant ones. It shows
why it is necessry to collapse multiple very small details into single performance
descriptors when whole goplication exeaution is aimed at.

4: Modd templates for general parallel applications. This chapter is very ambitious and is
the core of our reseach. It applies systematicdly al aspeds of our study to al classes of
paralel applications introduced in the seaond chapter and explains how to ascertain two
spedfic estimations of performance Tota Exeaution Time (TET) and Mean Exeaution
Speal (MES). This chapter presents methods for constructing Petri nets that models eah
spedfic problem on spedfic hardware configurations out of model templates. It aso
explains how to determine relevant performance figures and shows how to compute our
performance estimators.

Ariel Sabiguero Yawelak InCo — PeDeCiBa 6



Modeling PC-Based Clusters for Parallel Computing

5: Case studies. Here we present two case studies of two different problems of different
paralel classes: task farming and SPMD. In both studies we follow the procedure suggested
in the third chapter dtrictly so as to determine the performance estimation parameters TET
and MES. Single procesor exeaution was performed to obtain required individua
performance parameters of the system. Paralel exeaution was both smulated and
benchmarked and numericd results were compared and discussed.

6: Conclusons and future work: Here we summary the work, analyze application
environments for the developed template models and present related future work and
projeds.
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1 - Introduction

This chapter will introduce motivations for this research and for parall€lism, helping the reader
to find out why single processng power might never be enough for all applications. First it will
discuss the availability of standard software and hardware, then we will present some
commodity-based paralé initiatives and after that we will bound the objedives of this
reseach.

1.1 - Generals

The Supercomputer concept is evolving rapidly. There have been many recent succesgul
experiences of commodity-based supercomputing that have proved —beyond doubt- that
Beowulf and Beowulf-like [BEO1] clusters are the way to go when considering
price/performance ratio. Free and open operating systems are the generaized choice Mass
market forces led companies like Intel and AMD to the high performance processor market.
Ead processor inside a personal computer has cgpabili ties and performance similar to that of a
highly expensive scientific workstation. Even though mass market computer industry still runs
on 32 hits procesors, 64 bit commodity procesors are showing up. Free open source 64-bit
operating systems are already there and projeds like K42 are preparing supercomputing on
that platform. The gap between cutting edge supercomputers and commodity ones is getting
increasingly smaller.

On the other hand, Microsoft was able to make the phrase “Windows everywhere” red.
Microsoft Windows is the de facto personal computer operating system. Microsoft operating
systems are growing older and a little bit more mature version after version. There are good
software development environments and many profesgonals working for the Windows market.
Another key fador that is important is the growing presence of Linux in the operating system
market. Even though it is a free operating system it counts with many adepts from the
acalemic side and the companies are starting to use it without shame. In the last yeas, there
has been a significant movement towards the cut of software licensing expenses and Linux
plays a key role in this effort. Companies like IBM, Orade, Computer Associates, etc. are
offering services and support for their products also in Linux, and promoting Linux as an “as
good as others’ platform.

A significant percentage of al the personal computers have x86 compatible processors and use
Windows operating system. The server market counts also with a high proportion of x86
procesrs, but Linux is an alternative to Windows. Linux got an important placewithin the
server market and is very common to find environments with Linux servers feeding Windows
clients. The objed of this study isto present some models that help evaluating the performance
of pardlel clusters based both on Windows nodes, Linux ones and heterogeneous
environments. Regardlessof the fad that this was the configuration in mind and the one used
during the tests, nothing prevents the usage of the presented models on other environments.
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At the beginning of the nineties, Thomas Sterling and Donald Beder coined the term
“Beowulf”. According to the acceted definition [BEO2]:

Beowulf isakind of high-performance massvely parallel computer

It consists of a duster of PCs or workstations dedicated to running high-

performance @mputing tasks

built primarily out of commodity hardware cmponents

running a free-software operating system like Linux or FreeBSD

interconneded by a private high-speed network®

From the very beginning a cluster running other proprietary operating system, by definition, is
not a Beowulf, thusit can only inherit a part of all the technology developed under that effort.
Nevertheless it can inherit everything what is related to hardware: processors, network
interfaces, memory, etc.; thus, the theoreticd performance of any cluster based on the same
hardware is potentially the same, if we only consider hardware power.

With this —naive- thoughts on mind, we started working towards the development of a model
that can estimate, compare and predict the performance of a cluster based on commodity
operating systems.

There are many free available tools used both on commodity and proprietary paralel systems
like PVM, MPI, HPF, CORBA, LiPSand RMI. They are both toadls for implementing parall el
paradigms and they define de-facto parallel standards.

1.2 - Commodity-Based Parallel projeds

Several initiatives exists that try to harnessthe power or commodity-based equipment to solve
different problems. Some of them try to use idle CPU cycles of computers al over the world,
other try to reduce supercomputing costs, etc. In this sedion we will present a few of this
initiatives. The numerica data presented here will always be outdated as this is only a snapshot
of one day, so please refer to the original authors of this information.

SETI @home

“ SETI@home is a scientific experiment that harnesses the power of hundeds of
thowsands of Internet-conreded computers in the Search for Extraterrestrial
Intelligence (SETI)” [SET1]. The way this projed works is distributing an applicaion
that runs as a screen saver or a badkground task that periodicdly gets some work unit,
solves it and returns some answer to the server. The task itself consists of seaching for
particular eledromagnetic signals within a certain region of the spedrum cdled "the
water hole", from 1.42to 1.64 GHz.

The SETI@home projed does one of the most detailed and finely tuned searches ever
attempted. Each computer will "listen” to the sky for signals as narrow as 0.07 Hz.
Data is recorded on high-density tapes at the Aredbo telescope in Puerto Rico, filling

1 Highspeed here does nat refer to any particular network techndogy. At the beginning, plain Ethernet networks were considered high speed
ones. Current state of the art defines high speed as Gigabit Ethernet or even 10 Gigabit Ethernet. At least three orders of magnitude in
network speed separates original beowulf clusterswith current ones. Asin many other techndogical stuations speed concept is state-of-the-
art dependent.
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about one 35 Gbyte DLT tape per day. Becaise Aredbo does not have a high
bandwidth Internet connedion?, the data tape must go by snail-mail to Berkeley. The
data is then divided into 0.25 Mbyte chunks (which we cdl "work-units'). These are
sent from the SETI@home server over the Internet to people around the world to
analyze.

Current statistics are quite astonishing. There have been a total of 1.388514 users by
11/7/2000  that submitted 149496680  results. They performed
298993400.000.000.000.000 floating point operations during 33066252 yeas of
aggregate CPU time, an average of 4,4 Gflops per user or an aggregate of 12,33TFops
worldwide. If we go to the Top500list [TOP1] and get the system on top, we get the
ASClI Red [ASC1], from Sandia National Laboratories. The theoreticd pe&k
performance of that system is of about 1,8 Tflops, only 15% of what SETI@home is
doing. There are many things to say. ASCI Red is a supercomputer, while the bunch of
Internet-interconneded computers that compose the SETI initiative are not. ASCl Red
has 9,326 Pentium Pro procesors inside ead of them capable of performing upto 193
MFlops.

RC5-64

L oki

25" September 2002the distributed.net organization announced that they accomplished
RSA Labs RC5-64 chdlenge [RSA1] on 12 August 2002 Usng the key
0x63DE7DC154F4D039 the text “some things are better left unread” is produced from
the encrypted message. The method applied is brut-force It took 1.757 days and
58747959657 work unit tests so as to find the right one. A grand total of
15.769938165961326.592 keys were tested, at a mean spead of 103883000840
keys/s by a community of 331252 articipants worldwide.

As it is read from distributed.net's press room announcement: “the RC5-64 projed
clealy demonstrates the viability of long-term, voluntee-driven, internet-based
collaborative dforts.”

In September 1996 Loki’s architecture and price were presented [WSB1]: $51379for
a 16 procesor system with 2GB of memory and 50 GBytes of disk space Using that
system, between April 25 and May 8, a N-body simulation code using 9,7 million
particles ran continuoudly, with no restarts. The entire smulation of over 1000

timesteps performed a total of 1.2x10'° floating point operations, approximately 1.03
GHops.

Something can be said out of this. The fastest supercomputer in the world in 1999 and third
one in 2002 is the ASCI Red, is built with the same family of procesors than most of the
personal computers of the world (more than 85%). That means that the technology involved is
the same. On the other hand, most of them lay on desktops and most of their CPU cycles are

2 Atleast by year 200Q
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idle. It is fairly common to see offices with tens or hundreds of systems, ead of them, much
more powerful than those used in Loki. There are many differences, but there is a substantial
computational power unused there. Is it possble to use it for useful tasks? Can we push the
COTS (Commodity of the shelf) concept one step further? Can we adopt not only the
hardware, but also the software? Of course, we are not building a Beowulf cluster. Maybe we
can make aM Swulf system.

Microsoft is aready sponsoring multiple universities to reseach on parallel scientific clusters
over their platform. August 5 2002 the CTC (Cornell Theory Center announced a U$S 60:
agreement with Intel, Dell and Microsoft to develop and deliver CTC High Performance
Solutions over four yeas [CTC1]. On the other hand, commodity parallel initiatives keep
pushing with Linux. Los Alamos National Laboratory is buying (september 2002 a $6 milli on,
2,048 processor Linux supercomputer to run its nuclea wegoons smulation software.

1.3 - Scope and work environment

As it was presented in the preface this research is motivated within the initial scope of the
ParEnO initiative, a broader initiative that intend to generate a multidisciplinary group of
people with severa interests and approadhes to parallelism. The goal of ParEnO isto generate
a task force on the area of paralelism at the service of Uruguayan's National University
(UDELAR), the Engineaing Faaulty and the industry. Within the scope of that ambitious goal,
the objedive of thiswork isto gain knowledge and objedive mathematicd tools on the cluster
construction discipline. We identified the cluster building stage as an important stage that is
sometimes not fully considered when building a paralel madcine out of commodity
components. Generally speed is associated with CPU MHz, but that is not always true. Adding
a faster CPU in a network congested scenario does not always prove a wise dedsion.
Experienced system administrators and paralel programmers know al this concerns, but we
found no tool adequate for overall parallel system performance analysis. This does not mean
that do not exist good system performance evaluation tools and works. There exist excdlent
papers and works, but they focus on general system performance, comparisons of memory or
disk technologies or on algorithms. When we tried to apply this techniques to particular
problems and technologies we found that their usage is cumbersome: they generaly do not
provide an overal system model including algorithms and they mostly emphasize some asped
of the performance. We devised the need of a higher level mathematicd toal that is lessbound
to fine performance details but provides an overal system and agorithmic model. This
approach does not replace other models. The other way round. It complements them.
Generdly other models help taking particular dedsions but not overall dedsions. The am of
this study is to be able to provide the reseacher building a cluster, tools that unambiguously
help him to determine which dedsions are better for his particular applicaion more than the
general benchmarking problem.

At the beginning of current reseach, severa parallel taxonomies were analyzed until we found
one that fitted our needs of one that is not spedalized only on the hardware or software and
that is versatile enough to model properly most paralel scenarios. Chapter 2 presents the
results of that reseach: the taxonomy chosen for this gudy.
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The mathematicd model seleded for performance modeling are the Stochastic Petri Networks.
The successof Petri nets is mainly due to the smplicity of the basic medhanism of the model,
which on the other hand present drawbads on the description of large systems. Severd
authors extended the basic Petri net models introducing the notion of time. Timed Petri nets
can be used for quantitative performance analysis of systems. When random variables are used
to spedfy the time behavior of the model, timed Petri nets are cdled stochastic Petri nets
(SPN). The complexity of the Petri networks we have to work with determined the need for a
toal that allows Petri net smulations of severa types. Multiple tools (both commercial and
acalemic) exists that represent and solve Petri networks. During 1999 we found 44 different
toals for Petri net simulations, 30 of them were free of charge or had some acalemic discount.
We had to discard many of this tools because they did not offer Stochastic modeling or solvers
needed. After an extensive reseach we seleded the UltraSAN tool [USAN], which we used
extensively al through the reseach for smulation and as a drawing tool for the diagrams
presented in this work. We gratefully recognize the value the tool provided to us.

After finding an adequate taxonomy, a mathematica abstradion that is good for performance
modeling and a tool we built performance models for ead class of the taxonomy. Chapter 4
presents this generic model templates for ead parallel problem of ead class how to build
them and how to compute performance estimations that help dedding which is the best option
for a particular problem. The model templates presented describes how to build a Petri net that
models aimost any paralel problem genericdly, and particularly shows how to determine two
performance estimators seleded. This performance estimators that can be computed out of the
resolution of the network provides objedive performance measures that can be used to
compare paralel macdines.

After describing the theoreticd model templates we analyze two red parallel application
examples with those templates to show their intended usage. The examples and their
applicaion is caried out on chapter 5. The examples are analyzed in depth showing how to
benchmark relevant fadors, how to apply models and how to predict performance estimators
for the exeaution in certain parallel macdines. Afterwards, the estimations are compared to red
parallel exeaution in these macdhines.

1.4 - Summary

This chapter presented a brief overview of the reasons for using COTS clusters in parallel
computing, a few examples of successul parallel applicaions and problems solved using this
approach. In the last yeas a grea ded of effort was invested developing software for
harnessng the computational power of al kind of paralel systems. Many advances and
knowledge has been gained through the experiences, but there is still a considerable amount of
reseach to perform in the next yeas to exploit paralelism even more, to gain deeper
knowledge of performance improvements and also to develop more automated tools and
compilers to abstrad the underlying hardware. In the following chapters we will try to
contribute with the parallel community proposing a set of model templates that help in the task
of system performance evaluation. We will also introduce their usage through instantiation of
two templates with red parallel applications.
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2 - Taxonomy and Par all elism

The chapter is divided intro threesedions and it acairately defines the target and the scope of
this work. The first sedion bounds the set of parallel systems modeled from the point of view
of the hardware and the grain of the paralelism studied. The second sedion introduces the
taxonomy for classfying the spaceof parallel applicaions and the last sedion introduces the
notation that we used throughout this work for the Petri networks and the modeling and
smulation tool that we use, the UltraSAN.

2.1 - Problem determination

When we talk about paralelism, implicitly we refer to a group of CPUs cooperating to a
common task in some way. Many different schemes for describing parallel systems have been
proposed, but none of them was widely acceted and the concept has evolved through time
and technology. One of the most used is the one proposed by Flynn (1972. Flynn seleded two
charaderistics to classfy systems. the number of instruction flows and the number of data
flows. The charaderistics have deep roats in the basics of Von Neumann architedure. The
Harvard architedure, implemented in many of current microprocesors, separates the cade
memory in two digoint and independent areas. one for the instructions and one for the data.
Flynn divided both flows in single and multiple, thus, there are four groups of madines. single
instruction single data, single instruction multiple data, multiple instruction single data and
multiple instruction multiple data2.

Flynn's approach does not get too dee inside paralel systems: it only identifies them. On
[TAN1] one step further is taken and a divison of MIMD machines is done. From there, we
took the following figure:

Paralld and
Tightly distributed Loosely
coupled computers coupled
Multi procesors Multi computers
(shared memory) (private memory)
| Bus | | Switch | | Bus | | Switch |
SMP Supercomputer Computersona Beowulf

LAN

3a good aescription d the @ategories can be foundin [TAN1]. It isimportant to nde that single procesor personal computers are still SISD
machines even though their microprocesors have parall € exeaution units: they guaranteethe semantics of a Sandard procesor. Procesors with
MM X extensionsalso present the semantics of a SIMD on particular operations.
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Beowulf systems, the examples presented and the target of this study fall within the loosely
coupled branch. SETI@home is a clea example of a extremely loosely coupled system, and
the connedion speal of systems there is, in most cases, many orders of magnitude slower than
the speal of a LAN. Beowulf systems use a wide variety of interconnedion devices and
technologies, like channel bonding of standard Ethernet NICs, proprietary Myrinet, hyper-cube
topologies, etc. to speel up the inter-node communicaion speed, reducing communicaion
latency.

Not al agorithms have the same charaderistics. Their codes have different levels of
granularity and paralelism can be exploited at different levels. Starting from the data paths
where multiple signals travel in paralel, we get to CPUs where multiple functional units
exeaute in parale different instructions. Multiple I/O functions that not colli de themselves can
be isaued to different devices like a SCSI bus, DMA operations, etc. Tasks are alocaed to
CPUsin SMP systems and also over nodes on a duster.

Levels of parallelism can also be based on pieces of code that can become parallel. The basic
idea behind most methods is to avoid idle CPU cycles. Is the basis of multiprogrammed
systems. while one task go to wait state (any 1/0 request), the scheduler allocaes the CPU to
another task of the ready queue. It is aso the ideathat leads to the instruction pipeline inside
the processors.

On the following table, we present how parallel pieces of code is exploited at different levels:

Grain Size |Code Item Parallelized by
Very fine  |Instruction Processor
Fine Loop/Instruction block Procesor/Compil er

Medium Standard ore-page function [Programmer
Program-separate
heavyweight process

Large Programmer

Paralel processng is important at every stage and level, because huge programs have
repetitive blocks that are exeauted many times, and invoke standard one-page functions, which
have several loops or instruction blocks. This observation creded a tremendous wave that,
since the eighties, changed the way computers are conceved. This observation changed the
way procesrs are designed (RISC), and the way the locdity is exploited. We will briefly
present some of the problems and the way they are aldressed.

Fineand very finegrain

It involves the procesor, because it is where instructions are exeauted. The goal is to
have the pipeline always out of the stalled state. It is important to avoid hazads, to be
able to feal it with data and instructions, to have enough functiona units available.
Many tedhniques like prefetching, out of order exeaution, register renaming, branch
prediction, etc. have been used for many procesor generations now.

Even though it is not diredly related to parallelism, it has a key role in performance
memory bandwidth. If we think about a 32 bits RISC 600MHz processor that can
exeaute —without blocking- 4 instructions per cycle, we have a monster that requires a
memory bandwidth of 8.9 GB/s . With a memory bus of 100MHz, the memory system
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can déliver only 400-550 MB/STINT1], at least one order of magnitude slower than the
core procesor sped.

Most of our code has a property cdled locdity: certain portions of the code are
exeauted repedaedly before achieving the result. With a compiler that is smart enough
to ke nealed resultsin fast memory (i.e. processor registers), significant speedups are
obtained.

This is not possble when large amounts of data and instructions need to be brought to
the processor. Now it is important the amount of data that can be accessed by the
procesor. To increase memory bandwidth, memory hierarchies are introduced and
different levels and types of cadie memories show up. This helps to speed up problems
in which processor registers are not enough, but loops do exist. Depending on which
cade has a valid reference to the memory, the number of cycles it takes to retrieve it:
from one oycle to as many as 40.

Compilers must be able to help the processor to exploit paralelism at instruction level.
Many tedniques like register renaming, fetch-ahead, branch prediction only give
significant speedups when the compiler takes full advantage of them. The compiler has
to make the best out of the ade.

Medium grain

There are different programming models and toals that help the programmer ded with
parallelism in the code, but it isthe compiler the one that deds with it at the block level.
Different techniques are applied here to achieve locdity and to parall€elize the usage of
the different functional units. Loops are adapted to increase the acaracy of the branch
prediction algorithms, instructions are interleaved so as to avoid pipeline stalls, function
cdls arereplacal in-line to avoid context switches and to maximize locdity, etc.

This level can be —and should be- in most cases exploited automaticaly by processors
and compilers alone.

Largegrain
Here is where programming tools and models are used, and it isthe target of our study.
Here the programmer does not ded with instruction in a pipeline, but distributing parts
of the problem among different CPUs. The main concern at this level is to find an
adequate way to partition the problem, to communicae the parts and to get the result.
The programming models help to give foundations partitioning the problem so asto get
the result and the tools makes parts of the work easier.

2.2 - Problem Definition and Taxonomy analysis

We will focus our study on large grain paralelism on loosely coupled multicomputers
interconneded with high-speead switches. We will build our classfication of parallel systems on
standard programming paradigms, skeletons and tools. Amongst all possble classficaions of

4 synchronaus DRAM (SDRAM)
*Synchronaus with system bus
*Suppats 66 MHz and 100MHz bus peels
*400-550 M B/s bandwidth
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the programming paradigms, we considered useful for our analysis to mainly charaderize the
parallelism by two fadors: decomposition and distribution of the parallelism [RAY 1]. We will
base our clasgficaion and taxonomy of parallel programming paradigms acording to:

* Task-Farming (or Master/Slave)

»  Single Program Multiple Data (SPMD)
» DataPipelining

* Divide and Conquer

*  Speaulative Parallelism

*  Hybrid models

Task-Farming (or Master/Slave)

In the task-farming paradigm we can identify two entities (group of entities): master
and daves (or for performance reasons, group of masters and groups of daves). The
master is responsible for decomposing the problem into small tasks, distributing them
among the daves, colled results and assemble the problem solution. Slaves perform a
simple sequence of steps. get a message with the task, processthe task and send the
result to the master. In most cases, there is no communicaion among slaves.

Thiskind of problems are eaily scdable (adding more slave CPUs) and their speedupis
guas-linea. The bottlenedk that might arise at the Master is solved making farms with
master servers.

The work is gaticdly decomposed and dynamicdly distributed.

Single Program Multiple Data (SPM D)

It is the most commonly used paradigm. Each processexeautes basicdly the same code
on a different portion of the data. Due to the divison of the problem data among
available procesors, it is aso referred as geometric parallelism, domain
decomposition or data parallelism. The decomposition is usualy ground on regular
geometric structure of underlying physicd problems, thus allowing uniform distribution
of data among processors. Each procesor would need to communicae with its
neighbor whenever its cdculation neeals information held on the neighbor’s memory. It
might be necessary to provide further synchronization periodicdly among processors.
The communication pattern is usually highly structured and extremely predictable. The
data might be self-generated or read from some storage. There is a highly dependence
to the processors, and the lossof one of them leads to deadlock states.

The work is decomposed and distributed staticdly.
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Data Pipelining

It is based on a functional decomposition of the parts of the algorithm that are cgpable
of concurrent operation. It is a lower level approad in which different processors
exeaute a small part of the whole algorithm. The communication pattern is smple: data
flows in one diredion among adjaceit procesors and it can be completely
asynchronous. The efficiency is diredly dependent on the ability to balance the load
aaoss the stages of the pipeline. The robustness against rewnfiguration can be
achieved providing multiple independent paths aaoss the stages. It is mostly used in
data reduction and image processng.

The work is decomposed and distributed staticaly.

Divide and Conquer

This approach is widely known in sequential algorithm development: a problem is
divided into two or more subproblems, eat solved independently and their results are
combined to give the final result. In most cases, small problems are just small instances
of the original, rising reaursive solutions. In paralel divide and conquer, the
subproblems can be solved at the same time, given sufficient parallelism. Because the
problems are independent, no communicaion is necessary between processes working
on different problems. There are three generic operations. splitting, computing and
joining®.

The work is decomposed and distributed dynamicaly.

Speaulative Parallelism

It isused when it is not possble to obtain parallelism using the previous models. Some
problems have complex data dependencies, which reduces the posshility of exploiting
parallel exeaution. In this cases, an appropriate solution is to exeaute the problem in
smal parts but use the some speaulation or optimistic exeaution to fadlitate the
parallelism. Another use of this paradigm is to employ different algorithms for the same
problem; the first one to give the final solution isthe one that is chosen.

Hybrid models

Red applicaions not aways lie exadly within the definition of the previous groups or,
in some cases, it is useful to mix different elements of the different paradigms. They are
not generally found on small applications, but in situations where it makes sense to mix
them in different parts of the same program.

The distribution of the work and its decomposition is problem dependent.

5Task farming can be seen asa dightly modfied, degenerated, one level form of divide and conquer.
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2.3 - Performance modeling abstraction and tod

The mathematicd model seleded for performance modeling are the Stochastic Petri Networks
and the tool used is UltraSAN. Petri net were introduced by C. A. Petri en 1962 The
theoreticd grounds for Petri nets theory have been deeply investigated and today build a
formal structure with a well assessed theory and a broad range of applicaions. The successof
Petri nets is mainly due to the simplicity of the basic mechanism of the model, which on the
other hand present drawbadks on the description of large systems. Severa authors extended
the basic Petri net models introducing the notion of time. Timed Petri nets can be used for
guantitative performance analysis of systems. When random variables are used to spedfy the
time behavior of the model, timed Petri nets are cdled stochastic Petri nets (SPN).

The SAN capability of describing smultaneously both parallelism and synchronization will be
exploited al over this work when modeling parallel problems and algorithms. Even though the
nature of this work is mainly theoretica, atool was used not only to draw our networks, but
also to test the models with red examples. After reseaching multiple available tools for
working with SANs we seleded the UltraSAN toal, from the Center for Reliable and High
Performance Computing, University of Illinois. This tool developed by Prof. William H.
Sanders et. al. proved very important in our research. UltraSAN provides a graphicd editor for
the networks and a set of solvers that allows general problem resolution. UltraSAN also
provides some extensions to the standard and stochastic Petri nets which will be used in this
work.

The UltraSAN model shares the basic elements with the standard Petri nets. places, arcs and
transitions represented with the following graphica elements:

o

place Instantactivity

Time modeling is introduced with the timed trangtions, represented with the following
graphicd variant of an instant transition:

Timedactivity

UltraSAN introduces the gate concept. Gates are used to control token movement and logic
asociated to transtions. There are two gates defined, input and output gates, represented with
the symbols:

s

=8 He

Inp'utG ate CutputGate

The gates we use in our models are input gates. Input gates need to be conneded with arcsto
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al places considered and also to the transition that is governing. Time parameters are
represented with the transition while token movement and conditions that fire the transition are
modeled with the input gate. The logic of the gatesis expressed with the following dalogs:

INPUT GATE EDITOR

x|

Input Gate: InputGate

Input Predicate

QUTPUT GATE EDITOR

x|

Dutput Gate: OulpulGate

Qutput Function:

Input Function

K

As the tool trandates al statements into GNU C, the syntax and possbilities are C ones. The
expressons can use spedaly named maaos to refer to defined places, the number of tokens
present in them, etc. Detailed information can be found in UltraSAN's documentation.
UltraSAN is an extension of a standard Petri net, thus, al Petri networks are UltraSAN
networks. The following smple example helps understanding the input gate extension. We will
use the input gate to explicitly code the movement of tokens in a timed transition. Lets cdl A
and B to a couple of places and T to a trangition that moves tokens from A to B. The standard
Petri net representation for this <enario follows:

'

1]
e
H
H
e
]

E B
A T

We will placean input gate, named gate , replacePetri arcs with connedors to the gate and a
connedor linking the gate and the transition:

With this representation al token movement depends on the gate coding. Our predicae
indicates that we must have at least one token in placeA so it can be moved. The function
indicates that one token is removed from A place a&ad one token isinserted into B place
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[ sanedit X
INPUT GATE EDITOR

Input Gate: gate

Input Predicate:

MARK (&)=0]

Input Function:

MARK(AI=MARK{A)-1;
MARKE)=MARK(E]+1

The maao MARK(<place>) returns in runtime the marking of the place<place> . The value
can not only be inspeded but modified. We will exploit several of this cgpabilities in the rest of
the work. An issue that has proven important is the ability of drasticdly reduce the spacestate
of a problem using gates. In situations where n tokens have to be moved from one placeto
another, the use of asingle gate that moves all tokens at onceturns a state spaceof n+1 states
into a 2 states one.

2.4 - Summary

This chapter has defined the scope of this study within the field of parale systems and
applicaions both from the point of view of the systems involved and from the point of view of
the application or algorithm used for solving the problem. We will focus our analysis on the
exploitation of large grain parallelism using loosely coupled parallel systems. This chapter also
presented a taxonomy for the classficaion of parallel algorithms that considers the distribution
and decomposition of the work staticdly or dynamicaly.

We also presented here the formal structure (SANS) used for modeling parallel madcines and
algorithms that will be used in this work. Also UltraSAN toaol and the basis of its notation were
introduced in this chapter.
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3 - Modedling Distributed.net's RC5

We will present in this chapter many concepts used in the rest of the work, using the
distributed.net (http://www.distributed.net) RC5 projed as a case-study. We will try to model
the problem ranging through different scaes, discussng the trade-of of detail vs. abstradion at
every stage introducing Petri networks that models ead. The reader that is alrealy familiar
with performance indexes, parallelism, modeling with Petri Networks and exeaution simulation
can skip this chapter and continue reading from the following chapter on. Reading of this
chapter is also useful for understanding the kind of dedsions, trade-offs and considerations
used not only in the modeling but in the pradicd examples analyzed in the following chapters.

3.1 - Introduction

When the RC5-DES 64 bits encryption scheme was launched, a challenge was presented by the
RSA: a message encrypted with such technology was posted and a prize of U$S 10.000 was
offered for the group that deades the messagel RSA1]. Many groups started working on this
challenge. One of them, known as distributed.net addressed the challenge using idle CPU
cycles from internet conneded systems. They offer an exeautable that can be easily installed on
computers ran by people willi ng to share their CPUs with distributed.net people. They will get
20% of the prizeif their CPU isthe one that finds the key to the message.

The whole Distributed.net's RC5 projed is based on the ideaof parall€lizing the task of testing
the key-space Current eledronic technology and processng speeds does not allow a single
CPU computer to solve it within a lifetime. The method chosen for solving the RC5 - 64 bits
challenge is the brute force, that is, to try ead and every key in an orderly fashion. A server
distributes “padkets’ or colledions of work units to madines that request them and wait for
the answers. The job is done when a dient finds the key.

The whole space of solutions is divided MO  prEE——

68.719.476.736 (2*) work units with 268435456 (2%%) | ierey]ei
keys eatcr. A computer based on a Intel Celeron 326t Memory Ussg

Mendocino processor (CPU family 6, model 6, stepping 5) = e e
of 466 MHz and 128 KB of L2 Cade can try 1,2 millions nmemory  1268K 364
of keys every second while editing text. Such a madine Lt "

can exhaust al the keys within the next 490 centuries
without overclocking.

The digtributed.net's RC5 client software (dnetc or
rcbdes.exe) runs on multiple systems. On Windows E
systems it has a redly low impad on the user perceved
performance of the system. The task is highly CPU-bound

and there is redly very little I/O assciated with it: ca e
retrieving work units and sending results over the internet

and storing the work done locdly. The whole applicaion

fitsin RAM and allocates quite little memory, thus, adding very little overhead on the memory
and 10 subsystem. It runs with the lowest priority available on the system. The combination of

ote that only 32-bit Win32 memary iz reported here:
emory allocated by 16-bit applications, 18-bit DLLs and
5-005 applications are not included
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this fadors, and the lowest priority available on the OS, makes this applicaion have no
percavable impad on an interadive system, thus, is designed to run al day long as a
badkground process On a system running this applicaion, there are amost no idle CPU
cycles.

The problem itself israther peauliar because al the experiments are independent and the results
are only dependent on themselves. No communicaion neels to take place between clients,
only between the client and the server. Further more, no previous information neals to be
considered for any cdculation. The only two states that have to be considered are if the
solution has been found or not.

We are going to use a simplified RC5 system as a model to study and discussthe impad of
different parameters on the problem.
We will use the same pseudo-code & a simplified algorithm that describes the RC5 system:

Mast er Sl ave
while not solution-found While not solution-found
wait for connection; connect to key server;
send message; receive message of the day;
receive results and store; send results;
send blocks to test; receive blocks;
close connection; solve blocks;

We will assume that the server is absolutely devoted to its task and the systems that run the
RC5 client software ae used for interadive (user) applicaions during the day. We ae going to
use Petri Netsto model the problem.

We ned to find an adequate model not only for the client and the server but for the integrated
system. We nedl to find an adequate unit to represent both the time and the work done by the
system. We should not choose it too small, because the number of states in our system would
burst; we should not choose it too coarse, otherwise we would lose too much detail in our
model. We will try to determine the most appropriate unit for this problem.

The server model

We will start presenting a smple net that models the behavior of the server:

Clientérival WaitParConnect

Connected

ReceiveBlocks Sent

KeySpace

The tokens that will represent the “state” of the server can bein threeplaces: Ready,
Connected and Sent . They will be “waiting” in Ready placeuntil a dient makes arequest and
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after that, it will receve (when available) the portion of the problem solved by the dient and
will send a new part of the problem for solving. The name of these places are meaningful from
the dient's point of view.

The problem of concurrent accessof many clients can be modeled using multiple tokens on the
ready place The number of tokens on the ready place represent the maximum number of
concurrent connedions that the server accets. The time spent on SendResults and
ReceiveBlocks  trangitions should depend on the number of tokens currently present on the
system.

The placeKeySpace contains a token for ead block to be solved, a tota of 2% tokens, that
will be adapted to the client work units on the client's subret. In this way we represent the
evolution of the solution: as tokens are consumed from the KeySpace place the key-spaceis
being exhausted. The dient arrival will be modeled on the following paragraphs.

The dient model

The work-unit given by the CPU instruction cycle

The smallest unit that we can choose is the instruction of the processor where the client
software runs. Even if we assume that the instructions require a fixed amount of time (the x86
family remains CISC), thisis a far too small unit and leads to agrea ded of problems even in
the case of our smplified model like idle CPU cycles, pipeline stalls due to cade misss, page
faults due to swap-outs and context switches, etc. We prefer to have a coarser measure of the
performance of ead individual system like the MFLOPSor MIPS which tries to give afigure
that summerizes these and other aspeds like memory bandwidth, cade size, etc. Even if we
would like to consider this unit we would find some problems with all the CPU-cycles that
have to be considered. If we assume a 500 MHz processor, we have approximately 5x10°
cycles every second, 3x10" cycles every minute, 1,8x10" cycles every hour, 4,3x10" cycles
every day and 1,8x10" cycles per yea that eah system is running. If we assuume
approximately 50.000 systems working daily on this problem® we should consider 9x10?° CPU-
cyclesfor every yea of work. Far too much.

We can seethis problem if we compare the order of magnitude of our single task unit and the
time it would take a single machine to linealy solve the problem: 2,15x10% and 1,5x10%s
respedively. The differenceis of 22 orders of magnitude.

The work-unit given by the OStimedice

A logicd aggregation of CPU-cycles is given itself by the operating system as timeslices, that
is, the maximum amount of time that the CPU is exclusively allocaed to a particular task by

6 Thenumber of systemsthat helped with the dhallenge each day can be foundin dstributed.net's web ste.
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the operating system. In a system that is running mainly user jobs like a word processor, there
are very few procesor interruptions other than those generated by the system timer. A fast
operator can generate bursts of 280 keyboard interruptions every minute that go diredly to the
keyboard processor queue and then can be retrieved by the processor. If al the keystrokes
would generate an interruption in the procesor, there would be several millions of CPU cycles
to handle the charader, do the context-switch and alocae the CPU badk to the RC5 code.
The system timer interrupts the procesor many times every second to run the system
scheduler. The quartum of time that the processor is assgned to a thread depends on the
flavor of Windows that the system is running [RUS1], but it varies from approximately 7 to 15
ms. Asuming that nealy all the interrupts come from the system timer we can think of a
model in which we dlocate the processor fixed amount of times to different tasks.

Based on empiricd measures, we found that, for office environment desktop computers, the
CPU is most of the time allocaed to the idle task: 90% of the time or even more. On a system
running the rc5des.exe program, the idle CPU time is given to the rcbdes.exe program. We
represent that giving 90% probability of alocaing the CPU to the cCPURC5placeand 10% to
the CPUuser.

We should estimate which portion of the block is solved in a timedlice so as to “consume”
tokens from the placeworkunits  and represent completion of the block. Doing that, we can
divide the solution of the problem into a certain number of alocaions of procesors to the
RC5 task. The key server would distribute parts of the problem and eaty CPU on the network
will consume them.”

With this approac, we have skipped many details of the system, and we can get a higher level
of abstradion. Within our work-unit, we collapsed many fadors of the system like the
instruction-set of the procesor®, memory bandwidth, size of cades, etc. and we get an overall
indicator of the low-level system performance that describes which portion of the problem can
be solved during that period of time. For a theoreticd analysis we need to use measures like
MIPS MFLOPS or other indicaor of expeded system performance where our algorithm
would run. This is a good model of a single system, but in the red case there are many
different systems with different performance indexes. We must group them into classes of
equivalence acording to the speal they solve RC5 blocks, study a representative and model
the interadion of the dasses, biased with the cadinal of eat classof equivalence

The following figure presents a model for the dient:

7i
: CFluser  Tauser

Receivel Blocks Sent SendResults

7 Thiswould be true having a network with homogeneous machines. In the @ase of Internet and the real RC5
projed, thereisagreat variety of systems. The analysis remains valid making dfferent classes of systems,
each of them, with equivalent processors.

8 eg. Avail ability of MM X extensions
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We are using UltraSAN [USAN] as a drawing, modeling and smulating tool for Petri Nets
thus, we adopted the input and output gates as a tool for controlling arbitrary changes in the
marking of places. The use of gates replaces inhibiting and multiple arcs, repladng a graphicd
notation with expressons and formulae

There are two input gates, AllocateCPU  and AllocateGet  that are used within the RC5
agorithm to dedde if we need to fetch more work units’ or we still need to compute more.
The adivation predicae for AllocateCPU is.

(MARK(CPURC5)>0) & (MARK(WorkUnits)>0)

which means that we dlocate the CPU to a WorkUnit . The function of the gate is to deaement
the marking of both placesin one. In this way, consuming tokens from WorkUnit , we represent
that we have solved another part of our system.

The adivation predicae for AllocateGet IS

(MARK(CPURC5)>0) & (MARK(WorkUnits)==0)

which mean that we cannot allocate the CPU to a WorkUnit becaise we nee to fetch more.
The function of the gate is to deaement the marking of CPURCS in one. In the red case, the
CPU would issue the “conned” primitive, return to the scheduler, switch to “waiting for 1/0O
place” and would be re-alocaed to another ready task. We are not trying to represent the
whole allocation algorithm, but the allocaion of the CPU to the parallel applicaion. That is
why our simplified model of the OS remains valid.

There is only one output gate in our system: Received. It recaves a token from the server,
returns the CPU to the scheduler and puts the retrieved work unitsin the “to do” queue.

The definition of the gate is as follows:

MARK(CPUs)=1;
MARK(WorkUnits)=MULT;

The fador MULT depends on the procesor speed, the timedlice of the OS and has to be either
empiricdly or theoreticdly estimated. We define MULT, for the general case, as the number of
timeslices needed to solve an individual work unit.

The other fador that has to be determined is the probability that has the CPU to be dlocated to
auser task.

In the following figure, we introduce a Petri Net that shows the interadion of the server and
one dient:

9 Inthiscase our work units are different from the blocks distributed by the RC5 server. Our work units
represent the average number of timedli ces the CPU is assgned to a block so asto solveit.
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Since the token leaves the place wait for conneding until new blocks read WorkUnits  place
the dient is mostly blocked for I/O and the dominant fador in the analysisis given by the token
evolution within the server model.

So as to take advantage of UltraSAN's composed model feaure, we need to introduce an
auxiliary place Done. The purpose of such state isto have two states in common for the client
and the server, so as to detach them, but also, to be able to combine them with the modeling
tool.

The following figure shows the final model for the server:

WaitFayConnect

Connected

Connected

Sent

ReceiveBlocks

KeySpace

Every time that a token leaves the Sent place a token is moved to Ready and another to Done
places. The following figure shows the resulting model for the dient:

WorkUnits  allocateGet EnterlO

WaitF orConnect

The following figure represents the mmposed model:
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These models remain valid considering that all the computers have the same numericd power.
A better model can be represented modeling the spaceof computers with different classes of
equivalence The members of those classes provide the same MIPSto the RC5 challenge. With
the UltraSAN this can only be modelled defining different Client models like ClientO1,
Client02, etc. and joining them.

Even though we have developed a full model for the application, the state-space of this
problem isonce ajain far too big: even if it is theoreticdly posshble to model a system this way,
it is not numericdly adequate for cdculation purposes. As mentioned before, a computer based
on an Intel Celeron Mendocino processor (CPU family 6, model 6, stepping 5) of 466 MHz
and 128KB of L2 Cadhe can try 1,2 millions keys every seaond while editing text. On average,
it gets 110 to 120 timedlices every semnd, thus, it can try approximately 10 thousand keys
every timeslice As we have noted before, a block consists of 2% keys to be tested or, what is
the same, 26.850 CPU timedlices (around 4 minutes of CPU time). As the key-space was
divided into 2% blocks, the model should consider at least 1,8x10™ states representing the
evolution of the problem. The spacestate is too big to be analyzed, and a new aggregation
neals to be used.

Once again, if we compare the order of magnitude of our single task unit (in this case, a
timeslice) and the time it would take a single machine to linealy solve the problem: 8,33x10%s
and 1,5x10%s respedively. The differenceis of 16 orders of magnitude.

A few kilobytes are transmitted ead time communication needs to take placeand the whole
communicaion processtakes no more than a few seands even over a dow line. A pradicd
example is taken as a reference The transmisson required to obtain a group of 10 RC5
padkets took only 17 seconds using a 33.600 bps modem. 2.775 bytes were transmitted during
the sesson (1.306 bps), including the DNS query. That very small amount of information was
enough to communicae the key server the results of the work done during the last period of
time and to retrieve work for the next four hours. The relation between processng time and
communicaion time is very high: around 800times, nealy 3 orders of magnitude.

At this point we can depict some performance limits on the RC5 architedure. RC5 relies on
TCP/IP as atransport/network protocol suite and conned to the not so well-known-port 2.064
on the key server. Thereisalimit of 65.536 concurrent connedions to one port due to the 16
bit socket identifier (handle). This limits how many madines can simultaneously fetch keys
becaise standard Berkeley sockets cannot ded with more than 2% clients talking to a server on
one port. Handling 65.536 clients is a very important load on any system. The memory
overheal on the operating system would be significant and al the operations related to the
network would experienceimportant delays.

Another notorious problem comes with the neal of bandwidth: 1.306 bps are necessary for
eadt concurrent client retrieving keys to test. If the server isusing a T1 line, only about 1.150
clients can retrieve keys smultaneoudly, or what is the same, 1,65x10" machines can fetch keys
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once every four hours. This is a limit to how much we can paraeéllize this problem: adding
more machines would only lead to waiting without processng until a connedion can be made
to the key server. Anyway, if we are able to put 1,65x10" Celeron 466 MHz machines to work
together, we would be able to solve the RC5 challenge in 10 days, 18 hours and 48 minutes.
This “virtual machine” would achieve a crunching speed of 19.8 Tkeys/s, eat key involving
tens of integer instructions.

If Moore's Law stays the same for the next twenty five yeas, the whole RC5-64 bits challenge
could be solved with a M?COTS cluster with 32 Intel Pentium XV processors of 40,32 Tkeys/s
ead. It would take no more than four hours to exhaust the key-space and could be a nice
examination for a student to solve a cypted message given by the ledurer.

Thework-unit given by the solution of a RC5 packet

Another meaningful aggregation is given by the way in which the problem is divided and
distributed to the clients: the time for solving RC5 padets. Each padket consists of a group of
one or more work units, generally eight. A typica connedion to the key server retrieves 60
work unitsin 8 or 9 blocks to be solved, that is about 1,61x10" keys to be tested. At arate of
1,2 million of keys per second, that gives us about 4 hours of Celeron-crunching between
transmissons. The RC5 client can be configured in many ways, acording to the Internet
connedion available. We will model hosts with permanent Internet connedions.

With this new quantum of problem-solving, we are taking a coarser approach: we are
representing a time evolution that is 1.7x1(° times bigger® than the previous one or, what is
the same, we are representing the solution of a set of blocks as a whole, insteal of keys. We
are not concerned with OS details or what is the user doing, but with the average time the
CPU was assgned to the RC5 client, and thus, the time spent solving a block. As in the
previous case, the clients will fetch blocks from the key server, solve them and return the
results but we will not model details within the client. We will consider only a couple of
different CPU usage profiles on the dient.

The first usage profile considered is the idle system, that means, a machine arealy booted,
either with a user logged in or not that is not doing any batch task like disk optimizaion or
virus scanning. As its name says, this profile represents a system that is doing nothing but
running rcbdes.exe. The only interference to a 100% rc5 dedicaed system is caused by the
scheduler overhead.

The second usage profile considered is the interactive system: a system whose primary task is
to run user processs, generally, with higher priorities than rc5's priority. The consequence is
that the CPU is given to the rc5des.exe processonly after all the user's CPU nedls are fulfill ed:
no other task with higher priority can bein the ready queue if the rc5 isto be scheduled.

If we plan not to bre&k the solution of blocks into smaller work units, we need to represent the
different profiles in away that is independent of task exeaution interleave, level of user adivity
or virus detedion. We must collapse all these fadors into a smple and handy unit of work
evolution.

Lets choose any procesr as a reference processor and use it to turn solution-spaceremaining

10 This factor is calculated with reference to the 466 MHz Cederon processor, but will vary on different
systems; the OS's timedli ceis independent of the numerical power of the procesor.
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into time-to-exhaust-solution-spaceusing a theoreticd dedicated system based on the reference
procesr. It is clea that both representations model the evolution towards the solution of the
problem. Using the time evolution approad it is smpler to represent different CPU
contributions: different CPUs with different loads can consume tokens faster or slower than
our reference procesor acrding to their speed and load.

As we saw on the previous sedion, the time spent on communication for retrieval of new work
units is amost 3 orders of magnitude smaler than the time needed for solving the whole
padket, and can be omitted.

The following figure represents a model based on systems delivering approximately the same
CPU time to the RC5-64 problem.

i Departure  B¥®
Clients %

Stay

Arrival

TimeTaGa Wark

Working

The system has three main places. Clients , TimeToGo and Working . Like in the previous
models we have a placewhose tokens represent the evolution of the keyspaceto be chedked,
inthis case, TimeToGo. The placecClients colledstheidle dientsrealy to work.

There is a timed adivity, Arrival  that models the arrival of new CPUs wishing to cooperate
and depends on publicity and other social isaues. The clients face regularly the dedsion of
continuing working or leaving the projed. That is the meaning of the instant adivity
Decision . The reason why a client leaves the challenge could be many, like the frustration of
so much CPU hours and so little reward or smply forgetting about the challenge one yea later
when the hard drive had to be formatted. The Decision could lead to Departure  Or Stay
places. As soon as a token gets to Departure it is removed from the system: Bye instant
adivity.

For clients that still wish to solve the challenge, the work instant adivity removes a token from
TimeToGo, alocdaes it to the client and puts it in the Working place The tokens are removed
from the Working placeas soon as they spend there a certain amount of time, equivalent to the
one needed for our reference procesor to solve our work unit.

This is valid for homogeneous procesors with smilar system load, but it is not clea how to
handle the variety of procesors avail able with diverse load.

We will make classes of equivalence within the Internet hosts spaceand give different number
of representatives to ead class Based on areasonable inverse linea behavior of the key-space
solution speed with resped to the CPU load on equivalent systems, we can say that a system
with a CPU that is equivalent in performance to our reference processor will spend double the
time with a system load of 50% of the CPU time assgned to other tasks than the rc5 software.
A system with double CPU power will neal half of the time if it givesits 100% of CPU to the
rcs task, and so on*.

11 Thisisnot totally true due to the impact of context switchesin the overall system performance @used by
misgng locality within the processor's complex cache systems and other performancefactors.
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With this perspedive of CPU time assgned to the rc5 problem, we can classfy systems
running the rc5 client acording to the time they can give to the problem resolution depending
on load and CPU power. Each of these dasses would have different number of members.

We noticed that this last aggregation is not suitable again for performance prediction using
Petri nets for the same reason: excessve complexity of the numericd solution. With a level of
granularity of approximately four hours it is not possble to model OS details and small fadors
of interadive tasks but it is also too small with resped to the whole solution time. Once again
the order of magnitude of our single task unit compared to the order of magnitude the time
needed to solve the whole keyspaceis quite too big: 12 and 6,87x10". The difference is 10
orders of magnitude.

Even though it could be possble to try further aggregations of the problem, we believe that
they are not meaningful and they cannot give richer information about the evolution and
predict the performance of the system than the aithmeticd cdculation depicted recently.

Processng spead determination method.

We have so far tried to model the complete resolution processand we were able to produce
acarate models that are numericdly far too complex. In the previous sedion we mentioned
the posshility of some kind of analyticd resolution based on the concept of “resolution speed”.
We will use this concept for the problem resolution.

This approach differs from the previous one, as it does not try to model the complete problem
resolution, but to determine which portion of the whole problem can be solved within a certain
amount of time. Then it is straightforward to determine the time it will take to our system to
fully solve the problem, provided that the estimated “speed” remains constant for the whole
process

As we mentioned before, we will partition the spaceof CPUs acarding to their approximate
contribution to the problem resolution and estimate the number of CPUs in ead class
Knowing this two figures in al cases we can estimate the contribution of ead classto the
problem resolution and consequently. The construction of a Petri network for this purpose is
straightforward as is very similar to the last one built, but it is not interesting in the current
context. Lets assume that we are modeling a RC5 work unit with our token, then, the token
consumption speeal for ead equivalence classis a dired function of the number of elementsin
the classand the estimated speead of ead element. Now we have the token consumption speed
of ead class then the overall token consumption spedl is the sum of individual class speed.
This single figure is our token consumption speed and should be an upper bound for the red
system speed, as we are not modeling any kind of delays blocking, etc. that would lead into
unused clock cycles, and thus, slower overall resolution speed.

In this case the analysis of the Petri net that we would have constructed suggested a particular
analyticd way to estimate a particular measure, the system's processng speal. Using this
measure is possble to determine the time it would take to the system to exhaust the tokens
that models problem's complexity. In this way we have smplified the system, as we do not
have to model the whole resolution, but we can estimate it out of an intermediate estimation.

12 Wehave cdhasen aur unit asthe time needed for our reference proces®or to solve awork unit.
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3.2 - Conclusions of RC5 modeling

During the last paragraphs we proposed several Petri Net models of the RC5 system that
generates models with different level of acaracy of the system but that they al impose
pradicd problems to the resolution: in all cases the number of states in our Petri Net grows
beyond what we can handle or would like to use to predict the system performance. It makes
no sense to use a system for prediction that is more complex and more inacairate than the red
system. We were not able to brea the problem into pieces that are small enough to keep rich
detail s about the problem and also that are big enough so as not to make the number of states
in the Petri Net be reasonably bounded.

As we tried through the different levels of aggregation we were able to identify key
interadions of the client and the server that helped us understand why this problem can be
solved using a highly de-coupled set of computers like the Internet: absence of interadion
among clients and the huge difference between the time spent processng and the time spent
sending results and retrieving more work.

We were also able to settle, at least, some theoreticd and pradicd limits imposed by the
operating system, Internet and communicaion state-of-the-art.

We finally presented an arithmeticd way of predicting the performance of the system that
distributed.net is using to addressthe RC5 challenge. With smple arithmetic it is posshble to
cdculate numerica throughput and time needed to exhaust the solution space Anyway, in
such an uncontrolled system like the Internet, a key issue to answer the time needed to solve
the problem is a social isue: how many people would like to lend their CPUs to
distributed.net.

Another problem that this particular simulation faces is the technologica evolution. It took
amost 5 yeas to solve the challenge so, using Moore's law the industry doubled the
performance 3 times, so state of the art the systems that helped in the last period of time were
eight times faster than the ones that started the challenge. This kind of long term simulation
faces evolution problems of the hardware, spedally in highly heterogeneous and uncontrolled
system like Internet. It is far beyond the scope of this work to model this kind of long term
system evolution. The models that we will present in the following chapters assume constant
the system performance during the problem resolution.
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4 - Model templatesfor general paralléd
applications

In the second chapter we presented the fundamental reasons why we divided the set of parallel

problems into five groups. task farming, single program multiple data, data pipelining,

divide & conquer and speaulative parallelism. During the following sedions we will discuss
the main isaues that have to be considered for ead group and we will depict the way in which
a model can be built so as to represent a spedfic instance of a program of a parallel group
running on a particular system.

It isawell known fad that the performanceis not exclusively system dependent. The software
that runs on a particular system plays a key role on the performance evaluation of the system.
Efforts like SPEC rely on statisticd analysis of which different kinds of codes run on the
average system. The people that compare their system with SPEC agree with those
generdizaions of the average software exeaution profiles. A higher SFEC index does not
guaranteethat a particular software will be faster on the new system. That is why we do not
concentrate only on the topology and performance of the hardware but also on the software
structure, inter processcommunicaion, etc.

We have done an exhaustive analysis of a master-dave process when we analyzed the RC5
model in the previous chapter. We will generalize what was done and introduce parameters
that were omitted due to peauliarities of the RC5 problem scde.

When representing a system, we must choose the level of detall to be included in our model.
Too little detall means that there will be important charaderistics of the red system that will

not be included in our model. Too much detall means that we will need to measure and
cdibrate many parameters of the model; aso, the numericd methods available for computing
interesting performance measures from the model may be too sow or too impredse to be
useful. Unlesswe consider particular cases in which the parallelism is highly exploitable, a lot
of effort hasto be placead when huilding the model in order to ascertain its validity.

One useful technique is to introduce small variations in the data to test stability of the model
and to learn about the tolerance of the model to changes.

Finaly, if the results of the smulation are not conclusive or the complexity of the model
predudes its numerica solution, it might be useful to make a prototype of the system and run
it. This prototype usualy would include more detail than a numericd model, in order to
provide better information about the red system.

4.1 - Performancel ndexes

Another important point that must be dedded before building models for ead of the classes of
parallel problemsisto choose aset of performance parameters or indexes to be evaluated. The
need for these indexes is to have concrete meaningful, problem independent indicators of the
system performance, that have deep roots in both the software that will run on the system and
the system itself.
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This has important effeds on the models we will build, as a model appropriate for evaluating a
stealy state parameter of the system may not be useful to compute transient performance
measures.

We have thosen to study the following parameters:

a) The Tota Exeaution Time (TET): is the exeaution time of the problem, from the
initiali zation phase until the processreades its ending. This is a transient measure,
which is particularly important in red-time or quasi red-time parallel systems, but it
is generaly important on every system that we code: we would like to know how
long it will taketo find a solution to our problem.

b) The Mean Exeaution Speed (MES): if we can measure the problem size in some
work unit (say for instance number of floating point instructions, blocks to solve,
etc.), we can think of an important parameter which is the speed at which our
system (measured in work units per time units) solves the problem. This allows usto
estimate the system's processng cgpadty. We define MES as the size of the problem
(represented in work units) divided by the TET .

We will discusslater foundations for these definitions, spedficdly for the second one. We will
see that under spedfic situations one measure can be easier to determine than the other.
Furthermore we will seethat in many cases, if we can estimate properly the MES and we
determine the size of the problem, then we can estimate the TET diredly from the MES
definition and viceversa.

According to the MES definition, we can represent it using the following equation:

__ WorkUnits
- TFT

MES

We will be interested on systems in which the TET can be divided in the next sequence of
stages:

a) initialization,

b) regimen,

¢) ending;
and their associated times: T;, T, and Te. When we introduce the concept of a “regimen stage”
we are fadng the ideaof a stationary phase, which would lead us to the problem of defining
properly what is a stationary phase in our particular networks. This is difficult to determine in
the general case of our problem, speadaly due to the fad that we move tokens from a initial
placeto afinal place If we think of infinite times and we follow a scheme similar to that one
presented when studying the RC5 problem, we find that the stationary phase would consist of
the state in which all tokens are moved into the final absorbent place Our concept of “regimen
stage” differs from the stationary phase mentioned before and refers to the constant problem
solving phase found between the initialization and the ending. We will not try to formalize
more this concept for the moment.
Asauming the previous considerations, we can expressthe Total Exeaution Time as the sum of
the Initialization, Regimen and the Ending Times like:
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TET=Ti +T, +Te

Repladng this equation on the MES definition we get:

WorkUnits
MES=————
T+T,+T,
Our study will focus on situationswhere T, >> Tiand T, >> T, thus, it isvalid that TET =T,
. We can conclude that:

WorkUnits ~ WorkUnits _ WorkUnits

MES=""TET T AT 4T, T,

Using any of these measures, we may study if it is possble to obtain any speedup with a
parallel exeaution scheme repladng a single processor one, to obtain expeded order of
exeaution time and the numericd speed of our system solving the particular problem. We will
use the terms system, cluster and group of CPUs basicdly interchangeably becaise we are not
tying ourselves to a particular hardware configuration, even though the base of this study is
commodity components. The analysis can be applicable to a set of interconneded uniprocessor
systems, interconneded multiprocessor systems, NUMA madhines, etc.

We will present away of modeling eat problem within the five groups discussed and how to
obtain the general performance indexes that describe the numericd performance of a system
conformed by certain hardware solving a particular problem. We will depict which parameters
have to be estimated so as to model the system, but it is impossble to generalize how to
estimate eat parameter for ead parallel group. Each time that a particular system is modeled,
it has to be dedded how to estimate and cdibrate the constants needed for the model to predict
properly the behavior of the system.

4.2 - Task-Farming (or M aster/Slave)

In the task-farming paradigm we can identify two entities or groups of entities: masters and
daves. There may be only one master or a group of them; there may also be different groups of
daves, but essentially, we are fadng the same problem that might have been partitioned due to
performance reasons. Either way we will model a virtual uniprocessor master serving afarm or
group of dave systems.

The master is responsible for decomposing the problem into smaller tasks, distributing them
among the daves, colleding results and assembling the problem solution. It is important to
note that al this means overhead. Demmposing a problem, even picking up ranges without
performing any processng to the data set results in extra administrative work. Keeping tradk
of which parts were alocaed to which daves and, depending on the situation, dedding that
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there was a problem with that dave (maybe the answer did not arrive within a certain
accetable amount of time) and alocaing the same part of the problem to a different dave
means extra CPU operations that have to be mnsidered as overhead.

Saves perform a simple sequence of steps. get a part of the problem, processit until a solution
is found and send the result to the master. In most cases, there is no communicaion among
daves.

This kind of problems are easly scdable (by means of adding more dave CPUs) and their
spealup is quasi-linea as there is little or no interadion among daves. The bottlened that
might arise at the master is solved (if possble) making farms with master servers. If we apply a
state-of-the-art layer 7 traffic rediredor, the logic and intelligence that the daves need to
choose the appropriate master can be collapsed within a hardware device that can become a
commodity component soon. State of the art network manufadurers are including rediredion
and load-balancing fadlities into their boxes. Layer 7 traffic redireding devices have a
monetary cost similar to multiple slave nodes together and the problem can be solved with
more intelli gence on the software & the master nodes.

We will represent both processes with a high level pseudo-code that makes clea the
interadion between both the master and the dave, leaving problem complexity bound to
process , partition and assembleSolution  functions. The pseudo-code follows:

mast er sl ave
receive P (size n=|P|) repeat
partition P into P P 2 ...,P n getP
k=1 R =process(P i)
repeat asynchronously send R
{send P ; k+=1} until ! o P
{receive R j; process(R )} fin

untl #{R  ;}=n
assembleSolution
fin

The partitioning of the problem is a mgjor issue, not only for its inherent difficulty but for the
consequences on the solution process It is important to note the difference between the
processpartitioning and the modeling work-unit eledion: the first one is a design dedsion that
deds with the problem resolution while the work-unit eledion summarizes what we consider
relevant and what we can abstrad so asto model the system.

The asynchronism of the reped loop in the master represents the fad that there is no particular
sequence of send and receive  in the general case. We exped that the master processdelivers
n pieces to the daves and colleds n solutions from them. Maybe the master credes athread for
eadt P; alocaed to a dave, maybe sends all P;s and then waits for the results, etc.

The colledion of results could include some fault tolerance on the clients. The master can set
timers when delivering problems to clients, so if a time-out condition arises, then the problem
is alocaed to another client willing to solve it. There is no problem if multiple solutions are
returned for a given problem, only one is gored.

System modeling

We base our Petri net model on the previous pseudo-code. We are representing a set of CPUs
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that will ad as daves that will loop until there is no more work to be done and a master that
dices the problem into adequate pieces and delivers them to daves.

M asters model

The following net represents the master process

I;;o ult
5]

. Partitionin .
Problem_InfFm ohlem_partitioned

Partition

remove

SND_Buf RCY_But

The initial configuration of the network is with al places empty but the Problem_input  one.
A token is placal there representing the initial problem P that is going to be solved. Thereisa
timed adivity, Partiton , that represents the main initializaion task: partition the problem
into the tasks that will be solved individually by ead dave. We use the input gate defined by
the UltraSAN padkage to manage the extension in the functionality of a regular timed
trangition. Instead of removing one token form the Problem_input  placeand pladng it into
Problem_partitioned place we place factor tokens into Problem_partitioned place
Fador is a global variable which we use to set different initial conditions in our smulations.
Varying this fador, we can modify the size of the problem to be solved by ead dave. It
generally has a correlation with the time in which an individual task is completed, which is
represented in the slave model.

The Problem_partitioned placeholds all the tokens that represent the problem partitioned
and the Send timed adivity delivers pieces to daves ready to work. The distribution function
for the Send adivity represents the time involved in the processof accepting a connedion and
sending the necessary information for the dave to start working. Generally this function
summmarizes operating system, network availability and communication issues. It is possble to
placean input gate that pauses the Send adivity if more than a certain number of tokens are
aready placal in the SND_Buf place This is useful to achieve a closer representation to redity
and to bound the number of different states on the Petri net, which is useful for the numerica
resolution of the problem.

The timed adivity Fault represents the ladk of completion of dave tasks due to hardware
problems, bladouts, system crashes, etc. As there is a high independence among dave tasks,
the missng one is placal bad in the Problem_partitioned place All that has to be done
afterwards is Send it and allocae it to a dave. Generally, the rate for this adivity is extremely
small, which represents the rare event of a problem in a dave. Even though the stability of
commodity systems today is very high (comparable to workstations a decale ago), when
considering a cluster with an important number of daves or mistakes caused by improper user
handling of their systems, the joint probability of a single (any) system crash grows to a level
that might be considered. The existence of the Fault activity has an important impad on the
numericd solution of the theoreticd model: even though the rate for the distribution function is
very small, there is a non zero probability that an arbitrary big number of failures occur within
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a bounded interval of time. The consequence of this fad is that the number of states of the
network is unbounded, thus, many of the solving algorithms can not be applied with this
adivity. If the resolution algorithms need to cdculate the state-space prior to the numericd
resolution of the networks, then they can not be applied. In this kind of networks simulated
results prove alequate.

The results coming from the daves are placel on the RCV_Buf place We are not modeling
post-client processng, thus we only consume tokens without representing any particular
adivity®®. There are some cases that can be mentioned here. For example, it is possble that the
master neals to communicate something to the running slaves related to the receved resullt:
this is the case for example in a branch and bound agorithm when a new partia solution was
found. There also exists the possbhility that the answer from the dave results in new tokens
added to the Problem_partitioned place Either way, the final post-processng changes the
completion time with a bound and well known fador. In case that this fador neels to be
included in the network, a timed adivity assembleSolution ~ can be introduced that removes
al nodesfrom RCv_Buf placewhen processng is done.

One asped that has to be considered when building the network is to keep it as smple as
possble, while modeling all the relevant information. If the model gets too complex, it will be
extremely time-consuming to solve it.

At this point we can note that there is lossof information from the master's point of view: as
soon as all nodes have been removed from the SND_Buf, it is not possble to determine if the
processng is done or some dave is still processng. We can always insped the daves to chedk
if any oneis dill processng, but it might not be pradicd in al situations.

When asyntotic behavior is analyzed, current network is adequate. When terminating
smulations are nealed, when a master-dave network neeals to be integrated into another
network or for synchronizaion means, we neel to introduce a new placein the network that
lets us ke tradk of all the pieces of work delivered to the daves. The following net
represents the master processwith the new placeintroduced:

eeeeee

SND_Buf RCY_Buf

As pieces of work are sent to the SND_Buf, they are also copied to the placework_Not_Done .
As soon as processng is done, tokens are removed both from the RCV_Buf and from the place
Work_Not_Done . With this new network it is easy to determine if all the daves finished with
their pieces of work. If no tokens remain in Problem_partitioned and Work_Not_Done
places, then all processng is done.

13 We use ainstant activity for representing it. Due to constraints in the tod we are using for modeling, we
can not have a modedl running with ainstant activity after a place used for joining two networks. When
doing real simulations, tokens can be mnsumed on the dave or atimed activity can be used instead of the
instant one.
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Slave models

The dave model is a little bit smpler, becaise the daves structure is also smpler as the logic
of the problem resolution resides on the master. The main complexity (if any) that exists at the
dave is the procedure to solve pieceof problem that is alocaed to it. The daves only retrieve
pieces of work to be done, solve them and send the results bad to the master. The following
net represents ead dave process

RCY_Buf

get Allo Frocess

The name of SND_Buf and RCV_Buf are named from the master's point of view, not from the
client's. It is needed due to UltraSAN constraints for joining nets. Places should be named the
same on joined networks, and we seleded the master's perspedive.

The rest of the processng on the client is straightforward: a token is removed from the buffer
and alocaed. Then the client spends some time processng and then the token is returned to
the master. The input gate CheckAllocation is responsible for not allowing more than one
token inserted on the Alloc  placebecaise we model the allocaion and solving of one pieceof
problem at atime. It is also possble to model multiprocessor systems or groups of systems
with equal performance to be modelled as tokens allowed by the CheckAllocation input
gate.

Even this network is adequate for our purposes, the design is somehow influenced by the tool
we are using: the input gates are an addition to clasgcd Petri networks done by the UltraSAN
toal that allows very powerful and expressve operations over a network. What we mean at
this point is to move only one token at a time, becaise our nodes will consume only one work
unit at atime.

We can model the same behavior repladng the input gate with a node cdled CPy initialized
with one token. Arcs should conned this node with adivity Get and the adivity Process with
node cPuU With this network we represent the allocaion of pieces of work to CPUs. When
both a CPU and a work item are avail able together, they are both consumed. When processng
is done, the CPU is released (token returns to cPUplaceand is again allocable) and a token is
placal at RCV_Buf, indicaing that some result was obtained. The following figure represents
the network:

CPU
sip_Burl . RCY_Buf

get Alloe Frocess

Both networks can be used interchangeébly.
It is good to mention now that in the case of multiprocessor systems there are two aternatives:
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either initiaize & many tokensin the CPU place & processors the system has and add only one
dave network to the systems network or to add as many dave networks as CPUs to the
network that models the whole system.

The estimation of the processng time is a important fador for the predicting cgpability of the
model. Particular information of the spedfic system being modeled should be represented at
this gage.

The complete system is modeled joining a set of daves with a master. Unlesswe faceparticular
sick configurations and problem scdes, bandwidth and processng cgpadty of the master
should not be a bottlened in our systems: processng and communicaions cgpabili ties should
be considered enough, at least, at the beginning. In general, Task-farming problems are more
CPU-bound than 1/0-bound, thus, CPU is much more a bottlened than the network speed.
Another fador that has to be considered is that raw communicaion speed is not a problem
currently as 10GigabitEthernet is already available. The problem is that the processng
overheal to process10Gigabit (up to 20 million Ethernet padkets per second) is too much for
a single CPU. Master's burden must be split not becaise of pipes width, but becaise of CPU
might not be eough if processng at the master is considerable & high network speeds.

We use the following composed model to represent the conjunction of a master and multiple
davesin a single network:

The Rep box represents the replication of the Slave network. We use the Join  box to combine
a set of daves with the master.

This system represents a set of systems that deliver approximately the same CPU power to the
resolution of the problem. Heterogeneous systems could be represented either cdculation
complex distribution functions for the Process adivity or usng multiple groups of daves,
eadt of them with equivalent CPU power available for the problem resolution. We represent
such heterogeneous s/stems with the following composed model.

Join

Rep ‘

Master

Rep ‘

Rep ‘

Slave SlaveB SlaveC

Eadch SaveX network is exadly the same as the others, but differs on the distribution function
for the Process timed adivity. On the replicaion box, we use different numbers to represent
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the different number of instances of the different processng speed.

Performance parameters

We have aready presented a method for modeling master-dave systems. We ill need to
provide means that help dedading how to archited the system and how to develop the software.
The final goal of the modeling is to determine as ealy as possble the best way to enginea a
catain paralel system, to reduce the complex set of different ways in which the system can be
designed, or answer if current technology can address certain particular problem within
particular time restrictions..

We will present now how to estimate the MES (Mean Exeaution Speead) and TET (Total
Exeaution Time) based on the model described before.

Total Exeaution Time

As we have previoudly defined, the total exeaution time of the problem is the time from the
initiali zation phase until the processreadies its end. Based on our system, we can cdculate this
measure as the time it takes to the system to move al tokens out of the system. This implies
that we have to simulate the whole resolution of the system, that means, we have to model the
whole system described before, placethe tokens in the initial placeand run a simulation until
all tokens are removed away from the system.

Not al simulation toals alow this kind of estimation. If the tool that is being used allows to
cdculate network'’s steady state, we can introduce a variation in the network's layout. We can
make a cycle from the final state, the absorbent configuration, to the initial one, so after the
processng is done, the network isrestored to the initial configuration. The processof restoring
the initial configuration must have an asciated timed transition with a known amount of time.
We can simulate this new network in the steady state and measure the fradion of time that the
network spends restoring the initial configuration. From that value we can then estimate the
counterpart, that isthe TET.

It is not always possble to ascertain this measure basing our forecat on smulation due to the
complexity of the numericd solution. It can be the case that it might take too long to cdculate
the TET out of a complete exeaution smulation. If it was possble to compute the MES for
that system, then it is possble to estimate the TET as the complexity of the problem divided by
the MES, that is, how long it will take our system to consume all tokens at the processng
average spedal provided that most of the exeaution time is spent on the regimen phase. On
average, this estimation is adequate, but it does not consider the behavior before and after the
regimen phase. A source of error to this estimation is due to the time the system runs out of
the steady state. If the regimen state takes most of the exeaution time, then the estimation is
adequate, otherwise, it has to be spedficdly considered.

Mean Exeaution Speal

If we are cdculating the MES after the cdculation of the TET, then with only an additional
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arithmetic operation it is possble to compute MES acwrding to the definition. On the other
hand, if it is not feasible to diredly compute the TET, then it is possble to try estimating the
MES before and afterwards, based on that value, to determine the TET.

As we discused before, we neal to estimate MES. We will estimate the regimen problem
solving speed of our system (measured in work units per time units), what we cdl that
estimation MES. This allows us to estimate the processng cgpadty of the system and also to
estimate the time in which the stationary phase of the problem can be atained.

The time in which the regimen phase is attained has to be cdculated in some way that is
problem dependent. After the system isin its regimen phase, one of several standard techniques
(regenerative simulation, batch means, etc.) can be applied to determine the MES. Changes in
the network can be done to smplify the determination of the steady state like adding infinite
initial tokens or making cycles so as to ke the overal number of tokens constant ac@rding
to the time evolution. The last aternative is generally preferable for the sake of numericd
simplicity.

If the system was modeled acording to the previous recommendations, there has to be a
couple of states, cdled SND_Buf and RCV_Buf that permit the uncoupling of the master and the
dave. The evolution on the part of the network that models the master process does not
present a steady state behavior: tokens will be consumed from the Problem_input  placeuntil

there is no token remaining.

We can concentrate on the set of daves that consume tokens from the SND_Buf and their
induced Petri net, a subset of the original net. We will estimate how fast the dave nodes
consume tokens. Even though we can theoreticdly analyze the processng speed based on an
infinite set of tokens in the SND_Buf place it is humericdly simpler in our Petri Net to model a
finite number of tokens being reinserted after they are processed in the initial placeso as to
keep constant the number of tokens on the network and also to keegp bounded the total number
of states of the system. The average number of tokens that cycle the network in a certain
period of time should be cdled MES. It can be determined as the diff erence between the total

number of tokens in the network and the average number of tokensin the SND_Buf place This
is equivalent because al the tokens that are not in the SND_Buf placeare cycling the network
acordingly to the definition. The advantage of this aternative is that is simpler to compute the
average number of tokens in one placethan the number of tokens cycling.

As a rule of thumb, it is important that on the regimen state there is always more than one
token on the SND_Buf place If al tokens are consumed, it is possble that a dave is willi ng to
process but there is nothing to process If there are always tokens on the SND_Buf place it
means that there is always more work to be done than daves to acomplish it, and thus, there
is no idle dave. In that situation, we are solving the problem as fast as we can. Generdly it is
wise to have more tokens tham CPUs willi ng to solve pieces of work.

It isageneral fad in this kind of systems that the regimen state is readied quite soon. Asthere
is little or no interdependence between daves, there are generally no constraints that prevents
daves from getting their work. In that scenario, the most likely event that would stop a dave
from getting more work to be acamplished is a bottlened on the server side. It could be of
many different types like CPU when it is preprocessng the job, maybe splitting it into smaller
tasks; it could be a network bottlenedk due to the fad that a high number of clients are al at
once egger to get their jobs, and as they were spawned together, they collide trying to access
the server, etc. After all the clients get their pieces of work they are all working on they will

keep their pace only interfered by eventual bottlenedks on the server side.

This final estimation of the MES will be greaer than the one cdculated from the TET as it
does not consider the initializalion and post-processng times. In a way, it gives the fastest
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processng spee that the system can achieve from the laves point of view.

4.3 - Single Program Multiple Data (SPM D)

It is the most commonly used paradigm. In most cases, the problem suggests how to distribute
the problem to ead CPU. Eac processexeautes basicdly the same ade on a different portion
of the data. Generally the differences are due to boundaries of the spacebeing modeled like the
walls of a nuclea reador, height of alayer of air in the atmosphere in a shallow-water model
or the limit of a geographic region considered for the dispersion of pollutants. In al these
cases, something spedal has to be done so as to preserve physicd constants/values of the
system like entropy, energy, mass etc. For example, when we consider a fine-grain
atmospherica model of the winds over a city, Corioli's forceis applied to al points of the grid,
but the system modelled is not a closed one: the winds entering and leaving the region
(differences in atmospheric presaure) have to be modelled in the boundary with functions
which evolve in time.

Due to the divison of the problem data among available processors, it is aso referred as
geometric parallelism, domain decomposition or data parallelism. The decomposition is
usually ground on regular geometric structure of underlying physicd problems, thus allowing
uniform distribution of data anong processors.

Ead processor would need to communicae with its neighbor whenever its cdculation needs
information held on the neighbor's memory. In many cases, with the model we represent a
pieceof the universe in a given time t, and we use the models to predict how our universe will
be at time t;. To speed-up the cdculation of the evolution of our modeled universe as time
evolves, we partition the initial state within a set of procesors and paraléelize the time
evolution from t, to t;. After the processng, ead procesor has computed his asociated part
of the universein thetime t,.

Nothing can travel faster than light and al the forces in nature have different strengths
acording to what is considered and distance”. That is why there is a cone of influence
implicitly associated to every point of the universe and to what is going on there. Lets think
about two points, X and Z that are separated more than c(ti-to), where c is the constant
representing the speed of light. Nothing has to be considered in Z from X in the instant t, to
cdculate the state t; and viceversa. If two points X and Y are separated less than c.(t:-to) it
might be necessary to exchange information between both of them so as to cdculate the next
state. What defines the interadion within the model is the model itself, what is being modeled,
what is considered relevant and what can be obviated. There is no genera rule that can be
usually applied to determine afixed set of neighbors.

It might be necessry to provide further synchronizaion (barriers or other methods)
periodicdly among processors. As the processng is relatively smilar between all procesors
the synchronization is not a waste of time and it can be used for chedkpointing, very useful in
cases of crash-remvery. On the other hand, it leads to problems mixing CPUs of different
power or time-shared systems with different loads becaise in most casesit will lead to systems
with the performance of the sowest CPUs.

The communicaion pattern is usually highly structured and extremely predictable. According
to the problem itself, the data might be self-generated or read from some storage. There is a

14 At least in the four-dimensioned universethat A. Einstein helped us understanding.
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high dependence to the processors, and the lossof one of them leals to deadlock states. There
has been an enormous amount of work improving reliability on clusters, fadlitating process
migration between CPUs, fault tolerance etc., but until now, the best price/performance ratio
is obtained on non-redundant systems, fault intolerant.

The modeling of these systems is not as straightforward as the previous case. The
communicaion plays a more important role on these problems and the way the communication
pattern takes placewithin this models determines the way the net's graph lies.

Before the process begins, there is a stage of division of the initial condition of the problem
between the processors. The interrelations of the processes are obtained from the model and
the communication pattern is known. We can determine the neighbors of ead processor,
understanding neighbors as two processes that share memory.

There is an initia stage in which the original problem is divided in small parts and the
interadion between processes/processors is defined.

We represent that stage with the following pieceof code:

Initialization
receive Problem Pio
divide Po into{ Piio, Pato, Psto... . Pa1to, P to}
VPj,1<j<n,V(Pj):{Pkl,Pk“....Pkm]

The function V returns the set of neighbors of a given subproblem. We assume the general case
in which the neighborlinessis redprocd, and thus P,€V(P;,) meaxs P,€V(P;) * Eac
processitself exeautes basicdly a simple sequence of stages, represented by the next pieceof
pseudo-code:

process
receive subproblem P o
set k=1
repeat
R . =process( P )
for P in V(P)
asyncsend( P, R 1)
for( P in P/ P O V(P)
R =receive( P, R )
Piivx=R,. 0O le,l O F\)'z,t o ..
k++
until k=max (or other suitable condition)
end

The processes are mainly loops that run until a certain condition is verified. Chedkpointing was
skipped for the sake of smplicity, but on long runsit is a must. Chedkpointing would consist of
storing state information in a (maybe safer) permanent storage that can be used for resuming in
the event of a system failure.

The processrecaves the initial condition of the problem to be solved and runs the appropriate
algorithm on it, producing a certain result R . The result is communicated to the neighbors
and neighbors results are recaved. When we use async send we do not constrain ourselvesto a
particular routine, but with the general concept that the produced result is sent and locd
computation is not suspended until the neighbor receves it. The result can wait on the
neighbors protocol stadk, could be written to disk or can be held until the neighbor polls for it.

15 This has a solid physical ground on the way natural forces operate. If a processor holds information
that has to be taken into account when determining the next time-step of a neighbar, it will neel the
information from his neighbor to compute his own next time-step.
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The spedfic implementation is not a main issue here.

The process of getting neighbors results is blocked becaise we can not continue computing
until we have all the information needed to compute the following step. After we have all the
information needed, that means, our result plus our neighbors results, we assemble the data set
that is going to be used to compute the next time-step, and so on.

Not all the agorithm implementations of SPMD problems are exadly written this way, and a
wide variety of particular solutions exist. The processdoes not have to have al the information
needed to compute the next time step when it starts, it can poll for it whenever it is needed.
This lazy approach is highly agorithm dependent, becaise neighbors memory could be
required any time. Another problem with not so structured approacdhes is the problem of
deallock states, which are avoided in a structured design.

What our general pseudo-code represents is that we need information from our neighbors to
compute ead time-step, and also that we nead to share with them some of our own results and
so on. The data exchange here plays a key role. Neither our neighbors nor us can compute
results without the other, and the data exchange processslows down overall cdculation power
of the system. It could be the case of a problem in which too much time is spent on
communicaion and a single processor system could perform better due to the ladk of
communicaion overhead.

We will represent the system and the data exchange with Petri nets.

System modeling

On first high-level thoughts, we can make an abstradion of this system as a set of CPUs and a
set of work pieces. Each CPU gets a pieceof work processs it and gets ready for the next
pieceof work. The network that represents this would consist of one placewhere all pieces of
work are represented with tokens, another placewhere available CPUs are also modeled with
tokens, a timed adivity that models the allocaion of a piece of work to a CPU and its
resolution and finally a placethat receaves al solved pieces of work. The following network
represents this:

CFUs_gvailaple

Frocess Waork_Done

Work_Remaining

Studying this network layout, we can see that we have completely lost all inter-process
communicaion modeling. The Process adivity smply removes CPUs, but there is no
modeling of the fad of available CPUs that can not get a piece of work alocaed becaise
information from the neighbor is not avail able yet. When we want to represent this system on a
Petri Net, we find that it is not posshle to sketch a single network layout in which we have a
pool of CPUs and a set of tasks to be acaomplished becaise we lose the interadion and
interleaving of processng and sharing information. In these systems, it is important not only
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that processng and communication takes place but in which order and how much time is gent
waiting for synchronization. We concluded that we can not depict a general network layout, as
it was done with the task-farming classof parallel problems. We present here a procedure for
constructing the Petri Net assciated to a given SPMD agorithm, the kind we described
before. We will have to construct networks for ead particular problem.

Let usfirst introduce the definition of the places and transitions that will conform our net. Each
process P; will basicdly be processng or waiting for others results. Lets cdl init_ P ; to the
initial place where the token representing the state of the process P; is and proc_P ; to the
timed transition that represents the processng at processP;.

Ead time that processng is done, a token is removed from work_P ;. The tokens in the place
work_P; represent the remaining work of the current run. After the processng is done, the
token goes to the placewait_P ;. The token is also “copied” to fictitious places that represent
the asynchronous communication between processes. The instant transition sync_P ; removes
the token from the placewait_P ; and pusit again in placeinit _P; where g¢ycle mntinues.

We introduced the fictitious places to represent the asynchronous interchange of information.
We cdl snd_P; P to the placeused to represent that information sent from P, to Pi is queuing,
waiting to be retrieved by P«. An instant transition®®, sync_P ; is used to continue processng
only after the processng of P, is done and also that P's neighbors have sent their information.
The following procedure is used to partially define the Petri Net assciated to a given problem:

~ ~ o~

Let the processes be P={P,,P,,..P,] and lets define the function V::P—P" as
V(P)={P, P, ,..P, ] VP 1<j<n
For each process Pin P
add a place labeled work_P;.
add a place labeled init_P;.
add a timed transition labeled proc_P;
add an arc from init_P to proc_P,.
add an arc from work_P,to  proc_P.
add a place labeled wait_P,.
add an arc from proc_P; to wait_P,.
add an instant transition labeled sync_P,
add an arc from wait_P, to sync_P,.
add an arc from sync_P; to init_P,.
for each process PJ/P.EV(P))
add a place labeled snd_P;P«
add an arc from proc_P; to snd_PP.
add an arc from snd_PPcto sync_P..

With the previous procedure we defined the layout of the network, the places, adivities and
transitions. Some parameters of the network still need to be defined. To have a fully defined
network, we still need to determine the distribution functions for the timed transitions and the
number of tokens. Before following with the definition of the network, we neal to state
something about its complexity. The complexity of the network can grow considerably. For
eath process three places, two transitions and five arcs are added without considering
neighborliness that might easly add four more places and eight arcs for eat process The
resolution of the resulting network can consume some CPU power and could take significant
effort. The processof constructing such network on a tool proves aso difficult. For complex
systems it is a good thing to have some kind of automated interface (not only the graphicd

16 It can be argued that synchronization is or is not something instantaneous, as it requires interprocess
communication of some kind. In our model, we are not placing the @st of synchronization in this activity.
We are only modeling the blocking.
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one) that can be programmed for constructing these networks.

Lets apply the procedure to a smple configuration. Our example configuration consists of four
nodes corresponding to a domain distribution that divides a space in four areas. The
communicaion pattern is a square. The following figure represents the division in four regions
and the acs between nodes represent the data interchange.

]

proc_P4 srd_P4F sync_P4

work_P4 wait_P4

snd_P4P3

The complexity of the network can grow significantly as the number of nodes grow. Current
Beowulf projeds facehundreds or even thousands of nodes that can leal to extremely large
nets.

To continue with the definition of the network, we will determine the number of tokens for
eat place Places proc_P j, wait P ;, sync_P; and al snd_P;P« start with zero tokens. All
init P ; places start with one token, representing the procesor realy to be allocated. Even
though multiprocesor systems can be used, multiple tokens can not be placel on the init_P
places, as the lad of synchronizaion problem would arise. We represent ead procesor on its
own, even if it shares resources with others on a SMP. The work to be done itself is
represented by the work_P; place We must place there as many tokens as necessary to
represent the solution of the problem. The key issue at this stage is to determine a meaningful
work unit for the problem.
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The rule-of-thumb for SPMD problems is to represent ead time-step with a token®’, thus, if
we want to cdculate the final state of our study universe after 10.000 time-steps, 10.000
tokens should be placal on eat work_P; placeif we want to model the exeaution of the
system until time 10.000. The exeaution stopswhen al init_P ; tokensreturn to placeinit_P |
and work_P; places are empty. The exeaution halts because not all predecesors of proc_P ;
transition are fulfill ed.

With the previous kind of simulation, we simulate the whole exeaution of the system. If we
want to cdculate the asymptotic state of the system, we would delete the work_P ; place and
on the resulting network leave the simulation running until it stabilizes so performance indexes
can beretrieved.

The remaining asped of the network is the definition of the timed transitions. At this point
something has to be known about the exeaution times of ead time-step. Based on the
complexity of the problem, the estimated number of operations and performance indexes of
procesrs, it is possble to estimate the distribution function of ead time step for eah
procesor. Lest we have some pradicd/empiricd information about the exeaution times,
normal distribution can be used for modeling. If the prediction should be acarate, a small
prototype of ared exeaution of one time-step might be coded and measured.

If we take an analyticd approach to the performance prediction, we estimate the complexity of
the problem and use benchmark figures to predict exeaution times, we will get one figure:
average/expeded exeaution time for ead loop/work-unit. From strictly theoreticd analysis we
will not get variances or other indicaors. After that we can discussif our system will run on a
dedicated set of madiines or on interadive systems. If we run on dedicated machines, that do
not exeaute regular intensive administrative tasks, then the only interference comes from the
operating system, which can be considered constant for work-units comprising more than a
few seaonds. On those cases deterministic exeaution times can be chosen for modeling. This
would lead to smple systems and the prediction can be considered optimistic. On the other
hand, if the system provides different amounts of CPU times to our processdue to any reason,
we have to estimate the exeaution time based only on one figure: the expeded exeaution time.
As we only have the expeded “mean” exeaution time, but no variance or other value, the
exponential distributions appeas both as simple and pessmistic, due to its inherent variance
On most cases we can consider that the times predicted using the theoreticdly estimated times
with exponential random variables is a worst-case bound for the red system exeaution times.
The expeded exeaution time should lie between both estimations. Better acaracy can be
achieved prototyping.

It is important to note that there is a high interdependence among processes and processors.
Let's suppose that two adjacent procesors'®, A and B, have different performance (maybe they
belong to different processor generations, have different clock speeds or belong to different
manufadurers with different design technologies) and they neal to exchange information
before computing the next time-step due to boundary cdculations. Lets suppose that A works
twiceas fast as B. This means that processA will finish its cdculation, send its resultsto B and
block itself waiting for its neighbors, particularly B, results before continuing caculating. As B
is about half of the exeaution time, A will spend about the other half of B's exeaution time

17 If the number of time-stepsistoo kig, maybe each token represents multi ple time-steps. If we take this
approach, much care has to be taken because we missindividual blocking/interleaving of processes.

18 Not physically adjacent, but respeding to Hocking. We ansider two processors adjacent if they share
information for their results.
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waiting for B to complete computing. During that interval of time A's processng power is
either allocated to other tasks or is wasted idle looping or twiddling its silicon thumbs. 1t will
not be possble to take ay profit of A's gpeed for out problem in this stuation.

Furthermore, if we extend this reasoning to al processorsin arun, we seethat if one processor
is faster, there will be no benefit, as it will wait for its neighbors. Even worse is to consider the
effed of having n-1 fast processors and 1 sow processor: after some time-steps, al the
procesors will be waiting for the low one, and will have no effea on the overall performance
The spedl of the system will be bounded by the slowest procesor, the wedkest link.

It is possble to think about distributing the size of the data set of the problem assgned to ead
procesor, but it is not easy to manage heterogeneous processors. Even if we can divide the
regions alocaed to ead procesor acmrding to its computing power, the impad on the
complexity of the communicaion pattern and the ading is generally not worth.

Performance results

We have drealy presented a method for modeling SAMD systems. We till nead to provide
means that help dedding whether it is convenient the parallel exeaution vs. the single processor
one. The final goal of modeling is to determine as ealy as possble the best way to enginee a
cetain paralel system, to reduce the complex set of different ways in which the system can be
designed, or answer if current technology can addresscertain particular problem.

We will present now how to estimate the MES (Mean Exeaution Speead) and TET (Total
Exeaution Time) based on the model described before.

Total Exeaution Time

Based on our system, we can caculate this measure as the time it takes to the system to move
all tokens out of the system. This implies that we have to simulate the whole resolution of the
system.

If the system was modeled acardingly to our recommendation, then there exists a set of states
named work_P ; where tokens representing the amount of work to be addressed by processor
P; are placal when the smulation begins. Let's cdl T; to the number of tokens corresponding to
the partition of the whole problem that is allocaed to the processj. The system has to be
simulated until the placeswork_P j run out of tokens, which means, that all the work allocaed
(T; tokens) to them is exhausted. Successve terminating simulations could be run to determine
the approximate elapsed time until the exeaution ending (batch means) if the smulation tool
does not determine how long it takes to read the dsorbent state.

Not al smulation tools allow this kind of estimation. If the toal that is being used allows us to
cdculate network'’s steady state, we can introduce a variation in the network's layout. We can
make a cycle from the final state, the absorbent configuration, to the initial one, so after the
processng is done, the network is restored to the initial configuration. Simply adding a timed
adivity that monitors al work_P; places and when they al get empty smply places al initial
tokens bad, we get a network that does not fall into an absorbent configuration. The process
of restoring the initial configuration must have an associated timed transition with a known
amount of time. We can smulate this new network in the steady state and measure the fradion
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of time that the network spends restoring the initial configuration. From that value we can then
estimate the counterpart, that isthe TET.
There is a theoreticd lower bound for the TET that could be computed from the resulting
network after removing all the snd_P; P, places and their associated arcs. The resulting network
is the junction of n models of different uniprocessor systems without connedion running
independent processes. In this particular case, we have ead procesor consuming tokens at the
speal gven by their processng cgpability, represented by the timed transition labeled proc_P ;.
For ead procesor, and acmrding to the distribution function asciated to proc_P j adivity
we can compute the average processng time A; . This cdculation is problem dependent and
there is no genera rule. If the distribution functions were cdculated arealy, then the only
thing to do is to apply the appropriate formula. Then, for ead processor |, the average
exeaution time would be estimated multiplying the amount of work times the average time for
acomplishing it: A x T;
The total exeaution time for this g/stem would be:

max{ A xT }

We will now explain why this is a lower bound for the original system. When we removed all
snd_P;P; places and their associated arcs, we removed al the interrelation among processors.
Spedficdly, that means that we stopped modeling all the time intervals in which every
procesr is idle, but it can not continue computing because they have to wait for adjacent
procesrs to share their information. The original system models this information aso, thus, it
can never be faster. In the particular case that it is never necessary to wait for a neighbor, the
TET of both systems would be the same.

It is not always possble to ascertain this measure due to complexity of the numerica solution.
It can be the case that it might take too long to caculate the TET out of a complete exeaution
smulation. If the modeled system presents a stationary behavior and it was possble to
compute the MES for that system, it is possble to estimate the TET as the complexity of the
problem divided by the MES, that is, how long it will take our system to consume all tokens at
the processng average spedd.

On average, this estimation is adequate, but it does not consider the behavior before and after
the stationary phase. A source of error to this estimation is due to the time the system runs out
of the steady tate. If the stationary state takes most of the exeaution time, then the estimation
is adequate, otherwise, it has to be spedficdly considered.

Mean Exeaution Speal

If TET cdculation was possble, then the MES cdculation can be done just by applying the
definition. If this was not the case, it is possble to estimate a value for the MES in this kind of
networks. In the following sedion we will describe how thisis done.

If the system was modeled acmrding to the previous recommendations, for ead procesor P
there has to be a state cdled init_ P ;. The work_P; placeholds the tokens that model the
problem space While evaluating this measure, we are not interested in the whole problem
itself. We can obviate this places, and thus, the whole problem evolution. Generaly this is the
case aswe are not cdculating the MES after the TET. We will study the sub-network obtained
from the removal of wor k_P, places. In the resulting network, tokens only cycle as fast as the
interlocking permits. Each cycle of a token represents the completion of a work-unit, that
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means, if we are able to count the number of cycles that al tokens perform within a certain
period of time, then we know the number of work units that can be solved on that period of
time. We can count the number of cycles associating signals to a spedfic place(i.e init_ P ;).
Afterwards, using the batch means method we can estimate the MES.

It is a general fad for this kind of systems, that before reading the regimen state the system
has to cycle many times, generally more cycles than states. Depending on the level of
interdependence among daves, there are generally no rules that describe how to propagate the
delays among daves. This is the main reason while it is not possble to mathematicdly
formulate the acamulation of delays interleared with the processng. In that scenario, the most
common reason for idle CPU time is the need for neighbor data. If we analyze this reaursively,
one process could be waiting for data from a neighbor who is also waiting for data from
another neighbor, who is also waiting for data from another neighbor, and so on. This could be
as deq as the whole number of processors. In the worst casg, it is posshble that n-1 procesors
are waiting for 1 procesor. In a controlled situation this situation is very rare or even less
improbable, but if the algorithms applied by ead CPU has a high variance, it is possble to
have many idle CPUs per time interval.

The acawmulation of this effed is the reason why the estimation of the TET described before is
a lower bound for the red TET. All the combined effed of this makes the MES cdculation
difficult.

4.4 - Data pipelining

The data pipelining paradigm is based on a functional decomposition of the problem, in which
different tasks of the algorithm are identified which are cgpable of concurrent operation. Each
procesr exeautes a small part of the total algorithm. Each processcorresponds to a stage of
the pipeline and is responsible for a particular task. The communicaion pattern can be very
simple, sincethe data flows between the aljacent stages of the pipeline mostly in only one way,
thus, this paradigm is sometimes referred as data flow paraleism. If we facea pipelinabe
problem, that means, separable in sequential stages, ead with arelatively high computation-to-
dataratio, it is possble to build a pipeline with different stages on different machines.

Asin all pipelines, the efficiency is diredly dependent on the ability to balance the load aaoss
the stages as the performance is bounded by the dowest stage. If there exists a stage that is
considerably slower than the rest, and there is no dependency between conseautive tasks in the
pipeline, we can allocate multiple procesors (as much as necessary) to that intermediate task,
that will work in parallel, so as to obtain smilar exeaution times on all stages. Another
workaround to this problem, when paralel exeaution on the dow task is not possble, is to
share procesors among fast stages.

Let's cdl S at the processthat addresses the stage number i of the pipeline. It receves either
the input of the pipeline or the result of the previous stage P, and produces its result, P;,
which is obtained after the stage's own processng and is delivered to the next stage for further
processng, or isthe result as the last stage of the pipeline that is stored, displayed on screen or
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whatever.

We represent every stage with the following pieceof pseudo-code:

process S
repeat
receive subproblem P,
P, =process( P;.4)
send subproblem P,
until ! 0 Pia
end

It is possble to think of the whole n-stages pipeline as a single agorithm like the following
one:

process pipeline
repeat
receive subproblem P,
P, =process( Py)
P, =process( P,)

P..s =process( P4

P.., =process( P,3)

P..;, =process( P,

P, =process ,(P.1)
until ! 0 Po

end

or to think about it as a cmposition of functions in the following way:

P, = process , (process ,..( process ,..(process .
s(..((( process (process i(Po)))) ) ))))

where p, represents the input of the pipeline and P, represents the output, ead process .
represents the processng at ead stage. The intermediate variable assgnments in the process
and the functional composition in the functional representation represents the data exchange
between the stages.

Using this approaches, we fail to represent aspeds of the communicaion like bandwidth
between adjacent processes, exeaution times, concurrency of multiple problems in the pipeline,
etc. We only represent the resolution of a single problem using the pipeline, which is not
enough.

System modeling

The simplest pipeline consists of only one stage but we will consider only pipelines with two or
more stages, where parallel exeaution takes place

As the data pipelining parallelism paradigm is based on the functional decomposition of the
problem, the pipeline structure, number of stages, resolution time of ead stage and other
parameters are highly dependent on the particular problem that is being solved. There is no
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individual Petri Net that can represent all data pipelines. The following network is a general
representation of a data pipeline

Frobleminput

We seethat this system recaves tokens on Probleminput  placeand moves them until they
read Poutput . The timed adivities S represent the processng time at ead stage. The input
gates |, governsthe tokens movements along the pipeline, moving only one & atime.

The time distribution functions that govern ead timed adivity must be determined either
empiricdly or from measures of prototypes from relevant stages. If the only estimation
available for a stage is the expeded mean exeaution time, we can use either deterministic time
or exponential time distribution function. Using the exponential distribution function, we obtain
a pessmistic approach to the exeaution time, due to its variance On the other hand, using
deterministic times we get optimistic exeaution times, becaise there is no CPU performance
lossdue to pipeline stalls caused by unexpeded delays on particular stages.

If we assume deterministic exeaution times we can cdculate the throughput of the pipeline.
Letscdl to, ty, ...., tn, toupu tO the exeaution times of ead stage, and lets sippose that we have a
set of tokens in the placeProbleminput . Let us consider first a pipeline consisting of only two
stages™. After a time to, a token is removed from Probleminput  placeand moved to P;. At
that moment, two adivities can be exeauted simultaneoudly: S, and S,. Two exeaution times
have to be considered now: t, and t;. Lets suppose that t; is greder than t,. A token can be
moved from Probleminput to P, at time t, representing that the task has S1 been
acomplished. At time 2.t, a token could be removed from Probleminput  but as S, is not done
yet, the token has to wait t; -t until S2 is done and P; is ready to accept a new task. If we
suppcee that to is greater than ti, atoken is removed from Probleminput @t time to and placed
in P.. Even though the token is removed from P1 at time to +t; , the second stage, represented by
will beidle until 2.to when the first stage finishes its part and starts again its processng. In both
cases, the slowest stage slows down the throughpu of the pipeline and introduces idle CPU
cycles. We can seethat in steady state, the system can only produce one result every max(to ,t1).
Repeating this reasoning, we can seethat, for the general problem, the throughpu will be lower
bounded by max(to ti,...., tn, towpu), Which means that we will not processfaster than the slowest
stage of the pipeline, the weakest link.

In many cases the inherent complexity of a single stage is very important and other adions
have to be taken so as not to waste CPU power of other stages. Basicdly two approaches are
taken: parallelizethe sow stage or share CPUs on fast stages. We will analyze both options.

On the first case we have a stage whose resolution time is significantly longer than the rest and
for some reason (i.e. red-time or smulation constrains) we need to spedl it up. We are
considering the case where money just cannot buy a faster CPU for that stage or the state of
the art in microprocessors cannot solve the stage with a single CPU, no mater the chip

19 Itisnot difficult to seethat with deterministic times, the throughput of a single stage pipdineis 1/to.
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manufadurer we ae considering.

What we nedl is the particular stage considered to be able to produce approximately the same
number of results per unit of time than the other stages. The only option for tackling this
problem is to use in parallel multiple CPUs within the stage. The particular way of parallelism
chosen for the stage has to be considered for ead particular problem, but if there is no
correlation among the stages of the pipeline, it is possble to use a master-dave strategy for the
stage, as there will be no communication between conseautive tasks?®. The following Petri net
represents a general pipeline with a master-dave parall elism on the second stage.

Foutput

P Soutut

Prableminput d ‘éln

Sim

Asit is done with the individual stages, the input gate controls the blocking of different stages,
but it also controls the dlocation of tasksto CPUs of the stage with multiple procesors.

We ae not speading upthe processng of ead adivity, but there is always a procesor that can
be allocaed to a new incoming task and there is always a procesor of the stage finishing with
its task that can feed the next stage on the pipeline. If the processng takes equal times for the
different input data posshilities, then we will even preserve the input order. It is very smple to
achieve even more processng throughput simply allocating more processors to the stage. With
this approadh, we are not solving ead input faster, but we are increasing the number of
problems lved per unit of time.

It is possble to use an dternative representation for the previous case, in which we use
multiple CPUs to increase the throughput of a stage. It is posshble to model the stage with a
pool of CPUs that are available for processng. Some modeling posshilities are lost, like CPUs
with different numericd power, etc., but the system is adequate for equal procesors.

Frobleminput Foutput

Sh Pn éoutput

CPU_pool

The place CPU_pool was added to represent the set of processors that will address the
paraleled stage. The input gate 12 will chedk for the availability of CPUs or block until there is
an available CPU, as it is done at all levels. As soon as the processng is done, the CPU is
returned to the pool, making it available for reuse.

If there is some kind of correlation between conseautive stages in which the result of the stage

20 Not only master-slave can be used here, all other kinds of parall e classes can be applied.
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depends not only on the current data set that is being solved but on the result of the previous
one, it is not possble to use a straight master-dave approady; it is necessary to solve the data
exchange between stages in some other way, maybe even using speaulative parallelism or to
addressthe problem redly reducing the time of that stage.

It is possble to implement parallel exeaution of stages on more than one stage, and the
parallelism used in ead stage wuld be different stage to stage, leading to complex networks.

If the approach is not to make the dow stage faster, but to reduce the number of CPUs, it is
possble to allocae multiple fast stages to only one processor. This would lead to sharing not
only CPU cycles but memory, network bandwidth and other resources among the processes
alocaed smultaneoudly to one system. Depending on the set of processes joined many
different kinds of interadions could happen. Depending on the length of the exeaution times, it
is posshle to smulate the concurrency of the processs (as it was done when modeling RC5)
on the system or to simulate the red exeaution with prototypes so as to obtain good
estimations of performance. With the previous data, we build a pipeline, like in the first case.
Modeling the complexity of the pipeline plus the interadion within the shared system is
theoreticaly possble, but numericdly extremely intensive.

Performanceresults

We have arealy presented a method for modeling data pipelining systems. We still need to
provide means that help dedding if the pipelined parallel exeaution vs. the single processor is
convenient. The final goal of modeling is to determine as ealy as possble the best way to
enginea a certain paralel system, how to design the pipeline, which way to partition the
original problem into pieces, which of them to combine and which to separate into different
stages, so asto reduce the complex set of different ways in which the system can be designed,
or answer if current technology can addresscertain particular problem.

We will present now how to estimate the MES (Mean Exeaution Speead) and TET (Total
Exeaution Time) based on the model described before.

Total Exeaution Time

Based on our system, we can cdculate this measure as the time it takes the system to move all
tokens out of the system. This implies that we have to simulate the whole resolution of the
system. It would consist of pladng as many tokens as necessary so as to represent the whole
problem and let the system run until al tokens are moved from Probleminput  t0 Poutput
place

An alternative way of cdculating the TET comes from network's steady state analysis. If we
address the problem in this way, we can introduce a variation in the network’s layout that
avoids the absorbent configuration. We can make a cycle from the final state, the absorbent
configuration where all tokens are placal at Poutput , to the initial one with all tokens placed
a Probleminput  place so after the processng is done, the network is restored to the initial
configuration. Simply adding a timed adivity that cycles all tokens to the initial configuration,
we get a network that does not fall into an absorbent configuration. The process of restoring
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the initial configuration must have associated timed transition with a known amount of time.
We can simulate this new network in the steady state and measure the fradion of time that the
network spends restoring the initial configuration. From that value we can then estimate the
counterpart, that isthe TET.

It is not always possble to cdculate this measure due to complexity of the numerica solution.
It can be the case that it might take too long to caculate the TET out of a complete exeaution
simulation. If it was possble to estimate MES for the system, then it is possble to estimate the
TET as the complexity of the problem divided by the MES, that is, how long it will take our
system to consume all tokens at the processng average speed. On average, this estimation is
adequate, as it was described before. For red time systems and highly complex pipelines that
could consider pipeline halts, discarding tokens or other complex operations it is important to
consider that it does not consider the behavior before and after the stationary phase. In the
particular case of a pipeline, it is particularly important to have it running as long as posshble on
regimen state so as to take the better benefit of the exeaution. If the regimen state takes most
of the exeaution time, then the estimation is adequate, otherwise, it has to be spedficdly
considered.

Mean Exeaution Speal

If it is the case that we are cdculating the MES after the cdculation of the TET, theniit is only
an arithmetic operation remaining to compute MES acwording to the definition. On the other
hand, if it isthe case that computing the TET is not feasible, then it is possble to try estimating
the MES before and afterwards, based on that value, to determine the TET.

As we discused before, we neal to estimate MES. We will estimate the regimen problem
solving speed of our system (measured in work units per time units), that we cadl MES. This
allows us to estimate the processng cgpadty of the system and also to estimate the time in
which the stationary phase of the problem can ke fulfill ed.

The time in which the regimen phase is readed has to be cdculated in some way that is
problem dependent. After the system isin its regimen phase, one of several standard techniques
(regenerative simulation, batch means, etc.) can be applied to determine the MES. Changes in
the network can be done to smplify the determination of the steady state like adding infinite
initial tokens or making cycles so as to ke the overal number of tokens constant ac@rding
to the time evolution. The last aternative is generaly preferable for the sake numericd
simplicity.

If the system was modeled acording to the previous recommendations, there has to be a
Probleminput  place which holds the tokens that model the problem space and a Poutput
that models the pieces of the problem leaving the pipeline.

Even though we could theoreticdly analyze the processng speed based on an infinite set of
tokens in the Probleminput  place it is numericaly smpler in our Petri Net to model a finite
number of tokens cycling through al the stages. To adieve this, it is useful to add an instant
transition from Poutput place to Probleminput  place Keeping the number of tokens
constant, we can estimate how much time it takes a token to do a cycle after the stealy state is
reated. Thistimeisthe MES.

Ead cycle of a token represents the completion of a work-unit, that means, if we are able to
count the number of cycles that all tokens perform within a certain period of time, then we
know the number of work units that can be solved in that period of time. We can count the
number of cycles asciating signals to a spedfic place(i.e Poutput ). Afterwards, using the
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batch means method we can estimate the MES.

It is also possble to perform the same study that was depicted when analyzing the TET with a
timed adivity instead of an instant one and indiredly determining the MES.

As arule of thumb, it is important that on the steady state there is aways more than one token
on the Probleminput  place If al tokens are consumed, it is possble that a stage is willi ng to
process but there is nothing to process If there are always tokens on the Probleminput
place it means that there is aways more work to be done than the pipeline can process and
thus, there is no idle stage due to token shortage. In that situation, we are solving the problem
asfast aswe can.

Another simpler way of estimating the MES while in regimen state is based on the sowest
stage. As it was seen before, the throughput of the pipeline is one of its dowest stage, and
hence, its MES. This measure is even a rougher estimation, but is useful when faadng complex
pipelines as it gives asmple to cdculate and at-hand estimation.

4.5 - Divide & Conquer

This approacd is widely known in sequentia algorithm development: a problem is divided into
two or more subproblems, ead solved independently and their results are combined to give the
final result. In most cases, the subproblems are just smaller instances of the original problem
(and can be solved using the same algorithm, working on a smaller set of data). This gives
leads to reaursive solutions implemented with stadk structures for recording exeaution
evolution and invocations, etc.. In paralel divide and conquer, the subproblems can be solved
a the same time, given sufficient parallelism. Because the problems are independent, no
communicdion is necessary between processes working on different problems.

There are three generic operations. splitting, computing and joining, which are organized
particularly on ead algorithm. The general structureisthat, first of all, ead agorithm recaves
a pieceof work to be solved. It does some processng so as to determine if it is going to
address the resolution of that piece of work by its own or if it is going to spawn child
processs. Before spawning, splitting takes placeand the sub-problems that will be allocated to
children are creaed with some particular problem dependent criteria. If child processes are
spawned, then before processng goes on, it is necessry to wait for children to finish
processng and return their results. Joining the children results and producing the final result of
the stage follows. If spawning did not take place locd processng would take placeand the
final result would be the one locdly obtained.

The exeaution of divide and conquer algorithms leals to treelike structures (in many cases
binary trees). The following algorithm represents a single node process that, depending on the
input may ad either as an inner node or aled node:

process divi de-and- conquer
repeat
receive subproblem Po
if condition( P,) then
R, =process( Py)
send( Ry)
else
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(Poi, Poa, ... , Pon)=split( Po)

foriin1l..n
send( Pg)
foriin1l..n
Ry = async receive( Poi)
R, =join( Roi, Rz, .... , Ron)
endif
until ! 0 Po

end

The resulting shape of the treeand structure of the resulting exeaution depends not only on the
problem, but also on the data set that the algorithm receves. There is no single scheme
representation for the classof divide and conquer parallel applicaions that covers the general
case. Aswe can not depict a single network that describes this problem, we will determine how
to build one. Different algorithms may vary on the number of nodes that the split process
produces and may even introduce extra communication to the verticd one established by the
split-compute-join sequence, leading to graphs in which communicaion pattern may bewmme
more complex. On the other hand, the same algorithm with a different input may lead to
significant differences in size which involve detaled considerations related to system
resources.

As a consequence, it is not always possble to determine exad shape and size of a particular
divide and conquer algorithm until de data set and the dgorithm are known.

Another fador that is normally controlled is the spawning of tasks. The number of tasks on a
divide and conquer strategy grows exponentialy on the depth of the tree leading to extremely
fast exhausting of resources if the spawning of new tasks is not under control. In most of the
cases the metrics used for splitting take into consideration the number of nodes the cluster has,
S0 as not to outnumber the procesors with tasks. If we build a system with n procesrs, the
general rule is not to have more than n procesors doing heary computation. Different
strategies can be used to limit the number of processes running. If the algorithm we are
building spawns p children at ead level, processng is only done at the led nodes and we
have m procesrs, then we can limit the depth of our treeto  log,(m)  if we want to have
all processng nodes running at once If thisis not possble due to memory or other constrains,
then it is possble to control the number of concurrent running processes and use some strategy
like DFS to traverse the resolution tree

System modeling

When we want to represent this system on a Petri Net, we find that it is not possble to sketch
a net in which we have a pool of CPUs and a set of tasks to be accomplished becaise we lose
the interadion and interleaving of processng and sharing information, as we found out when
discussng SPMID class We present here a procedure for constructing the Petri Net assciated
to a given divide and conquer algorithm that exeautes smultaneoudly all the processng nodes
on separate procesors. We will refine this algorithm further so as to consider the exeaution
under spawning controlled conditions.
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We will introduce first the definition of the places and transitions that will conform our net.
Eadh process will cycle once through the sequence split, compute and join, and will be
represented by threeplaces. We do not model re-use of places like re-use of processes becaise
the most general divide and conquer situation comprises process disposal after its cycle. We
will cdl S; the placethat represents a processthat is in its splitting stage, and is the number |
on the i level. We will cdl sp; the timed adivity that represents the time spent during the
splitting process

After a certain amount of splitting, the problem is sufficiently reduced and computing can take
place At the last level, the processng is represented with places labeled G and timed adivities
labeled Cmp . For eat placesSij representing the splitting thereisa J; placerepresenting the
joining that happens after the dhildren have ended upand the stage's reaursion ends.

The processes will either be represented by asij - Jij coupeif it isan inner node or by G if
it isaleaf node.

Lets call Ch to the number of child that a node can spawn in the recursion

for i in[1..(depth-1)]
for j in[l. Ch'"}

add a place labeled Siaj

add a timed transition labeled SP.;

add an input gate IS 1

add a place labeled J 1

add a timed transition labeled JP i1

add an input gate 1J 1

add an arc from S i1 to  SPaj

add an arc from JP i  t0J i

add an arc from |Is i tO0S i

add an arc from J i1 to1J  iaj

add an arc from Is i to SPuj

add an arc from 1J i tOJP i1

ifi>1
add an arc from S iy ol Sia pen
add an arc from SP2 ficn t0S iy
add an arc from J i 101 Jia pen
add an arc from J ij  t0J P jicn
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for j in[l1.Ch  dertin]

add a place labeled G

add an arc from SP depth-t, fich | 10 C
add an arc from C i 10JP  deph1, fiich |
add an arc from C i 101S  depth1, fiich |
add an arc from C i 1013 deptn1 iich |

Some parameters of the network still need to be defined. To have a fully defined network, we
still need to determine the distribution functions for the timed transitions and the number of
tokens in the initial configuration. Before going on to the definition of the network, we need to
state something about its complexity. The complexity of the network can grow considerably.
For ead proces$* two places, two transitions, one input gate and six arcs are added. The
resolution of the resulting network can consume some CPU power and could take significant
effort.

Lets apply the procedure to a smple configuration. Our example configuration consists of a
gpacethat is going to be solved using a divide and conquer approach. The depth of the tree
will be threelevels and ead spacedivision will partition the spaceinto two smilar subspaces,
thus there will be four computing nodes and three join-split processes, leading to six places.
The following figure represents the successve division of the spaceuntil the splitting reades a
level that makes it addressable for a single process

The first oval represents the problem-spaceto be
solved, that is addressed by the process numbered
“01". Applying some problem dependent metric, it
determines that there has to be splitting so as to
partition the space ad solve it in parallel.

At the next level, the problem is

partitioned in two subproblems, Zﬁ/
numbered “11” and “12’. Each of
this processes are again too hig to
be addresed by a sdngle
procesor, and thus, they exeaute
the partition step, splitting
themselves into two subproblems
ead.

At the next level, the subproblems “21”, “22’, “23" and “24" are smal enough, acarding to
the metric, to be addressed by a single procesor, so they are solved in parallel. After the
computation finishes, the results are returned and the hierarchy is traversed upwards, joining
branches, until the final solution is found.

Applying the procedure, we get the following network

21 except C; ones.

Ariel Sabiguero Yawelak InCo — PeDeCiBa 62



Modeling PC-Based Clusters for Parallel Computing

What we have now is a picture of inter-process communication schema. As we want to
represent the problem resolution, we need to represent the problem evolution through the
network. We have to choose a representation for the problem space The complexity of the
network can grow significantly as the number of nodes grow. Current Beowulf projeds face
hundreds or even thousands of nodes that can lead to extremely large nets.

What we did with the previous models was to determine a certain adequate processng unit in
which we partitioned the problem, determined the expeded time for a certain system to
processthat unit, represented by a token. Making those tokens run through the network we
model the problem resolution. We choose tokens that represent the same portion of the
problem throughout the network.

Following that kind of reasoning we can partition the problem into units that represent the
fradion of the problem that would be addressable by a single process a G place The problem
would be then partitioned into ch?P" pieces. All the tokens would be initialy placed in the
placenamed S,; and the smulation ends when al tokens read Jo; place representing that all
the partial solutions finally were joined bad into the initial, 01, process

The intermediate timed adivities control the movement of tokens and synchronizaion. We
have to use them becaise we nedd to alter the behavior of the standard Petri net. In our case,
when tokens are moved, they are all moved at once that is, when the problem is partitioned
into n pieces, eat piece(consisting of one n-th of the tokens) is moved “as one” to the child
processthat is going to solve it. If we use plain Petri nets, ead token is moved independently
of the rest, losing the meaning of the partitioning we intend, and increasing also the number of
states to be considered in the resolution. If we allow individual token moving, we will maintain
the proper semantic. All the input gates are introduced to preserve this: IS . input gates control
the partitioning associated with SP. adivities while 13 ,, input gates control the joining
asciated with Jp,, adivities.

SP adivitieswill split the problem, generally in equally sized pieces. If the size of the problem
is afador that influences the communication time between S places, then the adivity SP. can
use the number of tokens on place SP, as an input that determines the time spent on that
adivity.

JPgepth-1,y adivities represents the processng done on processng nodes. We are representing
the time spent on two processors with only one adivity instead of one timed adivity per
procesor. If the problem is equally distributed among processors and they have similar
processng power, then the modeled system will behave & the red system.
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The tokens that moves through J places represent solved parts of the problem that are joined
together. The timed adivities represent the time spent joining and the communication among
the different processes, until the tokens read the Jo, place Once again, the input gates are
used to ater the behavior of a standard Petri net and move sets of tokens at once

In the case that the joining stage smply moves badk single tokens, representing maybe single
solution values, the input gates could be removed, leaving the standard Petri net behavior.
Whenever thisis possble, it should be done, so as to simplify the resulting network.

There is another way to represent this, but it does not correspond to the way we have been
representing the problem within the system. It is possble to use a single token moving from
stage to stage that represents different parts of the problem on different places. Up to now we
have been working basing our modeling of the problem with tokens that represent certain
“work units’ that are solved as they are moved through the network. In away we ae giving an
invariant value to the token all through the network. The problem evolution is represented with
the consumption of this tokens, until there is no token left. The timed adivities here that
represent the computation are proportional to the CPU power of the system being modeled.
Using the alternative approac described, we can think of tokens as marks that represent only
completion of stages, but have no relation with portions of the problem independent from the
position they occupy. One consequence is that the timed adivities can not be uniform in
relation to tokens. Depending on the placeof the network, they are placed, the completion of
ead task could take different amounts of time, leading to higher complexity in the cdculation
of the distribution functions for ead adivity.

Another problem is that the system behavior has to be well known so as to write a dtatic
network to simulate the resolution of the problem. It is necessary that the process
intercommunicaion and solution evolution is known before the model could be written. Asthis
is the most general case with divide and conquer parallel systems, it is possble to model them
with this approach.

The resulting network is simpler from the point of view of number of arcs and aso input gates,
as they disappea. The computing resources nealed to solve them also deaease, as the number
of states of the network falls dramaticaly.

From the point of view of the tuning and adjustment of the parameters it might be more
difficult to cdculate dl parameters associated to ead processat ead level/place

The following procedure can be used to creae a network that represents the resolution of a
divide and conquer parallel problem using the previous approadh:

Lets call Ch to the number of children that a node can spawn in the recursion

for i in[1..(depth-1)]
for j in[l. Ch'-Y

add a place labeled S
add a timed transition labeled SPi .1
add a place labeled NI
add a timed transition labeled JPi1j
add an arc from Si.ij to SP.y;
add an arc from JPi.yj to Jiig
ifi>1
add an arc from SPi 2 jjjen) 10 Siig
add an arc from Jicyj to P o
for j in[l.  Chderth]
add a place labeled G
add an arc from SPyepin-1,i7cm 0 Cj
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add an arc from G to JIPuepth-1.fiscn

The previous procedure can be seen as the first one presented for this model with all the steps
regarding to input gates deleted.
The resulting network of applying the procedure to our example follows:

{3

cz
T spn o1 M
4 {i
\D",,

01 SPOT

12 gprz ca JP1z

As we discussd before, a single token represents the whole problem and should be initialy
locaed at place S... SP« adivities represent splitting and communicaion time as the token
moves proceses while partitioning. The number of tokens grow in this network, and can reah
amaximum of ch' when al tokensarein G places.

JPaepth-1,y adivities represent the processng done in processng nodes. We are representing
the time spent on two processors with only one adivity instead of one timed adivity per
procesor, as we did in the previous model. If the problem is equaly distributed among
procesrs and they have similar processng power, then the modeled system will behave asthe
red system. The JPgeptn-1,y adivities definition is the same in this model and in the previous
one for divide and conquer parallel agorithms.

The tokens that move through J places represent solved parts of the problem that are joined
together. The timed adivities represent the time spent joining and the communication among
the different processes, until the tokens read the Jo, place when al the splitting, computing
and joining cycle is finished.

Performance results

We have alrealy presented a method for modeling divide and conquer systems. We still need
to provide means that help deadding if the paralel exeaution vs. the single procesor is
convenient. We will present now why it is not posshle to estimate the MES (Mean Exeaution
Speel) out of the Petri Net and how to estimate TET (Total Exeaution Time) based on the
model described before.

Total Exeaution Time

The total exeaution time of the problem is the time from the initialization phase until the
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processreadies its ending. This is a transient measure, which is particularly important in red-
time or quas red-time paralel systems, but it is generaly important on every system that we
code: we would like to know how long it will take to find a solution to our problem.

Based on our system, we can cdculate this measure as the time it takes the system to move all
tokens out of the system, from Sy to Ji. This implies that we have to smulate the whole
resolution of the system, that means, we have to model the whole system as described before,
placea number of tokens in the initial placewhich represent the problem in our seleded work
unit size and run a smulation until all tokens are removed away from the system.

Not al smulation tools allow the determination of the time elapsed to read a spedfic state. If
the toal that is being used allows us to cdculate network’s stealy state, we can introduce a
variation in the network's layout. We can make a cycle from the final state, the absorbent
configuration, to the initial one, so after the processng is done, the network is restored to the
initial configuration. No matter which of the suggested work decomposition schemes was used
the cycle would consist of a timed adivity that moves tokens from the placeJ, to Su. The
number of tokens moved depends on the semantics given to the tokens acwording to which
scheme was used. In the first case, al tokens that model the problem must be placel bad in
the initial state, while in the second scheme, only one token ought to be placel in the placeSy,.
The processof restoring the initial configuration must have an associated timed transition with
a known amount of time. We can simulate this new network in the steady state and measure
the fradion of time that the network spends restoring the initial configuration. From that value
we can then estimate the counterpart, that isthe TET.

It is not always possble to ascertain this measure basing our forecast on smulation due to the
complexity of the numericd solution. It can be the case that it might take too long to cdculate
the TET out of a complete exeaution simulation. An obvious lower bound for this system
could be estimated multiplying the total number of work units to be solved by the average time
it takes for a procesr to solve that work unit divided by the number of processors addressng
the problem. This is a far too rough estimation that could even present errors of orders of
magnitude with afiner lower bound. If no other lower bound is available, it could be used with
extreme care, but is not completely meaningful. It obviates all communicaion times, network
and other devices latency, al system overhead, all partitioning and joining times, etc. It only
gives what isrelated to procesor performance, but it does not take into consideration the rest
of the parallel system components.

Mean Exeaution Speal

If we are cdculating the MES after the cdculation of the TET, then it is only an arithmetic
operation remaining to compute MES, acarding to its definition.

As it was said before, we need systems that present a stationary behavior so asto estimate the
average number of pieces of work that are solved in a unit of time. According to the way we
modeled the system, there is no such thing as a regimen behavior that can be studied. The
evolution of the system implies tokens passng through the network dynamicadly, without any
token feedbadk or loop that can be used to get an average measure. Furthermore, the network
we presented has only one set of processes that perform the resolution, whilst the rest do the
partitioning and the joining.

Even though we could not determine the MES out of the net, we can theoreticdly analyze the
processng speed based on the processng capabili ty of the processng nodes, which was known
when we cdculated the rate of JP,, adivities, and the total number of tokens at the C nodes,
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where processng takes place The average number of nodes processed at that stage is what we
can cdl MES out of this system. The main problem is that we are obviating the partitioning
and joining times. As we said before, we are able to perform this smplificationswhere T, >> T,
and T, >> T, thus, it isvaid that TET =T, . Inthiskind of parallel systems thisis not valid
on most cases and we can conclude that estimating the TET out of a MES like the one
described before muld be done on a small number of particular problems.

4.6 - Speaulative Parall elism

This approach is used when the previous parallel models are extremely hard to use or
implement. The situation arises either due to complexity of the data interdependence among
different processors or when unpredictable and diverse times of tasks completion generates
excessve exeaution procesors stalls and forces the paralelism system to assuume most
probable counterpart result to follow its cdculation. If the optimistic exeaution results is
confirmed, current state is chedk-pointed and exeaution continues. If the optimistic result
asuimed was assumed wrong, then the current state of the system is rolled badk to the
previous ched-pointed state and exeaution is resumed from there, but following the right
exeaution path. In some asynchronous problems like discrete-event smulation, the system will
attempt the look-aheal exeaution of related adivities in an optimistic assumption that such
concurrent exeautions do not violate the cnsistency of the problem exeaution.

Another possble use of this scheme is to address a problem with different algorithms,
generaly, not deterministic ones or a mix of deterministic and simulated ones. Whenever a
solution (or an appropriate estimation) is found, the rest of processors are stopped, the
solution is shared and they follow up from there on. We can exploit the benefits of many
algorithms this way. It is very easy to use this technique to speed up smulated-anneding,
Monte Carlo, Tabou seach and GRASP simulations just choosing proper random number
generators for eat system.

According to the way we are modeling the systems, we do not model stages on the process
resolution but amount of work remaining. It could have been possble to use colored tokens or
other Petri net extension to make differences on the tokens that could both differentiate them
and put extra semantics there. For our purposes there was no need to take that approach so as
to represent the system evolution. In this case, when aroll-badk situation neals to be modeled,
it is quite intuitive at first sight to think of colored tokens to represent the regresson to a
previous state, but the method we used in deding with the state regresson is to put more
tokens on the place that represents a processs remaining work when another process
asociated to it, violates a constrain and regresson occurs. We do not model which part of the
work has to be done again, but we represent the anount of work added after arollbadk. All we
need to know is how often it happens and the arerage anount of work rolled-bad.

Lets asaume that we have a function V which returns the set of neighbors of a given processor
Pi. Using these functions, we know which processes to signal when we solve a part of the
problem. Knowing our timestamp?®? they can dedde their exeaution violates any constraint or

22Not only time evolution can be used for synchronization. We base our analysis on this figure knowing that
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not so asto rollbadk or continue. In our case, we will randomly dedde if rollbadk occurs or not
becaise we can not model an algorithm that we do not know predsely. This random
generation of rollbadks has to be controlled carefully as is an important source of error: if it is
too often, the system will be doing little; if it is to seldom, we will model a system that
outperforms the red one.

Ead process itself exeautes basicdly a simple sequence of stages, represented by the next
pieceof pseudo-code:

process specul ative-parallelism P

threadO
repeat
retrieve subproblem P,
R, =process( Py)
Update local simulation time
for P in V(P)
send( P;, R, ti mest anp)
until ! 0 Po
end
threadl
repeat
receive(V( Pj), R, tinestanp)
if check(  Po, R, ti mest anp)
rollbback( P, R, timestanp)
forever
end

The exeaution is represented as two concurrent threals, one responsible for the exeaution itself
and the second one is listening to adjacent processes results cheding for violations of the
constraints.

System modeling

We want to represent a general speaulative parallelism problem using Petri nets. We found it is
not possble to use a spedfic Petri net to represent all cases becaise an important part of the
information would be lost, spedficdly processinterlocking, communication, splitting, etc. We
will present a procedure that produces a Petri net that models a given spedfic problem.
Something has to be said regarding the exeaution and problem representation. Whenever we
are using heuristics or simply algorithms whose exeaution time can not be estimated as a
function that depends on processng speead and problem size, we are fadng a Situation in which
we can not spedfy clealy the problem size Lets say that we are modeling an optimizaion
algorithm that is going to use a GRASP heuristic and we want a solution with a certain level of
quality. We cannot state how long it will take the algorithm to read the level of quality
expeded. As we cannot control the random component in this solutions, we can not assert if
the solution is going to be obtained within a certain number of operations or within a spedfied
period of time. It is possble that we find not only a valid solution but the optimal solution with
our first heuristic exeaution, and it is also posshble that after an arbitrarily long period of time,
no acceptable solution is found.

When we model this problems we have to have a certain level of confidence in our heuristics,

other parameters can be used.
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and we must have an estimation of the number of experiments we should run to obtain a
solution. Maybe running some more experiments we get a better solution, but we must be
confident that after a certain number of experiments it is most probable that we have a
solution. With this assumption we now have a problem that we can measure and represent. We
can estimate number of experiments, estimated time for ead, etc. Problems like SETI @home®
(even though they are not using heuristics for ead experiments) rely on many random fadors
like the existence of extraterrestrial intelligence etc., so the problem size cannot be
determined. What can be determined is the amount of data gathered by the telescope daily, but
it is not posshle to determine how much data and processng is going to be nealed for the
problem resolution: we do not even know if there is a solution. What we can model is the
spedal at which daily information can be processed, etc. We can estimate MES but not TET in
this stuation.

In our study of speaulative parallelism analysis, what we will model is the resolution of an
amount of work that we believe will be enough for us to get a solution. With that concrete
problem size estimation we will proceed with problem partitioning in tokens as we do with all

problem classes.

So as to model this system, we will present firstly the definition of the places and transitions
that will conform our net. Each processwill cycle on its main loop solving pieces of work until

there is no more work to be done. We will model the threado  of ead processas a placeand a
timed adivity that removes tokens from the place representing the evolution in the process
resolution. threadl Wwill be modeled as a place fed by processes neighbors with an instant
transition associated which will model the cheding for the nead of rolling bad, in our case,

choosing randomly if rollbad would happen.

Letscdl P, the placewhere the tokens representing the work remaining for processi would be
placal, and lets cdl w the timed adivity that removes tokens from P; as they are completed and
the aswociated processed are signaled. The signals arriving from neighbors readies a places;,

where an instant trangition, R determines if rollbadk occurs or not. We aso have a function V
that returns the set of indexes of the aljacent processesto a given one.

Let m be the number of processes

for i in[1..m]
add a place labeled P,
add a place labeled S
add an instant transition labeled R with two cases
add a timed transition labeled w
add an arc from P, to W
add an arc from S to R
add an arc from the second case of R to P
for J in V(P)
add an arc from Wto S

Some parameters of the network still need to be defined so as to have a fully defined network.
We dtill need to determine the distribution functions for the timed transitions and the number of
tokens. The complexity of the network will be much more controlled than in previous cases.
The resolution of the resulting network will not consume as much CPU power and time as
other methods, but the drawbadk is that due to the situations this method is applied, not much

23 It must be kept in mind that SETI@home does not fall within Speaulative Parall elism classand we are only
using it as an example of an unbounded probem.
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level of detall can be adieved.

To complete the network definition we need an appropriate distribution function that models
the expeded time spent by ead processor solving every time-step and the distribution function
that models if a solution found by a neighbor is better than his own. Generally, this second
estimation will be assumed as uniformly distributed for the neighbors. With this functions
estimated for al neighbors the net is fully defined.

Lets apply the previous procedure to a set of three macdhines solving a problem performing a
discrete-event smulation. Lets suppose that the system designers are planing to simulate the
time evolution using three systems. one of them running a Monte Carlo smulation, another
simulated anneding the problem and the last of them using batch means. Eac of them uses its
own method for smulating ead time-step. They try to addressthe problem, finding a solution
that lies below a certain level of acceptable error. All problems will find their solution at a
different pace asthey are addressng them on different ways. The overall solution will pick the
best solution found by eat procesor ead timestep and will make them go from there on. The
optimistic presumption that ead processwill assuume is that its solution is the best and they
will continue with their solution lest they get a better one from other. The rollbadk means
discarding their findings and restart from the best time and solution given by a neighbor. The
amount of work to be acamplished by every processis represented by tokens, eat of them
plays the part of a time-step and the number of initial tokens is cdculated dividing the
simulation time by the time-step time. After ead process finds his solution, it shares its
findings with the two remaining processes. All processes have the same average speal to solve
eadt time-step. Asauming that eat of them have the same probability to find the best solution,
the probability that there occurs a rollbad is of two thirds and the average rollbad is of one
token bad.

The following Petri net represents the system:

Performance results

We have aready presented a method for modeling systems that use parallelism for their
resolution using the speaulative parall elism paradigm. We ill need to provide means that help
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dedding if it is convenient the parallel exeaution vs. the single processor one. We will present
now how to estimate the TET (Total Exeaution Time) and the MES (Mean Exeaution Speed)
based on the model described before.

Total Exeaution Time

The total exeaution time in this kind of problems may vary something from the general
definition, as we are not sure that within that time we will certainly solve the problem. In this
case, the total exeaution time is the time from the initiali zation phase until the processperforms
al the work that we are confident is needed to find an acceptable solution, even if the acual
solution is not found.

Based on our system, we can cdculate this measure as the time it takes the system to move all
tokens away from the system, out of P, places. This way of caculating it implies that we have
to simulate the whole resolution of the system.

If the toal that is being used allows us to cdculate network’s steady state, we can introduce a
variation in the network's layout. We can make a cycle from the final state, the absorbent
configuration, to the initial one, so after the processng is done, the network is restored to the
initial configuration. We can introduce an adivity with an asciated input gate that monitors
adivity in the network. If all processng is done, that is, no token remains in the network, the
initial configuration is restored. The processof restoring the initial configuration must have an
asociated timed transition with a known amount of time. We can simulate this new network in
the steady state and measure the fradion of time that the network spends restoring the initial
configuration. From that value we can then estimate the munterpart, that isthe TET.

If we have arealy estimated the MES for that system, it is possble to estimate the TET asthe
complexity of the problem divided by the MES, that is, how long it will take to our system to
consume all tokens at the processng average speed. On average, this estimation is adequate,
but it does not consider the behavior before and after the regimen phase.

An important source of error to this estimation is due to the time the system runs out of the
stealy state. In general, the MES will soothe this effed because it will correspond not only to
an average of multiple run but an average of different algorithms.

Mean Exeaution Speal

If it is the case that we are cdculating the MES after the cdculation of the TET, theniit is only
an arithmetic operation remaining to compute MES acwording to the definition. On the other
hand, if it isthe case that computing the TET is not feasible, then it is possble to try estimating
the MES before and afterwards, based on that value, to determine the TET.

As it was said before, try to estimate the average number of pieces of work that are solved ina
unit of time, and that is what we cdl MES. This allows us to estimate the processng cgpadty
of the system and also to estimate the time in which the stationary phase of the problem can be
fulfilled.

The time in which the stationary phase is reatied has to be cdculated in some way that is
problem dependent, but in general, successve terminating simulations can be run until the
terminating state falls within the boundaries of the regimen state. In most cases, the regimen
state isreadied in short periods of time due to the loose interleare of processes.
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Even though we could theoreticdly analyze the processng speed based on an infinite set of
tokensin the P place it is numericdly smpler in our Petri Net to model a single token cycling
through all the stages. If no rolling badk occurs, the speel is one of the fastest processes, and
no simulation would be needed. This particular cdculation is a simple one and is alower bound
for the MES.

The nead for smulation arises due to rollbadks. It is useful to make a small modificaion on the
net so as to estimate the number of rollbads. Lets add a couple of places Rol; and Done; for
ead process one ac from w to Done; and another arc from the second case of R to Rol ;.
Performing transient smulations is is possble to count the number of tokens colleded on the
places Rol ; and Done; for ead process representing the number of rollbadks and solved time-
steps respedively. The difference between Donei and Rol i isin successvetimeintervalsisthe
MES for each process or MES. The systems MES is cdculated from the individual ones
according to the particular relation of the processes, but weighting MES with processng speed
and number of roll backs of each processor.

4.7 - Hybrid models

This approad is taken when red applicaions do not lie exadly within the definition of the
previous groups or, in some cases, it is useful to mix different elements of the different
paradigms. They are not generally found on small applications, but in situations where it makes
sense to mix them in different parts of the same program.

The way this systems are modeled consists of isolating the different conceptual models,
modeling them acaording to their corresponding models. The partial models are coupled badk
together completing the whole system. If the modeling is done using UltraSAN, then the
individual models can be joined using the composed models. This is useful to keeg the
individual networks corresponding to ead model separated from the whole, keeping them
simpler and conceptually properly corresponding to their identified stages.
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5 - Case Studies

5.1 - Introduction

The objedive of this chapter is to illustrate the usage of the previous models on red parallel
applicaions. We will compare predicted performance estimation of the models with adual
system performance We will choose some parallel applications arbitrarily, we will fit them
within the proper classof parallel application, we will apply the corresponding procedure to
obtain a Petri Net that models it and then we will estimate the performance of the system
analyticdly and contrast the estimation with ground measures from red systems running the
applicaions we picked.

The objedive of these studies is not to develop benchmarking or cluster loading tools or
industrial paralel applicaions. We try to explore some cluster performance aspeds, isolate
them and apply our theoreticd analysis. We neal simple, understandable and predictable
problems that can be addressed easily under different conditions like number of CPUSs, etc. The
final goa is to code smple paralel agorithms (accessble and easly comprehensible while
parallel) that would help to understand complex interadions of the system performance.

The first experiment will consist of a domain-decomposition application that will perform
operations over a matrix. The second experiment will consist on the heuristic resolution of a
np-complex problem using a metaheuristic.

At the end of this chapter we present the results of a small test performed to overload a system
with an excessve number of tasks that allows us to understand the cost of assgning more than
one CPU bound task to a system. This study will be presented as an annex becaise no
modeling or parallel exeaution was performed.

It can be seen that the seleded experiments are very different one from the other. The first one
is clasgcally coded on C + PYM and run on Linux (even though not on a Beowulf cluster).
The seaond experiment exploits parallelism through parallel threads invoking remote objeds
through RMI in JAVA. We shall show that the models introduced work in both scenarios. This
is important, as the model templates are not tied to particular hardware, software or algorithm
configurations and can be used in many heterogeneous stuations.

5.2 - SPM D example application: Mat

This application solves the general case of a time series of matrixes of dimensions mxn in
which any point can be cdculated as a function of itself and its immediate adjacent in the
previous point in time. Lets represent a point with coordinates i,j at time t, with X(i,j)to .
The mat program can be used to solve problems where the following equation holds:
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X(Lj)t"ﬂ: f (X(i,j)t",X(i—l,j—l)t",X(i—l,j)t",X(i—l, j+1)tn,X(i,j—1)tn,--.,X(H—l,j+1)tn>

The implementation considers the wrapping of the matrix, both horizontally and verticdly that
permits smpler coding for topographicdly closed scenarios mapped to matrixes (ie. Geoides
bodies to matrixes for weaher analysis). The border conditions or wrapping is determined by
the f function, that determines what to do with wrapped neighbors. We can rewrite previous
equation to consider wrapping the following way:

X(l,j) f(X(l,j)t",X(l’mdm(l—l) 1rmdn(j_1>>tnlx(rmdm(i_l> 1j>tnlx(rmdm(i_1>1rmdn(j

tn+1
It is posshle to generalize this problem to more complex scenarios considering more intricate
patterns of neighbors and also more points in time, but current mat program suffices for a
relatively interesting set of problems, and gives us an understandable and simple framework for
analyzing the parallel exeaution of this set of problems. This application is also interesting from
the point of view of the CPU load it obtains on the system. The complexity can grow as much
as we neal with pretty small matrixes. The program is written in C and can be linked to any
objed that exports a function cdled doprocess that implements the time evolution function f.
Thelibrary used to perform the interprocesscommunicationsis PVM.

The process can be invoked both through the command line and a PVM console. It requires
two parameters and a third one is optional. The first parameter, partes, is a number and it
counts the number of parts (horizontal and verticd) in which the input matrix is going to be
splitted. The problem would be solved by partes’ concurrent cooperative processes. The
send parameter, cant is the amount of time steps that the parallel system will be run. The last
and optional parameter is the pathname to the data file. If omitted, the data will be read from a
file cdled datos in the exeaution diredory. This parameter could become important if the
initial data set is big. The data could be copied to madine locd diredories so there is no
overload on afile server at start up. The output, a matrix with the dimensions of the input one,
then is written to the file /tmp/salida in the macdine where the parent processruns.

The program has an initidlization stage in which the initial process the father, generates partes®
child processes, assgn them a position inside the main matrix ( mxn ) and communicaes
the PIDs of their neighbors to al of them. Each portion of the matrix is assgned a number
starting from O on the upper left corner and increasing by one from left to right, top down
acording to the schema. The numbers are Red numbers represented internally as double
predsion (64bit) float.

From the general formula we have presented, we can determine the pattern of communication
that will occur. The function uses at most all adjacent points in the matrix to a certain one to
cdculate the next value of that point. Whenever a child processis cdculating a point inside the
matrix, it aways has all the necessary information so as to finish the cdculation, but when we
are considering a point in the border, then the information necessary can be shared with up to
threeother neighbors when we consider the information needed to cdculate the elementsin the
corners of the matrix. We will analyze degoer this point later.
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After the initializalion stage finishes, the system
loops cant times performing this simple sequence

0 1 2 partes-1

of steps: transmit, recave, process We organized pares | partese1 | partes+2 oxpares
the communicaion pattern relying on the
semantics of PVM. We used non-blocking send 2xpartes

primitives and blocking receve primitives. This
allowed us to code the processes so that they can
share results with neighbors regardless of their
situation: the messages will wait in communication
buffers until the receaving process needs them,
without blocking the sender; the sender will block
himself until he has all the information needed to partest1
do his computation thoroughly. When the process
tries to fetch the information neaded it chedks orderly the messages from neighbors. If a
message is arealy there it is processed, but if the expeded message is not there, the process
gets blocked until the message comes. At that point he has arealy sent al the information
needed by their neighbors, and thus, there is no deallock situation possble in normal operation
conditions. If one processdies (i.e. is kill ed, the machine hangs, etc.) the whole system falls in
a deadlock condition. We will not consider here the reliability of the system. After all the
necessary information is gathered, the processng can be performed, and the loop restarted.

The following pseudo-code represents the structure and logic of the mat program

process
if parent()
spawn partes*partes child processes
assign every child process a piece of work
for each row of children
do
for each children of the row
receive row
save to disk
end for
while not end
end for
else // this is a child process

receive piece of work

repeat cant times
send boundaries
receive neighbor information
doprocess

for each row
send row to parent

end for

end

The parent automates the creaion of children, distributing the work and colleding results.
Children processis structurally smple: recave a pieceof work and do a certain processng to
it cant times. After ead processfinishesits looping, it starts sending the results to the parent.
As soon as ead finishes the communication, they quit. The parent colleds the pieces of
problem solved by ead process asembles them bad in the right order and write the result
matrix to disk. When thisis done, the father processfinishes its exeaution.
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Before going on with the modeling of the system, there are some aspeds regarding this
particular scenario that are worth considering. We can seethat every processhas information
needed by its neighbors and viceversa, it needs information from their neighbors. The amount
of information needed is proportional to the submatrix size*. Each submatrix needs

part&<m+ n+2partes) elements from its neighbors for eadh computation. The whole

matrix needs 2.partes(m+n+2partes) individual element communications from neighbors
S0 asto complete atime step and  2.cant.partes(m+n+ 2partes) for the total exeaution. On
the other hand, the computation nealed to solve a time step in a submatrix compromises
mxn

partes
for a given mxn matrix, the amount of elements that have to be transmitted grows
proportional to the square of the number of pieces partes that the matrix is split into. On the
other hand, the number of operations needed to be performed by ead procesor deaeases
proportionally to the square of the number of pieces (partes) that the matrix is $lit into.

kX > operations, where k is a constant determined by the f function. We can seethat

The model

We can seeclealy that this problem fals within the classof SPMD paralel programs as the
processng is the same, results are shared between processs and the role played by the parent
processis the administrative role of processcredion and solution assembly. As we saw on the
taxonomy analysis for this kind of problems, there is no general network that can help us
determining performance indexes. We ned to first determine the parallel system in which the
program will run and then we can obtain a Petri network where to smulate the red exeaution.
First we need to determine a function f so as to have an algorithm to code, and thus, to
instantiate the doprocess  function so as to have arunning program.

Lets cdl n(x(i,j)t) to the set of adjacett elements in the matrix to a given element at time to.
We will use the following function:

2y

(i), =5 0, + )
This function performs a very locd smoothing effed on eat element of the matrix considering
only the adjacett elements. it weights the average of al elements and the value itself of the
point considered equivalently.

We will run this system using an image as the input matrix. The format of the image is 24 bits
RGB (256 shades of red, 256 shades of green and 256 shades of blue per pixel), thus, the
weighted average should be cdculated for ead color layer of ead pixel. If we average the 24
bits number without considering the color layering, we get an undesired distortion of the
image. The average should be cdculated three times per pixel: once for ead color layer.
Another point to keep in mind is that the operations will i nvolve integer arithmetic, sincethat is

24 Rightmost and bdtommost submatrix dimensions must add the reminder of theinteger divison d n andm by partes to their height and
width respedively. When partes does nat divide exactly m or n, the number of elements needed increase something.
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the format of the image dhosen.

We can seethe chosen image of Garfield (I Jm Davies) as the
input matrix. The image is 807 pixels in width times 976 pixelsin
height. The image format is 24 bits colour RGB?%. The image was
digitalized in bladk and white and later converted to the RGB
format. All the pixels are either 0x000000 or Oxffffff . Eac
cdculation has to be performed to ead one of the 7.87x10°
pixels and has to consider all eight neighbors. We can see that
there will be 7.87x10° memory writes, 7.09x1° memory reals
and, at least, 11 arithmetic operations per pixel. These operations
should not be understood as assembler or procesor operations
but high level ones.

There exists two numeric format conversions, one when the pixel is retrieved and another
when stored into memory as a double predsion float. In this case of RGB image these
operations have to be performed on ead color layer, thus, we have to separate the three
layers, perform operations and then combine them bad. We can then seethat there have to be
at least 40 elementary operations on eat pixel, and thus, 3.2x10" operations at least so as to
compute every time-step. This lower level operations should amost match assembler or
procesor operations. We should also note that the matrix uses 6.0 MB of system memory
when loaded as double predsion float. No MM X extensions were used or considered. The
goa here is not to obtain the best implementation of this problem for the spedfied system, but
to have atoal for analysis.

Now that we have a fully defined algorithm, we shal model it acerding to our
recommendation for SAMD class of problems. As there is no network that can model the
general case, we have to explicitly define hardware configuration of the system that will run the
problem.

We shall start addressng this problem with two CPUSs: this is the simplest parallel scenario
(more than one CPU) that we can consider. As our problem splits the original matrix in partes?
pieces, we will choose the smallest partes that will partition the matrix in a number of pieces
that is multiple of two: in this way we will alocae equal number of processes to each CPU%.
As we saw before, there is very little overhead due to the alocaion of multiple tasks to a
single CPU, so sharing a CPU does not dow down the exeaution considerably. There is
another important fad to consider, which is the fairness of the allocation of the CPU. We
found that concurrent tasks with the same exeaution profile and same priority share the system
resources fairly under Linux.

Based on the previous considerations, we will think of four CPUs, paired, ead of them with
half the power of the original CPU. We will obviate the overhead of context switches in this
case. With this configuration, whichever matrix we address will be divided in four parts.
Considering the wrapping of the general problem, we get the following scheme of
neighborliness and thus, processintercommunicaion:

25 Wehumbly accept the fact that the original Garfield paperback magazines camein Hack and white.
26 Wewill study later the all ocation of single tasks to CPUs.
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1 0 1 0
3 2 3 2
1 0 1 0

The white cdls represent the matrix divided into four parts, while the shaded ones represent
the neighbors due to the wrap. In this “extended” matrix we can seethat all processes neal to
send information (twice) to all the others and need to receve information (twice also) from all
the others. Let P be the set of submatrixes. P={0123] . We define then the function
v: P—P" based on the communication pattern in the way that it asociates eah element to
the subset to its complementary subset on P @ V={(0({1,23]),(1,{0,23]),(2,{0,1,3)),(3,{0,1,2))}
Now we can apply the procedure described in the taxonomy sedion so as to define the
asociated Petri net to the dgorithm. The following figure represents the resulting network:

We can seethat there is much interdependence and interlocking at the communication stage, as
we saw before. We now need to determine the computing power of eadc CPU so as to
determine the remaining information and to fully define the Petri Net: we need to determine the
distribution functions for ead proc adivity.

We will run the system on individual CPUs so as to determine their performance indexes. We
will make successve terminating simulations, measure them and then, determine an index that
represents the anount of work that the system can perform in a convenient period of time.
Before going on with the system analys's, we present here the result of the exeaution of mat on
our example matrix.

What we have got here is the distortion produced on the image in 1, 30, 50 and 200 iterations
respedively. We can seethat this algorithm performs a blur operation on the image. We can
seeadso a 45° darkening effed due to the equal propagation of the color to diagona adjacent
pixels. It is possble to smooth this effed with a more redistic effed weighting the diagonal
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valueswith 2 .

Parameter fitting

Experimental data

In this sedion we will determine empiricdly the needed parameters to complete the definition
of the Petri Net. The way in which we determine the performance parameters is based on some
particular feaures of both the applicaion we are running and the input data: the parallel
applicaion can be run as a standalone program on a single machine without changes; the
matrix we are using fits in system’s memory. These two fads allow us work on the same code
and data that will run in parallel when measuring performance This gives us a good level of
acaragy.

We ran the smulation on x86 macdhines. The first system that we chose has a Pentium MM X
procesr running at 166VIHz, configured with 96 MB of RAM memory. We have enough
memory to hold the whole matrix in memory for the cdculations sinceit takes 6 MB of RAM.
The memory usage was obtained inspeding the OS's performance indexes. The code and data
representation was not optimized for either this kind of applicaion or data. We have to
determine how fast this system completes the exeaution of a time-step and then, scde the
problem so asto determine the average processng speed of the proc adivities.

We ran our mat program twelve times with different iteration arguments so we can cdculate
individual iteration time. The magic number twelve proved adequate when we plot the results
and observed very stable and smoaoth results. It is straightforward to seethat the time behavior
is linea on the number of iterations, so we model the curve of this experiment as a straight line
y=ax+b where x shall be the number of iterations and y is the elapsed time. In this coordinate
system the x axis represents the amount of work while the y axis represents the time needed to
solve it. In this scenario, we can seethat the constant a represents the inverse of the processng
speal (measured in iterations per time unit) while the constant b represents the time spent
splitting and joining in the process We can understand b as a fixed amount of time the system
will be performing tasks before and after the processexeaution. We can seethis tasks as work
that has to be done (load into memory the parent process processarguments, spawn children,
communicae parameters, read matrix into memory, make the parent colled results from
children, write results to disk) when ro iteration takes place

We took care to run the system on controlled conditions so as to get measures as stable as
possble, to prove corredness of the model and also to be able to reproduce the exeaution
conditions in further experiments. The system in which the process was run was not
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performing other task that operating system processes, that were aso deeing due to
inadivity. No X server was running and the submisgon of tasks was done trough a Telnet
sesson. No other users were logged or running processes at that time. No adivity started by
the aonran at that time.

The following table shows the experimental data:

Iterations | time(mm:ss) |lterations| time(mm:ss)
1 00:31 5 01:16
10 02:16 15 03:11
20 04:13 25 05:03
30 06:10 35 06:57
40 07:55 45 08:51
50 09:49 55 10:45

The time represents wall-clock elapsed time and not CPU allocation time. Using the least-
sguares method we determined that the aurve that best adjusts to the data set is:

y= 114X+ 215

where x counts iterations and the time (y) is measured in secnds. We can see that the
processng spead of this system is around 5.28 iterations per minute (8.81x107? iterations per
seaond) and that it takes aimost 4.33x10" minutes (21.5 seands) to split the process among
the children and to join the answers badk and write them to disk. According to our estimations,
this 5.28 iterations per minute comprises 1.69x10® operations per minute, 2.81x10° operations
per second.

The following graph plots the experimental data and the curve we determine. The plus signs
represent the experimental data.
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The second system that we chose is a Pentium Celeron procesor running a 333MHz,
configured with 128 MB of RAM memory. We have more than enough memory to hold the
whole matrix in memory for the cdculations since it takes 6 MB of RAM to hold the whole
matrix. We aso ran the system on controlled conditions so as to get measures as stable as
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possble to prove corredness of the model and also to be able to reproduce the exeaution
conditions in further experiments. The system in which the process was run was not
performing other task that operating system processes, that were aso deeing due to
inadivity. No X server was running and the submisgon of tasks was done trough a Telnet
sesson. No other users were logged or running processes at that time. No adivity started by

the aonran at that time.

The following table shows the experimental data gathered:

Iterations | time(mm:ss) |lterations| time(mm:ss)
1 00:14 5 00:45
10 01:21 15 01:58
20 02:36 25 03:13
30 03:51 35 04:28
40 05:05 45 05:42
50 06:20 55 06:57

Using the root-min-square method we determined that the curve that best adjusts to the data
st is

Y= 746X+ 6.78

where x counts iterations and the time (y) is measured in secnds. We can see that the
processng speeal of this system is around 8.05 iterations per minute and that it takes almost
0.11 minutes (7 seands) to split the process among the children and to join the answers badk
and write them to disk. According to our estimations, this 8.05 iterations per minute
comprises 2.58x10° operations per minute, 4.3x10° operations per second.

The following graph plots the experimental data and the curve we determine. The plus signs
represent the experimental data.
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We can also note that processng speed does not scde well on MHz. Other processor and
system's architedure details have to be considered so as to predict variations in speed basing
ourselves on the procesor. If systems processng speed was diredly conneded to the
procesors MHz, then our processng speed would be around 10.6 iterations per minute. We
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only got 76% of that performance increase on the system.

Parameter determination

Based on the information we colleded from the experiments we will cdculate performance
indexes for the Petri Net. Even though we have measured empiricdly the processng speed of
our full-size problem on our target systems, that is not the size of problem that they will
address when working in parallel: the paralel system will split the problem in four pieces and
PVM's scheduling algorithm alocaes two of them to ead processor. Each portion of the
problem will be one fourth of the measured problem and ead processor would be addressng
simultaneoudly two of these problems. With our rough estimation of the number of operations,
we can say that the number of operations needed to complete ead sub-matrix is of about 8
milli on operations.

It can be seen diredly that the number of operations needed to solve this sub-problem are one
fourth of the origina one, and thus, the same CPU takes one fourth of processng time. On the
other hand, the sub-problem will not be the only processrunning on the system: it will have to
share the resources with one of his “brothers’. They have the same exeaution profile, they are
both CPU bound and they both fit in memory simultaneously. As we saw when analyzing
primos program, the fairnessof CPU allocaion is very high in this situation and we can think
as of two independent CPUs, ead with half the processng speed.

We will merge these two observations into single performance indexes. If we change the
original work unit (the whole matrix) by one that is one quarter, it is quite straightforward to
see that the processng spead will be four times the measured one. On the other hand, two
proceses will be spawned on ead CPU, and thus, ead process will receve half the
processng speal of the CPU. We can conclude that the processng spead of ead processor
should double the measured speed. The distribution functions for the timed adivities on our
model are cdculated on this basis.

We have gathered al the necessary information so as to model the parallel system. Now we
have to determine what is going to be modeled by the tokens and the values for the distribution
functions. As we said before, the tokens represent work units that are relevant to the problem.
In our case, the work unit chosen will be the resolution of one fourth of the original matrix, or
the matrix alocaed to ead CPU. When we initidize the Petri Net we will place as many
tokens in the work_i  places as iterations the system is going to model. The total number of
tokens in the work_i  places will be four times the number of iterations performed to the
original matrix. init_i  places are marked with one token, as the systems have only one CPU.
The rest of the places count zero marks.

proc_i adivities model our four “virtual” processng units, our two red multiplexed
procesrs. As the sub-problem allocaed to ead procesor is one fourth of the measured one,
the processng speal of ead of the original processors should be four times faster if we
measure iterations per second. On the other hand, as the processors are multiplexed and their
power is distributed equaly, to both processes, so ead virtual procesor gets half the
processng speel of the original. The resulting processng speeals are 10.6 iterations per second
for the Pentium 166GMIHz system and 16.1 iterations per second for the Celeron 333VIHz
system.
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Performance etimations

We shall now use our network to predict the performance of the paralel system. The problem
itself of finding the most appropriate distribution functions might even imply a deegper study at
this point, but we will use two distribution functions for our study: exponentia and
deterministic. As we stated before, they represent a pesgmistic and an optimistic
approximations. If the gap between these estimations is acceptable, then we can presume that
the system performance will lie in between. These two distribution functions have also another
benefit: we only nead to determine one value to define them. Let's begin with the pessmistic
estimation.

We have arealy determined the processng speed of our processors, or, what is the same, the
time they spend solving ead matrix. The figures are 11.4 seconds for the Pentium 166GVIHz
and 7.46 seconds for the Celeron 333A processor. Our conceptual modeled system would
consist of four processors, two with an estimation of 5.68 seconds per processed submatrix
and another two of 3.73 secnds per processed submatrix. In this pesgmistic scenario with

exponential distribution functions, the rates would be % and 3—173 respedively.

We shall determine TET and MES for this system. It would be much easier if we had a tool
that ran the system until it got to the steady-state and determines the elapsed time: the TET
The tool we are using, the UltraSAN, is capable of determining the steady-state out of a Petri
Net, but it does not acomunt for the time, thus another method has to be applied. As we
suggested before, we will use batch-means as a method for determining the TET

Lets asaume that we plan to estimate the Total Exeaution Time of 50 time steps, then we have
to place50 tokens on eat work_i  place We will exeaute successve terminating smulations
until we determine that all the tokens were consumed. We need to monitor the number of
remaining work units, for this reason we spedfy a performability variable that counts the
number of tokensinthework_i places. We will monitor the evolution of this variable through
the different terminating smulations 9 as to determine when there is no more work to do, and
thus, the processng has been done. From the single procesor exeautions analyzed before, we
can seethat the Pentium 166MHz system solved 50 time steps in 9 minutes and 49 seconds
while the Celeron 333A system did it in 6 minutes and 20 secnds, that means, 589 and 380
sewnds respedively. We will study the remaining number of tokens with successve
terminating smulations separated 50 seconds ead.. The following table summarizes the
smulation data:

Iterations | Work remaining Variance Iterations Work remaining Variance
50 179,17 27,58 100 159,19 56,64
150 139,22 85,71 200 119,24 114,77
250 99,26 143,84 300 79,29 172,91
350 59,31 201,96 400 39,36 228,65
450 20,29 210,24 500 6,4 93,05
550 1,07 15,03 600 0.0897 1,03
650 0.0039 0.037 700 0.0001 0.0008
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The following figure plots the data:

tokens _

This plot was creaed with the following Matlab command:
plot(t,zeros(size(t)),'w-',t,zeros(size(t)),' w+' t,w+sqrt(v),'b-',t,w-

sqrt(v),'b-',t,w,'r-" t,w,'r+") , Where the vedor t represents the number of iterations
simulated, w the expeded values for the corresponding number of iterations and the vedor v
holds the values for the variance. The bounded conneded component by the blue curvesisthe
zone that holds the most likely values for the system performance

From the graph it is easy to know that there exists a problem with the method: when we get
close to the x axis, the linea behavior is lost. Apparently, the X axis becomes a limit for the
expeded value and, there is no expeded zero value, but only arbitrarily small values. We used
batch means trying to determine the time when we get to consume all tokens, but there is
always a probability of having some token. This is becaiuse there is a very small probability of
arbitrarily long exeaution times on every step due to the exponentia distribution function. We
can explain the source of error better with the following observation.

Given any arbitrarily big amount of time T, we can estimate alower bound for the probabili ty

P<%>>0 that any time step can take longer than TF to complete its exeaution.

Therefore, there is a non-zero probability that the whole exeaution takes more than any
arbitrary big amount of time summing this arbitrarily long exeaution times of individual steps.
This is not a consequence of the red phenomena we are studying, but a drawbadk of the
distribution function we picked up
We can now seethat batch means alone is not away to determine the TET for this problem. A
workaround to this problem is to extrapolate the region where we observe the linea behavior
and determine where it interseds with the X axis. We shall be able to say that the determined
valueisthe TET for this problem.
From the inspedion of the estimated curve, we can conclude that until t=450, the behavior can
be considered pretty linea either for the red and the blue curves. Applying the root-mean-
square method?” to ead of the curves we get the three following straight lines equations for
the green and blue airves respedively:

.  y(x)=-0,39%+199

().  y(x)=-0,42%+196

().  y(x)=-0,36%+203

27 Thereis no spedfic background to model blue lines as graight lines but their shape and simplicity of linear
approximation.
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Equation (i) approximates the curve of expeded vaues while equations (i) and (iii)

approximates the blue arves. The solutions, X __0 for ead of the equations follows:

y(x)
(). x=499
(i). x=456
(ii). x=549

A joint plot for all the aurvesfollows:

| ,
300 lterations 400

We can determine [456; 549 as the mostly probable interval where the exeaution time of the
red experiment must fall, while 499 seconds or 8m18.99s is the expeded Total Exeaution
Time. From this plot we can aso get another estimation: the mean exeaution spedl. It is
straightforward to redize that the tangent of the first line is a good estimation for the MES.
Remembering that the tokens used in the smulation represent one quarter of the origina
matrix, we can say that the MES of this system is 0.399 submatrixes per second or, what is the
same, 9.98x10? matrixes per seaond. A better time unit for expressng the processng speed is
the minute. The processng spead or MES is of 5.99 matrixes per minute.

Another way to estimate the TET comes out of a different approach. We determined the TET
first and after that we determined the MES. We will try now to determine the MES of the
system and then the TET.

As we saw before, there was a systematic error in the previous procedure, an error that
beoomes relevant when we try to determine TET itself, but that is not a drawbadk for finding a
stable stage that allows us to extrapolate the behavior. We want to determine the processng
speal of our system during that stable stage. As we suggested in previous chapters, we can
modify the Petri net that represents the problem by removing the work_i  places. We can see
that the resulting Petri net will loop forever without any fixed token configuration: al tokens
will | oop their own path. The following dagram represents the resulting Petri net.
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We want to determine the MES for this Petri net. We nead to acount the number of times the
tokens cycle the network in a period of time so we can average the

| that is asciated to the processng adivities, signaling a unitary value
| | with ead submatrix processng. We shall then smulate the exeaution with
'1 the Acaumulated Reward Solver simulator provided by the UltraSAN
tool. The number obtained is the number of submatrixes solved within a certain period of time,
four times the processng speed of the system in that period of time, as afull original matrix is
represented by four of these tokens.
The result of the smulation after 10* seconds is 3.99x10° tokens, 3.99x10* tokens per second,
9.99x10? matrixes per second or, expressed in a more convenient unit of time, 5.99 matrixes
per minute. The similitude with the previous estimation is remarkable.
It is important to note that it is valid to asociate 4 tokens, one in ead init i  placeto a
matrix without losing the resolution semantics of the resolution due to the synchronization
performed at sync adivities. This synchronization ensures that no other portion of the problem
is solved until the diredly conneded places finishes their work. We can see that al four
procesors will work tightly coordinated, waiting for the owest one after the completion of
the assgned piece of work: ead process waits for the information form its adjacent before
iterating again one step of time. This behavior is the same al the exeaution long, and, at the
instant of time 10" some processes might be waiting for others, but all of them will be either
solving the same time-step or they will be waiting for the others before computing the next. It
is under these mnsiderations that computing badck from tokens to matrixesis valid.

We now nedd to determine an optimistic estimation for the system performance As we stated
before, we shall use deterministic distribution functions to estimate TET and MES for our
system configured for running the previous matrix fifty time steps. The smulation tool we are
using does only provide simulators for determining the steady state out of a network but not
the elapsed time. Furthermore, if the net contains a distribution function that is not exponential
or instantaneous, transient measures cannot be obtained. We shall now study the evolution of

the network analyticaly.
We are assuming that there are fifty tokens into ead work_i placeand one token into eat
init i  placeat time t,®%. Lets assume that proc_1 adivity and proc_3 have deterministic

values 5.68 while proc_ 0 and proc_2 have values 3.73. All proc_i adivities are enabled and
thus, their exeaution begins at time t,. At time to + 3.73 both adivities proc_0 and proc_2

complete their exeaution and individual tokens are placed into wait_ 0 , snd_01, snd_02,
snd_03 , wait_2 , snd_20, snd_21 and snd_23 places. Asno adivity remains enabled the state

28 We asamethat all remaining paces have 0 marks.
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remains the same until time to + 5.68 where adivities proc_ 1 and proc_ 3 become enabled.
Tokens are then moved to places wait_1 , snd_10, snd_12 , snd_13, wait_3 , snd_30, snd_31

and snd_32. At this very moment, adivities sync_ 0, sync_1, sync_2 and sync_3 are
enabled. Tokens are removed from all previous places and individual tokens are placeal bad in
init.t 0 ,init_1 ,init.2 andinit_.3 places. We can seethat current system state differs from
the initia state because it holds 49 marks into ead work_i placeinstead of 50. We can also
seethat if wecdl t totime to+ 5.68, we can seethat at time  t+5.68=t,+2x5.68 there

will be 48 marksinto ead work_i place

We can seethat tokens are consumed 4 every 5.68 seconds, or one every 1.42 seconds. 42.3
tokens every minute. As we saw before, ead matrix consists of 4 tokens, thus, the predicted
processng speed, the MES is of 10.6 matrixes per minute.

Now that we know the MES, we can estimate the time it will take the system to consume all
tokens. Knowing that the system holds 200 tokens, representing 50 matrixes, it will take 284
seoonds, or 4m43.90s, the TET

It is also quite noticedle why the sowest CPU is driving the performance of this kind of
paralel systems. We can seethat during the interval (to+ 3.73; to+ 5.68) the only CPU adivity
comes from the slowest CPUs while the faster ones remain idle, waiting for the slow to finish.
It is straightforward to see that this computation pattern prevails even when the number of
CPUs and work units grow. The exeaution of faster CPUs will be “bursty” and periodicd,
while dowest CPUs will run continuoudly. It is also noticedle that the effedive processng
spedal of al CPUs shall be equal to the processng speal of the dowest, thus, the optimistic
approach for this case suggests that the processng speed of the system shall be at most as fast
as n times the spea of the dowest CPU, the weakest link, where n is the number of CPUs in
the system.

Now we have an upper and lower bound for the expeded system performance based on the
pessmistic and optimistic estimations obtained before. We have determined the following
intervals for our performance parameters.

TET 284s— 49%
MES 5.99 — 106 matrixes/minute

We would like now to test the estimated performance against our measures from the red
system exeaution. We run once again the mat program, but this time, with PVM's virtual
madhine configured for running over the two procesrs. The exeaution time was of 5 minutes
and 8 sewmnds (308 seands), which falls within the predicted interval. The MES for this
system is of 1.62x10" matrixes per second or 9.74 matrixes per minute, value that also falls
within the expeded interval for the performance parameter. It is also important to note that the
estimated performance falls within the first quarter of the predicted interval, closer to the
optimistic estimation. It is a reasonable behavior as both systems were devoted to this task: no
other processwas run meanwhile.

We repeaed the previous tests on our system, for a broader set of intervals ranging from one
to 55 iterations, as for other measures aqquired. The following table shows the colleded data
from the exeaution:
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Iterations | time(mm:ss) |lterations| time(mm:ss)
1 00:46 5 00:52
10 01:26 15 01:51
20 02:19 25 02:47
30 03:15 35 03:43
40 04:13 45 04:39
50 05:08 55 05:37

The following graph plots all the colleded data against individual system performance and
estimated performance boundaries given by optimistic and pesgmistic estimations:

600

500~ —

seconds

1
0 10 20 30 40 50 60
iterations

We can seethe linea behavior found again in this observation, plotted in red. The blue and
green lines plots optimistic and pessmistic estimations respedively. We shall mention that in
this scenario where two systems are involved we can observe a much higher initializaion time
than in the single CPU scenario. There is an extra load on the file server at startup, when it has
to serve the program and the data to both CPUs. It is also noticedle that the experimental
behavior is reasonably similar to the one of the optimistic estimation; it is something that we
expeded from a dedicaed system. The model represents the behavior of this /stem properly.

Limitsfor the model' s predicting capabilities

We shall discuss some aspeds to be considered when using the previous models regarding
their predicting cgpabili ties. We will try to be pradicd when considering this matter.

There are several considerations regarding the individual system performance, which are
beyond the scope of this study, but should not be omitted in order to get acarate estimations.
The concept “system performance” is difficult to ascertain, but we can smplify it just
considering it as how fast a system can perform certain task for us. This simple assumption is
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compatible with our system performance concept for the paralel system and is good enough
for individual system performance

It is very difficult to speak about system performance (generally wrongly associated to MHZz)
without considering any particular task. According to our very informal definition of
performance, we cannot spedk about performance without spedfying a particular task. There
exists also a problem when we try to compare performance but measuring different tasks®.
Shouldnt we have a single performance indicator for a system regardless the task we are
considering? We believe that it is not corred to go that way. Lets think two different
implementations for a same problem, one that is 8086 compatible and another that uses MM X
if available, extensions for video decompresson. If we are comparing two systemsa and b, b
has a clock that is 16.66% faster than a, same vendor, but a with MM X extensions and b
without them. If we compare them acording to the first implementation it is most likely that b
proves faster than a, but if we compare them acwrding to the second implementation, the
opposite result is the most probable. It is very unlikely that we can describe all the parameters
regarding system performance with a single figure. If we gathered only one performance index
for a system then we would not be able to make a difference if the problem is optimized for
cetain kind of operations or not: either a would be faster/slower/equivalent to b for al tasks,
but we can seethat it does not model all possble performance behaviors.

Another problem arises when we are considering both different systems and different tasks.
This is the case we facewhen we use our models to predict the performance of the parallel
system: the tasks will be different (at least the input problem would be scded) and the first test
systems themselves will be, most probably different® to the production ones.

We shall now introduce an informal concept: inpu-exeaition equivalence. The am is to
partition the task space acwrding to its exeaution profile, based on their exeaition and 10
blocking interleave. Interruption-level events, memory swapping, 10 were discussed when
analyzing distributed.net's approac to the RC5 challenge and were discarded out of the model
and summarized into the distribution function that models the process adivity. The fad that
these fadors were not modeled does not mean that they are not important. They are too small
to be considered in out Petri network but they have to be taken into aceount when estimating
performance if possble, they should remain invariant in the benchmarked systems and the
constructed parallel system.

Some metrics could be developed to quantify these concepts like number of 10 requests per
time unit, number of swap-in, swap-out pages per time unit, etc. but are beyond the scope of
this analysis. To be able to exhaust the different levels of input-exeaution equivalence, locdity
has to be taken into acmunt. Even though there might be no interrupt level blocking due to 10
operations, there is another kind of blocking, this time caused by pipeline stalls due to memory
accesswhen cade misses occur. Whenever we cross a border of the memory hierarchy of a
system there is a tremendous performance price to pay. The following table summearizes few
performance data gathered from some of our test systems™:

29 Wewill consider different tasks ssme algorithms appli ed to different data sets.

30 Letsremember that thistodswould most probably be used when designing the parall € system rather than
first buying nodes and later benchmarking.

31 The measures were gathered using memtest 2.75 and are intended only as examples just to show some
empirical data.
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Processor Celeron 333 MHz PIl 400 MHz Celeron 800 MHz
System clock 66MHZ| 100MHZ| 100MHz
Sheed | 3300 MBI 7100 MBs 5300 MBS
Cashiell == KB 32KB 32KB
S EEES 590 MBS CEES
Cashiel? == T28 KB 512 KB T28 KB
DRAM Memory speed GRER 88 MB/S T58 MB/S

We can seethat there is about one order of magnitude of memory bandwidth loss when we
misson L1 cade and another order of magnitude when we missthe L2 cadie. This means that
if our loop fits inside the L1 cade, it can produce/consume data at a rate of gigabytes per
seoond, if it fitsthe L2 cade, it can produce/consume data at a rate of hundreds of megabytes
per second while if our data set is so big that we aways get cade misses, our data
produce/consume rate would be of tens of megabytes per second. The case of virtual memory
and dsk accessto retrieve avirtual memory value is even worse. Even though today hard disks
can transfer data at a speed equivaent to the memory, the seek latency (which is measured in
milli seconds) and the block transfer throws down the effedive speed to thousands, tens or
even few kilobytes per second.

On the other hand, knowing more detail s about our code can help us dedde which processor is
“better” for our applicaion. For example, lets assuume that our code is 90% of the time
exeauting a loop that is 350KB long. Lets also assume that there is no inner sub-loop that
presents a loca behavior. For both Celeron processors in our figure, data accesswould mean
memory access and thus, the speed would be around 100 MB/s. On the other hand, that piece
of code would fit in the Pentium Il L2 cade, which would yield at least four times the memory
bandwidth of the DRAM memory. For this particular case, it seans that the 400 MHz
procesor would perform faster than the 800 MHz processor. Once again, these issues are
highly coupled to the problem itself and cannot be separated from it.

With the concept of inpu-exeaition equivalence we try to consider these fads as much as
possble out of different program exeaution and try to state that both exeauted in pretty
equivaent conditions. What would be the point of estimating the performance of a parallel

system if we measured individual systems running at L1 speed while the estimated cluster will

do excessve swapping?

Lets see the impad of these considerations with some figures. We will try to force our test
systems aaosssome of this performance boundaries. We produced a set of input matrixes with
the following dimensions: 50x500, 100x100Q 2000x200Q 3003000 and 4000x4000Q
which were run 5 iterations on our mat program. The following table summarizes memory
usage per CPU and elapsed exeaution time:

Pentium 166MHz Celeron 333A P 166 + Cel 333A
96 MB RAM 128 MB Ram |96 + 128 MB RAM

500 47 s 24's 26s
memory (MB) 3,83 3,83 191+1,91
1000 187 s 96 s 108 s
memory (MB) 15,29 15,29 7,64 + 7,64
2000 738s 387s 403 s
memory (MB) 61,1 61,1 30,55 + 30,55
3000 4424 s 2028 s 828 s
memory (MB) 137,42 137,42 68,71 + 68,71
4000 - - 3723 s
memory (MB) 244,26 244,26 121,13 + 121,13

The basic cdculations on the memory used by the process data considers two complete
matrixes of double predsion red numbers. There is no elapsed time measure for the individual
systems with matrix of 4000«4000 elements because the runs did not finish: Pentium's hard
drive failed after ten days of processng and we did not let the processrun on the Celeron for
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more that 5 days. In either case, hard drive led was al time red due to permanent swapping
(trashing describes better the situation) and CPU allocation to the task was at most, 1 or 2
percent of the time. We can seethat while the problem fitted in RAM memory, the elapsed
time grew quadraticdly on the size of the matrix (for individual systems, 500, 1000and 2000
elements). For 300x300Q as swapping starts, there is an over-quadratic growth on the
exeaution time. Thisis due to a change in the inpu-exeation profile: when datais needed and
page faults occurs, exeaution is blocked until some page is removed from the RAM, written to
disk, the page is tagged as avail able and the needed data is retrieved from the hard disk. Due to
the high frequency of these faults, the performance drops.

It isalso good to notice that on the combined system, the elapsed time still grows quadraticaly
for 3003000 matrix: sub-problem till fitsin RAM.

Lets assume that we are trying to predict the combined system performance for the exeaution
of a 300«3000 elements matrix. Lets assume also that we did not considered the concept of
inpu-exeation equivalence and that we made individual system performance measures with
300x3000 input matrixes. After smulating the Petri Net, we would have predicted an
optimistic exeaution time of 2190 seands, while the observed exeaution is of 828 seconds,
amost threetimes shorter. Thisis due to the ladk of inpu-exeation equivalence. If we predict
using the 200x2000single procesor exeaution times, we get the right estimation. We can see
that memory usage of the 20002000 matrixes in the individual systems is similar to the
memory usage of ead individual system on the 3003000 experiment on the combined
system.

The lac of quadratic growth in the elapsed time for the 4004000 experiment is due to the
growth in the memory usage, spedally on the Pentium system: swapping was nealed.

There exists another important reason for exeaution stalls that arises due to excessve
communicaion amongst processng nodes: if the ratio between remote and locd data needed
to perform a processng stage is not reduced, the amount of time spent in communicaion
threaens the time won paralelizing the application. Whenever we have to access to
information that is stored on other processmemory, the data transfer speed drops compared to
memory access speed. Even if we are using a high speed network (i.e. 10 Gigabit Ethernet)
what we can do is to reduce transmisgon time, but there is an important priceto pay in O.S.
cdls, switch contexts memory accessblocking, etc. It is difficult to minimize latency. We have
to balancethe anount communication time vs. processng time.

We ran again simulations with mat program, but this time fixing the size of the problem and
varying the number of processs solving the problem both on individual systems and on two
computer system. We solved a 500x 500 matrix over 20time steps using 1, 4, 16, 36, 64, 100,
144, 196 and 256 processes. Unfortunately we had no massve parallel system to run our tests,
so most of the communication happened over UNIX sockets instead of TCP/IP ones, but we
were aleto seethe dfed of communicaion on the processng time anyway.

First of all we seethe amount of communication that takes placefor ead experiment. The
following equation approximates the number of cdls exchanged on every iteration, where i is
the number of parts (horizontal and verticd) in which the input matrix is going to be diced:

4*(¥)+1)*i2

We gathered data from our test systems, the Pentium 166 MM X and the Celeron 333A alone
and then solving together the problem using both a 10 Mbps and 100Mbps Ethernet LAN.
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When solving the problem using both systems, experiments contained more than one process
The following table shows the experimental data:

Pentium 166MMX Celeron 333A Lan 10 Lan 100
Partes Elapsed time Per process Estimated Elapsed time Per process Estimated Elapsed time Per process Estimated Elapsed time Per process Estimated
(mm:ss) | communication | execution (mm:ss) | communication | execution (mm:ss) | communication | execution (mm:ss) | communication | execution
overhead (s) time (s) overhead (s) time (s) overhead (s) time (s) overhead (s) time (s)
1 01:37 0 97 00:58 0 58
2 01:43 15 24,25 01:.01 0,75 14,5 00:51 0 12,75 00:51 0 12,75
4 02:17 25 6,06 01:13 0,94 3,63 01.07 1 3,19 01:08 1,06 3,19
6 03:11 2,61 2,69 01:30 0,89 1,61 01:37 1,28 1,42 01:37 1,28 1,42
8 04:30 2,7 1,52 01:56 0,91 0,91 02:29 1,53 0,8 02:30 1,55 0,8
10 06:02 2,65 0,97 02:30 0,92 0,58 03:23 1,52 0,51 03:23 1,52 0,51
12 08:12 2,74 0,67 03:10 0,92 0,4 04:28 151 0,35 04:27 15 0,35
14 10:24 2,69 0,49 03:58 0,92 0,3 05:42 1,48 0,26 05:40 1,47 0,26
16 13:29 2,78 0,38 04:55 0,93 0,23 07:15 15 0,2 07:13 1,49 0,2

It is easy to note that in all cases, as the number of processes grows, the elapsed time grows
too. We added a column, “Per process communication overhead” that cdculates the overhead
introduced by ead process considering that a single process has 0 overheal and
singleProcesslime—experimentTime
number Of Processes

as the number of processes grows, the per-processoverhead somehow stabili zes. We can see
that in the multiple systems experiment the network speed has amost no influence on the
exeaution time. In this case, the overhea is amost completely due to OS cadls and protocol
overheal. We used the same NICs © asto keep the driver overhead time constant.

These figures help us understand that we have to pay a price in terms of overhead whenever
we add a process and it has to be worth doing so. We can seethat it is easy to spend more
time communicaing than processng, in other words, for ead problem, system and algorithm,
there is a speedup limit that can be obtained out of parallelism. Also, we can figure out that
adding CPUs might not always result in speedup if the overhea introduced is bigger than the
speadup, then no speed is gained.

. We can seethat

understanding processoverheal as

32 This behaviour should be somehow consistent whil e the input-exeaution equivalence prevail s.
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5.3 - Task-Farming example application: SN metaheuristic

This AV A applicaion implements the SN metaheuristic proposed by Sebastian Urrutia and
Irene Loiseau [URR1] to solve the Steiner Problemin Graphs (SPG).

The SPG consists of finding a sub-network that covers a subset of nodes of a given network
with minimum cost. SPG models adequately communicaion scenarios, spedally multicast
ones. Reseach on the field was pushed in the last decale by the telecommunication industry.
Sometimes the SPG problem is also referred as SPN or Steiner Problem in Networks.

A formal definition of the problem follows:

Let G=(V,E) be a conneded undireded graph, where V is the set of nodes and E denotes the
set of edges. Let w be a non-negative weight function W.E—IR+ that associates the set of
edges with positive red values and a let X be a subset X<V of nodes cdled terminal
nodes. Let ny=|X| be the number of terminal nodes. The Steiner problem SPG(V, E, w, X)
consists of finding a minimum weight conneded subgraph of G spanning al terminal nodes in
X. The solution of SPG(V, E, w, X) is a Steiner minimal tree (SMT). The non-terminal nodes
that are part of the solution are cdled Seiner nodes. This problem is inherently complex (from
the point of view of computation). Karp proved that SPG is NP-Complete in the general case,
thus, afast parallel metaheuristic solution is helpful in the field.

Lets introduce an example of a small SRG. The graph used, a HEIDI graph named gD-
T1al0.exp , which has 20 nodes. The following is as graphicd representation of it where
circled in red nodes are terminal nodes.

\“

The following table defines w function for all edges:

edge w edge w edge w edge w edge w edge w
17-8 0.798440 19-12 0.858676 18-20 0.497259 11-7 0.909643 19-4 0.225491 16-12 0.477361
5-7 0.277775 19-9 0.684219 17-18 0.649707 17-10 0.180421 7-8 0.344251 19-15 0.438562
10-13 0.513401 10-5 0.920128 13-5 0.316867 15-4 0.492422 14-2 0.778257 18-16 0.536742
18-13 0.141603 16-7 0.226107 5-2 0.223656 4-8 0.931895 9-7 0.230996 10-19 0.884318
1-6 0.804177 6-12 0.169607 11-19 0.546107 13-17 0.496074 11-4 0.014579 18-5 0.865434
9-3 0.998925 10-15 0.935004 3-10 0.944318 8-14 0.258906 11-18 0.809785 12-2 0.563617
11-17 0.296032 8-15 0.294160 7-17 0.003231 2-3 0.363598 7-13 0.532960 1-8 0.923692
11-10 0.292517 16-4 0.074530 12-17 0.675476 7-3 0.934495 11-9 0.718867 10-6 0.122326
11-16 0.891529 15-13 0.639458 10-7 0.182556 9-17 0.244327 1-7 0.655368 4-5 0.176239
8-16 0.069755 3-4 0.078232 2-9 0.673936 4-9 0.783282 4-7 0.879009 6-18 0.190709
11-3 0.663227 2-4 0.204329 8-5 0.627158 10-20 0.210883 7-18 0.157139 9-16 0.356383
8-2 0.457702 3-20 0.870540 13-6 0.087644 17-3 0.382896 17-14 0.191112 6-4 0.058052
6-19 0.850920 1-19 0.180372 18-14 0.111276 13-16 0.051508 5-19 0.933420 19-2 0.469050
11-8 0.512535 8-18 0.359095 14-6 0.288379 10-16 0.442560 13-20 0.324541 12-4 0.476355
11-2 0.931835 12-10 0.099640 5-20 0.827391 11-12 0.304285 12-13 0.775421 14-13 0.269022
15-6 0.639979 15-7 0.576971 5-9 0.918930 10-4 0.525747 8-13 0.143982

14-4 0.880075 19-18 0.979434 14-3 0.383832 12-5 0.070090 6-9 0.717597

Given al the previous data we determined that the optimal solution cost is 1.5963689 and that
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nodes 19, 16 and 12are Steiner nodes. The following graph is the solution:

The SN metaheuristic transforms the SPG into an iterating set of dedsion problems based on
SPG heuristics. Each of these iterations is highly decupled and can be easly paral€lized, as
the authors suggest on [URRL].

The idea behind the SN metaheuristic is both simple and powerful as it turns optimization
problems into dedsion ones extrading information for successve dedsions from possbly
inacairate results of heuristic resolution. The following pseudo-code is extraded from [URR1]
and describes SN's basic scheme:

Whileit is possbleto divide Q into subproblems gi..gn do
For i from 1ton do
Solve gi heuristically to dbtain s and cvi
End For
Obtain i with maximum cvi
Modify Q using the information provided by giand s
End While

The method assumes that the problem Q can be divided into n subproblems qz,...q.. Using the
heuristic we can obtain a certain solution s with an asociated cost cv;. After determining the
optimal heuristic solution, the problem Q is modified into Q' that should be simpler, acording
to some heuristic's metric.

The Departamento de Investigacion Operativa at the Instituto de Computacion, Facultad de
Ingenieria has developed a C++ toal for graph handling: Heidi. The development of this line of
investigation is founded by CONICYT. The tool has been evolving since 1993 through
successve individual grade students thesis works. This evolution started with a graphicd
system based on Motif and Sun's C++ compiler. Each successve work added not only
functionality, but new implementations for the graphs and trandations from one stage to the
other.

One approach to our development could have been choasing the most adequate graph classes
in C++ and develop it within Heidi's environment, but that would have constrained us to Sun
systems. This is fine within Heidi's framework, but this reseach has to consider spedficdly
COTS hardware and software. Even though Solaris runs on PCs, it is not either a standard
parallel or acommercial environment. We could have developed a set of PVM or MPI routines
from scratch and interfacethem with C++ graphs from Heidi. In this approach we could obtain
portability, even through different platforms, but the marshaling and unmarshalling of
information would be our responsibility: we would have to consider aspeds like big & little
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endians and bitwise operations, data formats, etc. Message passng libraries offer a very low
level support for information interchange, not adequate for complex data structures like
graphs. We followed this approach with the Mat application, but the information interchanged
were vedors of double preasion float numbers.

Most of these problems are solved using Java, a younger aternative to Objed Oriented
Programming. Java is inherently platform independent and the bytecode can be run in any
system where exists a Java Virtua Madine. A dgnificant drawbadk is that the WVM's
operations, the byteade, is interpreted, and thus, ower than the objed code produced out of
a C++ compilation. Other compilers produce exeautables with the VM embedded that can be
run diredly as a regular applicaion, but loosing portability. At this point we dedded to work
with Java. The interface with Heidi is the edu.fing.inco.math.util.HeidiGraphFilelO

classthat reals and writes files with graphs understandable by Heidi.

The problem of exchanging information between programs is redefined in Java as referencing
remote objeds using RMI (Remote Method Invocaion). A smple way to think about this
problem isthat one objed happens to live in another macdine, and that you can send a message
to that objed and get aresult asif the objed lived on your locd machine. RMI makes heary
use of interfaces. When aremote objed is creaed, the underlying implementation is masked by
passng around an interface Thus, when the client gets a handle to a remote objed, what it
redly gets is an interface handle, which happens to conned to some locd stub code which
talks aadossthe network. The only difference is that the remote objed is boundto a variable
instead of created as aregular objed. From then on, it behaves as any regular objed. Another
important fador is that most objeds can be used this way. The only requirement is that the
objed implements the java.lang.Serializable interface &d uses Serializable objeds.
Since Java 1.1 objed seridization was introduced. It makes it possble to take any objed that
implements the Serializable interfaceand turn it into a sequence of bytes that can later be fully
restored into the original objed. This is even true acossa network and different Java Virtual
Madhines, which means that the seridizaion mecdhanism automaticaly compensates for
differences in operating systems and hardware platforms. Serializing an objed is quite smple,
as long as the objed implements the Serializable interface(this interfaceis just a flag, and has
no methods). In Java 1.1, many standard library classes have been changed so they're
seridizable, including al the wrappers for the primitive types, al the colledion classs, and
many others.

A particularly clever asped of objed seridization is that it not only saves an image of the
objea diredly referenced, but it also follows al the handles contained in the objed and saves
those objeds, and follows al the handles in ead of those objeds, etc. This is sometimes
referred to as the “web of objeds’ that a single objed may be conneded to, and it includes
arrays of handles to objeds as well as member objeds. More details can be found on the Java
documentation (http://java.sun.com).

We can seethe importance of this approad: as far as we can seriadize al our objeds, we can
run them remotely on any remote Java Virtual Madiine. We can concentrate on graph
algorithmic instead of communication and synchronization.

Another reason is the posshility of having a multi-platform parallel tool available for running
experiments and test our models also in a non-standard parallel environment. Our analysis
considers the platform, the algorithm, the communication pattern, etc., but does not constrain
to standard parallel environments.

The SN agorithm is implemented as a method in a class It recaves a weighted graph, the
subset of terminal nodes, a heuristic, a criteria and returns the resulting tree The metaheuristic
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converts the problem into a successon of sets dedsion problems. at ead iteration, the “best”
dedsion is taken, until the solution is found. This general metaheuristic can be applied to
amost any problem that accepts a compositional solution. In the case of the SPG, the dedsion
consists of determining at ead stage for every non terminal node will or will not be part of the
solution. Each individual dedsion is taken considering the heuristic applied to the graph
considering that the dedsion has arealy been taken. The “best” option, acording to the
heurigtic, istaken at ead stage, “fixing” ead non-terminal node as a Steiner node or removing
it from the solution. Let m=|V\ X| be the number of non-termina nodes in the graph.
Ead iteration invokes twicethe heuristic for ead non-terminal node at eat stage. We can see
that the full solution of the problemtakes m(m—1) invocations of the heuristic.

The following pseudo-code represents the implementation:

process

initialize remote object threads

for (i=0;i<cantTermNodes;i++)
build set of graphs
apply remote object threads to set of graphs
pick best solution
replace current graph with best graph

end

determine min coverage tree

Java makes the use of multithreading smple. We use a threal to control ead remote objed.
The threals accessa common set of graphs to solve, pick some of them, submit the job to the
remote objed, gather the result and send more jobs until no other graphs are there for solving
using the heurigtic. The resolution of the heuristic takes place remotely, but the
synchronization and access to the information is solved within the same Virtua Madine,
which makes it simpler to coordinate exeaution. Instead of having different programs running
in different memory spaces, we have a set of threads running with the same permissons in the
same virtual madine. The set of remote objeds do not interad amongst them, but through the
master process

Complexity

The way we paralelized the algorithm, the same suggested by the article's authors, consists in
running in paralel al the heuristics that cooperate to take ead dedsion. The most simple
approadh is to take single CPU heuristics and run them in parallel. This is the approach we
followed. We used single-threaded heuristics to solve eat dedsion problem, while running
sets of them in parallel®. The metaheuristic imposes a limit in the speedup we can not spawn
more than 2m, twice the number of non-terminal nodes, dedsion problems at the same time,
even though there are m(m-1) heuristics to solve. We have to take one dedsion at a time so as
to build the solution. At the following iteration there will be two heuristics less to run, we
aready took a dedsion. Ead iteration will require less computations to solve, until the last

33 Thevalidity of thisanalysis remains even if the heuristics are solved in parall € by fixed sets of computers
also.
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dedsion when we have to dedde if the remaining node shall be present or not in the solution,
leading us to computing two heuristics. We can seethat the usage of computational resources
deaeases in time. If we have as many as 2m CPUs, only one iteration would use them all.
Following iterations would use successvely two CPUs lessthan the previous iteration.

It is evident now that even if we count with m(m-1) CPUs we will not be able to solve all

heuristics at once A first lower bound for the speedup of the problem is given by the sequence
of stages. If a single system attempts to solve the problem, it will have to solve m(m-1)

heurigtics. If we have enough CPUsto tadkle all heuristicsin a stage at a time, we will be able
to solve al stages in the time of m heuristics plus the administrative time of splitting and
joining the solutions. With non-parallel heuristics, this is the fastest we can solve this problem.
This speedupis agood one. We can turn a quadratic problem into a linea one, on the number
of heuristics.

The number of subproblems (dedsions) into which we divide a Steiner problem ism = n — nx.

The complexity of ead subproblem depends on the heuristic used. In our initial tests we used a
very simple heuristic that we cdled DijkstraPlusPrune . It consists of picking randomly an
initial node and determining the Dijkstra treefrom that node. It is a solution becaise it is atree
that covers al the Terminal nodes, since the Dijkstra tree covers al nodes in a conneded
graph. After finding the tree we proceed pruning al non terminal nodes with degreeone, that
means, unnecessry nodes for the connediveness of the terminal nodes. The cost of
determining the Dijkstratreeis O(n?).

Since every dedsion takes 2nx exeautions of the heuristic, we can determine that the order of
eah dedsion is O(n®). Now we can see that the order of exeaiution of the whole SN

metaheuristic is O(n%).

Being more predse, the exeaution order is O((n-nx)?n?) that is equivalent to O(n*) when n >>
nx. This is the most general case in STP resolution. We can also seethat if n = nywe will not

get an O(n?) exeaution time but it will approximate to O(n?). If n = nx our Steiner Problems
turns into SPG(V, E, w, V) that is equivalent to Dijkstra(V, E, w), whose resolution time is
o(n?).

The modéel

We can seeclealy that solution method problem falls within the classof master-dave parall el
programs, thus, we will apply the general procedure for building a network that represents the
system. Aswe saw on the taxonomy analysis for this kind of problems, they can be represented
by the junction of two basic networks, one for the master and other for the daves as follows:

First moddl

Master Save

CFU
shD_eur, .

get Aot B ocess

RCY_BUf
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We can seethat the resolution of the whole problem consistsin - m=|V\ X| dedsions, one
for eat non terminal node. There exists an implicit synchronizaion after ead of this dedsions
while the master determines the best dedsion. This means that there is an outer iterative stage
a the master that controls the serial completion of dedsions. A more acarate network that
models the master processfollows:

Seacond model

Master Save

Allac

et Process

SMND_Buf RCV_Buf

We will use this second experiment to test how important is to be able to model the
synchronization in this particular problem. We will try to predict paralel system performance
without modifying the general network for this kind of problems, initiaizing it with m(m-1)
heuristics to solve. With this general network we will miss m synchronizations amongst all
procesors. We will try evaluate for this particular case expressvenessvs. smplicity.

It is worth mentioning that this might be interesting considering when the number of dedsions
outnumbers the CPUs. Lets say that we have k CPUs and m non-terminal nodes. If k>>m we
can always addressall heuristics needed to take eat dedsion in paralel, but no other dedsion
can be taken until we have taken the dedsion, that is, k-2m CPUs will be idle because we can
not start solving further heuristics until we take a dedsion. In this case, if we model the system
with our first model, not considering the blocking between dedsions, we will estimate a
performance that exceals the red performance of the algorithm. We will study a case in which
k<<m.

First experiment: Heterogeneous, single OS, two machines cluster

The first of our experiments will be run in paralel intwo CPUs, the smplest parallel non-SMP
scenario. Both systems will be booted on Windows ME (4.90.3000 and the virtual madine
used is Sun Microsystem's Java 2 Standard Edition 1.4.0 (build 1.4.0-b92).

Trying to get a cleaer graphic representation of the network, we shal assemble a single
network with the master and the two daves insteal of using the join cgpability of UltraSAN.
For bigger networks this is recmmendable, even though there should be as many daves as
“clases’ of CPUs, and as many tokens into the CPUplaces as procesrs in ead one of the
classes.

A couple of minor changes were made to the suggested network, mainly due to the iterative
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nature of the problem. First of all, we considered no faults, and thus, fault adivity was
removed. A placecdled Decisions_Taken  was added to “count” the number of iterations,
and thus dedsions that have been taken so far. Also a placecdled Sync was added so as to
synchronize the movement of tokens “out” of the network to the Decisions_Taken  place All
this modifications make it possble to model properly the blocking of the different stages of the
problem in the network. It is aso possble to skip the usage of the Sync place and to
complicae the logic of the input gates that control the movement of the tokens aong the
network. We preferred this option because we believe the semantics of the network are much
cleaer, making it more understandable. It is also important to mention that these places do not
increase the state-spaceof the network and do not make it more complex for a system to solve
it.

Another modification was performed on the network: Problem_Partitioned place was
removed from the network and the tokens are moved diredly to their destinations instead of
through it. The reason for the removal is not semanticd, but to cut down the number of states
generated. Considering this placewe would need to consider process resolution as tokens are
being moved to the SND_Buf: daves might start solving pieces of work while the SND_Buf
placeis being fed. Even though the inclusion of this placemakes a theoreticdly more acarate
network, we found it better to remove it as problem generation times would be too small, and
prediction would become inacarrate and state-spacewould grow significantly.

Returning to the first model, the naive one, for the two host experiment, we condensed the
first model into one complete network for the same reasons.

It is clea to notice that the level of blocking in the second network is smaller than the one of
the first network. It is clea that the second network does not model the red exeaution, but we
want to determine how inacairate it is to apply the model diredly without considering the
particular interadion detail s of this problem.

Parameter fitting

We have the layout of the network that models the system. We need now to determine the
performance indexes of the timed adivities and the number of daves available for solving
heuristics. The distribution functions that need to be defined acording to empiricd data are
the ones associated with the following timed adivities: Partition  , Fault , Send, Remove, Get
and Process . We will model a perfed system, one in which no Fault occurs.

Experimental data

In this sedion we will empiricdly determine the required parameters to complete the network
definition. As we stated before in the taxonomy analysis, we neal to determine both hardware
performance indexes and problem complexity, spedfied in some adequate, problem dependent
unit.

We based our tests on the B series of the SteinLib [KMV1]. We worked with the first 7
problems of the suite. The following table resumes some relevant charaderistics of the
problems:
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Heuristics
Nodes Terminals Edges Decisions | Theoretical | Solved
b01 50 9 63 41 1640 1360 82,91%
b02 50 13 63 37 1332 1194 89,61%
b03 50 25 63 25 600 571 95,22%
b04 50 9 100 41 1640 1563 95,30%
b05 50 13 100 37 1332 1308 98,22%
b06 50 25 100 25 600 587 97,83%
b07 75 13 94 62 3782 3252 85,98%

The first three columns show parameters that determine the complexity of the network,
parameters that determine diredly the size and connedivenessof the graph. The following two
columns, Decisions and Theoretical show the complexity of the algorithm measured in the
number of dedsions that would be taken through the resolution and the number of heuristics
that have to be solved in the worst case. The next column, Solved, shows the average number
of adtual invocations to the heuristics routine in our studies. The differenceis explained due to
non-conneded graphs that are discarded without being considered when exploring the dedsion
gpace Inthe worst case of afully conneded graph, these two figures will be the same.

We performed the first set of our tests on two madhines, two similar Celeron systems, one with
1 GHz procesr and the other with a 1,1 GHz processor, both of them running Windows 9x
OS. The tests consisted of running the master and the dave processlocdly in eat macdine
threetimes for ead of the seven seleded problems. The original codes were dightly modified
S0 as to get timing information. The Save processes were coded so they can measure the time
elapsed for ead invocaion, and the time is printed on the standard output. The master process
was modified so it prints on his standard output the time spent partitioning the problem. That
allowed usto colled detailed exeaution data: text files later analyzed. The exeaution conditions
were kept as gable & possble (no other processes were running on the systems), but very high
variance was obtained in the measures, suggesting a certain ladk of stability in the OS's CPU
alocaion times.

The following table resumes the information gathered

b01

b02

b03

b04

b05

b06

b07

1.1GHz

Total Time

438853

ms

442550

ms

252397

ms

736583

ms

603103

ms

339767

ms

3267740

ms

Master

443

ms

469

ms

357

ms

661

ms

606

ms

483

ms

1332

ms

Remote

285

ms

336

ms

383

ms

427

ms

415

ms

509

ms

950

ms

1.0GHz

Total Time

543740

ms

475527

ms

271900

ms

813377

ms

702697

ms

407567

ms

3355377

ms

Master

520

ms

506

ms

388

ms

707

ms

686

ms

552

ms

1369

ms

Remote

355

ms

357

ms

421

ms

468

ms

482

ms

593

ms

991

ms

Apart from the data shown in the previous table, there are some numericd aspeds that should
be taken into consideration. The first thing that has to be considered is that in general, the
dedsion resolution time deaeases as the problem resolution takes place This happens because
the problem itself becomes smaller after eat dedsion.

As soon as a dedsion is taken, one fewer node has to be considered in the next iteration. If the
node remains, the graph stays the same, but if the dedsion consists in removing the node, then
the graph that must be considered in the next iteration counts one fewer node and all its
incident edges. It is quite reasonable to find this behavior in the general case as the algorithm
procedls pruning the graph until a minimal set of nodes remains, and then only a coverage tree
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is saved. Even though there are particular sick-situations where nodes and edges are not
removed (i.e. a tree with terminal nodes as leares), the genera case consists of successve
smaller graphs, which lead to smaller exeaution times.

The following graphs plots the data gathered out of a single exeaution of the bO1 problem. The
data itself is not relevant, but the general behavior is. The graph on the left represents the
exeaution times of the problem partitioning at the master processwhile the graph on the right
plots the times thrown at the RemoteGraphSolver , dave processs CPU time. We can seethat
clock resolution is about 50-60 ms. The lack of smoothnesson both graphs shows the ladk of
stabili ty of the OS.
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Even though we found that the average on these measured timesis suitable for our studies, it is
possble to use other functions to estimate problem resolution time expeded values every time.
In our study variance values are extremely high and are not considered. It might be of interest
to use a function of the number of dedsions or invocaions instead of a constant one. Such
function would fit better the gathered data and should be a better model of the redity: as nodes
and edges are removed, ead heuristic resolution is applied to a smaler graph, thus it's
resolution is smpler than the previous one.

We have colleded relevant performance values that should suffice to estimate the performance
of the paralel system. As suggested, we will use deterministic and exponential distribution
functions on our networks to model optimistic and pessmistic exeautions respedively. We will

determine first the optimistic exeaution times and later, the pessmistic ones.

We will use deterministic functions to estimate TET and MES for this problem. As was stated
before, the tool we are using does not provide al the smulators we would like for working
with deterministic functions in our particular networks*. We shall now study the network
analyticdly.

First of al, we will study how tokens are moved from Parallel_Problem_Input placeto
Decisions_taken . We can isolate this study because, until all tokens are removed from this
sub-network, Sync placewill hold a token, and the adivity Convert_To_Decisions will be
paused. When all work is done, the sub-network will be “re-set”, a new token will be set at
Decisions_Taken  place ad the token will be removed from the Sync place

Lets assume that we have n tokens at Parallel_Problem_Input place Partition adivity
beaomes enabled and after t.se Ms al tokens are doubled and moved at once to SND_Buf
place modeling all possble dedsions. After that, both get1 and get2 adivities are enabled,

34 Maybewetill do nd know an equivalent way to compute our results within the tod.
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CPU1 and cpuU2 get alocaed and then, Process1 and Process2 Qet enabled. As soon as
these adivities are finished (tremoer MS aNd tremorez MS respedively) CPUs are de-allocated and
tokens moved to RCV_Buf place From that moment on, both CPUs will compete consuming

and

tokens from SND_Buf placeand pladng them RCV_Buf placein at a speal of

1000
t

t

remotel

tokens per second respedively. As the token consumption is taken place
remote2

tremotelx tremote2>< n
<tremotel+ tremoteZ) >< 1000

seands. Considering the master partitioning time, we can state that all tokens are removed in
tmaster tremotelx remote2>< n

+
1000 (1, gmoter + tremotez ) < 1000

We should modify this optimistic estimation: it is indeed pessmistic. We redized before that
this is the worst case, in which all dedsions leal to conneded graphs. As we observed in the
problems we studied, there are generally problems that are discarded at the master and never
solved remotely, thus, the number of tokens solved are smaller than n, and it is given by a
factor. The following formula muld be mnsidered and optimistic-average-case estimation:

simultaneoudly, al tokens will be removed approximately after

seaonds™®.

troser  bremoter X Lremote2 X NX factor

+ sends
1000 (t,qnoert tremoe2) X 1000
Now we know how fast tokens are removed from Parallel_Problem_Input place Every
time n tokens are placal in Parallel_Problem_Input place a token is removed from

Problem_Input ~ place The following formula predicts optimisticdly the time spent solving
the network

nx Uraser + i tremoter X tremorez X 1X factor

wnds
1000 =7 (t,anoert tremore) X 1000
or ‘
1 troser  Lremoter X Lremorea X facCtor n(n—1) eoonds

+ X
1000 (1,001 + tomgee) 10007 2

From this formula, we can seethat the speeal of the master only affeds the linea component of
the equation. The n* component is only driven by the remote processng speed.
The following table shows the numericd results:

35 Thisisnot absolutely true. The last token can not be partiti oned between bath CPUs. Only one of them
would get the al ocation, and thus the last pieceof the resolution would happen only at the processng speed
of that CPU instead of the sum of bath speals. We accept thislittl e extra error that simplifies the analytical

study.
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Optimistic (s)
MES Worst-case |Average-case
bo1 277 233
b02 248 224
b03 129 124
b04 393 376
b05 320 314
b06 176 173
b07 1917 1660

The difference between both columns is problem dependent, but we can see that the “more
conneded” the graph is, the closer the average case is to the worst case. If a degper study is
done on this particular problem, the average case should be related better to the worst case
with some theoreticd badkground. Maybe residual connediveness reliability values should be
used, as they give agood index for graph discarding.

The figures shown on the table are the TET for the optimistic approach using the detailed
network. We will base our estimation for the MES on the previous results. The unit will be the
number of dedsions taken per unit of time. For that average we have estimated the time in
which the whole problem is solved and we do know the number of dedsions taken for both the
worst and the average case, thus, we can simply determine the worst and average MES for this
problem. The following table shows the numericd results:

Optimistic (decisions/s)

TET

Worst-case |Average-case
b01 5,914 5,835
b02 5,373 5,330
b03 4,641 4,625
b04 4,170 4,156
b05 4,168 4,163|
b06 3,400 3,395
b07 1,973 1,959

When we first stared at the data, it seemed something wrong: why the number of dedsions per
seoond figure is bigger on the worst case than in the average case? That is because the
partitioning time is independent from the number of graphs discaded due to lack of
connediveness This fador makes the average case “dower” or, in other words, the time
spent at the master “affeds’ more fewer dedsions.

We aso suggested the ideaof using a naive approach for the model. Let us now estimate the
TET and MES for that approach. It is straightforward to seethat the naive network is a sub-
network of the detailed network, and thus, the equation that describes how long it takes for the
system to solve the problem is:

Lremoter X Lremotez X factor n( n— 1)

X sends
(tremotes T Lremotez) X 1000 2

We arealy know the number of tokens (dedsions) that need to be consumed (taken) for ead
of the bOx problems. The following table resumes the results of applying the previous formula
to ead problem:
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Optimistic (s)

TET Worst-case | Average-case

b01 259 215
b02 231 207
b03 120 115
b04 366 349
b05 297 292
b06 164 161
b07 1834 1577|

Thus, the MES Table follows.

Optimistic (decic./s)
MES
Worst-case | Average-case

b01 6,328 6,328
b02 5,778 5,778
b03 4,985 4,985
b04 4,479 4,479
b05 4,482 4,482
b06 3,650 3,650
b07 2,062 2,062

It should be quite straightforward to seethat the MES is the same for both the average and
worst case: no master partitioning time is considered, thus, the only relevant time here is the
processng one.

Now that we have estimated the optimistic behavior, not only on the detailed approacd but also
the naive one, we shall study the pessmistic one. This study presents some details that are
worth mentioning. On our previous study we were able to estimate our performance indicaors
due to the particularly small size of the network: 751 states. The previous models leal to
networks with one order of magnitude of states more. This networks become sower to
estimate and other approaches were used. The kind of study based on successve terminating
simulations made the estimation very time @nsuming and error prone. Thistime amodification
of the network was performed, so it continuously loops. The modified network follows:

eeeee

Parallel_Prolem_input

This network avoids the absorbing marking produced when al tokens are moved to
Decisions_Taken placein the origina network. We added a known time to the adivity
Feedback , asciated to the transition from the “last” to the “first” state. This trangition let us
study how long, in average, the network will be performing the Feedback adivity, and thus,
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how long it will be doing the processng we neel to estimate. In this case, our tool gives us
very good asdstance provided that it cdculates our performance variables on the Dired
Seady Sate Sdver with agood level of acaracy.

We defined a performance variable, probability  , as an impulse reward. Lets cdl T. to the
total cycle time, T, to the problem time and T; to the feedbadk time. The tota cycle time is the
sum of both problem time and the feadbadk time: T. = T, + T; . The value estimated at the
. .1 1
smulation is T_c thus, we can cdculate T, as m—
The following table resumes the pessmistic estimations for ead network, both the reward
variable estimated and our estimation for the T,.

f .

Pessimistic - Worst Case Pessimistic — Average Case

Probability (1/s) | Pessimistic(s) TET Probability (1/s) | Pessimistic(s) TET
b0O1 3,65948E-03 272 b01 4,01148E-03 248
b02 3,73238E-03, 267 b02 4,16707E-03 239
b03 6,90997E-03 144 b03 7,35991E-03 135
b04 2,37100E-03 421 b04 2,50383E-03 398
b05 2,89707E-03 344 b05 2,98603E-03 334
b06 5,06343E-03, 196 b06 5,26087E-03 189
b07 4,97679E-04 2008 b07 5,77176E-04 1732

In the same way that we estimated the optimistic performance indexes with both the detailed
and the naive Petri network, we shal now present the results of studying exponential
distribution functions on the modified naive network. The modifications performed on the
network have the same nature than the ones performed on the detailed network: avoid the
absorbing marking when all tokens are locaed at the RCV_Buf place A feadbadk adivity is
added so as to re-cycle the tokens from the absorbent marking to the initial marking in a
known time. The following network represents the modified network:

Processz
Alloc2

We ran the simulation for al the tests. The following table presents the data gathered for both,
the worst and the average cases:
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Worst Case - naive Average Case - naive
Probability (1/ms) Pessimistic(s) Probability (1/ms) Pessimistic(s)
b01 3,84233E-03 259 b01 4,63279E-03 215
b02 4,32153E-03 230 b02 4,82058E-03 206
b03 8,27571E-03 120 b03 8,69527E-03 114
b04 2,72310E-03 366 b04 2,85716E-03 349
b05 3,35645E-03 297 b05 3,41798E-03 292
b06 6,06341E-03 164 b06 6,19746E-03 160
b07 5,44321E-04 1836 b07 6,33134E-04 1578

Lets now present in condensed tables all the estimations performed for the TET for the
detailed and naive networks:

TET (s) bOL 502 503 504 bo5 506 507
3 opimistic  Average >33 524 124 376 314 173 1660
g Worst 277 248 129 393 320 176 1917
g —|Average 248 239 135 398 334 189 1732
Q |Pessimistic  grarey 272 267 144 421 344 196 2008
TET (9) b0L 502 503 504 bo5 506 507
—— [Average 215 207 115 349 292 T61 1577
o (Optimistic gy 259 231 120 366 297 164 1834
2 bossimistic [Average 215 206 114 349 292 160 1578
Worst 259 230 120 366 297 164 1836

We dso present here the MES estimated:

MES (s) b01 b02 b03 b04 b05 b06 b07
2 optimistic Average 5,84 5,33 4,63 4,16 4,16 3,40 1,96
2 Worst 5,91 5,37 4,64 4,17 4,17 3,40 1,97
% Pessimistic Average 5,48 5,00 4,23 3,93 3,92 3,11 1,88
a 'Worst 6,03 4,99 4,17 3,90 3,87 3,06 0,89

MES (s b0l b02 b03 b04 b05 b06 b07
Optimistic IAverage 6,33 5,78 4,99 4,48 4,48 3,65 2,06
g \Worst 6,33 5,78 4,99 4,48 4,48 3,65 2,06
= Pessimistic IAverage 6,33 5,80 5,01 4,48 4,48 3,67 2,06
\Worst 6,33 5,79 5,00 4,48 4,48 3,66 2,06

Observing the last table we seethat the four cdculations determine the same MES estimated
value for ead of the different predictions. This is due to the lack of blocking in the whole
exeaution. The other naive estimations differ in values as they consider different number of
tokens.

The following table presents the experimenta data colleded from the parallel resolution of the
problem:

b01 b02 b03 b04 b05 b06 b07
TET (s) 267 250 135 371 362 197 1781
MES (s) 5,09 4,76 4,20 4,13 3,60 2,96 1,82

Analyzing the numericd data gathered we can seethat the naive approacd is amost as good as
the detailed one, and is aways a lower bound for the detailed one. It is good to note that the
naive estimation is within the same order of magnitude of time than both the detailled
estimation and the numericd solution. We believe that it is also an acceptable performance
estimation and in the event of too complex numericd simulations, it could be used.
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Semnd experiment: Heterogeneous, two OSs, five machines cluster

We performed the second set of our tests on five machines configured as follows: 1 Pentium
[l 933Mhz, 512MB RAM, Linux 2.4.18; 3 Pentium Il 400MHz, 256 MB RAM; 1 Pentium Il
400MHz, 256 MB RAM Windows NT 4.0. The virtual maciine used is Sun Microsystem's
Java 2 Standard Edition 1.4.0 (build 1.4.0-b92) on windows and linux systems.

The tests consisted in running the master and the dave processlocdly in ead machine three
times for ead of the seven seleded problems. The exeaution conditions were kept as stable as
possble without modifying the standard system configuration excessvely.

The following table resumes the information gathered.

b01 | b02 | b03 | b04 | b05 | b06 | b07 |

P 11l 933 Mhz— [1otal Time 573578 ms 518439 ms 282640 ms 862685 ms 735778 ms 435485 ms 3662427 ms
Linux-512 MB [Remote 373 ms 385 ms 433 ms 495 ms 509 ms 634 ms 1082 ms
RAM Master 585 ms 551 ms 432 ms 792 ms 759 ms 622 ms 1580 ms

P 11 400 Mhz— |1otal Time 1032942 ms 941410 ms 527672 ms 1594033 ms 1397483 ms 761562 ms 7227974 ms
Windows — 256 [Remote 678 ms 715 ms 822 ms 938 ms 982 ms 1119 ms 2141 ms
MBRAM  [Master 1007 ms 985 ms 772 ms 1418 ms 1429 ms 1090 ms 3135 ms

P 11 400 Mhz— |Total Time 1214830 ms 1012375 ms 612495 ms 1894883 ms 1595808 ms 821483 ms 7937792 ms
Linux— 256 MB [Remote 792 ms 799 ms 953 ms 1086 ms 1115 ms 1207 ms 2312 ms
RAY Master 1199 ms 1149 ms 961 ms 1788 ms 1689 ms 1262 ms 3570 ms

We only had to introduce a modification in the Petri Network that models the three different
classes of equivalence of CPUs present in this problem, the resulting network follows:

O 7]

Waork_Mot_Done Remove
‘
Partition

eeeee

Paraliel_Problem_input

Allocs

The number of tokens in the CPU places will not be one as in the previous network, as there is
one CPU classwith three elements. Once again, it could be possble to compose the network
using three smaller networks, one for eadh CPU class and use the joining and replicaion
cgpability of the tool, but we preferred a smpler construction for this size of network. For the
complexity of this network, and considering that we can numericdly smulate the detailed
network, we will not perform the naive analysis, on this occasion.
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We have colleded relevant performance values that should suffice to estimate the performance
of the paralel system. As suggested, we will use deterministic and exponential distribution
functions on our networks to model optimistic and pessmistic exeautions respedively. We will

determine first the optimistic exeaution times and later, the pessmistic ones.

We will first use deterministic functions to estimate TET and MES for this problem so as to
get our optimistic estimations. First of all, we will study how tokens are moved from
Parallel_Problem_Input placeto Decisions_taken . We can isolate this study because,
until all tokens are removed from this sub-network, Sync placewill hold a token, and the
adivity Convert_To_Decisions will be paused. When all the work is done, the sub-network
will be “re-set”, a new token will be set at Decisions_Taken  place and the token will be
removed from the Sync place

Lets assume that we have n tokens at Parallel_Problem_Input place Partition adivity
bemmes enabled and after tmaser Ms all tokens are doubled and moved at once to SND_Buf
place modeling all possble dedsions. After that, al get i adivities are enabled, CPU gets
allocated and then, Process i get enabled. As soon as these adivities are finished (tremoter MS,
tremotez MS @Nd tremates MS respedively) CPUs are de-allocaed and tokens moved to RCV_Buf
place From that moment on, al CPUs will compete consuming tokens from SND_Buf place

1000 1000 3000
: and
tremotel tremotez tremoteS
per second respedively. As the token consumption is taken place smultaneoudly, all tokens
will be removed approximately after
t oot Lremotee X tremores X 1N

(tremote2>< tremote3+ tremotelx tremote3+ 3>< tremotelx tremotez)x 1000

partitioning time, we can state that al tokens ae removed in
master tremotelx tremote2>< tremote3>< n

and pladng them RCV_Buf placein at a speed of tokens

remote2 remote3

sends. Considering the master

seaonds®,
1000 ( tremote2>< tremote3+ tremotelx tremote3+ 3>< tremotelx tremotez) >< 1000
Now we know how fast tokens are removed from Parallel_Problem_Input place Every
time n tokens are placal in Parallel_Problem_Input place a token is removed from

Problem_Input ~ place The following formula predicts optimisticdly the time spent solving
the network

i L remotes X Lremotez X Lremotes X N ‘ seoonds
100 =1 remote2>< tremotes T+ Lremoter X tremotes T 3X L emotes X tremotez) x1000
or ‘
nx tmaster tremotelx tremote2>< tremote3>< n « n( n— 1) seands
1000 ( remote2 < tremote3+ tremotel>< tremote3+ 3x tremotel tremotez) x1000 2

From this formula, we can seethat the speeal of the master only affeds the linea component of
the eguation. The n* component is only driven by the remote processng speed.

36 Thisisnot absolutely true. The last token can not be partiti oned between bath CPUs. Only one of them
would get the al ocation, and thus the last pieceof the resolution would happen only at the processng speed
of that CPU instead of the sum of bath speals. We accept thislittl e extra error that simplifies the analytical

study.
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The following table shows the numericd results:

Optimistic
TET (s) MES
b01 122 13,44
b02 104 12,81
b03 53 11,32
b04 165 9,94
b05 140 9,51
b06 75 8,00
b07 790 4,79

Now that we have estimated the optimistic behavior, we shall study the pessmistic one. Asit is
suggested in the taxonomy analysis, we modified the network so it continuously loops avoiding
the absorbent configuration that arises after the processng is done. The modified network
follows:

Parallel_Problem_input

Processz

This network avoids the absorbing marking produced when al tokens are moved to
Decisions_Taken placein the origina network. We added a known time to the adivity
Feedback , asciated to the trangition from the last to the first state. This transition let us
study how long, in average, the network will be performing the Feedback adivity, and thus,
how long it will be doing the processng we need to estimate. In this case, our todl gives us a
very good asdstance provided that it cdculates our performance variables on the Dired
Seady Sate Sdve with agood level of acaracy.

We defined a performance variable, probability  , as an impulse reward. Lets cdl T. to the
total cycle time, T, to the problem time and T; to the feedbadk time. The tota cycle time is the
sum of both problem time and the feadbadk time: T. = T, + T; . The value estimated at the
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smulation is = thus, we can cdculate T, as 1
T. ’ P probablity

The following table resumes the pessmistic estimations for ead network, both the reward
variable estimated and our estimation for the T,.

f .

Pessimistic
TET (s) MES
b01 345 4,75
b02 288 4,63
b03 170 3,53
b04 469 3,50
b05 402 3,31
b06 229 2,62
b07 2134 1,77

The following tables present a comparison that colleds our pessmistic and optimistic
estimations together with experimental data obtained on experiments. For our experiments we
present the minimum, maximum and average values. The first table presents the TET and the
seoond the MES.

b01 b02 b03 b04 b05 b06 b07

Pessimistic 345 288 170 469 402 229 2134
@ |Max 250 207 127 342 306 193 1399
m Average 232 198 120 329 281 187 1360
= [Min 218 191 114 309 257 184 1332
Optimistic 122 104 53 165 140 75 790
b01 b02 b03 b04 b05 b06 b07

Pessimistic 4,75 4,63 3,53 35 3,31 2,62 1,77
o« [Max 6,55 6,44 4,71 4,79 4,35 3,11 2,70
W |Average 7,06 6,71 5,01 4,99 4,73 3,21 2,78
= Min 7,52 6,96 5,27 5,31 5,19 3,27 2,84
Optimistic 13,44 12,81 11,32 9,94 9,51 8 4,79

We can seethat in this case, we obtain a speedupwith 5 dower systems than with 2 fast ones if
we mmpare the two experiments.

5.4 - Annex on single CPU multitasking observations

One of the tools developed is the “primos’ program. The program finds the prime numbers
within a given interval. Determining if a number is prime or not is a smple mathematicd
problem that has algorithmicdly been solved since 230 BC by Eratostenes, but there is no
equation that can be used to determine if the given number is a prime number or not: it hasto
be tested. IsaacAsmov wrote about this problem in his essay “Prime quality” in 1966 [ASI 1]
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and depicted some ways to discard numbers that cannot be prime ones, but there is no known
way better than testing. Current technology has developed highly sophisticated techniques to
help discarding numbers that are not prime with fewer operations that smple brut-force
testing. In our case we want to load CPU, so we did not care aout optimization aspeds.

The agorithm that we choose to determine if a number is prime is not only simple but
inefficient: try all numbers smaller than its half to seeif someone is a divisor and is different

from number one. When a prime n is tested, g integer divisions have to be done, which is

the worst case. Whenever a number that is not prime is tested, fewer divisions are done. If we
try to determine the prime numbers in a given interval  [Xy.X,] , X, <X”4 1)—XO<XO4 L
operations neal to be done in the worst case. Hereis an upper bound to the complexity of the
problem.

We want to distribute the task of finding the prime numbers of an interval among different
processs that can be run on different processors or on different processes instances on the
same system regardless the number of processors available. We can adhieve this dividing the
interval in smaller intervals, solving ead subinterval and joining the results.

We did it applying bipartition. The first code smply divided the interval in two by the middle.
It works fine, but the work load on ead interval is different, thus the CPU time needed to
solve ead part is different. We obtained speedups, but there was a period of time in which
there was only one processrunning and the rest of the CPUs waiting for its result. We tried to
find a partitioning that divides the problems in two pieces with approximate complexity.

As we stated before, the worst-case number of divisions that have to be done in a given
(Xn_l)_x (Xo_l)
4 ° 4
belonging to the interval [X,.%,] that verifies aops(xy,X;))~(1-x)ops(X; X,) . We

interval  [X,.%,] isgivenby ops(x,.X,)=X, . We want to find X,

. . " . : 1
introduced o so as to have a control in the way we partition the interval. Choosing =3

we are partitioning the interval in two subintervals with approximate worst-case complexity.

) (1+ V1= 4 o X=X+ X = 1)— X2+, )
! 2

value for our purpose, being x, a doser integer to the red result of the eguation.
We implemented a small C — PVM application that receaves the interval, a and the worst case
number of operations that can be done by a single processwithout spawning child processes to
solve subintervals.

Our first experiment was to determine the overhead of context switches in the operating
system. We tested the prime numbers in the interval  [1,200000 with a single system and

Solving the equation we found that is a proper

usin (le
g 2 .

Our test consisted in spawning the same problem, for the same interval, but with a different
parameter for the partitioning. Successve exeautions shrinks the maximum number of allowed
operations so ead child process has to be fragmented one step further. The value for the
parameter, named Complexity as it represents the maximum subproblem number of operations
allowed for a single process is cdculated so as to reat the spedfic number of partitions
desired. The following table shows the times for different exeaution times on Linux systems
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running SUSE 6.3:
Celeron 533MHz, 192 MB RAM Pentium 166MHz, 64 MB RAM
Complexity ';;?::; eosf Time Ov;:ggzsd sper Time Ov;:ggzsd sper
9999950000 1 58,3] 0,00 284,33 0,00
4999975000 3 59,0 0,22 284,67 0,11]
2499987500 9 59,0 0,07 284,67 0,04
1249993750 17 59,0 0,04 285,33 0,06
624996875 33 60,0 0,05 287,33 0,09
312498438 65 60,0, 0,03 287 0,04
156249219 129 61,3 0,02 288,67 0,03
78124610 257 62,3] 0,02 293,33 0,04
39062305 513 67,7 0,02

The first column shows the parameter passed to the program as the worst case number of
operations alowed to perform without dividing, the second column is the number of processes
involved in the solution. We measured the time elapsed in seconds and averaged threeruns for
eat experiment to minimize OS and other tasks interference. We cdculated the per-process
overheal as the difference in time divided by the number of processs. We see that this
parameter stabili zes as the number of processes grows.

The system configuration imposes some limits to the number of processes that can be run on a
single system. The complexity could not be subdivided further because deadlock situations or
hangs arise randomly.

We can also seethat under controlled conditions, the overhead we have to pay for excessve
CPU allocation can be predictable (in our case 0,02 or 0,04 ms per procesy and can be
controlled. For scenarios in which the number of processes spawned exceals the number of
available CPUs we can asuume quite straightforwardly that we can assgn more than one
processto a single CPU and we can exped pretty fair allocation times for ead process and
model it as different CPUs with the adequate fradion of the original CPU power.
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6 - Conclusions & future work

The present document summarizes amost three yeas of part-time reseach in the field of
parallelism, that begun at the CeCal and finished at the InCo. The main objedive of this work
is the applied theoreticd performance evaluation of large grain parallelism on loosely coupled
multicomputers, with private memory, bonded with high speed networks.

The investigation started up with a reseach of parallel performance evaluation tools and
methods that help designing and constructing a parallel cluster and found that there were no
complete performance evaluation methods available that help designing a parallel cluster. The
objedive then moved into the construction of the theoreticd bases and models that help
achieving objedive performance estimations of applicaions running on particular hardware
configuration with the purpose of helping the designer of the parallel macine determining the
best configuration.

The mathematicd tool seleded are the Stochastic Petri networks and the design and smulation
tool used was the UltraSAN.

On the previous chapters we introduced the grounds for this analysis and work and also
presented the model templates that can be applied to aimost any parallel problem solved using
paralel hardware. It isimportant to kegp in mind that the target of this study is the large grain
parallelism, not the fine grain one. Fadors like network speed, processor spead and family,
amount of memory, etc. are collapsed within one figure that represents eat procesor speed.
This dedsion seamed strange at the beginning even to us, but as it was seen during RC5
analysis, the level of detail corresponds with the size of the grain of the parallelism addressed.
In our case, we are modeling resolution-wide parameters and large grain parallelism. We have
to make an abstradion of ead piece of the parale madine performance thus many
parameters that affed individual node performance are collapsed into a single figure that
represent ead node's processng power. This imposes some constraints on the level of detail of
eat processng node and will impose some limits to the problems where we can use the
templates. There is no dired way to model the memory access speed, number of bits in the
data-path of the PCI bus, etc. Other models ought to be used for this analysis. All this kind of
detail s collapse within a single figure. Our models does not help dedding if it is better to have
faster RAM, bigger L2 cade etc. for adieving that single figure, but they compare the
effedive system performance for the particular problem and the interadion the multiple
systems addressng in paralel a task. Particular system details should be analyzed by other
means.

After presenting the model templates we applied them in two spedfic example problems so as
to show the way they can be used to predict performance estimators TET and MES The two
applicaions studied were corredly estimated in standard and non standard parallel
environments, both with homogeneous and heterogeneous platform charaderistics. Even
though the size of the problems and the number of systems were relatively small, we were able
to gather good predictions for our performance estimators. We modeled the exeaution using
both optimistic and pessmistic approadies, modeling individual resolution times with
deterministic and exponential distribution functions respedively. We also found that the
general assumption of optimistic behavior associated to deterministic distribution functions and
the pesgmistic behavior associated with exponential distribution functions is also valid in this
models, as we were able to bound the red exeaution measures with the optimistic and
pessmistic estimations. We believe that it might be worth continuing the evaluation of other
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distribution functions that can fit better the red exeaution.

We found severa pradicd problems in the process of solving built models regarding to the
Petri network resolution. The main issue was the spaceof states. Many of the solvers neal to
generate al posshle network configurations before they redly solve the network. The
complexity of this problem can grow considerably as the number of combinations and options
grow. In our examples®” we had resolution times of several minutes, which generates some
problems when the system we model consists of hundreds of nodes. This is the reason why
multiple details collapsed within a single figure. We believe that our model templates are
detailed enough to capture problem logic and hardware performance but also controls the
complexity of the numericd resolution of the generated Petri networks.

It isimportant to note that the models presented themselves do not build a parallel machine for
a certain purpose but help the designer deading benefits and drawbadks of dedsions taken by
means of estimation of relevant performance descriptors.

The intended application scenario for these models are small companies or research groups that
build their own parallel madines for solving perticular problems. In this environments the tools
will prove useful helping designers either determining that existing hardware is enough for
performance requirements or for justifying investment on newer hardware. This models can
also help research groups explore convenience of different algorithms for solving determined
problem on certain hardware. This model templates provide means for predicting performance
estimators for different algorithms solving the same problem on the same hardware, that can
help identifying the best algorithm that can be run on spedfic hardware to solve a problem
when more than one agorithm is available for solving a problem. This is also useful for ealy
algorithm comparisons that may complement complexity analysis as it comprises also blocking
and other exeaution events that ows down exeaution.

We believe that this theoreticd result should be the basis for the development of spedfic
performance analysis tools that can be combined with existing Petri networks. We believe that
the next logicd step for this reseach is the construction of an automatic tool for the
construction of the Petri network. We can seethat it is possble to automate the construction
of the Petri network that models the particular problem with a Wizard-based interface that
colledsinformation from users, automaticdly applies the templates and generates the Petri net,
that is fed to a toal like UltraSAN that is used to estimate TET and MES. This small step
automates one step further current tool, asit isolates the user from building the Petri network
and using the simulation toal.

Another usage for this model templates is to build an automatic cluster building tool that can
dedde the best hardware configuration possble for a particular problem, given certain
constraints. It is posshle to devise a set of rules that defines how to assemble parts so as to
build a computer, a network and finally a cluster. This rules shal describe properly parameters
like the number of PCI dots, clock rates at which motherboard operates, types of memory,
number of ports in switches and so on. Non diredly performance related parameters like hea
disspation, volume occupied, power consumption and cost of the equipment must be
considered. It should be also possble to describe rules for joining this parts in away that only
the right number and type of procesors are used, the proper media is seleded for network
cads, the switches are dimensioned for the right number of nodes, etc. Then we should
provide “validation” rulesthat help chedking fadors like hea disgpation, connedivenessof the
solution, etc.: it is not valid to have 10 daves that cannot conned to a master becaise the

37 Thepractical examplesanalyzed dffer in up to 3 or 4 orders of magnitude in the number of nodes with cutting edge mmmodty parall el
projeds.
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number of ports in the switch are not enough. After having the hardware and the problem
definition, the automatic Petri network construction and resolution takes place and then we
can predict performance estimators for our system. This sort of cluster building intelligence is
fed with al available components that can be found with their associated parameters and is also
fed with a problem definition and a set of congtraints and it can produce the finite list of
clusters that can address the spedfied problem with the given constraints and the TET and
MES asociated. If this list is not short enough for complete evaluation, it is possble to think
of GRASPIlike agorithms that can search localy optimal solutions starting from random ones.
To be ableto do thisit is necessary to define the neighborlinessconcept for clusters and we are
done. Other heuristics like Tabou seach, smulated anneding are goplicable.

Paralelism is a mature and strong areathat has multiple industria applications and is only
starting up in the office environment. Multi-terabytes office environments are predicted for the
yeas to come and software being able to seach, index, retrieve and in general process that
amount of information will benefit from parallelism. Future paralel environment will differ
from current ones and we believe this sort of coarse paralel analysis and tools will become
desktop tools for system administrators.

Ariel Sabiguero Yawelak InCo — PeDeCiBa 115



Modeling PC-Based Clusters for Parallel Computing

Ariel Sabiguero Yawelak

InCo — PeDeCiBa

116



Modeling PC-Based Clusters for Parallel Computing

7 - Bibliography

[ABC1] M. Ajmone Marsan, G. Balbo, G. Conte — “Performance Models of Multiprocessor
Systems’ — MIT Press— ISBN 0-262010933 — 1986

[ASC1] http://www.sandia.gov/ASCI/ (20/9/2002

[ASI1] IsaacAsimov - “The left hand of the dedron - The solar system and back - From eath
to heaven” — AlianzaEditorial Madrid —ISBN 84-206-16532 — 1972

[BEO1] http://www.beowulf.org (20/9/2002

[BEOZ2] Bewoulf How-to http://www.canonicd.org/~~kragen/beowulf-fag.txt (20/9/2002

[BEO3] D. Bedker, T. Sterling, D. Savarese, J. Dorband, U. Ranawak, C. Padker “Beowulf: A
Paralel Workstation For Scientific Computation”, Proceadings, International Conference on
Parallel Processng, 1995 http://www.beowulf.org/papers/| CPPYicpp95ps (20/9/2002

[BEO4] C. Reschke, T. Sterling, D. Ridge, D. Savarese, D. Bedker, P. Merkey “A Design
Study of Alternative Network Topologies for the Beowulf Parallel Workstation”, Proceadings,
High Performance and Distributed Computing, 1996
http://www.beowulf.org/papers/HPD C96/hpdc96.ps (20/9/2002

[BEO5] D. Ridge, D. Bedker, P. Merkey, T. Sterling, P, Merkey “Beowulf: Harnessng the
Power of Pardleism in a Pileof-PCs’, Procealings, |IEEE Aerospace 1997,
http://www.beowulf.org/papers/AA97/aa7.ps (20/9/2002

[BUY 1] Rajkumar Buyya. “High Performance Cluster Computing”. Prentice Hall. ISBN 0-13-
0137855 — 1999

[BRO1] Robert G. Brown. “So, you want to build a Beowulf? Workload profiling and beowulf
design”. http://www.phy.duke.edw/brahma/profili ng.ps (20/9/2002

[CAF1] Christopher D. Carothers, Richard M. Fujimoto “Efficient Exeaution of Time Warp
Programs on Heterogeneous, NOW Platforms’, IEEE Transadions on Parallel and Distributed
Systems, Vol 11, No. 3, March 2000http://dlib2.computer.org/td/books/td2000pdf/10299pdf
(20/9/2002

[CTC1] http://www.ctc-hpc.com (20/9/2002

[ECK1] B. Eckel. “Thinking in JAVA”. http://www.edkelobjeds.com (20/9/2002

[HWG1] J. Hill, M. Warren, M. P. Goda. “I'm not going to pay a lot for this supercomputer!”
Linux Journal, 1998http://www.linuxjournal.com/article.php?sid-2392 (20/9/2002

Ariel Sabiguero Yawelak InCo — PeDeCiBa 117



Modeling PC-Based Clusters for Parallel Computing

[INT1] http://developer.intel.com/design/chipsets/440ox (20/9/2002

[KMV1] T. Koch, A. Martin, S. Voss “SteinLib: An Updated Library on Steiner Tree
Problems in Graphs’ Konrad-Zuse-Zentrum fir Informationstechnik, Berlin -
ftp://ftp.zib.de/pub/zib-publicaions/reports/ZR-00-37.pdf (20/9/2002

[LIN1] Christoph Lindemann — “Performance Modelling with Deterministic and Stochastic
Petri Nets’ — 1998 1SBN 0 471 97646 6

[MARI1] S. L. Martins, P. M. Pardalos, M. G. C. Resende, C. Ribeiro “Greedy Randomized
Adaptative Seach Procedures for the Steiner Problem in Graphs’ — DIMACS Series in
Discrete Mathematics and Theoreticd Computer Science 43 (1999, 133146 — http://www-
di.inf.pvc-rio.br/~cdso/artigos/aspa.ps (2009/2002

[MARZ2] S. L. Martins, C. Ribeiro, M. C. Souza“A Parallel GRASPfor the Steiner Problem in
Graphs’ — Workshop on Parallel Algorithms for Irregular Structured Problems (1998, 285
297 —http://www-di.inf.pvc-rio.br/~cdso/artigos/par_grasp_steiner.ps (20/9/2002

[PVM1] http://www.netlib.org/pvm3/ (20/9/2002

[PVM2] “PVM A Users Guide and Tutorial for Networked Paralledd Computing”
http://www.netlib.org/pvm3/book/pvm book.ps (20/9/2002

[PVM3] M. Fischer, JDongarra. “Another Architedure: PVM on Windows 95/NT”
http://www.netlib.org/pvm3/win32/nt_paper.ps (20/9/2002

[QCC1l] Francesco Quaglia, Vittorio Cortellessa, Bruno Ciciani “Trade-Off between
Sequential and Time Warp-Based Paralel Simulation”, IEEE Transadions on Parallel and
Distributed Systems, Vol 10, No. 8, August 1999 -
http://dlib.computer.org/td/books/td1999pdf/10781pdf (20/9/2002

[RIB1] C. Ribeiro, M. C. de Souza “Improved Tabu Seach for the Steiner Problem in
Graphs’ — Working paper, Catholic University of Rio de Janeiro, Department of Computer
Science (1997 — http://citesea.nj.neccom/47337html (27/9/2002

[ROB1] F. Robledo “Disefio topolégico de redes. casos de estudio 'The generalized Steiner
Problem" y The Steiner 2-Edge-Conneded subgraph problem™. Tesis de Masestria en
Informatica, PEDECIBA 2000 Faaultad de Ingenieria, Universdad de la Republica

Montevideo, Uruguay.

[RSA1] http://www.rsaseaurity.com/rsalabs/cdl enges (27/9/2002

[RSHD] — “WIN32 - RSHD: A BSD compliant RSH Daemon / RSH Service for Microsoft's
WIN32 Architedure” — http://www.winrshd.com (27/9/2002

[RUS1] - Mark Russnovich — “Insde Win2k Scdability Enhancements, part 2°
http://www.winntmag.com/Articles/Content/7597 01html (27/9/2002

Ariel Sabiguero Yawelak InCo — PeDeCiBa 118



Modeling PC-Based Clusters for Parallel Computing

[SAB1] — Ariel Sabiguero — “Nomenclatura y definiciones basicas de Redes de Petri” —
Reporte Témico Nro. 02-18 — Ingtituto de Computaddn — Faaultad de Ingenieria —
Universidad de la Republica- 2002

[SW1] J. Samon, M. S. Warren. “Parallel out-of-core methods for N-body simulation” 8th
SIAM Conf. On Pardlel Processng for Scientific Computing, Philadelphia, 1997
http://www.caga.cdted.edu/~johns/pubs/siam97/saimon.pdf (27/9/2002

[SET1] http://setiathome.sd.berkeley.edwindex.html (27/9/2002

[TAN1] Andrew S.Tanenbaum “Distributed operating systems’. Prentice Hall. ISBN 0-13
2199084 — 1995

[TOP1] http://www.netlib.org/benchmark/top500top50Qlist.html (27/9/2002

[URR1] S. Urrutia, I. Loiseau “A New Metaheuristic and its Application to the Steiner
Problemsin Graphs’ — XX International Conference of the Chilean Computer Science Society
(SCCcCo0l) (7-9/12/200)) Punta Arenas, Chile -
http://dlib2.computer.org/conferen/sccd 1396 pdf/1396027 Jpdf (27/9/2002

[USAN] - W.H. Sanders — http://www.crhc.uiuc.edw/UIltraSAN (27/9/2002

[WBG1] M. S. Warren, D. J. Bedker, M. P. Goda, J. K. Samon, T. Sterling “Parallel
supercomputing with commodity components’” Proceedings of the International Conference on
Parallel and Distributed Processng Tedhniques and Applicaions (PDPTA'97) 1997 http://Ioki-
www.lanl.gov/papers/pdptad7/pdpad7.ps (27/9/2002

[WSB1] M. Warren, J. Salomon, D. Bedker, M. Goda, T. Sterling, G. Winckelmans. “Pentium
Pro Inside: |. A Treeode at 430 Gigaflops on ASCI Red, II. PricePerformance of $50Mflop
on Loki and Hyglac” http://Ioki-www.lanl.gov/papers/sc97/ (27/9/2002

Ariel Sabiguero Yawelak InCo — PeDeCiBa 119



