
IP4JVM: A Didactic Native Implementation of the IPv6 Suite
for OpenJDK and its Application to IPv6 Testing

Ariel Sabiguero Yawelak
Instituto de Computación - Facultad de Ingenierı́a

Universidad de la República - Montevideo, Uruguay
e-mail: asabigue@{fing.edu.uy|ieee.org}

Abstract—Java Virtual Machines do not provide communica-
tion services other than those offered by the underlying Operating
System (OS). Java sockets are just wrappers for the ones
provided by the OS. In this work, we present how we replaced
standard OS wrappers with a Java native implementation of
most part of the IPv6 protocol stack, building an operational
IPv6 implementation.

The modified Java Virtual Machine has proved useful for
education, protocol development. We motivate its application
to protocol testing and expect to produce results on the testing
field too.

Keywords—Java, IPv6, JVM, NAT66, DHCPv6, TTCN-3

I. INTRODUCTION

Java [1] is an overloaded word used to refer a programming
language, a virtual machine and a platform. The Java Language
is a state of the art, object-oriented language with a syntax
similar to that of C. The way Java provides access to network-
ing is through a set of classes provided by the Java Platform,
without providing any particular language primitive for it.
To achieve portability across different platforms, network
services offered to a Java developer are those available to
all officially supported platforms, not being able to exploit
particular platform capabilities in a standard way, as it cannot
be standardized. Java connectivity services only offers basic
TCP and UDP sockets and clumsy network interface handling.
This fact per-se turns Java into a bad choice for low level,
network protocol development. With this limitations in mind
we started working on Java native networking capabilities,
while working on Internet Protocol testing.

A. IPv6 Protocol Testing requirements

Testing a complex protocol suite as IPv6 [2] requires low
level manipulation capabilities that are beyond Java network-
ing capabilities. This fact is not new, but it imposes some
constraints for Java usage on low level networking. IPv6
testing is standardized by the Internet Engineering Task Force
through the IPv6 Ready Logo [3]. When a test system is
built for v6RL certification, it must be capable of performing
operations like enabling or disabling an interface, assign an
IPv6 address and more operations that cannot be performed
using Java language. We decided to work in order to overcome
these limitations.

When we initially addressed this challenge, we decided that
having a working IPv6 implementation would ensure that we

have all building blocks required to model, describe, generate
and analyze IPv6 traffic. With that naı̈ve idea in mind, we
addressed two problems at the same time: to provide Java
with something that is not designed for and to generate all
elements required for IPv6 protocol testing.

Internet Protocol for Java Virtual Machine (IP4JVM) is
a set of collaborative, individual projects, that addresses the
problem of providing Java a native implementation of the IPv6
protocol that is suitable both for IP communication of Java
applications and for testing IPv6 devices.

This document is organized as follows. On Section II the
evolution of the tool to current state is presented. Section III
presents some thoughts on networking education through
protocol implementation. Section IV describes some highlights
of the implementation, presenting the main architectural ele-
ments. On Section V the intended usage for testing is pre-
sented. Present and future possibilities are suggested, together
with TTCN-3 perspectives. Section VI summarizes an presents
some of the short term objectives for this project. The work
concludes on Section VII.

II. EVOLUTION

This tool is the combined result of successive pieces of
work done by grade students from the Software Engineering
Career at Universidad de la República. Some of the tasks were
done in cooperation with IRISA, in particular, with ARMOR
team. Each of the building stages had to be designed as a
standalone, self contained, yet meaningful task, addressable in
a short period of time by students. We were fortunate enough
to get excellent students every time.

A. Initial stack

The first part of the work represented a big challenge,
addressed by L. Rodrı́guez. Nothing but ideas existed then.
The objective was to build the foundations for protocol stack
handling and to implement a minimal subset of the IPv6 suite
that would be able to handle UDP traffic. To achieve this
goal, all the layers of the protocol stack had to be, at least,
minimally implemented. All objects and behavior were built
using a regular JDK, but to be able to replace standard IPv6
handling, we had to modify the implementation of the JVM.
Back in 2006, there was no commercial implementation of
JVM whose source code was available for experimentation.
By that time, SableVM [4] was selected. The result of this
stage was a set of classes and a patch to SableVM that allows



Java applications run unmodified using UDP IPv6 services
implemented in Java. This initial prototype was tested with
custom UDP applications and also, some of v6RL tests were
run against it successfully.

B. TCP/IPv6

The next evolution of the stack had the main objective of
being to run a standard Java, network-oriented application on
top of it. The selected application was Apache Tomcat JEE
web server container. Even though it might sound a simple
scenario, the implications are serious: real web applications
could use the implemented stack. This task was addressed by
R. Abelenda and I. Corrales.

Several important things changed in Java during 2007.
Maybe the most relevant one was the release of OpenJDK [5]
under a GPL license. As soon as possible, we ported our
work from SableVM into OpenJDK. TCP implementation
was addressed too and seamlessly integrated into the stack.
Some missing features needed to be added in underlying
layers of the stack, but by the end of this stage, most of
Java IPv6 networking features were available to the user. Our
modified JVM was able to run standard applications without
modifications, achieving the goal of having standard bytecode
using our stack.

C. Mobile IP

Afterward R. Abelenda made a stage in IRISA, France,
where he implemented the foundations for Mobile IPv6 sup-
port. Several things had to be added to the tool in order to be
able to tunnel traffic. Initial routing structures and algorithms
were added to the stack. IPv6 protocol encapsulation, dif-
ferent Security Association options and Security Association
Databases had to be defined too. Routing headers were added
to IPv6 implementation.

D. Routing, DHCPv6 and NAT66

The last evolution of the stack was addressed by L. Scasso
and M. Techera. The stack was mature enough to be able to
start doing innovative things.

DHCPv6 was addressed too. The implementation was ver-
ified against Dibbler DHCPv6 server and also, v6RL test
cases from a TAHI tool were run against it. Fun and debate
popped up when Network Address Translation implementation
was suggested. It was an excellent timing issue that IETF
published two NAT66 [6] drafts during this stage and they
both were implemented and tested. We showed possible to
implement state of the art protocols while they are being
designed and standardized. A web application was developed
in order to interact with the stack and configure it dynamically,
on runtime. Sure, only the application had to be developed, as
the Tomcat JEE web container was already capable of running
on top of our modified stack. This web application allows us
to interact with the stack by adding or removing addresses,
enabling or disabling routing. It is also possible to enable or
disable natting through an interface.

Fig. 1. IP4JVM architecture

III. RESULTS IN EDUCATION

It is always a challenge to teach networking. Right from
the beginning, we were faced with the question of deciding if
it was possible or not to build a complete protocol stack by
grade students. Fortunately, the answer was positive. Splitting
the task into smaller work units, addressable and meaningful
was difficult too. It would have been for anybody to get
committed into something that does not produce any concrete
result. A lesson learned thought this years is that there is a big
gap between understanding a protocol and implementing even
some parts of it. Students handling all the concepts required
for the task, face a big problem when they have to get into
RFCs details and decide how to make an implementation. We
underestimated this part of the work and it took more than we
expected every time.

One of the reasons why IP4JVM is an interesting teaching
tool is that it is simpler to understand than the internals of
an OS kernel. IP4JVM is smaller and tries to be simple to
understand in its design, even if that has bad performance
consequences. We tend to think that it has become more
difficult for a student to understand the tool. On the other
hand, thanks to Object Orientation features present in the
Java language, it is possible to have more control on the
modifications and impact of changes.

It is possible to show a student that innovative and state of
the art work is still within their reach. During all this work
it was really nice to feel people motivated and sometimes
wondering if it was possible that they did what they did.
Making them dare to implement protocols, make them capable
of questioning them, to experiment with them and to enhance
them. Implementing NAT66 while the draft is being discussed
by the IETF also mean that this project enables state of the
art experimentation on protocols with few resources.

IV. IMPLEMENTATION

IP4JVM is a Java native implementation of the IPv6 pro-
tocol suite. As interfacing with the OS has to be done in C
language, there must be some moment where Java objects have
to be transformed into their C representation and transmitted
through the wire. The decision taken was to do as much as
possible in Java and minimize C handling. TCP, UDP, IPv6,
ICMPv6 and even EthernetII codification and de-codification
is implemented in Java and only transmission and reception are
done at C level. Figure 1 depicts conceptual building blocks
of the architecture.



A. The Stack

The core of the implementation is a generic protocol man-
agement framework, centered on the class NetStack. This
class models the main network protocol manager, being re-
sponsible for processing all network information. The network
process is designed using a stack of network protocols. The
stack uses an abstract definition of a layered protocol, to be
independent of the implementation, and uses a representation
that orders them by its level in the network process model.

Each protocol implementation, specializations of the ab-
stract class Layer. The protocol-suite implementations are
grouped in a list of levels, each of this levels depends on the
network design model, and contains the protocols that could
decode and process the information being handled. The lowest
part of the stack is a C bridge that just copy all the packets that
are received by the physical Ethernet card into the NetStack
and backward. When a packet arrives, it is copied into Java and
inserted into the stack, marked as Incoming. CRC verification
is one of the first tasks (Applications) associated to the stack.

B. IPv6 implementation

With the architecture described in Subsection IV-A, it is
straightforward to note that IPv6 implementation itself is a
set of classes that meets stack’s API, model IPv6 messages
and behaves like it. Things like a MAC address had to be
modeled in order to provide a full stack implementation.
Java class ip4jvm.net.addresses.MACAddress spe-
cializes ip4jvm.javafwrk.Address, making it some-
thing that the NetStack can handle in an abstract way, indepen-
dently from the particular implementation, The MACAddress
class knows particular handling of IPv6 address mapping into
MAC addresses, like broadcast addresses and multicast ones.

IPv6 is added to the stack by specializing the abstract
class ip4jvm.javafwrk.Protocol. Indeed public class
IPv6Protocol provides a centralized point for different aspects
of the protocol, ranging from implementation constants to
routing and redirect messages processing.

The complete description of IPv6 implementation is beyond
the scope of this article, but we will just sketch how it
was used to implement NAT66. Figure 2 shows the core
hierarchy of NAT66 set of classes. The second NAT66 draft
defined two techniques: Two Way Algorithmic and Topology
Hiding Option, being the first one mandatory. The implemen-
tation consists on a new class, called IPv6NatProtocol
that specializes the class IPv6Protocol. NAT process-
ing is done in an abstract way. Two different implementa-
tions of the abstract class IPv6NatProtocol implement
each option: IPv6NatTwoWayAlgorithmicProtocol
and IPv6NatTopologyHidingProtocol. It is possible
to implement as many NAT techniques as required with
minimal modification of the overall structure.

Before moving to the next subsection, it is worth mentioning
that it becomes difficult to see the boundaries of protocol
development and software engineering practices on the way
problems are solved using object orientation features provided
in Java. Maybe a protocol engineer, who has worked using C,

Fig. 2. NAT66 hierarchy

would have never thought of inheritance as an implementation
alternative.

V. APPLICATION TO TESTING

IP4JVM was build with testing in mind. With current
maturity and coverage of the implementation, there is enough
availability of building blocks to address testing of devices
based on IP4JVM objects and features. The following para-
graphs present what could be current application scenarios and
near future ones.

A. Current possibilities

IP4JVM is ready to be deployed and it is capable of
performing probes that are beyond the scope of a regular
JVM. This facts enables reuse of existing tools from the
Java platform to be used for network protocol testing. Even
though this seems somehow not natural, it presents certain
benefits. For small companies, it is simpler to find experts
on Java that could understand how to code testcases than
specialists on a proprietary platform or on a testing language.
The whole JUnit Testing Framework can be used to automate
execution and gather results also on network protocol testing.
This fact directly enables standardized -for the Java world, not
yet for the protocol testing community- frameworks, tools and
resources.

With the standard usage of IP4JVM it is possible to
completely automate the behavior of a node, coding a Java
application that runs on it. That IP4JVM would be configured
with required MAC address, IPv6 addresses and so on, and
could implement as many interfaces as required. Conformant
behavior is taken from granted, as the implementation seeks
compliance with the standards, making it simple to engineer
testcases: just code the expected behavior. When it is required
to test the response of a system under non conformant mes-
sages, it is only required to register the faulty implementation
of the protocol that would produce the invalid message.

B. Next steps focused on networking

The next step on the development of the tool will be targeted
to testing. It will allow a Java developer to access from
his code and create NetStack objects. After this a single
program running on a single virtual machine would be able to



instantiate as many protocol stacks as required. Each of this
stacks would be able to behave as a router or a host, and be
connected independently to required physical interfaces. The
behavior, internal structures and configuration will be isolated
and independent. After a socket is obtained from a stack, it
will present the same usage to Java, making regular programs
run on top of these stacks.

Each of this stacks could provide the same services as
those offered through standard network operations. It would
be possible to open a socket in one NetStack instance and
afterwards, another socket on a different NetStack instance.
Both sockets coordinated inside the virtual machine, making
each of them behave in a particular way. A single virtual
machine could implement as many stacks as required, all of
them, cooperating on a given test purpose. We could achieve
a similar level of expressiveness as the one described before
using several, distinct, virtual machines, being more efficient
on resource usage.

Once again, all the possibilities could be exploited and
combined with available Java tools for testing. The limit of
what can be done with these elements seem to be able to
implement v6RL test case specifications and maybe more.

C. Application to TTCN-3

When we introduced TTCN-3 in Section I, we mentioned
that there were two standard mappings, one to C and the other
to Java. Java mapping could only rely on JNI to be able to
implement executable test cases. There is a new set of options
now available for TTCN-3 testing with Java. Now it could
be possible to code TRI and TCI with the same language
as the actual protocol message description and interchange is
done. This would enable faster development of the components
required to turn an abstract test specification into an executable
one. Network protocol testing with IP4JVM and TTCN-3
would enable test developers to fully exploit Java features and
the new capability of expressing IPv6 protocol structures in
Java.

VI. FUTURE WORK

There is much to be done in order to have a complete
and useful implementation. The first and relevant thing to be
done is to certify the implementation as IPv6 Ready. This
is not a minor goal, but a really important one if we want
to transmit confidence to eventual users that the stack is
functionally conformant. Moreover, if testing is to be done
based on IP4JVM, then we believe it is mandatory to start
from a good quality implementation.

Different link layer transports should be implemented. Cur-
rently we support Ethernet bridging, but we find it interesting
to implement IEEE 802.11 b/c/g/n/s data link layers.

Network oriented applications should be addressed to. It
would be adequate to also have full Java resolver implemen-
tation. DHCPv6 server should be implemented in Java too.
According to v6RL, a router must be able to send Router
Advertisements.

Fig. 3. IP4JVM logo

There is also much research to be done on the testing
applications of IP4JVM, we already got there. IP4JVM should
be applied directly to IPv6 protocol testing and combined with
TTCN-3 language, so as to learn how to get the best results
from both.

VII. CONCLUSIONS

It is not simple to draw some conclusions out of an ongoing
project. It is possible to do native networking with Java. Even
though somebody may say that nothing is impossible, we
found strange that after a decade of IPv6 and even a little bit
more of Java, we were not able to find other groups working
on the same direction. It made us wonder if we would succeed
or not.

It is possible to apply different development software
engineering strategies to protocol development. We showed
that incremental delivery of functionality, agile programming
techniques and object orientation can be applied to protocol
development.

We produced a platform for research, protocol testing and
education in the field of networking. Being able to develop
NAT66 while it is being drafted allows us to claim that similar
results may be achieved on other fields, making IP4JVM an
adequate option for protocol fast prototyping and testing.

We contributed with the education of several students during
this journey. It makes us believe -one more time- that serious
projects can be done with local professionals and low budget.
We would like to think that their insight of network protocols
would have never been the same if they had not get the chance
to implement a state of the art protocol as sexy as IPv6.

ACKNOWLEDGMENT

The author would like to thank C. Viho and A. Baire for
supporting this idea from the beginning.

REFERENCES

[1] Sun Microsystems, “Java,” http://java.sun.com.
[2] S. Deering and R.Hinden, “RFC 2460 - Internet Protocol, Version 6 (IPv6)

Specification,” http://www.rfc-editor.org/rfc/rfc2460.txt, 1998.
[3] IETF, “IPv6 Ready Logo,” http://www.ipv6ready.org.
[4] Etienne M. Gagnon et al., “The SableVM Project,”

http://www.sablevm.org.
[5] “OpenJDK,” http://www.openjdk.org/.
[6] M. Wasserman and F. Baker, “IPv6-to-IPv6 Network Address Translation

(NAT66) - draft-mrw-behave-nat66-02.txt,” http://www.ietf.org/internet-
drafts/draft-mrw-behave-nat66-02.txt, 2008.


