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Introduction

This chapter gives a glimpse on the topics in this thesis, motivating the relevance in
the practice. It suggests the importance of not only building correct systems, but being
able to ascertain their correctness. A global overview of test case implementation and
execution requirements is given. At the end of this chapter a synopsis of the contents
of this work is given.

Motivation

Computers are everywhere, and nobody discusses that we will keep producing themmore
and more. We are rapidly extending their �eld of application to anything imaginable.
From wearable music players to planes, from mascots to weapons. Not only sensors,
but actuators are digital and software based nowadays. We are rapidly replacing legacy
mechanical control devices with cheaper software driven ones. Music players are digital
now and other household appliances like refrigerators, watering devices and central
heating are digitally controlled.

All these devices must be networked, that is the new trend. Some of them are
still connected through proprietary networks, but the tendency is to adopt standard
and large scale networks, or at least, the capability of being connected to. Generally
mobile applications adhere to cellular network protocols while static ones are devised
to be connected to �xed networks. Convergence in the communications �eld is merging
networks on the new Internet.

Explosion of software driven connected devices implies that the correct functioning
has a deep social impact. Tight time-to-market cycles imposed by current commercial
practices often do not consider the results that faulty systems might produce. More-
over, commercial software development practices from the PC industry, that consider
acceptable to release products and �x them via patches after errors are encountered,
have impacted the software development process unfavorably. These practices have the
most noticeable impact on critical systems, specially when the safety of those is consid-
ered. As a property, safety measures the impact in death, injuries, loss of equipment or
environmental damage due to an error or failure on a system. We evidence these factors
when we �nd in the news events like space probes failing to communicate or human
health consequences produced by faulty medical devices. New series of problems are
going on the undertow. We started listening that wireless technology to transfer phone
book information to cars built in phones can freeze the on-board car display due to a
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8 Introduction

corrupted name. Or that 60% of one brand of luxury German cars had to return to be
serviced due to software errors during 2006. Next year, that brand moved to the second
place in the German ranking of luxury cars.

The relevance of ensuring correctness will be evidenced with some examples, as it is
done in most testing related thesis. Aero-spatial disasters take the headlines, but this
selection might show other evidences of the social impact of smaller, but yet relevant
systems that fail:

� On 27 February 2007, the Chinese stock market dropped 9%1. This apparently
inspired heavy selling on the New York Stock Exchange, with a volume about twice
normal. At one time, the calculation of the Dow Jones Industrial average was
running about 70 minutes behind. Recognizing some sort of computer problem,
Dow Jones switched to a backup computer, which over a period of about three
minutes updated the indexes. During those three minutes, the index dropped
an average of 240 points. This evidently led to some further panic selling. The
market fell 546 points, closing only 416 points down. The cause of the software
problem is under investigation.

� In January 2003 two important monitoring systems were disabled in a nuclear
power plant2. The FirstEnergy's systems were a�ected by the Slammer worm.
The plant Process Computer and the Safety Parameter Display System were taken
down and redundant analog backup systems took control. The plant was o�-line
at that time due to maintenance, but consequences could have had a great impact.

� In August 2007 IRISA's network collapsed, bringing down not only computer but
telephone networks. The problem was a wrong manipulation of a network cable
a�ecting an IP-phone. The way cables were connected produced a loop in the
network which remained undetected by the loop detection features of the network
switch. This wrong cabling overloaded the central switch CPU, preventing the
rest of the services to be accessible. The services were down for almost 24hs.
Fortunately it happened during holidays.

These few examples intend to show how close is the impact of software errors in our
digital life. Several Internet sites and magazines keep updated lists of errors and their
consequences. Every day they have more material to write about, and �aws are getting
closer. Our life has become more digital than what we imagine.

Ascertaining correctness

Ascertaining correctness might be as old as our capacity to invent things: try them
before using them in practice. It was not until recently that it become a �eld of research.
Despite the fact that there are results, there is no agreement on the way it has to be done

1http://catless.ncl.ac.uk/Risks/24.58.html#subj3.1
2http://www.crn.com/it-channel/18839752
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when facing complex implementations. Let's call validation to the process of checking a
system to verify that it behaves as expected. Validation covers from a luthier listening
to his new instrument before delivering it, to a numerical model of an airfoil run on a
computer to determine if the design holds required properties.

The expected behavior is named speci�cation, which is a collection of all the proper-
ties and/or descriptions of the expected behavior to be found in devices. Unfortunately
it is very di�cult to �nd precise and unambiguous speci�cations. Most speci�cations
are based on human languages, which are content-dependent and ambiguous. Maybe
one of the most notorious examples is the Internet Engeneering's Task Force (IETF)
Request For Comments (RFC) collection, which speci�es most of Internet protocols. A
system that claims to have been manufactured according to a certain speci�cation, is
called an implementation. With these terms we can de�ne validation as the process of
verifying that an implementation correctly meets all speci�cation requirements.

specification

models
Verification

V
alid

atio
n

Testing

implementation

implements

implements

Figure 1: Validation techniques

Di�erent methodological approaches address this subject, some with a deeper math-
ematical approach, while others hold empirical practices. These approaches are comple-
mentary and are named veri�cation and testing respectively. As seen in Figure 1, the
subject of testing is the implementation itself, while veri�cation addresses the mathe-
matical model. A big issue is that most speci�cations are not ready to be addressed by
validation, and a mathematical model, hopefully similar to the original speci�cation,
has to be derived. Then the veri�cation subject is the mathematical model, but neither
the speci�cation nor the implementation. When things are done properly, veri�cation
results are relevant to the implementation and the speci�cation. Testing itself addresses
the implementation, and has indeed practical and direct consequences.

From ATS to ETS

In the context of digital communications, and particularly computer networks, there are
basically two approaches to testing implementations and ensuring that they will work
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e�ectively together: Conformance and Interoperability testing. Conformance testing
determines whether a single implementation under test (IUT) conforms or not to its
speci�cation (generally a standard, RFC, etc.). Interoperability testing determines the
ability of two or more implementations to work together, interacting in a real operational
environment. In the context of both conformance and interoperability testing, the �nal
goal is to provide ETS (Executable Test Suites) which are executed against IUT. A
lot of work has been done to provide languages for specifying ATS (Abstract Test
Suites) and environments for deriving ETS, most notably, the Testing and Test Control
Notation version 3 (TTCN-3) language. The problem here is that languages to be
used for specifying ATS need to be as abstract as possible, to allow easy speci�cation of
scenarios to test. Abstraction helps also in portability and reusability of test de�nitions,
allowing the test expert to concentrate on the main aspects of the test de�nition. On
the contrary, environments used to execute ETS against IUT are designed to be as near
as possible to the concrete niches of these implementations. So, one can observe that
there is a gap between ATS and ETS. Indeed, the work to derive ETS from ATS is still
complex, intricate and often error-prone. This makes testers trying to write directly
ATS close to the ETS and using the same low-level programming languages as those
used for developing the implementations to be tested. As drawbacks, the obtained ETS
may not correspond to the test purposes (or scenarios) previously de�ned in a more
abstract level. To be executed on another implementations or in another environment,
the so obtained tests have to be completely rewritten.

Growth in the complexity of the systems requires more and better testing. It be-
comes necessary to �nd a way to bridge the gap between ATS and ETS allowing the
speci�cation of ATS in an abstract high-level language and deriving ETS either auto-
matically, or at least easily. The new version of TTCN tries to provide a solution but
still lot of work has to be done to provide necessary tools and environments.

Even though it is implicit in the previous de�nitions, it is worth mentioning that
bridging the gap from ATS to ETS is mostly relevant on testing. Validation, regardless
its importance, is a theoretical discipline, and has little requirements for executable
level details and know-how. This thesis deals with testing.

It is the common case that the complexity of the ATS to ETS transformation is not
understood at �rst glance. There are more details on protocol execution than is apparent
to the eye. No matter how abstract you are on your ATS, all details must be present on
your ETS. The problems addressed go further than just a one-time ETS development,
but ETS-ATS lifecycle management. Testing is a vivid and moving activity. Protocols
evolve, develop new functionality and time-to-market forces always push the limits. It
is our responsibility to propose solutions that can follow the requirements evolution, to
evolve ATS and ETS in a controlled and reliable manner.

This document is organized as follows. Chapter 1 introduces in more detail the con-
text of the work. Di�erent types and requirements for testing are introduced, together
with methodological practices that show a standard test de�nition process starting from
the speci�cations to the verdict issuing. Main existing problems are introduced. TTCN-
3 language and framework is presented as the environment where we will validate our
�ndings. IPv6 is presented too, the suite of protocols that we will address with our
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tests throughout this work.
Afterward, in Chapter 2 we will present the methodologies designed to ease ATS

to ETS derivation and test suite lifecycle management. Our approach to learn and
use TTCN-3 language is presented. Di�erent methodological proposals to solve the
problem of CoDec generation, how it eases reusability and maintenance of TTCN-3
ATS are introduced too. We also present results and recommendations on how to split
the complexity of test case design across the di�erent TTCN-3 API.

Finally, in Chapter 3 we describe di�erent solutions for automating interoperability
testing. Proposed solutions were implemented and applied and practical results are
presented too. Methodological gains are exposed, with a stepwise explanation of steps
required to achieve test execution automation and test platform virtualization.

The work concludes in Chapter 4, where it is summed up and future lines of work
are presented.



12 Introduction



Chapter 1

Context of the work and

state-of-the-art

Any su�ciently advanced technology is indistinguishable from magic
Arthur C. Clarke

This section describes the background of the present work. We ramble on testing
concepts and testing disciplines addressed. Di�erent problems that motivate this thesis
work are presented.

As the work addresses the gap between abstract speci�cations and executable test
suites, both sides are described. For the application of the results methodological ap-
proaches and technologies were used. TTCN-3 language was used as an abstract spec-
i�cation notation, due to its uniqueness as a standard, all purpose testing language.
The �eld of application is IPv6 testing, the proposed replacement of current Internet
Protocol version four. As a network layer replacement, it is required to have at least
equal IPv4 characteristics, thus ascertaining IPv6 maturity is of industrial requirement.
We will introduce the relevant characteristics of both TTCN-3 and IPv6

13
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1.1 Testing

Let's start from what we understand testing is about. The word testing has a Latin
origin, testum, and comes from the Middle Ages. The testum was an earthen pot, a
cupel, used for evaluating precious metals. When impure silver or gold were heated in
the porous cup, impurities in the metal were absorbed in the porous material, obtaining
a sample of relatively pure silver or gold. The metal has been tested. By the sixteenth
century, the word test started to be used �guratively too. To �put something to test�
was to make a trial of it, to determine its quality, genuineness, as a precious metal was
tested in the testum.

The word �test� is widespread, as we would like to think, the need for it. Test is
found as a word in Spanish, accepted by the Real Academia Española and in French
too, as in many other languages. The Merriam-Webster associates to the word �test�
meanings like: �a critical examination, observation, or evaluation�, �the procedure of
submitting a statement to such conditions or operations as will lead to its proof or
disproof or to its acceptance or rejection� or �basis for evaluation�.

Now, closer to our �eld, we can quote from Glenford Myers that: �testing is the
process of executing a program with the intent of �nding errors� [Gle04]. The Institute
of Electric and Electronic Engineers, IEEE de�nes test as: �An activity in which a
system or component is executed under speci�ed conditions, the results are observed or
recorded, and an evaluation is made of some aspect of the system or component� [iee90].

1.1.1 The di�erent testing needs

There are di�erent aspects or properties of systems that might be of interest. When we
test, we want to add some value to the systems we are testing. Adding value through
testing consists of �nding and removing errors, thus, raising the quality or reliability.
Depending on the expected usage of the system, di�erent properties or aspects might
be the subject of our tests. We will continue borrowing de�nitions from IEEE [iee90].

Let's think of testing an electronic summing device. Just a simple example to illus-
trate di�erent things that we would like to know about the quality of the implementa-
tion. One of the main goals of testing is to ascertain the implementation correctness
from its functional point of view. We would like to know that given two numbers, the
output provided by the calculator corresponds to the mathematical result of the given
addition. We will not discuss right now how to select the numbers to use for testing the
behavior, or if we can try to use them all. Functional testing is the kind of testing
that ignores the internal mechanism of a system or component and focuses solely on the
outputs generated in response to selected inputs and execution conditions. It is con-
ducted to evaluate the compliance of a system or component with speci�ed functional
requirements. Let's assume that we have a functionally correct calculator, tested. We
might want to know how long it will last. Reliability testing addresses the ability of
a system or component to perform its required functions under stated conditions for a
speci�ed period of time.

Other aspects that we might need to test might include the performance. For some
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application, it might not be acceptable that operations take longer than a speci�c
time. In control systems, where time constraints exist, a functionally correct device
whose results arrive out of time would not be acceptable. Performance testing is the
testing conducted to evaluate the compliance of a system or component with speci�ed
performance requirements.

Depending how we are going to use the summing device, we might want to know
how it works under non standard conditions. Maybe we would like to operate it in
extreme climate conditions, beyond its operational range. After overheating it in a car
or freeze it in a mountain: will it keep on adding numbers correctly? Stress testing
is the discipline of testing that is conducted to evaluate a system or component at or
beyond the limits of its speci�ed requirements.

We might also want to know how often our calculator will power on and work.
Availability is the degree of which a system or component is operational and accessible
when required for use, and it is often expressed as a probability. Sometimes we are
required to provide and design components with availability requirements, and in such
cases, we must test that characteristic too.

These examples of testing requirements are not exhaustive, but we just want to
make the reader aware that testing is a broad discipline and that there exists several
aspects to be tested, even in a simple device.

1.1.2 Di�erent test approaches

Quoting Dijkstra �Program testing can be used to show the presence of bugs, but never
to show their absence!�. It is not possible to test a general system to �nd all its errors.
It is often impossible or impractical. Di�erent strategies are taken to design test cases.
Two of the most relevant ones are black-box and white-box testing.

1.1.2.1 Black-box testing

Also known as data driven or input/output driven it is an important testing strategy.
The concept behind this strategy is to use no information regarding the internals of
the implementation to test it. No internal behavior or structure knowledge should
be used. Testing should concentrate of �nding input/output interactions in which the
implementation does not behave according to its speci�cations. Applying this approach,
test data are derived only from the speci�cations.

1.1.2.2 White-box testing

This strategy is also known as logic driven, and it allows to design the test cases after
examining the internal structure of the implementation. Test data is derived from the
examination of the internal logic and structures.
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1.1.3 Test case design

Knowing that we cannot test a system completely we face the problem of making the
test activity meaningful anyway. A test of any system will be incomplete and the design
trade-o� is to determine the meaningful subset of all possible test cases that has the
highest probability of detecting the highest number of errors. Two main and radically
di�erent approaches are followed in the de�nition of test cases: manual and automatic.

Some writers believe that test automation is so expensive relative to its value that it
should be used sparingly. Others, such as advocates of agile development, recommend
automating 100% of all tests.

1.1.3.1 Manual design

It might be the most common strategy applied in the practice. Experts determine which
are the most relevant test cases and design test cases accordingly. The con�dence on
the quality of the tests is pretty relative, and might be di�cult to provide any metric
about it. Coverage is di�cult to justify and, in general, metrics regarding manual test
cases are obscure and not very promising. On the other hand, the de�nition process is
simple to understand and to modify. The right experts produce high quality test suites.

1.1.3.2 Automated derivation

There are di�erent techniques for automatic derivation. Most of them have solid and
strong mathematical bases and have been developed and evolved by well known experts
in the area. Today the �eld has an important synergy with Model Based Testing.
In the Object Management Group's (OMG) model-driven architecture, the model is
built before or in parallel to the development process of the implementation under test.
Starting from the model, test cases are generated automatically. Di�erent problems
are faced by automatic generation, like the explosion on the number of possible tests,
and their meaningfulness. Cutting the number of tests generated without losing error
detection capabilities is a big challenge in the area.

1.1.3.3 Automated vs. manual

There is a very important discussion amongst experts regarding which approach is bet-
ter. Some of the aspects considered by both groups are collected here. Automated
generation supporters consider that manually generated test cases lack of a good cov-
erage and only consider very few test cases. On the contrary, manually generated
supporters consider that automatic generated test cases are so complex and expensive
to create that are only usable on small and simple laboratory experiments, but remain
unusable for real, state of the art, applications and/or systems. A fact that supports
this assertion is that it is very di�cult for automatic generated test cases to be able to
match manual ones on error detection on real application scenarios.

Another problem comes from the de�nition of the systems that are being tested.
Many of the system de�nitions are done in some ambiguous way, perhaps using natural
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languages or incomplete system speci�cations. It is very di�cult to de�ne and derive
a test speci�cation in this context automatically. Using manual de�nition it is possible
to avoid solving these problems during test case de�nition, and postpone it to test case
implementation stage.

1.2 Conformance and Interoperability

Based on the previous discussion, we can de�ne more precisely the subject of the work
on this thesis. The approach followed is the black-box testing one. We will concentrate
on functional testing, particularly on the disciplines of conformance and interoperability
testing.

Di�erent methodologies exist for conformance and interoperability test case de�-
nitions and generation [RC91, FJJV97, CR05], which include formally (ioco, ioconf,
mioco, etc. [Tre99, vdBRT04]) and manually generated test case de�nitions. This work
does not deal with test case design. We will take as input both manually generated
test suites or automatically derived ones. This thesis is on executing test cases, starting
from their given de�nitions. We take the test case de�nitions in the form of Abstract
Test Suites. We study, solve, and propose solutions to the problems found in the process
of turning them into executable test suites.
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Figure 1.1: Test generation phases

Classically the realization of tests is divided into two phases: generation and ex-
ecution phases. The generation phase starts from the speci�cation that de�nes the
implementation that we plan to test. Starting from that speci�cation, the generation
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phase produces the Abstract Test Suite (ATS). The execution phase takes the Exe-
cutable Test Suite (ETS) and runs it on the IUT, producing traces and execution logs.
Afterwards, logs, traces and other data gathered during the ETS execution are ana-
lyzed and the corresponding verdict is issued. The binding of the two phases is not
standardized.

1.2.1 Steps from ATS to ETS

Di�erent approaches exist for turning an ATS into an ETS. The initial approach is
to write directly the ATS using ETS language. We collapse both steps into a single
one, without having any high level speci�cation of the test suites. The source code
of the ETS becomes the speci�cation of the test. ETS speci�cation languages do not
have all required elements for unambiguously de�ning test cases. Either we restrict
the expressiveness of the test cases to what is available in the programming language
or we generate particular test libraries for each language. In this approach there is
no standard way of de�ning tests in an abstract way. Moreover, it is di�cult for a
test expert to understand and work on test speci�cations if he is not an expert in the
programming language too. Test speci�cations are not portable between platforms and
languages. Abstraction is required.

Test Executable

C/C++, Java, Perl, Python, Visual Basic

Test Scripting

Test Specification Techniques

Model Based Approaches

Test Frameworks

UML2 Testing Profile, Reactis, Rhapsody, EIFFEL, etc.
Model design and test generation:

Abstract test design:
TTCN−3, UML test scenario specifications, etc.

Application specific solutions,

data−driven approaches, tool−based

G
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A
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Figure 1.2: Abstraction vs generation

Figure 1.2 shows graphically how di�erent levels of abstraction are stacked. What
we have been describing is named Test Scripting, the lowest level of abstraction possible
over the executable. From that speci�cation, compilation or interpretation su�ces for
executable test generation. Languages used are regular programming ones.
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The next level of abstraction is provided by Test Frameworks. They are domain-
application speci�c tools, which are mostly data-driven and poorly con�gurable. There
is no access to the internal implementation of the tool, maybe they support some script-
ing language where automation or extensions could be de�ned, but they are constrained
to particular niches. Even though they are useful, they are not general purpose testing
solutions, thus, they do not provide enough freedom to the test developer. Even though
they can automate several tasks properly, a very tight provider dependency is gener-
ated, and most of the time it is required to wait for a tool update to extend testing
capabilities (if there is a new release).

The next level of abstraction is based on general purpose Abstract Test Speci�cation
languages or tools. Most notably we can mention the TTCN-3 and Uni�ed Modeling
Language (UML) Test Scenario Speci�cations. TTCN-3 is an evolution of the TTCN
language which escaped from the ISO 9646 methodology and evolved into a general
purpose test speci�cation language. UML 2.0 Testing Pro�les are new UML extensions
for test speci�cations, but they are part of a broader and more abstract vision of sys-
tem design, which is the complete UML. It can not be separated from the complete
framework.

At today's highest abstract level, Model Based approaches start from a model of
the system, which is used for deriving the abstract test speci�cations. The model of the
system can be used only for formal abstract test case derivation, as it is the case for
Ei�el, or can be used for both test derivation and system de�nition, which is the case
of UML. U2TP can be used to generate TTCN-3 abstract speci�cations, which can be
later turned into ETS written in C or Java and later compiled into an executable.

It can be seen that as we add layers of abstraction, the gap between the test exe-
cutable and the speci�cation grows.

1.2.2 The subject of this thesis

This thesis deals with the general problems faced when turning an abstract test spec-
i�cation into an executable one. The speci�c problems and details might vary from
approach to approach, but their underlying nature is the same. Whenever we choose
an abstraction, detailed things must be left aside. But the abstract speci�cation must
be augmented until the executable one is produced.

How do we provide additional test case dependent, IUT dependent and test suite
dependent details that must not be part of the abstract speci�cation? How do we
describe generally a communication process without specifying the intricacies of the
protocol assembly and disassembly? How do we achieve reusability and all the other
software engineering principles required by current development practices? How can
we solve executable problems in such an abstract way that allows us to factorize the
behavior and provide an abstract vision of the concrete problems? These are the kind
of questions we address in this work and provide answers to.

To be able to apply our answers and validate or refuse our �ndings, concrete ab-
straction and application technologies were selected. This fact does not interfere with
the general and theoretical value of the problems addressed. It supports its validity. In
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this thesis we propose two sets of solutions. The �rst set proposes tools and solutions for
translating ATS into ETS, and are presented in Chapter 2. The second set of solutions
aims at facilitating execution of interoperability testing, which are described in Chapter
3.

The ATS speci�cation language selected is TTCN-3 and the protocol suite is IPv6.
The reasons behind these choices will become clearer after they are presented and moti-
vated in sections 1.3 and 1.4. TTCN-3 is both new and unique, making it a challenging
ATS speci�cation language, methodology and framework to research on. IPv6 is new,
fashionable, sexy and tested very roughly, without the levels of abstraction desired by
the academy, but with the empirical methodological proof o�ered by IPv4.

We will show solutions to make TTCN-3 language abstract test speci�cations easier
to turn into executable ones. We will also present how to abstract executable problems
of IPv6 testing.

1.3 Testing and Test Control Notation version 3

The Testing and Test Control Notation version 3 (TTCN-3) is a language for de�ning
test speci�cations for a broad range of telecommunication and computer systems. It is
internationally standardized and actively promoted by the European Telecommunica-
tions Standards Institute (ETSI).

TTCN-3 is computationally complete, safe typed, procedural language with deep
roots in the telecommunication domain. The �eld of application has been growing over
time and success stories have been published on almost any �eld of testing, ranging
from web services to railway systems.

This section introduces the language from its origins. Core language and runtime
characteristics are presented. Key aspects for this thesis are highlighted.

1.3.1 When TT was neither Test nor Testing in TTCN

The Tree and Tabular Combined Notation (TTCN) was born back in 1984 by the Inter-
national Organization for Standardization / International Electrotechnical Commission
(ISO/IEC) Joint Technical Committee (JTC) 1/Sub-Committee (SC) 21 and in the
Comité Consultatif International Téléphonique et Télégraphique (CCITT) Study Group
(SG) VII. It was part of the OSI conformance testing methodology and framework. In
1992 it was standardized as ISO/IEC 9646-3 [ttc92] and CCITT Rec. X292 [cci92], as
one of the set of seven texts of the respective ISO/IEC 9646 and CCITT X.290 series.

Several European standard organizations (ITU-T, ATM Forum, amongst others)
applied the TTCN language for describing abstract test suites, mainly for conformance
of communication protocols. Several reasons explain the acceptance. Matching mech-
anisms provided unambiguous means so that conformance of received messages can be
automated and evaluated against the test purpose. The notation was easy and natural
to use according to existing standards and maturity of programming languages. The
uniqueness of a verdict system embedded in the language itself facilitated conformance
judgment.
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The �rst version of the language did not include built-in functionality to describe
concurrent behavior within the tester to deal with general concurrency e�ciently. Other
concepts of structured languages aiming reusability and encapsulation were not clearly
present. Constructs like modules and packages were a new requirement too. The new
version of the language, TTCN-2 addressed them. It also included enhancements in
ASN.1 type handling. The new de�nition was also standardized by ISO/IEC 9646-3
1998 [ttc98] and ITU-T [itu98] in 1998.

Regardless the enhancements introduced to the new version, the whole methodology
and language design were much in�uenced by OSI protocols and conformance testing
in mind. Other kind of testing started being required by the industry and studied by
the academy. Remarkably, Internet Protocol requirements of interoperability testing
evidenced weaknesses of the language. Internet Protocol, and other protocols that did
not show good isolation between layers proved to be di�cult to address with TTCN-2
language. Requirements like those presented in robustness testing, regression testing,
system testing and integration testing were not considered. Mobile protocol testing,
service testing module testing were not addressable either. A major redesign of the
approach was required. Two new Specialist Task Forces (STF) were created at the
European Telecommunications Standards Institute (ETSI) to address this new evolution
of the language: STF 133 and STF 156. Work began on 1998 and was completed by
October 2000.

Discussion was tough and characteristics included in the new version of the language
were much discussed too. The abbreviation (TTCN) was maintained, but with a di�er-
ent source, showing the change of the underlying technology. In spite of the fact of the
redesign of the language, TTCN-2 features were retained as much as possible to keep
the investment of companies and organizations. The notation drastically changed, and
the new look-and-feel is the one of a modern programming language. Tree and Tabular
notation were removed from the core language. They were converted into graphical
representations that can be translated into TTCN-3 language. Currently, Tabular no-
tation and Message Sequence Charts (MSC) are standardized translations to and from
the core language. Well de�ned syntax was obtained and language's operational seman-
tics was de�ned. Other advances in computer science available during those days were
not introduced in the language, most notably, object orientation capabilities. There is
some resemblance of object orientation in the dotted notation used for some signaling
operations, but object orientation was left aside.

1.3.2 The new TTCN-3 language

During October 2000 TTCN-3 was approved and standardized [ttc00] by ETSI. In 2001
it was also standardized by the ITU-T as Z.140 [itu01a] and Z.141 [itu01b].

The language was designed with a more powerful textual syntax, that can de�ne the
complete semantics of the test cases, as it is a language designed speci�cally for testing.
Most of the concepts and constructs of the language are similar to others in imperative,
procedural programming languages. A basic set of generic constructs is extended with
additional concepts, speci�c for testing. Extended concepts are suitable not only for
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verdict handling, but message assembly, reception and matching. Moreover, concepts
like distributed test system architecture, concurrent execution of test components and
dynamic con�guration of the tester are supported too. Communication paradigms like
message based or procedural based communication are implemented. Timer constructs
are included in the language. The language as a whole is better suited for meeting
emerging test needs.

There is a general agreement in the fact that the main contributions of TTCN-3 as
a language are the following:

� data and signature templates with wildcard based matching mechanisms,

� type and value parameterization,

� di�erent presentation formats, including standardized ones, and the possibility for
providers to develop their own presentation formats,

� dynamic concurrent testing con�gurations,

� operations for synchronous and asynchronous communications,

� ability to specify encoding information and other attributes (including user ex-
tensibility),

� assignment and handling of test verdicts,

� test suite parameterization and test case selection mechanisms,

� combined use of TTCN-3 and ASN.1 (and potential use with other languages such
as IDL).

How these functionalities are achieved and the component design of the TTCN-3
language is the subject of the following sections.

1.3.3 TTCN-3 architecture

The objective of a testing language is to provide a comfortable and abstract environ-
ment for test speci�cation. Despite the fact that abstract operations can be de�ned, it
is required to execute low level operations on the service or protocol being tested. De-
pending on the level of abstraction of the system under test, to generate an executable
test system, it would be required to either handle complex message structures in XML
notation or maybe to directly handle bits over a serial link. It is not possible to execute
an abstract test speci�cation, since execution details have to be provided.

The way TTCN-3 handles test system executable complexity is based on the divide
and conquer approach. A set of standardized Application Programmer Interfaces (API)
that are used to complement the TTCN-3 language abstract de�nition of the test case
and generate a complete executable test system. The TTCN-3 language is not used to
handle low level details of test case implementations. These operations are relayed to
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languages, adequate for low level handling. The standardized and selected languages are
ANSI/C++ and Java, even though other non-standard extensions have been presented
like a .Net one [Ulr06]. We will refer to Java and C++ as platform languages in
the context of TTCN-3. Despite other initiatives, only Java and C++ languages are
standardized by ETSI.

Every TTCN-3 test system should be understood (and thought of) as a set of in-
teracting components. Each component performs a di�erent part of the required func-
tionality. Component responsibilities include: manage test execution, execute compiled
TTCN-3 code, communicate with the system under test, administer types, values and
test components and handle timer operations.

A runtime schema showing the main identi�ed components, the standard API and
their interactions is taken from [ETS05c] and shown in Figure 1.3.
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Figure 1.3: Conceptual architecture of TTCN-3

The concept of Implementation Under Test (IUT) is known as System Under Test
(SUT) in TTCN-3 standards. The central element of the �gure, the TTCN-3 Executable
(TE), executes TTCN-3 modules. Control of the test case, components, values and
queues are amongst TE structural elements, as de�ned by modules or TTCN-3 language
de�nition itself. Support for test case distribution is part of the language, thus, TE
may be executed in a centralized or distributed manner. Distribution of Parallel Test
Components (PTC) can be done over a single test device or across several ones.

Despite the abstraction of TTCN-3 language, low level operations have to be imple-
mented in some way. TE implementation is an abstract level description of a module and
other entities de�ned by the standard. The entities and their interactions are used to
provide specialized implementation details required for test case execution. Other enti-
ties of a TTCN-3 test system make these abstract concepts concrete. The language and
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test system architecture were designed so as to separate concerns amongst entities. As
an example, the abstract concept of sending a certain message has the abstract keyword
send() as part of the TTCN-3 language, but it must be complemented with entities
that tell how to encode the message and send it over a concrete physical medium. The
API for complementing the abstract test speci�cation is split into TTCN-3 Runtime
Interface (TRI) and TTCN-3 Control Interface (TCI).

The TTCN-3 Runtime Interface de�nes the interaction between the TE, SUT Adap-
tor (SA) and Platform Adaptor (PA). It is de�ned in [ETS05b]. It provides the means
for the TE to send test data to the SUT, receive responses or handle timers amongst
other tasks. TRI is split into two bidirectional sub-interfaces: triCommunication and
triPlatform interfaces. The triCommunication interface addresses the communication
with the SUT, which is low-level implemented in the SA. The triPlatform allows the
customization of a particular ETS to a speci�c execution platform.

The triCommunication Interface collects the operations required to implement ETS-
SUT communication. API calls can be grouped in Test System Interface (TSI) initial-
ization, SUT connection establishment, message based communication and procedure
based communications.

The triPlatform Interface adapts the TTCN-3 executable to a particular execution
platform. It provides primitives to handle timers, access to external functions and
maintenance operations on the component.

The TTCN-3 Control Interface (TCI) de�nes the interaction between the TE and
the Test Management and Control (TMC), and is de�ned in [ETS05c]. The TMC entity
includes functionality related to management of test execution, components, coding and
decoding of test data exchanged with the SUT. The Test Management (TM), Coding
and Decoding (CD) and Component Handling (CH) entities conform the TMC. The
TM is responsible for the overall management of a test system. After initialization
of a test system, actual execution starts within the TM entity. It is responsible for
the proper invocation of TTCN-3 modules, including con�guration of test dependent
parameters of the actual execution through module parameters. It is usual that this
entity has a tight correlation with the user interface of the test system. The CD is
the entity that provides means to transform TTCN-3 representation of messages into
transmittable bitstrings and vice versa. The TE determines which CoDecs can be used,
it hands the TTCN-3 data to the appropriate coding routine to obtain a bit oriented,
transmittable representation of the message. When data is received from the SUT, it is
decoded in the CD entity and converted into TTCN-3 values. The CH entity handles
parallel test case execution. As the TE can be distributed among several test devices,
the CH provides services to synchronize test system entities.

Each testing node of a test system includes TE, SA, PA, CD and TL entities. The
CH and TM controls the execution of the di�erent TEs on each node. The TE which
starts a test case is a distinguished one, who is responsible of computing the test case
verdict. This is the only distinction amongst di�erent TEs.

The remaining entity of the TCI is the Test Logging (TL). It performs the task of
gathering log information from the other entities for test event logging and presentation
to the test system user. It provides information that allows the expert to know what
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is going on inside the test system. Creation of test components, information sent to or
received from the SUT, template matching and timer operations are logged, amongst
other.

1.3.4 On TTCN-3 language design

The TTCN-3 language addresses the challenge of being a general purpose testing lan-
guage. It aims at providing the testing community testing tool provider independence,
and full standardization of test case behavior. The broad spectrum of testing activities,
ranging from unit testing, functional and non-functional testing, classical conformance
or model driven test generation makes the language a complex one. The design approach
was to include as many keywords in the language as required to meet all testing needs,
and keep as much compatibility as possible with previous versions of the language. The
result is a large language, consisting of 140 keywords, as shown in Table 1.4.

If we compare it with other general purpose languages we can see the di�erence in
the approach. As an example, Java 5.0 has 50 language keywords1. Java also counts
with 37 operators, some of which are keywords in TTCN-3, specially logical and bitwise
operations.

Another example are the C/C++ languages. Depending on the version and compiler
considered, C reserves about 30-35 keywords and C++ has 30 more. How is it possible
to develop complex systems using either C++ or Java? Expressiveness and power is
removed from the core language and relayed to libraries, keeping the language minimal.
In the case of C and C++, those libraries are system dependent and this the problem of
lack of standardized libraries for all platforms is one of the biggest challenges/obstacles
for C portability. In Java the set of classes is distributed with the virtual machine, al-
lowing the Java platform to provide homogeneous services across the di�erent platforms
where it can be deployed. Right from the design stage, these languages consider and
provide ways of distributing pre-compiled code: object �les, class �les, libraries, etc.
TTCN-3 standard does not address these issues.

TTCN-3 language on the contrary provides an extense core language, but no stan-
dard set of libraries to the developer. Test speci�cation projects must start either
from scratch or from tool provider proprietary extensions. Using proprietary exten-
sions threatens the tool provider independence objective. Developing tool independent
libraries, starting from scratch, puts additional complexity to the test case generation
process. The amount of work to be done for producing a tool vendor independent testing
library is a considerable burden.

1.3.5 Catching up TTCN-3

TTCN-3 language has a step learning curve, even after the book �Introduction to TTCN-
3� [WDT+05] was published. Despite the inherent complexity of learning a complex,
extense and specialized language, there is an additional learning cost in understanding
the complete architecture and interaction of entities. As discussed before, language

1http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html
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action error match return
activate except message running
address exception mixed runs
alive execute mod select
all extends modi�es self
alt extension module send
altstep external modulepar sender
and fail mtc set
and4b false noblock setverdict
any �oat none signature
anytype for not start
bitstring from not4b stop
boolean function nowait subset
case getverdict null superset
call getcall octetstring system
catch getreply of template
char goto omit testcase
charstring group on timeout
check hexstring optional timer
clear if or to
complement ifpresent or4b trigger
component import out true
connect in override type
const inconc param union
control in�nity pass universal
create inout pattern unmap
deactivate integer port value
default interleave procedure valueof
disconnect kill raise var
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do label receive verdicttype
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encode log repeat xor
enumerated map reply xor4b

Figure 1.4: TTCN-3 terminals as of version 3.2.1
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design is not minimal, and did not follow other tendencies of the late '90s. Lack of
on-line tutorials, mailing lists and forums leave the newcomer alone with a di�cult
challenge. No collection of good practices or recommendations exists. Moreover, no
clear agreement amongst experts exists right now.

Publicly available ETSI language standards are the main and comprehensive source
of information about the language, but it provides only raw and too technical informa-
tion for the beginner. Indeed, it is not the objective of a language standard document
to be a tutorial, but in practice TTCN-3 standard ends up to be a language reference
too.

As a language, TTCN-3 can be considered a Pascal-like language, mainly imperative
and structured. The main complexity does no arise from understanding the language,
but the complete TTCN-3 architecture. E�ective usage of runtime entities, reusable
and maintainable code is di�cult to learn to write. The general case is that TTCN-3
code is considered the important part of the ATS, and constitutes the place where the
test expert is supposed to be concentrated. Other entities are considered just helpers
and not important, but we believe that disregarding their importance is a source of test
case development complexity.

Some authors consider that producing an executable test suite out of an abstract
test suite written in TTCN-3 language is just a matter of compilation [Gra94]. Back
in 2004, at the beginning of this thesis work, it was very di�cult to understand why it
was required to research on the subject �From Abstract Test Suites to Executable Test
Suites� based on these strong statements. It seemed that there was nothing more to
be done there. It was required the strong conviction of the thesis director to explain
the relevance of the subject once more. Indeed, it is true that a part of the ETS can
be built just compiling the TTCN-3 code, but what is not clearly said is that TTCN-3
compilation is not enough. Developing test speci�cations without considering the other
entities, might lead to highly di�cult to develop and maintain CD/PA/SA entities.
Comprehension of these dependencies might be the biggest challenge when learning
TTCN-3.

1.3.6 TTCN-3 in the Internet Community

In the Internet community in general, TTCN-3 is not widely adopted. As a newcomer
into the IP testing arena, it is required to provide more or do better so as to justify
the switch from one way of testing to another. Moreover, TTCN-3 language is even
unfavorably criticized. This is mainly due to the confusion with its predecessor TTCN-
2, which was considered a rigid language and di�cult for generating tests for new
protocols. This bad reputation applies for testing the new protocols developed for the
new version of the Internet Protocol, called IPv6.

Possibly di�culties with TTCN-3 predecessors arise from their relationship to ISO
9649 and ISO's OSI layered protocol philosophy. The communicating systems addressed
by ISO's 9646 methodology should be layered, with clear bounds, unlike TCP/IP pro-
tocol suite.

TCP/IP was born as an experimental suite of communication protocols, that evolved
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over decades by �xing problems, keeping backward compatibility, without major revi-
sions and without including several advances of the �eld. IPv6 is not a redesign of the
TCP/IP suite, but a replacement of the network layer. Upper and lower layers stay the
same, despite some extensions. Thus, TCP/IPv6 suite is as badly layered as the original
TCP/IP one. This introduces a lot of problems to modeling, testing and implementing
it. The strongest complaints from the Internet Community to TTCN-2 language was
that it was not well suited for this scenario.

Indeed, most of the existing test suites are developed using IPv6 dedicated languages
and tools. The most famous one is the v6eval toolbox (http://www.tahi.org) devel-
oped by the Japanese TAHI project. In this context, it is di�cult to convince people
to use TTCN-3 without showing real executable test suites. TTCN-3 must show how
it can solve these known problems, and do it well if it wants to be considered.

1.4 Internet Protocol version 6

IPv6 is short for �Internet Protocol version 6�, sometimes also called Next Generation
Internet Protocol or IPng. Even though Internet is seen as a new technology, its pro-
tocols and building blocks were developed during the '70s and '80s. What we know as
Internet and all corporate and private intranets use IPv4.

IPv6 �xes several problems in IPv4, remarkably the availability of addresses. It also
addresses enhancements in the message header format and options handling. The new
IPv6 protocol suite is a network layer replacement, that preserves lower (data link) and
upper (transport) layers as much as possible, with minor adaptation requirements.

In the following subsections we will present IPv6 protocol, why it is important to
test it and the existing testing initiatives on the �eld.

1.4.1 Beginnings of IPv6

The organization behind the standardization and development of the Internet is the
Internet Engineering Task Force (IETF). It is an open international community of
individuals concerned with the evolution of the Internet architecture and its smooth
operation. IETF's e�ort of scaling IPv4 protocol started in the early '90s and the core
set of IPv6 protocols became an IETF Draft Standard on August 10, 1998.

It is clear now that IPv4 needs to be replaced after connecting the Internet for
decades. There are several di�erent reasons that motivate the evolution of the Internet
protocol, from simply evolution to unforeseen requirements and services at the time it
was designed. IPv6 addresses di�erent aspects, but the main changes can be summarized
as discussed in the following subsections:

1.4.1.1 Address space growth and autocon�guration

The address size grew from 32 to 128 bits, solving for some years from now the address
exhaustion problem. We will run out of IPv4 addresses in a few years from now and the
logical step is IPv6, mainly a re�nement of IPv4. The bigger address space also enables
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new communication mechanisms like anycast and gives better support for multicast than
IPv4. Autocon�guration features are also new in IPv6, allowing devices to get addresses
and became ready to communicate without any con�guration operation performed by
administrators.

1.4.1.2 Simpli�ed header and optional extensions

The protocol header now has a �xed size, which simpli�es routing operations by lowering
processing costs. Some unused �elds were removed and others became optional. In IPv4
the options were part of the basic header, with complex rules of assembly. In IPv6, they
are all handled as Extension Headers, inserted between the header and the beginning
of the payload. IPv6 also allows the de�nition of future Extension headers, unknown
for the moment. If this option was available in IPv4, then the extra 96 bits could be an
extension of the standard IPv4 packet. As extensions are available in IPv6 it may be
possible that future enhancements only require the de�nition of new extension headers.

1.4.1.3 Authentication and privacy

Support for authentication, data integrity and con�dentiality extensions have been in-
cluded since the beginning. The IETF wants that all IPv6 devices support these exten-
sions, but the industry does not follow this directive tightly. Small devices usually omit
this requirement.

1.4.1.4 Flow labeling

The concept of "tra�c �ows" is also new in the network layer. The sender can label
his tra�c, requiring special handling. As an example, it could be used to di�erentiate
tra�cs with di�erent quality of service restrictions.

During 1999 di�erent groups converged into the IPv6 Forum2, a world-wide con-
sortium with the mission of promoting IPv6 by improving market and user awareness.
Several lines of action were taken by the Forum:

� set up an open, international forum on IPv6, based on voluntary basis,

� share and disseminate knowledge and experience among members and non-members,

� create di�erent chapters and task forces around the world,

� promote worldwide solutions to solve IPv6 deployment problems,

� organize several IPv6 summits worldwide, educating thousands of engineers every
year,

� promote a globally unique certi�cation program, the IPv6 Ready Logo.

The following subsection will discuss the importance of the IPv6 Ready Logo initia-
tive in particular and testing IPv6 in general.

2http://www.ipv6forum.org
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1.4.2 Relevance of IPv6 testing

The Internet is a big network. Statistics published during mid 2007 by http://www.

internetworldstats.com show that Internet usage is still growing at a very fast rate
and reaches more than 1.100 million people. This network runs IPv4, not IPv6. Banks
o�er services to their customers using IPv4. Companies connect their branches using
Virtual Private Networks (VPN) over IPv4. All the e-business we know is based on IPv4
and we will only move to IPv6 after we can ensure continuity of services, availability
and reliability into the new Internet. Not only business, but entertainment. People
send their e-mails, publish their family photo albums and share their videos on the net.
Convergence is happening over IP.

TCP UDP

HTTP FTP DNS

ATM

Ethernet
SDH E1

Application

Transport

NetworkIP

Data Link

Physical

Figure 1.5: IP hourglass model

If we consider Steve Deering's IP hourglass model, shown in Figure 1.5 we might
have a clue of the importance of the Internet Protocol. The thin waist of the �gure
is just what we need to replace. It is a critical change, and no one can deny it. Few
people wants to risk something that works, since it can a�ect business continuity and
may lead into losing money: �If it works, don't �x it�.

One of the several means to transmit con�dence on IPv6 implementations and its ma-
turity is the IPv6 Ready 3 certi�cation program. The program is created and sponsored
by the IPv6 Forum. A globally unique certi�cation program addresses the requirement
of a global network replacement challenge by promoting con�dence in the maturity of
the implementations. Unlike IPv4 that started with a small and closed network, the
scope of IPv6 covers a huge number of implementations on a global scale. The ability
of interoperate (interoperability) has been a critical feature in the Internet commu-
nity. It is essential that a single symbol identi�es products that have been validated for
interoperability: the Logo.

3http://www.ipv6ready.org
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The organizations behind the IPv6 Ready since the beginning are the University
of New Hampshire Interoperability Laboratory http://www.iol.unh.edu, TAHI Test
Event http://www.tahi.org, ETSI IPv6 Plugtest http://www.etsi.org/plugtests,
IRISA http://www.irisa.fr/tipi and Connectathon http://www.conectathon.org.

1.4.3 IPv6 testing

Di�erent objectives were addressed from the beginning by the di�erent organizations
that converged in the IPv6 Ready program. Among the di�erent decisions, the objective
was to test the IPv6 protocol, no more and no less. Initially, a �rst phase was de�ned to
rapidly motivate the vendors and organizations that will deploy IPv6, while the second
phase was being de�ned. The sticker showing compliance with �rst phase requirements
is a silver colored one. The second phase addresses complete requirements testing,
and its sticker is a golden one. It ensures equipment and service interoperability and
conformance according to the corresponding RFCs. At least, the objective for the test
speci�cation is that certi�ed devices should be ready for production networking. The
concept of IPv6 Core protocols was coined and become the initial milestone for Phase
2. There is a minor glitch regarding IPsec, that might lead to the third Phase of the
Logo: The IPv6 Forum considers IPsec as mandatory in IPv6 implementations, but the
silver and golden logos can be obtained without implementing IPsec.

The Internet Community traditionally based standardization decisions on interoper-
ability. Interoperability addresses the ultimate requirement of having implementations
working together and still providing their expected services. This pragmatical approach
is generally criticized from the more formal side of testing, where conformance testing
is the de-facto tool. It is said that it is an inferior way of assessing correctness. Solid
mathematical grounds were developed over decades, but even with some simpli�cations,
it is still not feasible to use formal methods to generate complete testcases for complex
protocols as IPv6. Interoperability testing recognizes the need of verifying that even
non-perfect implementations can still interwork.

The Ready Logo succeeded to include conformance testing as part of the logo. Even
though test cases are not formally derived, but de�ned by experts, for the �rst time in
the Internet Community conformance testing is required to get the certi�cation.
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Chapter 2

TTCN-3 based framework to assist

ETS derivation

We have to remember that what we observe is not nature herself, but nature exposed to
our method of questioning.

Werner Heisenberg

33



34 Easing ETS derivation

This chapter describes methodologies and solutions to simplify ETS derivation. The
ATS speci�cation language used to apply and validate our �ndings is TTCN-3. At the
beginning, in Section 2.1 we present the di�erent adventures we took on the TTCN-
3 world. It presents our hands-on initial approach to the language, methodology and
tools. The contents of this Section are based on two publications: Some Lessons from an
experiment using TTCN-3 for the RIPng testing [SFRV05] presented during TestCom
2005 and Using TTCN-3 in the Internet Community: an experiment with the RIPng
protocol [SBFV05] presented during the TTCN-3 User Conference 2005.

From the bruises acquired, we learned the importance of mastering TTCN-3 archi-
tecture and interaction of runtime components. One of our initial approaches was to
overcome certain limitations of TTCN-3 logging capabilities, integrating tra�c captur-
ing and other features to the System Adaptor. The section 2.2 is based on the work
that was presented as Embedding tra�c capturing and analysis extensions into TTCN-3
System Adaptor [SBV06] during the MMB Workshop 2006.

We found out that the relationship between the TTCN-3 ATS and the CoDecs has a
deep impact in the complexity of the implementation of the whole test system. Di�erent
approaches to deal with this fact were addressed, which are described in Section 2.3.
The implemented solution for this problem is a tool that addresses the automatic CoDec
generation for the C++ platform. This solution is currently distributed as Open/Free
software [t3d07]. The solution was presented during the TTCN-3 User Conference 2006
as Towards and IP-oriented testing framework - The IPv6 Testing Toolkit [SBD+06].
The presentation was invited to take part of a STTT Special Issue on The Evolution
of TTCN-3. No reference to the actual journal can be provided as it is not published
by the time of this writing. Apart from the previous solution, a proposal for a platform
language independent solution is presented in Section 2.5.

Finally, in Section 2.4 we present later experiments using the CoDec Generator
for more complex protocol testing and discuss alternatives on test case design and
development. The contents of this Section are based on the paper The new Internet
Protocol security IPSec testing with TTCN-3 [SCV07], presented in the TTCN-3 User
Conference 2007.

2.1 Hands-on experience with TTCN-3: RIPng

TTCN-3 has been designed to provide a well suited language for any kind of testing
activity [UKW99, SVG03, SVG02, VGSB+99], from abstract test suites speci�cation
to executable test suites [GD03, Tör99]. As it is a new language, there is not enough
maturity regarding its usage and environments that are supposed to ease TTCN-3
usage. The European community, through the European Telecommunications Stan-
dards Institute (ETSI), promotes the use of the TTCN-3 language for testing pur-
poses [GH99, GWWH00].

An important objective behind this hands-on challenge was to gain experience using
the TTCN-3 language and tools while addressing a pending IPv6 test conformance
problem. The Routing Internet Protocol for IPv6 (RIPng [MM97]) has the advantage of
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being relatively simple (at least compared to other IPv6 related routing protocols), and
still being an important and widely deployed protocol in small to medium organizations.
This work also aimed at proving to the Internet Community that TTCN-3 can be used
for testing, covering all steps from abstract test suites (ATS) to executable test suites
(ETS). It was also important to identify main issues when testing with TTCN-3 and
providing solutions that may help simplifying future test generation.

The methodology behind this work was restricted in scope as the goal was to be
able to obtain ETS to be executed against real implementations during the IPv6 in-
teroperability event organized by the ETSI/Plugtests Service in October 2004. After
October, we re-designed some details and produced a new ETS that was executed also
against real implementations, with a tight schedule for the TAHI IPv6 Interoperability
event in January 2005. We were forced to follow a straightforward approach due to
time constraints: some decisions were based on time-to-executable-test parameters. On
the other hand, one may note that this kind of requirements also corresponds to the
real Internet Community and industry requirements of having ETS available and ready
to be used as soon as the need of testing is identi�ed. If we were given more time, it
might have been possible to try di�erent modeling alternatives and reach more elegant
solutions (unfortunately, it was not the case).

Amongst all available TTCN-3 tools, the choice was made for a tool that allowed us
to have access to the source code if necessary. Indeed, due to the youngness of TTCN-3
and our current knowledge in using this new language, it was important to use a tool
which allowed libraries source code modi�cation if needed. Work on portability of the
ATS across di�erent TTCN-3 tools, where access to tool internals is not required is
addressed in Sections 2.3 and 2.5.

As a result of this work, a RIPng conformance ATS/ETS based on TTCN-3 is
now available. These tests have been run against real implementations during an IPv6
ETSI-Plugtests Interoperability event in October 2004 and during the Japanese IPv6
TAHI Interoperability event in January 2005. Test results were considered of interest
by participants. Doing this work and following the approach indicated above, we faced
several issues that any new TTCN-3 user may have to deal with. Amongst other results,
the main problems found are highlighted, and our solutions are introduced. Initial ideas
that may help in easing test development using TTCN-3 are proposed.

The rest of this Section is organized as follows. Subsection 2.1.1 explains with more
details the context of the work and provides a brief description of the RIPng proto-
col. Main TTCN-3 components that have to be developed are described. Section 2.1.2
outlines di�erent steps to obtain TTCN-3 based test suites for the RIPng protocol.
Problems encountered during test development phase and their solutions are also pre-
sented. Section 2.1.3 presents some results and lessons learned from this experiments
in using TTCN-3 for RIPng testing. Some ideas that might help in easing other similar
e�ort are presented. Conclusions of this work can be found in Section 5, where future
work is suggested.
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2.1.1 Background of the experience

We have been involved for years in developing IPv6 conformance tests suites. Personally
I was a novice by that time, but my supervisor, César Viho, took part of the IPv6 Ready
Logo from the beginning. César is the European technical comisaire, and I was glad to
be received in his laboratory and contact the great group of experts working there.

The de facto tool used by the Internet Community is v6eval, developed by TAHI
project (http://www.tahi.org/). Following IPv6 Ready Logo conformance testing
recommendations, we worked to produce test suites for several IPv6 routing protocols,
in particular RIPng, the experience described here.

One important reason behind the present work for us was to �nd provider-independent
tools and languages for de�ning test suites. TTCN-3 is presented as a modern stan-
dardized abstract language, test oriented and provider independent. Tool providers
implement their solutions according to the standards, but independently. It is widely
accepted that multi-provider scenarios lead to more complete and general languages
and tools than single provider ones. The lack of free/open reference TTCN-3 imple-
mentations also presents some limitations to a the Internet Community. The Internet
Community has been working with open/free tools and operating systems for testing
purposes.

Our primary motivation was to experiment with the ability of TTCN-3 for our
testing purposes with real and concrete IPv6 protocol. On the other hand, we wanted
to show to the IPv6 community that TTCN-3 can be used for this purpose. One way
to prove that is to have executable test suites built with TTCN-3 language and tools,
which can be used during interoperability sessions.

2.1.1.1 RIPng brief overview

RIPng[MM97] is the logical step of the well known IPv4 family of RIP protocols into
IPv6 world. RIPng stands for Routing Information Protocol - Next Generation. RIP
belongs to the class of algorithms known as "distance vector algorithms". Distance-
vector algorithms are based on the exchange of only a small amount of information.
Each network node that participates in the routing protocol must be a router as IPv6
protocol provides other mechanisms for router discovery, and it is assumed to keep
information about all destinations within the system.

Limitations of RIP include network diameter restrictions, counting to in�nity to
resolve loop situations. Other drawbacks arise from the lack of metrics based on tra�c
or link cost parameters. Some of the limitations are not per se limitations, but they
are a consequence of the design of the protocol. RIP is not intended to be used as
Internet's single routing protocol, but as an Autonomous System (AS) internal protocol.
RIPng is an UDP-based protocol and listens on the port 521. It is a message oriented
protocol (implemented messages are 1-request and 2-response), based on distributed
intelligence, without any distinguished node. The �gure 2.1 shows a typical RIPng
deployment scenario, where 6 interconnected routers exchange routing information as
request-response messages.
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Figure 2.1: Autonomous System RIPng messaging

IPv6 protocol de�nes and implements three di�erent types of communication des-
tinations, which are: unicast, anycast and multicast. These enhancements at net-
work/transport layers provide better support for protocols using their services. RIPng
uses both unicast and multicast mechanisms for inter router communication, according
to the kind of message exchanged. The multicast address �02::9 is reserved as the all-
rip-routers group, which is used except in some non-multicast channels, where explicit
network addresses have to be used.

Authentication mechanisms have better grounds on IPv6 protocol stack and thus,
are removed from RIPng protocol itself.

2.1.1.2 TTCN-3 main components

TTCN-3 is a pretty new language (current TTCN-3 Core Language[ETS03] was pub-
lished on 02-2003) with only a �rst generation of compliers and tools supporting it.
TTCN-3 was designed to be able to incorporate testing capabilities not present on
other programming languages, and was also cleared from OSI peculiarities (that previ-
ous versions su�ered). TTCN-3 is designed to be �exible enough to be applied to any
kind of reactive system tests.

An alternative representation of the layout of a TTCN-3 test system general struc-
ture is shown in �gure 2.2. This �gure is taken from earlier TTCN-3 standard versions.
It does not emphasize the communication architecture among entities, as it is done in
�gure 1.3, but allows us to depict better di�erent encoding subsystems. As usual, this
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Figure 2.2: Alternative TTCN-3 Test System Architecture representation

test system is supposed to be executed against a system under test (SUT). Each block
in the �gure represents an entity implementing a particular aspect required by a test
system. The test system user interacts with the Test Management (TM) and uses the
general test execution management functionality. The TM entity is responsible for the
global test management. The TTCN-3 Executable (TE) implements the functionality
de�ned as TTCN-3 modules, which can be structured into sub-modules and import
de�nitions from other modules. Modules have a de�nition part (which de�nes test com-
ponents, communication ports, data types, constants, test data templates, etc.) and a
control part (which is responsible for calling test cases and controlling their execution).
Other test layout dependent parameters are de�ned at the SUT Adapter (SA) and
the Platform Adapter (PA). A TTCN-3 test system has two main internal interfaces,
the TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime Interface (TRI). TCI
speci�es the interface between Test Management (TM) and TTCN-3 Executable (TE)
entities. TRI interface speci�es the interfaces between TE, SUT Adapter (SA) and
Platform Adapter (PA) entities. Note in �gure 2.2 the presence of Encoding/Decoding
System (EDS) as part of the Runtime System and the External CoDecs, behind the TCI
interface. Both entities solve the problem of encoding messages, one in a tool-dependent
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way (the EDS) and the other, through a standardized API (the TCI-CD).

Figure 2.3: TTCN-3 based initial approach of test speci�cation

Figure 2.3 shows the modules and main methodological tasks that have to be
developed to produce test suites. The blocks named RIPng Test Cases and RIPng

Templates correspond to the tasks required to de�ne the TTCN-3 Executable block
on �gure 2.2. The blocks named SUT Parameters and PCO Definition correspond to
parameters required by the SA to interface with the SUT.

2.1.2 The �eld experience

We have a broad experience on the IPv6 �eld, while these experiments were our �rst
practical approach to TTCN-3. Nevertheless, both our experience and the methodol-
ogy used in the IPv6 community matches the principles suggested in [WLY03]. The
hands-on experience with TTCN-3 described tries to answer whether the language and
methodology are ready for addressing the strong needs of the IPv6 test community. It
is worth mentioning that the Internet community, for more than 20 years now, is a very
pragmatic environment, who does not care about the way the tools are designed, but
focus on the way they can quickly answer to their needs. Our goal was to develop tests
for RIPng in a short time with existing new tools.
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Conformance testing, based on a black-box approach did not allow us to use any
particular knowledge of the IUT in order to test it. We had to exchange signals with
the System Under Test (SUT): in this case, signals are RIPng messages. Designed test
cases consisted of exchanging routing information with the SUT and later sending IP
probes to selected destinations so as to determine the way routing information is not
only learned and shared by the SUT, but also, applied on its own routing decisions.
This is the general philosophy in the Ready Logo. All the things that are required must
be implemented by all the implementations. Thus, when test cases are designed, the
test expert must be aware that all requirements placed on the test are then placed on
the IUT. Tests have to be done using the minimum set of capabilities demanded to all
implementations, despite the fact that they are an embedded circuit, an IP camera, a
router or a computer.

To be able to specify TTCN-3 test cases we had to obtain a tool and de�ne the
needed modules according to our test purposes. It was also required to provide the SUT
Adapter (SA) with proper de�nitions so that the mapping between TTCN-3 components
communication ports and test system interface ports is done. After this, the ETS was
generated.

2.1.2.1 Approach for TTCN-3 test speci�cation

Routing Table Entries (RTE) are the key elements exchanged within RIPng messages.
Each router is supposed to have some sort of routing table with at least the following
information: the IPv6 pre�x of the destination, a metric, the IPv6 address of the next
router along the path to that destination, a �ag and various timers associated with the
route. This suggests that basic routing operations being tested ought to be related to
RTE maintenance like: RTE creation, RTE update, RTE deletion, RTE request.

The simplest test topology would consist of two routers and the SUT, each connected
to a di�erent physical interface of the SUT. The problem with this topology is that it
does not allow us to perform the required message exchanges. From the test purposes
settled we decided to build a more complex network layout, shown on �gure 2.4. The
small box in the center represents the role that the SUT plays in the topology, while the
rest of it, marked as Tester represents what has to be developed to perform the tests.
For speci�c test purposes we selected -projected- the relevant routers that would allow
inspection of the desired property and speci�ed the particular ATS only considering it.
This methodology simpli�ed test design because we had a single well known network,
and it allowed us to concentrate on details of each test purpose by projection of relevant
smaller parts of the network.

It was required right from the �rst test de�nitions to be able to emulate more than
one router in order to explore even simple protocol behavior and properties. This
fact made us de�ne and handle several Points of Control and Observation PCO. The
distribution of PCO over single or multiple test execution threads or processes promoted
the discussion between parallel vs. single party testing, or in other words, a Master Test
Component (MTC) with Parallel Test Components (PTC) vs. single MTC. Protocol
complexity was not an issue at this point, as the protocol itself is simple: both solutions
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Figure 2.4: RIPng testing topology

were adequate for test requirements. From our previous experiences and the lack of
time for enough testing of the TTCN-3 parallel possibilities and API, we decided for
a solution with a single MTC that handled all required PCO. The decision of using
a single node to emulate the whole network topology allowed us to avoid all parallel
synchronization problems. This decision also considered easy deployment and testing
re-usage: it is simpler to deploy a single device than a con�guration with 6 nodes. We
believe that naive deployment of PTC corresponding to each emulated router would have
produced test suites with di�erent characteristics. Complexity of test setup would have
increased considerably as separate process on di�erent machines had to be con�gured.

Another important decision was the tool selection, which was done considering all
the existing tools known to us (testing_tech, Telelogic, Danet, OpenTTCN, etc.). At
the time of the selection all available tools were equally eligible as they all implemented
TTCN-3 required components. Moreover, none of them provided already built IPv6
libraries that might have helped with the building blocks for RIPng tests. The decision
was based on our experience testing with C++ tools and licensing conditions that al-
lowed us not only to use the tool for academic purposes, but also to have access to the
source code when needed. Other aspects considered were Integrated Development Envi-
ronments (IDE) and tools provided that helped with simple and repetitive tasks. From
all those testing tools available we chose Danet's testing tool (http://www.danet.de).

2.1.2.2 PCOs management

Points of Control and Observation (PCO) play a very important role on what can be
observed out of a system. Proper selection of PCO placement would allow better and
detailed protocol inspection. As RIPng is a UDP based protocol the �rst test design
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tried to place PCO at UDP level, as shown in the �gure 2.5. In TTCN-3, PCO are
referred as ports.

Figure 2.5: RIPng testing architecture, UDP level PCO

It was not possible to code a single tester that was capable of emulating several
routers using the o�-the-shelf TTCN-3 tool. The selected tool only implemented two
types of ports: serial and socket. Serial did not apply for Ethernet communication,
and socket was implemented using underlying operating system protocol stack services
at socket level, thus it is not possible to simulate tra�c to and from di�erent routers:
it would be necessary to de�ne di�erent IPv6 addresses and Ethernet MAC addresses.
TTCN-3 de�nition is independent of this low level details. Thus, it does not allow
dynamic de�nition of MAC/IPv6 addresses associated to ports on every implementation.

Another observation is that we did not only need UDP services: ICMP echos are
sent through the SUT so as to check the routing decisions at a certain moment.

The �gure 2.6 shows all the parts -grayed- of the protocol stack that had to be
addressed with the test.

Figure 2.6: RIPng testing architecture, link layer/IP level PCO
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IPv6 Ready logo conformance methodology tries to make simple the deployment of
the solution, at expenses of a possible more complex test suite development. Instead of
addressing parallel deployments, very speci�ed behavior is generated from a single host,
making the IUT believe that it is exchanging messages with as much other systems as
required.

The main di�culty was that when more than one router had to be emulated using
a single MTC, the IPv6 native stack on the host had to be disabled and all the steps
of the communication had to be emulated from TTCN-3 modules. This is the way
it is done in the Ready Logo by the TAHI tool. It would have been also the same
situation with several PTC running on the same machine. Several issues arose during
the development phase. Neither the TTCN-3 tool nor language were not designed
to handle multiple host emulation using a single Network Interface Card (NIC). This
problem is highly speci�c to IPv6 and is not easily found in a general purpose testing
language and tool. Due to time constraints we worked out the problems by changing
some aspects of the tool implementation by recoding parts of TTCN-3 primitives. We
changed TRI provided implementation so as to handle link layer PCO, which were not
implemented in Danet's tool. The main modi�cation consisted in adding a new type of
port that handled Ethernet communication, but at the physical interface level. With
the modi�cations introduced we were able to emulate as many hosts -form data link
layer up- as required from a single real host. The availability of the source code made
our work more simple.

This kind of handling increased the complexity of the ATS as not only RIPng proto-
col communications had to be implemented. Required UDP assembly and disassembly
of packets also was needed, including checksum and packet length calculation. IPv6
layer assembly and disassembly of packets was also mandatory. At the end also data
link layer parameter handling had to be introduced to transmit packets with the corre-
sponding MAC address of the router emulated. Moreover, the reception of the packets
and their corresponding processing had to be handled.

Other link maintenance aspects of IPv6 Neighbor Discovery[NNS98] (ND) algorithm
had to be addressed. IPv6 relies several host autocon�guration tasks to the ND. Thus,
for correct node emulation, ND signaling is necessary.

TTCN-3 template de�nition was not versatile enough to allow e�cient matching
of incoming data. Wildcard only matching mechanisms were not enough, and by that
time, we did not address the development of external CoDecs. We only used internal
ones, generically provided by Danet.

Based on those hypothesis, there was not much that we could do. The solution found
was to create as many PCO as couples of communicating addresses required. We were
able to match unique, low level information. Due to the way IPv6 handles addresses,
each emulated node was associated to several addresses (unicast and multicast). To
ful�ll this multiple addressing scenario, several PCO were introduced. The complexity
generated by this fact was signi�cant, both at ATS coding and at tool modi�cation
level. ATS legibility was also an important issue as classi�cation of messages received
became complicated. Basically, every pair of origin/destination of addresses had to be
matched.
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2.1.2.3 Coding/decoding, libraries and low level data handling

The communication between RIPng nodes is message-oriented. Message de�nition has
a low level of abstraction and coding/decoding is done dependent on the position of bits
within the frame. Figure 2.7 presents RIPng packet as de�ned in the RFC 2080[MM97]
with its corresponding IPv6 header prepended, without any IPv6 options.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| Traffic Class | Flow Label |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Payload Length | Next Header | Hop Limit |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

~ Source Address ~

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

~ Destination Address ~

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Length | Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| command | version | must be zero |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

~ Route Table Entry 1 ~

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

~ Route Table Entry 2 ~

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2.7: RIPng packet format

Several codi�cation issues needed to be solved in order to de�ne a TTCN-3 module
that abstracts the RIPng packet. First of all, some �elds always took �xed values, like
the protocol version, which is '0110'B for all IPv6 tests. Other �elds must be changed
during test execution, and were modeled as parameters of templates, like pre�xes and
pre�x length values. Some �elds were parameters of the component, like source and
destination addresses (di�erent from one tested router to other). Finally, others needed
to be calculated each time a packet was about to be transmitted, like payload length
and checksum values. As shown, there were requirements on packet by packet basis,
destination, IUT and test suite dependent.
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We found that there was no easy mechanism, like the ones de�ned on the RFC
2373[HD98], for IPv6 address text representation. No library or support for compact
IPv6 address notation was provided. When de�ning parameters for a component, its
IPv6 address 2001:2::1 had to be coded. In our environment, XML �les were used
(see �gure 2.8).

<RUT_LINK2_GLOBAL_ADDRESS1 moduleId="IPv6RouterInterface\">

<OctetStringValue valueKind="4\">

200100020000000000000000000000001

</OctetStringValue>

</RUT_LINK2_GLOBAL_ADDRESS1>

Figure 2.8: Markup de�ning an IPv6 address

To ease TTCN-3 based IPv6 test generation, a test environment should provide
standardized methods for network address handling and representation.

TTCN-3 data type de�nitions were coded to provide abstract description of IPv6
packets. Templates are built based on data type de�nitions. Figure 2.9 shows an
example of a template de�ned.

We modeled the protocol version �eld as a bitstring �eld of length four. We
expected that integer values (like 6 for the protocol number) would be simply assigned,
but they have to be converted to bitstrings. The solution found was to invoke an
encoding function that encode the 6 in binary using four digits (Version := int2bit

(6, 4)). Even though this was not particularly a problem, -there was a work-around -
the solution does not seem natural. It is natural for a developer to expect that the
language solves these conversions transparently, at least, providing default rules that
can be overridden.

Another relevant limitation found was that we were not able to specify a template
with "any number of RTE" (note the di�erence with a recursive type with any number of
RTE). The template shown in �gure 2.9 is de�ned for a RIPng packet with exactly two
RTE. Pattern matching rules embedded in TTCN-3 might allow de�nition of repetitive
parts of structures that might help decreasing the number of data types and templates
de�ned. The problem indeed was not type de�nition, but matching incoming messages
to the template. Using the default internal CoDecs it was not possible to solve this issue.
We learned about external, user developed, CoDecs after we �nished the development.
This was one of the reasons that made us more conscious about the relevance of CoDecs
and motivated the research on the consequences they have on the ATS and vice versa.

Upon message reception, the message classi�cation presented several di�culties,
both for handling interleaved reception of RIPng packets and ND ones. This fact
conspired against legibility of the test. It is desirable to have some aggregation of
"similar" packets. In this way, logical separation of message reception and handling
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template IPv6PacketType RIPngRequestTable_tp

(IPv6AddressType source, IPv6AddressType dest,

IPv6AddressType P1, UInt8 PF1, IPv6AddressType P2, UInt8 PF2) :=

{

Ipv6Header := { Version := int2bit (6, 4),

TrafficClass := 0,

FlowLabel := int2bit (0, 20),

PayloadLength := 0, // CALCULATED BEFORE SENDING

NextHeader := NextHeaderUDP,

HopLimit := 255,

SourceAddress := source, // TEMPLATE PARAMETER

DestinationAddress := dest // TEMPLATE PARAMETER

}

Data := { UDPHeader := {

SourcePort := 777, // NEVERMIND

DestinationPort := 521, // SERVICE PORT

Length := 0, // CALCULATED BEFORE SENDING

Checksum := 0, // CALCULATED BEFORE SENDING

Payload := { Command := 1, // RIPng Request

Version := 1,

MustBeZero := 0,

RTE := { // First RTE

IPv6Prefix := P1,

RouteTag := 0,

PrefixLen := PF1,

Metric := 0

},{ // Second RTE

IPv6Prefix := P2,

RouteTag := 0,

PrefixLen := PF2,

Metric := 0

}

}

}

}

}

Figure 2.9: TTCN-3 template for a RIPng packet
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would lead to more structured ATS. Even though AltSteps are good for aggregating
and factorizing reception of messages, we did not achieve legibility.

By that time, we wanted some kind of inspection of unknown packets to be provided
from the ATS. We did want to use internal CoDecs in some way that we could inter-
actively take decoding decisions from ATS, but it was not possible. Reception message
queues are processed sequentially. Upon arrival of a non-matching packet, the reception
queue stalls. A "wild-card" default packet matching rule was introduced, but TTCN-3
does not provide methods for inspecting the unknown packet. Reception of unmatched
packets was logged and the analysis had to be done with external tools like Ethereal

(http://www.ethereal.com/), something that was important during test debugging
and log analysis. The ability of Ethereal (now Wireshark) to decode IPv6 packets was
exploited later.

2.1.2.4 Test execution

From the methodological point of view we intended to perform stepwise re�nements of
our ATS until producing the de�nitive one. Spiral patterns or incremental iterations
could not be performed in the way that they should. The amount of modules and things
to be generated delayed the �rst ETS test production. The time elapsed until we had
the �rst executable version of the test made that several di�erent pieces of testing code
had to be debugged at once. This produced a new delay in the feedback for re�ning the
test suites.

The lack or building blocks prevented us from concentrating only on RIPng tem-
plates and test cases. Representation of network topology, like routing tables, was
needed. The lack of IPv6 extensions or libraries also forced us to model from simple
things, like IPv6 packets, to complex behavior like ND algorithms. We are aware that
this was our �rst TTCN-3 implementation, but all the facts suggested that the test
development cycle was too big and only few iterations could be performed. Lack of
availability of IPv6 libraries for TTCN-3 refrained the community to adopt it. Test
cases had to be developed from scratch. Even nowadays, there is no clear agreement in
how to model IPv6 data in TTCN-3 and how to factorize complexity. A few (IRISA,
ETSI, etc.) have developed and published IPv6 TTCN-3 test speci�cations, but it is
very di�cult just to reuse something without adopting the whole design philosophy.

The �gure 2.10 shows the e�ective RIPng test development cycle and the main
tasks needed for closing it. It is worth comparing our initial test development plan
(see �gure 2.3) with the actual work done. Our experience suggests that network layer
support from the tool is needed to reduce the gap and, consequently, development
overhead.

The tests performed in our laboratory were done against both a GNU/Linux system
running Zebra/RIPngd and FreeBSD system running routed6. From the test develop-
ment point of view, Danet's tool gave the required support for analyzing and debugging
purposes. From the test execution point of view we found that log information was
hard to analyze. One possible reason is that our changes at PCO were not propagated
by the tool to the log �les. Thus, Data Link Layer information was stripped from the
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Figure 2.10: Test development cycle

packets and did not reach log �les.
TTCN-3 language and the tool provided adequate support for issuing a verdict,

but we found it di�cult not only to explain it but to extract information that eases
debugging. When testing for conformance, it is important to produce feedback that
helps the product improve compliance. We found it di�cult to analyze execution traces.
They were useful for test suite debugging, but not for SUT conformance debugging.

Five test cases were developed in time for their presentation at PlugTests 2004
and the rest of the test cases were ready and run at the TAHI Interoperability event.
Generated tests were successfully executed during PlugTests and the Interoperability
event, in October 2004 and January 2005 respectively, with interesting results. But still,
we found it not easy to use TTCN-3 tools compared to what we can do with v6eval.

2.1.3 Some lessons learned

The objective of the experience presented was to gain experience using TTCN-3 lan-
guage and tools while addressing a real and pending conformance test problem. As
stated before, one important reason behind the experience was to determine TTCN-3
maturity and its ability as a provider-independent tool and language for de�ning test
suites. Even though we addressed portability of the ATS, we run into internal CoDec
issues, which are not portable. Internal CoDec supplied by the tool are tool vendor
dependent, non-standardized. To achieve portability we need more than just an ATS,
but to provide the surrounding entities required to generate a full TTCN-3 test system.

We found that there are no standard extensions to handle IPv6 level data. It
is also noticeable that there is no explicit support in either TTCN-3 or the tool for
lower layer ports, which is required not only for IPv6 testing but for other Ethernet
transported protocols. Moreover, there is no easy mechanism for standard IPv6 address
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representation. For modeling network layer protocols, the tester network stack has
to be disabled. At that moment all IPv6 implementation details, including packet
assembly/disassembly, ND became part of our test and had to be developed. It is
desirable that an IPv6 oriented test tool provide as many tools as possible to the expert
to help him concentrate on the test purpose. Even though we partially succeeded, our
test suites relied on PCO behavior not de�ned in TTCN-3 standard language. Thus
running the tests over an of-the-shelf TTCN-3 tool might be impossible. TTCN-3 code
alone is not enough to fully specify a test system.

All our results indicate that it is not possible to provide standard TTCN-3 test suites
for IPv6 protocols based on our test architecture built on multiple host emulation from
a single test node. There is no standard requirement on TTCN-3 tools that support
our needs. Experimental results suggest that the minor changes performed to the tools
would bene�t TTCN-3 usage (maybe an IPv6 specialized version of the tools). Field
experience supports that the ability to emulate a complex network from a single host
is bene�cial from the point of view of test execution and is worth considering it as a
requirement for the TTCN-3 language.

Addressing further aspects of the RIPng test suite requires usage of other IPv6
features not implemented in the tool and not easily developed. RIPng relies on the
IP Authentication Header and IP Encapsulated Security Payload to ensure integrity,
authentication and con�dentiality of routing exchanges. IPv6 stacks must include IPSec
support, used by RIPng, and we have to manually code IPSec from scratch in TTCN-
3 for testing SUT security capabilities. Language features to encapsulate behavior
and produce libraries are not available in TTCN-3 as they are on other programming
languages. We found no easy way to achieve reusability and to scale complexity in a
regular divide-and-conquer fashion.

It seems that TTCN-3 template de�nition alone was not versatile enough to allow
e�cient matching of incoming data. Built-in internal CoDec based solution is not
portable. It might be interesting to have hierarchical incoming data matching or at
least being able to group similar matching rules. This has a direct impact on ATS
legibility as the number of entries in matching statements grew considerably. We think
that the problems of expressiveness would remain even if we use several PTC instead of
a single MTC. The experience of such implementation would help understanding other
TTCN-3 aspects, while contrasting single tester vs parallel testers on the same matter.

We found no way to de�ne recursive or iterative data templates. Repetitive struc-
tures (like routing tables) are sets of individual RTE. The de�nition of individual tem-
plates for packets with one, two, three, or more RTE again made the code di�cult to
maintain, unnecessarily large and hard to read. Repetitive tasks, like checksum calcula-
tion and veri�cation might be eased if templates would accept dynamic de�nitions (like
accepting functions in their de�nitions). Again, this would require a rede�nition of the
runtime architecture of the language and the language itself.

As a consequence of previous limitations, we were unable to �nd a pleasant method-
ology for test creation. It is di�cult to abstract parts of the components and protocols
for re-using in future implementations. It takes more time than expected to produce
runnable ETS. This fact makes that feedback from real execution returns late in test
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development cycles and the risk of delay due to redesign need is high.

2.1.4 Main �ndings of our hands-on experience

We have presented the most important lessons we found when applying the young
TTCN-3 language to produce test suites for RIPng protocol. We were able to meet the
schedule and the resulting test suite was successfully presented at 50th ETSI Plugtests
event and at TAHI Interoperability event. We showed that it is possible to develop test
suites using TTCN-3, but under special circumstances like having access to some parts
of the tool source code and being able to change its implementation.

Success of the language is tightly related to the availability of tools and their capacity
to cope in time with the requirements of di�erent �elds of application. A careful analysis
of enhancement requests has to be combined with pushing industrial requirements.
Widespread availability of tools would speed-up this process.

There are also pending issues regarding language constructs and style that would
lead to readable ATS.

Several important decisions were taken without enough study and experimentation.
The following section addresses detailed study of identi�ed problems, specially of the
relationship between the TTCN-3 code and portable coding/decoding functions.

2.2 TTCN-3 System Adaptor tra�c capturing and analysis

extensions

From our initial experiences with the TTCN-3 language, we found that TTCN-3 sup-
ports adequately verdict issuing. A powerful and adequate handling of verdicts is part
of the language. Despite of this, in many scenarios it is required to provide more in-
formation than only the verdict. Additional information has to be documented, which
provides enough con�dence to the implementer and third parties that the verdict prop-
erly re�ects the quality of the implementation. Additional information becomes even
more relevant when the verdict is not pass: the implementer wants to know why the
implementation is not conformant. It is arguable if the role of a testing laboratory is
to provide debugging information or not, but it is clear that enough information has to
be provided so as to support the verdict issued beyond any doubt.

The objective of this Section is to present some techniques and extensions that
proved useful, both when debugging the test suites and when documenting a confor-
mance statement. Section 2.2.1 presents current practices and TTCN-3 limitations
which motivates this work. Afterward section 2.2.2 presents the solution developed. In
section 2.2.3.1 the results are presented.

2.2.1 Addressed limitations

TTCN-3 architecture, as shown in 2.2 and 2.12 shows the conceptual layout and in-
terfaces used by the di�erent interacting entities. Refer to section 2.1.1.2 for a more
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detailed description of the di�erent entities and interfaces. It can be seen that commu-
nication with the SUT is done through the TRI interface, while logging is done through
the TCI interface. Despite of the level of abstraction, detailed message information that
needs to be logged has to traverse these interfaces, forcing the ATS to be complex and
detailed enough to handle all possible data.

Another limitation was that by the time of this work, standard logging functionality
of TTCN-3 was limited to constant strings only. Even though all vendors provided their
own extensions to support more powerful logging, they were not standard. Any solution
selected threatened ATS portability, thus, we decided to address this limitation in a tool
independent manner.A

Another limitation of the second version of TTCN-3 concerned logging capabilities.
Logging extensions of TTCN-3 v2.2.1 do not specify a format for log �les. Log �le format
is important for automatic analysis of test suite execution. Lack of standardization not
only threatens portability amongst vendors. It makes test laboratories to review their
test analysis routines whenever a new version of a tool becomes available, as changes in
the log �le format might happen.

Important enhancements in logging capabilities were made in TTCN-3 v3.1.1. Log
�le format was standardized into XML through the TCI-TL interface. This de�nes an
adequate interface between TTCN-3 output and in-house analysis tools.

Neither version considers a standard way of coding a sort of severity for each of
the log entries. Logging in a complex test suite can produce large amounts of entries,
which might provide di�erent levels of information or detail in di�erent moments of
time. Detail of logging might not be the same when debugging the test suite de�nition
and when being run against a SUT. Even though this is not a strong requirement, is a
tool that helps the test expert.

The �eld of application of our methodology is Internet Protocol testing and some de
facto standards were to be preserved. The Ethereal [ETH06] tool (currently Wireshark)
is the standard tool for tra�c analysis, and the standard tra�c capture format -pcap
�les- is required for storing test execution traces. The general way of obtaining tra�c
traces is to launch a tra�c capture session as part of the preamble and �nish it during
the postamble. This practice introduces some problems for log analysis: TTCN-3 log
and external traces have to be synchronized. Log synchronization might not be a
problem under a single test node, but when the test activity gets distributed might lead
to inconclusive verdicts.

2.2.2 SA extension

The System Adaptor (SA) extension developed was originally intended to provide an
Ethernet layer port implementation. When tests were executed, tra�c was captured
and registered with a packet sni�er for o�-line analysis. Several problems arose due to
the lack of synchronization. This required a manual, tedious, error prone and lengthy
intervention of the test expert. Combining test execution, tra�c sni�ng and logging
resulted as the next logical step.
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2.2.2.1 Tra�c capture and store

The library libpcap was already being used, so the main addition done here was not
only receiving the tra�c, but storing it. The format selected for storage is the regular
pcap format. This was a straightforward decision as it was not only part of the library
that we have been using, but also the standard format used by the TAHI group for
documenting packet exchange in their tests. In this way we are able to work following
accepted Community's practices with TTCN-3.

Another important bene�t of this solution is that we can add extra information,
while still preserving all packet information and reuse analysis tools. It would not be
the case of re-using a tool like ethereal for the analysis of the XML log �le generated
by TTCN-3 v3.1.1 (unless it would be compatible with the not yet standardized PDML
format).

2.2.2.2 Log extensions

The pcap �le format is extensible, and allows user-de�ned information to be stored.
The extensions performed enabled the coding of test-suites that transfer most of the
logging requirements into the dump �les. A customized header, called TIPI1 header,
was prepended to standard packet format inside a pcap �le for each packet or event
stored. This solves the need for synchronization of separated data sources at analysis
time.

The implemented solution also provides a single source of information for analysis,
without the need for vendor speci�c logging extensions. This is not only an advantage in
from the point of view of portability, but also considering information handling. It also
o�ers the bene�t of working over a well known, standard and stable data storage with
several tools able to use it. In this way, analysis tools developed will remain valid in
time even if tools evolve and change. Before data can be sent to the logging component
of TTCN-3, it has to be accessed from inside the TTCN-3 language, converted into
values of speci�c types and only after that, used to invoke logging primitives. This
procedure requires that incoming bitstring message has to be decoded according to a
certain decoding hypothesis and converted into a value. There is no certainty that
the decoding of a non-conformant message enables the test speci�cation to decode it
as a conformant message. After the uncertainty of possible wrong decodings, logging
from TTCN-3, through the standard interface, might be meaningless without the actual
tra�c capture.

The extension enables the joint logging of the expected packet and the actual re-
ceived one. This fact enables the expert to analyze data in a familiar format using stan-
dard tools that handle pcap �les like ethereal (http://www.ethereal.com). Moreover,
it is also possible to log verdicts associated to response arrival into the pcap �le, as will
be presented in the following subsection.

As mentioned before, additional information can be logged inside the TIPI header
that eases analysis task. The transmitted packet addresses are the physical ones used

1honoring http://www.irisa.fr/tipi/
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by the protocol, but in the TIPI header we can log the abstract names for source
and destination. This gives higher level of abstraction to low level data and enables
a broader group of experts to work on it. It is possible to associate the link in which
the information was collected with the meaningful high level name according to test
purposes. Another relevant type of meta-information that we include is the status of
the packet. This informs us if it was expected or not according to the test speci�cation.
Status may also hold indication regarding debugging data, warning, etc.

2.2.3 Data analysis

In the same way that tools like tcpdump or ethereal are used for regular pcap �le decod-
ing and inspection, the corresponding tool for post-test analysis had to be developed.
Architecture of ethereal dissectors and user friendliness of the tool were important
reasons for selecting it as the base tool for analysis.

The work consisted of coding a dissector, implemented as an external plugin, ca-
pable of understanding the TIPI header, while reusing the regular dissectors for the
Ethernet packets captured. TIPI extensions allowed coloring of packets according to
their relevance in the testing, information carried and so on.

Figure 2.11: Analysis of extended dump �le with Ethereal

Figure 2.11 shows the result of a enhanced pcap �le being analyzed with the ethereal
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tool. A real section of an OSPFv3 test is shown. On the second line of the Packet List
area of Ethereal's tool, numbered 192, it is shown a pass verdict after the right reception
of an expected packet. Several lines below, in line number 205, a fail verdict is shown
after a wrong message.

The Packet Details area of Ethereal's window is showing the contents of packet 198,
which is an indication of an unexpected packet, but that does not alter the verdict
according to the test codi�cation. In this moment we can analyze it and determine that
is a regular OSPF-Hello packet and validate the test. The information carried by the
TIPI header lets us easily know that it was captured on the link number 2, and that it
was sent from the router RUT2 to the rest of OSPF routers, without knowing Ethernet
or IPv6 addresses of each router. The Packet Bytes area of Ethereal's window shows
the contents of the packet byte-a-byte.

Extensions to ethereal were performed in such a way that the look and feel of the
application was preserved.

2.2.3.1 Results

The implemented solution allowed us to address several di�erent problems existing in
TTCN-3 v2 and others still remaining in the TTCN-3 v3. The solution allowed to avoid
problems due to limitations of generic CoDec, extend logging capabilities and also to
facilitate test execution.

The generic CoDec, if provided with a tool, might not be suitable for matching and
decoding properly complex protocols. During several stages of test development and
execution it was required to compare log traces with packet capture manually. This
task was eased as all information is jointly combined in a single dump �le. This work
does not address the inherent problem of CoDec lack of standardization, but provides
means for easing log analysis and verdict issuing.

Test execution is simpli�ed as there is no need to synchronize test execution with
external data capturing: it is only required to deploy test components and execute
the ETS. All execution information is condensed into a single self su�cient enhanced
log + packet capture �le. The log �le format is based on well know standards and is
stable, which validates long time e�orts to produce automatic analysis tools. Only the
developed plugin is required for standard ethereal tool to analyze the log �les, even
without recompilation of the tool. It reuses powerful existing packet analyzing tools
graphic and dissecting capabilities. Some of this problems are addressed in the TCI-TL
extensions of TTCN-3 v3 de�nitions, but tools for analysis of those logs have to be
developed from scratch.

Finally, meta-information support, like status of stored information is added. This
feature, not yet considered in TTCN-3 standards, is very useful for test analysis as it
eases the work of the test expert. It provides means for classi�cation of information
according to relevance, coloring of logs and a way of combining high level of abstraction
information with low level, bit oriented one. Even though it might be possible to
use TCI-TL XML extensions of TTCN-3 v3 to provide the required meta-information,
standardization on the output format should be addressed to avoid incompatibility of
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result analysis.

2.3 Search for ATS portability and ETS derivation ease

TTCN-3 is a strong-typed language which presents some di�culties to the test developer
when trying to work with complex, low level oriented data. Network protocols present
several hard to predict behaviors related to �ow �ags, options and other aspects that
require the ability to handle unknown sizes, number of options, etc. TTCN-3 language
provides basic matching capability based on wildcards like ? and *. Portability of
the test speci�cation cannot be achieved based only on the behavior expressed by the
TTCN-3 ATS. There is a tight relation between these matching capabilities aspects and
non-standardized tool extensions or with user provided coding/decoding functions.

The way that TTCN-3 is designed to address the decoupling of abstract and exe-
cutable operations is by means of concern separation implemented through standardized
software API. Coding of TTCN-3 values into transmittable messages and decoding of
bitstrings into their TTCN-3 representation has been removed from the core language
itself and is now done in an external component. These operations of coding and decod-
ing are relayed to a specialized component named CoDec. There are internal CoDecs,
which are not standard, and tool provided. To reach portability, it is possible to specify
external CoDecs, which are developed together with the TTCN-3 ATS, but are coded
in C++ or Java language.

The CoDec is interfaced with the TTCN-3 Executable (TE) through the Test Control
Interface-Coding Decoding (TCI-CD) interface. As CoDec are not standard in TTCN-
3, required ones might be present or not in tools. This is due to the fact that even
though the TCI-CD interface is standard, its presence is not mandatory. In the �eld of
Internet Protocol testing, tool-provided generic CoDec were not as �exible as we would
have liked. TTCN-3 allows the possibility of implementing new CoDec, speci�c to the
communication problem being addressed. They have to be coded in a "lower level"
programming language like Java or C++, platform languages. The concept underneath
the word platform shows that the choice between C++ and Java is not only a matter
of taste, but it de�nes the support that you may get from the environment selected.

There is also di�erent availability of libraries and tools for each of those languages.
The design of a test system architecture that separates implementation details from
the test de�nition itself helps achieving a high level of abstraction in the test de�nition
language. On the other hand, it imposes additional complexity to the test development
process: handling of communicable types has to be done both in the abstract TTCN-3
speci�cation and in the platform language specialized CoDec. Every time the low-level
types are reviewed, pieces of highly coupled yet independent code developed in di�erent
languages have to be altered and kept synchronized manually.

This Section presents and discusses the experiences gathered producing test suites.
As stated before, the �eld of application was the IP next generation (IPv6 protocol
suite). Coding decision options and how we solved the puzzle to allow reusability and
maintainability of test suites are presented too. During this process, a framework for the
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testing of IPv6 based protocols was de�ned and implemented. This framework, named
IPv6 Testing Toolkit, provides enough �exibility for software reuse with minimal or no
code modi�cations. Existing works like [VGSB+99, WLY03] were considered during the
development.

The section is organized as follows. In Section 2.3.2 we present intermediate works
that addressed the problem from a di�erent approach and help motivating current
framework. Section 2.3.3 summarizes the main problems addressed, puts together the
experience gathered through previous experiments and points out the decisions that lead
to the development of the toolkit. Afterward, in Section 2.3.4 the CoDec Generator is
introduced. The toolkit with a few examples is shown in 2.3.5. The work is summarized
in Section 2.3.6 and where we present the main contributions done.

2.3.1 TTCN-3 and low level communication

In this section we will introduce further TTCN-3 concepts that are relevant to this
section. Parts of the information presented here were introduced before in 1.3 and
in 2.1.1.2. Some of the information presented here is part of the background of a TTCN-
3 expert, we include it because there is not much documentation about it. The implicit
message here is not presented in TTCN-3 tutorials we have seen. Standard speci�cation
of the language speci�es the Interfaces and API, but does not explain the underlying
reasons for the design of the language. Understanding how to take pro�t of CoDec
and platform language presents a di�cult, undocumented and obscure challenge to any
team trying to gain experience on the usage of TTCN-3 language. This knowledge is
hard to acquire, belongs to groups working on the �eld and is not as widely published
as a beginner would like. Hence, we consider it a contribution to the community.

2.3.1.1 Architecture of an Executable Test System

Before going into details, let's just review some TTCN-3 concepts. According to [ETS05c],
a TTCN-3 test system can be thought conceptually as a set of interacting entities, each
one implementing a speci�c test functionality. Figure 2.12 shows the general structure
of a TTCN-3 test system. We will focus on the main concepts addressed by this work.

The TTCN-3 Executable (TE) interprets and executes TTCN-3 modules. The Test
Logging (TL) entity performs test event logging and presentation to the Test System
User. SA, which stands for SUT Adaptor (System Under Test Adaptor), �adapts� com-
munications between the TTCN-3 system and the SUT. The Platform Adaptor (PA)
implements external functions and provides a TTCN-3 system with a single notion of
time. TE can be distributed among several test devices. The Component Handling
(CH) implements communication between distributed test system entities. The Test
Management (TM) entity is responsible for overall management of a test system. Fi-
nally, the Coding and Decoding (CD) entity is responsible for the encoding and decoding
of TTCN-3 values into bitstrings suitable to be sent to the SUT. All these de�nitions
can be found in [ETS05a, ETS05b, ETS05c].

TTCN-3 standards do not de�ne some other concepts associated to the TTCN-3
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Figure 2.12: Conceptual architecture of TTCN-3

world, which are required here. Due to the fact that our approach is the application
of TTCN-3 technology in a changing research environment, we are concerned with
implementation and �eld problems too. Some of those problems are not addressed by
TTCN-3 standards. Tool vendors provide their solutions, standard extensions, which
lead to non-portable test case speci�cations.

2.3.1.2 Communication with the SUT

One of the key ideas behind the use of TTCN-3 language is to separate abstraction of the
test speci�cations from execution details. Gaining abstraction in the test speci�cation
allows test speci�cation reuse, makes test cases easier to understand and maintain, while
being powerful enough to handle all the details and complexity required for addressing
almost any kind of testing activity. But the dirty work cannot be avoided, and has to
be done somewhere. Abstract de�nition of the test case has to be augmented until an
executable form is reached. Despite the abstraction of the test speci�cation, the gap
has to be bridged until we can execute a test case.

As an example, an abstract send operation has to be converted into an operating
system call that writes some information on a wire, maybe at the level of a serial
interface or a network socket. Sending information is the abstract operation and writing
to a socket is the executable operation. This mapping is unavoidable and has to be
provided as part of the Test Speci�cation. TTCN-3 language addresses this problem
with two Application Programmer Interfaces (API): Test Runtime Interface (TRI) and
Test Control Interface (TCI). These interfaces allow the speci�cation of low level details,
required for the actual test execution.

The TTCN-3 standard provides two de�nitions of each API, one using Java, and
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an equivalent one in C/C++. Strictly speaking, there is only one de�nition for the
API and two mappings into C and Java language. Even though the TTCN-3 standard
does not provide any restriction, and a TTCN-3 tool might implement both C/C++
and Java API, the state of the art is that tool vendors either specialize in Java or in
C/C++.

Data representation in TTCN-3 is very similar to the Abstract Syntax Notation
(ASN). Some protocol standards de�ne the message construction using this syntax, and
thus can be natively supported by the TTCN-3 tool provided that standard encoding
methods like Basic Encoding Rules (BER) are used. Other protocols, many from the
Internet Engineering Task Force (IETF) do not describe the message construction in
ASN notation, and might use ambiguous notation as English language. The task of con-
verting abstract types and values into transmittable messages is removed from TTCN-3
language and relied to external components.

Components, or interacting entities, are distributed and communicated through the
TRI and TCI interfaces. As an example, a send operation in TTCN-3 language, implic-
itly uses non TTCN-3 codes through TCI and TRI. Through the TCI, the high level
representation of a message is converted into a transmittable message, represented as a
bitstring. The bitstring is then relayed through the TRI to the component that is ulti-
mately responsible of the transmission. These components and others are coordinated
from the TTCN-3 Executable (TE) implicitly during the execution.

We focus our analysis mainly on coding and decoding operations. These are relayed
through the TCI to a specialized component named CoDec. The CoDec is interfaced
with the TTCN-3 Executable (TE) through the Test Control Interface-Coding Decoding
(TCI-CD) interface, de�ned in [ETS05c].

The way the complexity and the work are distributed is elegant and powerful, but we
found that the cost associated to it is not negligent. Two di�erent programs, coded in
di�erent languages, developed and maintained by two di�erent development groups have
to be synchronized through the TCI-CD interface. During the �rst stages of the test
design and development, the TCI-CD o�ers an initial milestone and synchronization
for the two parts. After the �rst version of the test suite is complete, every change
performed that a�ects the data representation, level of abstraction of the messages or
design of the test, a�ects both parts. The tight coupling of TTCN-3 data types and
their corresponding CoDec generates this problem. This fact a�ects the whole lifecycle
of the test. Elegant and simple solutions on one side of the TCI-CD might force obscure
and di�cult coding on the other side of the TCI-CD.

2.3.2 Highlights of intermediate solutions

With the goal of producing an adequate framework for IPv6 protocol testing, several
di�erent approaches for test design and development were carried out. Some of them
are worth to be described, some others are not.

During the RIPng experiments we learned that coding and decoding issues were
highly relevant for portable and e�cient test speci�cations. The problems ranged from
IPv6 network addresses manipulation capabilities to reception of unexpected -but still
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valid and conformant- data. State-of-the-art IPv6 testing requirements do not impose
highly complicated signaling patterns, but very detailed composition of messages and
a bitwise inspection of incoming messages. TTCN-3 language design addresses mainly
the high level part of the testing problem, relaying the low level, bit oriented work to
specialized pieces of code not speci�ed in TTCN-3.

2.3.2.1 Initial Problems

The test development process induced by TTCN-3 mainly splits the work in two di�er-
ent development tasks. The �rst one directly related to the de�nition of the message
sequencing and exchange, related to the abstract idea of test execution. The second
one addresses crafting and bitwise coding and decoding of exchanged messages. These
two di�erent tasks, even though tightly related, are addressed by di�erent experts with
deep IPv6 skills, using di�erent languages: the �rst task requires TTCN-3 speci�cation,
while the second one, platform language codi�cation, in our case C++.

These two di�erent tasks are combined through the TCI-CD interface, a TTCN-
3 specialized interface for the decoupling of abstract and low level message handling.
Its goal is to permit the data exchange between the TTCN-3 data structures and the
platform language, which is in charge of performing low level or specialized tasks. To
avoid obscure data manipulation practices, we decided to completely map TTCN-3
types into platform language ones and vice versa. In this way, we would share a common
modeling of the communication messages and objects both in the platform language and
in the TTCN-3 test speci�cation. Low level manipulation would be done in the C++
view of the data, while test related decisions would be taken on the high level model
done in TTCN-3 types. The link between these two representations is given by the
encode and decode operations of the TCI interface, which were developed too.

After our �rst complete implementation of a test suite following this approach,
published in [SBFV05], we realized that this process (named CoDec development from
here on) is tedious and error-prone. Whenever there is a C++ or TTCN-3 requirement
that forces some change in the type de�nition, the counterpart also has to be corrected
accordingly. Di�erences in the expressiveness of the type de�nition structures of both
languages induces non transparent data transformation procedures.

Additionally, IPv6 is not just a protocol, but a protocol suite. It forces us to handle
di�erent, simultaneous, not always related IPv6 message exchanges. This forces us to
be able to handle all possible incoming IPv6 messages, even though we are interested
in testing some speci�c behavior. Transmission is not a problem, as we are in control
of which messages to transmit.

2.3.2.2 Reusing an existing tool: Ethereal

Trying to minimize the complexity of the CoDec development, the decision taken was
to make an attempt to use an existing tool for solving the decodi�cation of incoming
packets. It is important to note that the main problem arises upon packet reception,
where we need a good deal of �exibility. Conformant packets might arrive in di�erent
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orders and with several variations in their codi�cation, we should be able to accept all
possible conformant combinations while rejecting all non conformant ones. Transmission
is simpler, as we control what we want to transmit, how and when.

The goal is to avoid the complexity of manually decoding an arbitrary incoming
IPv6 packet and having the task done by the Ethereal tool [ETH06]. Ethereal is a well
known tool extensively used in the IP world. It provides several bene�ts like: it is well
known, it evolves with new protocols, it is maintained, it is community-validated and it
is free. Considering all these bene�ts, we decided to perform the low level decoding of
incoming messages using Ethereal and interface it with TTCN-3 through the TCI-CD
interface.

Several transformation formats and tasks were required to interface Ethereal with
TTCN-3. Data received through the System Adaptor reaches the TCI-CD interface in
a TTCN-3 format. Even though it is the bitstring representation of the packet, it is
received as a TTCN-3 string. It has to be transformed into something understandable
by Ethereal. Then, Ethereal's output has to be parsed and used to assemble the TTCN-
3 objects that will hold the received message. Amongst the di�erent Ethereal output
formats, PDML (Packet Details Markup Language) [PDM06] format was chosen, an
XML representation of network packets. The library libxml was used to parse the
PDML description of the packet and have access to all of its parts.

Even though it was possible to reuse the tool and avoid the complexity of packet
parsing, interfacing Ethereal is not a minor task. Most of all, not all problems were
solved using Ethereal.

Problems due to the use of Ethereal
Even though Ethereal tool greatly solved the problem of parsing incoming messages,
it does only provide that. Message transmission was done independently from Ethe-
real, by a generic function written from scratch. This solution lacks of a symmetrical
treatment for transmission and reception operations. The code used for sending data is
di�erent from the one used for receiving. All changes have to be replicated in di�erent
places that implement di�erent API.

Moreover, PDML was neither standard nor stable. Every time a new version of
Ethereal is released, we had to verify that our PDML parser was still valid, thus the
mapping had to be reviewed every time Ethereal is updated. Ethereal also did not
decode parts of the packets which are important for our purposes (i.e. content of
padding �elds), thus, it was necessary to patch Ethereal to meet our requirements. The
amount of C++ code to maintain did not shrink signi�cantly, and the solution become
more complicated for deploying, as an additional external dependency was added. The
complexity was shifted from packet parsing into interfacing and data transformation,
but still a simple and elegant solution was missing.

It was good to see that we could reuse existing and good tools together with TTCN-3.
Despite that fact, the sum of all these problems suggested us to abandon this approach.
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2.3.3 Summary of main addressed problems

This section summarizes technological needs and problems faced before the develop-
ment of the CoDec Generator. It shows relevant problems and solutions found, our
understanding of what is required from a testing tool and the issues that motivated our
decisions.

It is worth mentioning that the problems introduced by the use of Ethereal, are
neither due to Ethereal itself nor the reuse of existing tools, but to the fact that we
had to interface things not meant to be interfaced together. Not all the di�erent us-
ages of Open/Free solutions were discarded as happened with the previous example.
Functional extensions were successfully added to Ethernet ports using the libraries
libpcap [LIB06a] and libnet [LIB06b], as presented in [SBV06]. These extensions
are now included in all our tools. What was addressed and solved are some speci�c re-
quirements of IPv6 protocol testing, but they could not solve the main issues regarding
an adequate protocol testing framework. The main problems that were faced and had
to be addressed are presented in this Section.

2.3.3.1 CoDec speci�c problems

As stated before in Section 2.3.2, CoDec development, integration and maintenance rep-
resent the main issue for us using TTCN-3 for IPv6 testing. When test suite descriptions
are developed while the protocol speci�cation is being developed too, it is very important
that the test speci�cation language is easily maintainable. When changes are produced
in the test suite speci�cation, the test system must be modi�ed accordingly. When an
updated speci�cation of the protocol gets approved, the test system must be adjusted
to meet it. These activities impose additional constraints on the test environment.

Some problems were found on TTCN-3 regarding test case maintenance. This is
due to the fact that manual synchronization of types has to be done in two languages:
platform and TTCN-3 languages. When changes in the test speci�cation are required,
the TTCN-3 ATS needs to be adjusted, and consequently, related parts in the CoDec
have to be adjusted too. Probably some change in the updated standard of the protocol
requires a change in the codi�cation of messages that update the CoDec and TTCN-3
code have to be adjusted too. Moreover, there is a group of operations whose natural
place is not the TTCN-3 ATS. For example, operations like checksum and length cal-
culation can be seen more like a transmission problem than a test logic problem, thus
the coding process is a natural place for performing these operations. When we are not
testing the checksum algorithm itself, it becomes a transmission problem. If we specify
it in the ATS, we lose abstraction. We would like to integrate these operations to the
test development process in a more automated way.

Another aspect that becomes clear after working with CoDec implementation is
that the TCI-CD is only an API designed for data exchange, not for data manipulation.
Standard TTCN-3 data manipulation from the platform language is required for easy
and e�cient CoDec development. We realized that there are no standard libraries
for manipulation of TTCN-3 data in an intuitive, e�cient and uniform way across
the di�erent types. Standard operations in languages like C++ (i.e. casting, type
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conversion, etc.) cannot be performed in TTCN-3 in a simple and type independent
way. To ease CoDec generation we �nd it necessary to be able to develop a library that
provides a value-type handling similar to the one used in the platform language.

At a certain moment in time, we were involved in three di�erent groups coding dif-
ferent IPv6 test suites for independent protocols. We faced severe problems for IPv6
core protocol type de�nitions due to the fact that there is not a methodology or tool sup-
port for separating test speci�c issues from standard (library-like) routines or processes.
Handling new protocols implied de�ning new data types functions and modifying the
CoDec accordingly. This led us to maintain three di�erent CoDecs that shared most of
their sources.

Several other small factors also accounted, but we want to point out as a last relevant
problem that our near-future requirements imposed us the need of a strong workload
on the CoDec side. Encryption and Security handling can be seen as further layers of
encapsulation of message encoding operations. This requires that good software engi-
neering practices are applied to all the software development process. After our abstract
speci�cation tool becomes a programming language, software engineering practices can
be taken from granted. TTCN-3 does not provide means for adequate handling of these
operations and completely manual implementation of all operations would become not
feasible, or at least, extremely complex.

2.3.3.2 Empirical observations

Apart of previously mentioned problems, our TTCN-3 experience also showed empirical
facts that oriented us in subsequent decisions. The �rst one, that is almost evident, is
that there is a high level of redundancy between TTCN-3 and C++ code. Due to the
fact that the development process applied started from the abstract side, it is the C++
code that repeats TTCN-3 structures. The C++ code which implements the CoDec
is only a mean for representation conversion between physical messages and TTCN-3
data types.

Other relevant observation performed is that TTCN-3 type de�nition already holds
most of the information required for coding and decoding. Most of the platform language
code mainly repeats TTCN-3 code. The addition is a few metadata information (like
type length for some data types) and speci�c algorithms for coding/decoding particular
�elds in non-standard ways. Also precedence in coding/decoding operations has to be
speci�ed, as calculating the length �eld and afterward the checksum is not the same
than the reverse order.

2.3.3.3 Approach followed

The objective was to simplify test suite development process by minimizing CoDec
development and maintenance work. This can be achieved by separating all that can be
automated from what really has to be provided (because cannot be expressed in TTCN-
3 language). This separation can be done by extending TTCN-3 with the addition of
the missing logic, dependencies and semantic which are not present in the standard
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language.
The tool that automatically performs these tasks will be referred as the CoDec

generator from now on and will be the subject of Section 2.3.4. The initial cost of
development of the CoDec Generator is higher than simply developing a CoDec for a
single test suite. The main advantage of the CoDec Generator is that it can be reused
through di�erent tests. In this way, the test dependent part of the CoDec remains
independent from the CoDec generator. The CoDec generator becomes a part of our
test platform and test development process. Only the platform language code and logic
added to the TTCN-3 abstract speci�cation is part of the test suite. The pieces of
platform language code which serve as input for the CoDec Generator will be referred
as codets.

2.3.4 The CoDec Generator

The CoDec Generator is a generic tool that fully automates the task of CoDec develop-
ment. It takes the TTCN-3 code and codets (additional logic developed in the platform
language) and produces a CoDec that implements the TCI-CD interface, providing the
required coding and decoding facilities. Even though it was developed while addressing
IPv6 protocol testing, the CoDec generator was carefully designed and developed as an
�universal� tool, and can be used for CoDec generation in any testing domain. The only
bias introduced by our IPv6 requirements is the order in which features were developed
and that the platform language for which it is currently implemented is C++.

The underlying idea behind CoDec Generator was already presented as our work
methodology during previous sections: each TTCN-3 type is mapped to a platform lan-
guage object, standardized automatic conversion is provided and customized conversion
means are provided using codets. The idea of having di�erent levels of abstraction, and
thus, di�erent data models in the CoDec and in the TTCN-3 abstract test speci�cation
was discarded as it would always require a very specialized CoDec. In such case, the
CoDec expert and the TTCN-3 expert would have di�erent views of the problem and
would not even share a common data model of the problem.

The mapping implemented by the CoDec Generator is not performed directly to
platform language objects, but to a hierarchy of objects designed to provide a com-
fortable framework for data handling inside the CoDec. We will return to this point
in 2.3.4.2. The rest of this section provides a quick glimpse of the CoDec Generator.

2.3.4.1 Architecture

The CoDec Generator implements a TTCN-3 parser, built using bison [BIS06] / �ex [FLE06]
GNU Open/Free tools. It has been ported and tested in GNU environments both in
Linux and Windows systems. The implemented parser is responsible of extracting basic
type information and structure from standard TTCN-3 code. Even though only type
information is strictly required for CoDec Generation, a parser that accepts the com-
plete TTCN-3 language was developed, which is another spin-o� of this work. Type
information is further augmented (as shown in 2.3.4.3) with codets that perform speci�c
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Figure 2.13: Platform basic type hierarchy.

operations between the TTCN-3 object and the low level, platform language managed
codi�cation.

The way in which the CoDec Generator is integrated into the native TTCN-3 frame-
work is straightforward and simple. As it does not produce changes into the TTCN-3
code, no particular care has to be taken while developing the TTCN-3 ATS. The CoDec
Generator should be invoked prior to TTCN-3 link-edition phase, so the actual CoDec is
generated for the ETS. The CoDec Generator may produce platform language sources,
objects or libraries, according to the TTCN-3 tool requirements. Depending on the
options provided by TTCN-3 tool, it can be included into user de�ned link edition
commands and invoked transparently from the tool environment.

2.3.4.2 Interfacing the CoDec Generator with the TCI and TRI

Apart from the CoDec generator, other tools that o�er required functionality and ser-
vices to the solution are provided. The T3DevKit provides also a library that imple-
ments and exports basically functions for data type management and data coding and
decoding. The library provides adequate de�nitions that allow the mapping of TTCN-3
types and data structures into special platform objects. Platform objects were devel-
oped using platform language (C++ or Java) Object-Oriented properties (inheritance,
polymorphism, etc.) so as to allow homogeneous and simple access to all types. The �g-
ure 2.13 shows the class-inheritance diagram for the objects that map TTCN-3 primitive
types.

This ensures a minimum interface (set of member methods) available for all the
objects. All objects implement their own Encode() and Decode() methods, main op-
erations required for a CoDec. Methods like GetValueHexa() and SetValueHexa()

are intended to provide a uniform handling of the value, regardless the object itself.
The implementation would be subclass dependent as the semantic might di�er from a
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type union ICMPv6OptionSingleType {

SLLOptionType SLLOpt,

TLLOptionType TLLOpt,

RedirectHdOptionType RedirectOpt,

MTUOptionType MTUOpt,

PrefixOptionType PrefixOpt,

ICMPv6UndefinedOptionType UndefinedOpt,

AdvertisementIntervalOptionType AdvertisementInterval,

HomeAgentInformationOptionType HomeAgentInformationOpt

}

Figure 2.14: TTCN-3 type de�nition for a ICMPv6 options �eld

Charstring to an Integer, but a uniform way of accessing primitive types is provided.
All variables, specializations of class t3devlib::Variable, provide a method Dump

that allows textual representation of the instance value. This method receives as a
parameter an output stream and is intended to provide an aid for CoDec debugging.
Providing a comprehensive guide to the library is beyond the scope of this section. The
complete tool, comprising the CoDec generator, libraries, examples and documenta-
tion are published on-line as a gforge project in http://t3devkit.gforge.inria.fr/,
currently maintained by Anthony Baire.

2.3.4.3 Platform language code extensions: CoDet

In the general case, automatic TTCN-3 type conversion into platform objects and back
is not feasible for complex protocols. Many protocols not only handle unknown size
payloads, but inclusion of unknown options, making it di�cult to handle simple type
matching and standard codi�cation rules. To help the (de)coding process, the CoDec
Generator accepts codets that perform specialized handling. This allows the test devel-
oper to separate (de)coding logic from test logic and also to place logic that naturally
belongs to (de)coding process in the CoDec. This approach follows the same design
principle as TTCN-3, but addresses relevant software engineering aspects. If no addi-
tional input is provided, the CoDec Generator will produce -if possible- a CoDec that
directly maps TTCN-3 types into bitstrings and vice versa.

Di�erent options of �logic extensions� were considered during the design of this
version of the CoDec Generator. Probably the most appealing ones were those that
extended TTCN-3 language. We faced problems: access to a compiler was required so
as to modify it and implement our extensions; our ATS would be non-portable unless
ETSI accepts our proposal and modi�es the standards. Another option considered was
to perform the extensions inside comment blocks. In this way our ATS would still be
speci�ed in standard TTCN-3 language, but parsing becomes more complex and non
standard. The implemented option considers independent �les for both TTCN-3 code
and the extensions.

Figure 2.14 shows the TTCN-3 type de�nition for the option �eld of ICMPv6 and
Figure 2.15 shows the codet to be executed prior to the actual decoding of the �eld,
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inline void ICMPv6OptionSingleType::PreDecode (Buffer& buffer)

throw (DecodeError) {

UInt8 type;

int position = buffer.GetPosition();

buffer.Read (type, 8);

buffer.SetPosition (position);

SetHypChosenId (map_icmpv6_opttype.GetValue(type));

}

Figure 2.15: Codet for determining the option type for ICMPv6OptionSingleType

speci�cally, for guessing the type of the option �eld. We can see that the matching
is done based on TTCN-3 type names and prede�ned member names. These member
names correspond to the TTCN-3 type that is being coded and the moment that the
operation is to be performed. We will refer to these possible entry points as codec hooks.
Possible codec hooks for decoding are: PreDecode, PreDecodeField, PostDecodeField
and PostDecode. The CoDec generator will replace standard handling for the cus-
tomized one, according to the de�nitions provided, if present. The symmetric pro-
cessing is applied during coding time, and the possible codec hooks are: PreEncode,
PreEncodeField, PostEncodeField and PostEncode.

It can be seen on the function de�nition at �gure 2.15 that the CoDec Generator
also provides a framework for handling DecodeError exception issuing. EncodeError

exceptions are handled too.

2.3.4.4 Relevance of automatic CoDec generation

The CoDec Generator is a generic tool that automates the CoDec development task.
It is based on a parser that extracts required and available logic already present in
standard TTCN-3 ATS and complements it with codets, pieces of platform language
code, to build the e�ective CoDec. As it extracts most of type information from TTCN-
3 ATS, the task of repeating TTCN-3 type structure in the platform language is done
automatically, removing the error-prone task of type structure synchronization from the
test developer. Only codets need to be maintained. The amount of test-speci�c code
becomes smaller, making it easier to maintain and evolve. This impacts directly on the
development and maintenance costs of the test lifecycle.

2.3.5 The IPv6 Testing Toolkit

The �IPv6 Testing Toolkit�, http://t3devkit.gforge.inria.fr/, is a tool developed
inside the research team that implements described solutions. We took part in its
development team, obtaining the registry IDDN.FR.001.030006.001.S.A.2006.000.10600
by the Agence pour la Protection des Programmes. It is a set of data, functions and
basic mechanisms dedicated to TTCN-3 test development and execution. It is built on
the top of the toolkit T3DevKit, that is distributed together with the CoDec generator
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that addresses IPv6 speci�c issues. The original idea was to provide a library that o�ers
a higher level of abstraction and specialization to the language TTCN-3. The toolkit
was developed while researching on the development of IPv6 test suites. As TTCN-3
de�nition does not provide means for compiled and packaged code distribution, the
toolkit is a collection of tightly coupled Open/Free tools, C++ libraries and pieces of
TTCN-3 routines and type de�nitions.

2.3.5.1 Scope

The objective of the IPv6 testing toolkit is to allow quick design of IPv6 test suites
with low maintenance cost. It was designed and split in two separate and independent
components, the development kit itself, which includes the CoDec generator and is
application independent, and its IPv6 specialization. To achieve that, it addresses
TTCN-3 design and maintenance issues, as much as providing o�-the-shelf type and data
structures required for adequate protocol handling. For our team, it was not possible
to address a stable data type de�nition until we solved the CoDec generation issue. At
a certain moment in time, there were 3 test experts developing di�erent abstract test
suites in parallel for di�erent IPv6 protocols. Until the CoDec Generator was developed,
it was impossible to share e�ciently the code base of IPv6 de�nitions. Once the CoDec
Generator was available, it became possible to share common de�nitions of base types
and tools through a version managed source repository.

Team e�orts on IPv6 testing required working in di�erent parts of IPv6 protocols,
ranging from core protocols to OSPFv3 and Network Mobility. Details of protocols
implemented are given in 2.3.5.2. Figure 2.16 shows a graphical representation of the
components, that helps understanding their correlation.

Main types and data structures are readily available and can be used as sort of
building-blocks to design test suites. This cannot be achieved completely as TTCN-3
does not provide mechanisms for function de�nition overriding or library-style distribu-
tion.

2.3.5.2 The IPv6 library

As an specialization of the t3devlib:: (library presented in 2.3.4.2), the testing toolkit
library for IPv6 complements the former by adding functions and tools for handling
IPv6 protocols. From the C++ point of view, it is a namespace that contains all compo-
nents required for IPv6 test handling, and does not require to be completely associated
to the concept of a library. Functionally, it comprises TTCN-3 types, functions and
C++ codets required for handling IPv6 testing in any toolkit-like environment (not
only for our TTCN-3 tool).

The t3devlib::ipv6:: namespace collects components that were used to address
the testing of the following standards: IPv6 & ICMPv6 (RFC2460, RFC2461, RFC2462,
RFC2463), IPv6 options (RFC2770, RFC2711), Mobility (RFC3775, RFC3963), IPSec
(AH RFC2402, ESP RFC 2406), IPv6 over Ethernet (RFC2464), Routing protocols
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(RIPng RFC2080, OSPFv3 RFC 2740, BGP4+ RFC1771, RFC2858), Transport Pro-
tocols (UDP RFC768, TCP RFC793).

Implementation aspects, like endianness, are implemented for standard IPv6 over
Ethernet coding and might require to be revised before porting the libraries to other
deployment scenarios.

2.3.5.3 An IPv6/ICMPv6 example

The objective of the example is to show the usage of the toolkit for two simple opera-
tions in ICMPv6 packet transmission: length and checksum calculation. Even though
these operations have to be performed on a packet-by-packet basis, they were hard to
implement in our �rst test suites [SBFV05]. It was understood that it is an accessory to
the test suite, but generic CoDecs provided by tool vendors do not support this kind of
specialized operations easily. On the other hand, TTCN-3 is not adequate for this kind
of bit-oriented calculations, and it is clearly a transmission problem. We will do a high
level presentation on how to address this problem using the toolkit, without getting
into technical issues which are beyond the scope of this section. Technical details and
a tutorial are distributed with the toolkit.

We will just concentrate on the functional handling of properties and leave aside
complete type description and function invocation details. Figure 2.17 shows an extract
of the codet that is executed at PostEncode time. PostEncode is the right moment for
length calculation, because it is the last access provided before encoding is �nished and
low level representation is returned to the TTCN-3 invoking call. At this point, it is
supposed that all upper level protocol data is already assembled, source and destination
IPv6 addresses too. Length can be thus calculated, and only afterward the checksum
(because it covers also the length �eld, that has to be �lled beforehand).

The tags <snip> indicates parts of the source code that were removed for the
sake of simplicity. The �rst thing that is performed is the length calculation and
stored in the bu�er in the right position. More code is removed to keep the exam-
ple simple. The checksum calculation function, ChecksumIPv6(), is part of the library
t3devlib::ipv6:: and can be simply invoked. Afterward the checksum is stored in
the transmission bu�er and the packet assembly is completed.

The removed pieces of code are not relevant to the ICMPv6 checksum calculation
and are omitted for readability. This example shows a good compromise between what
can be automated, what could be provided by the toolkit and what has to be speci�ed
in the platform language in the form of a codet. This codet is part of the toolkit and
should be reused, unless it is required to replace it due to some test requirement that
a�ects its calculation.

2.3.6 Summary

The CoDec generator is a speci�c tool, that addresses the problem of CoDec writing.
To achieve this, a whole framework and methodology was designed and implemented.
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inline void FrameType::PostEncode (Buffer& buffer)

throw (EncodeError) {

<snip>

// IPv6 layer: compute the payload length if not given

Ipv6HeaderType& ipv6 = layer.Get_ipv6();

if (ipv6.computeLength_) {

UInt16& len = ipv6.Get_PayloadLength();

buffer.SetPosition (beginning_of_layer[id]);

len.SetValue (buffer.GetBitsLeft()/8 - 40);

buffer.SetPosition (buffer.GetPosition() + 32);

buffer.Write (len);

}

<snip>

// ICMPv6 layer: compute the checksum if not given

ICMPv6MessageType& icmpv6 = layer.Get_icmpv6();

if (icmpv6.computeChecksum_) {

Unsigned& checksum = icmpv6.Get_Checksum();

checksum.SetValue (

ChecksumIPv6 (ip6_pshdr, buffer, id, 2)

);

buffer.SetPosition (beginning_of_layer[id]);

buffer.SetPosition (buffer.GetPosition() + 16);

buffer.Write (checksum);

}

<snip>

}

Figure 2.17: ICMPv6 Codet fragment for checksum and length calculation
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The t3devkit holds all the extensions which are required for building the executable test
suite from the TTCN-3 abstract speci�cation, augmented with codets.

The t3devkit also addresses the interfacing with TTCN-3, as required by the stan-
dard, implementing the TCI-CD, TRI-SA and TRI-PA interfaces. This provides a global
coherence for data representation for all the interfaces required for execution directly
related aspects. TTCN-3 C/C++ API is not as mature as the Java one in the TTCN-3
speci�cation. It does not o�er a simple to use, coherent and intuitive environment. It
just provides an API. To overcome this limitation, an Object Oriented framework is
provided, as presented in 2.3.4.2, rather than a basic C++ wrapper. A more detailed
explanation could be found in the documentation distributed with the toolkit. The
framework provides OO handling of TTCN-3 values from C++, and o�ers services like
memory management and communication with the TTCN-3 Runtime System, even the
dispatch of TRI calls between every port instance.

To optimize the cost of test suite development and maintenance, the t3devkit pro-
vides a set of debugging functions for tracing and controlling the operation of the
CoDecs, Platform Adaptor and System Under Test Adaptor components of the tester.
This thesis work contributed with this work, which was addressed by the whole team at
the laboratory. These capabilities, even beyond the scope of TTCN-3 de�nition, proved
absolutely useful for test case maintenance and development lifecycle.

The complete toolkit is built based on a set of scripts that makes it independent of
the tool vendor, provided that it is based on C++. This is also a hard task, as TTCN-3
standard does not describe the way �les should be arranged, extensions, or even, how
to glue TTCN-3 code together in the form of a library. Tool vendors use their freedom
to implement this in di�erent and incompatible ways.

The result of this development is that we now work with a stable base of TTCN-3
code for our code development. Maintenance is reduced, as it is simple to reuse and
factorize code. As we increase the reuse, we can take for granted functionality and
quality of the code. Development cycles are smaller, cost of test case development and
maintenance shrank and we rely on a stable development platform.

Some of the contents of this section were presented, published or are accesible in dif-
ferent ways. The t3devkit is available from http://www.irisa.fr/tipi/tools_en.htm,
and is distributed under the CeCILL-C license.

2.3.7 Final words on automatic CoDec generation

The TTCN-3 testing toolkit (T3DevKit - CoDec generator with the corresponding set
of libraries, type de�nitions and tools) addresses test suite lifecycle factors. Usage of
the toolkit itself is more than just knowing a library, because it addresses TTCN-3
gray areas in the transition from TTCN-3 Abstract Test Suites (ATS) to Executable
Test Suites (ETS) and proposes a solution to problems related to development, reuse
and maintenance. It proposes a methodology for describing communication objects
and translating them into transmittable bitstrings and vice versa. The toolkit main
building element is the CoDec Generator, a tool that addresses the problem of CoDec
development. It was successfully applied to IPv6 test case design and development,
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but it is technology neutral in design and philosophy. The tool is now freely available,
distributed over the Internet and is being applied to other domains too.

The result is a set of free tools, either for IPv6 protocol testing or general protocol
testing. CoDec development complexity was moved into the CoDec Generator, but it
can be reused and maintained independently of the test suites. Test suite �source code�
now only contains TTCN-3 ATS and codets, which are platform language extensions
helpers for the CoDec Generator. The main practical result is that these tools simpli�ed
our tasks of test development and maintenance.

Ongoing research includes porting this philosophy of work to the TCI-CD Java API.
We were also working on di�erent ways for codet speci�cation. A platform independent
codet language is under analysis too, but as we intend to integrate it into TTCN-3
language, we need to have access to a compiler to achieve it.

2.4 E�ective use of the extended TTCN-3 architecture

With our �rst experiments, we showed [SFRV05, SBFV05] that TTCN-3 is capable but
not suitable for IPv6 protocol testing. Based on those results, we identi�ed the main
problems and developed a methodology and a tool, the T3DevKit, to address reusability
and maintenance of the speci�cations. With the extended TTCN-3 framework, we found
that the development of test suites for IPv6 core protocols become simpler. We decided
to see how can we use the new tool to scale in protocol complexity. The problem
addressed in this Section is to see how to use the extended TTCN-3 framework when
designing test suites for protocols that require further message assembly and handling
complexity.

Di�erent new test case architecture alternatives become available, and the approach
was to obtain empirical data to determine validity of solutions. We aimed at scaling
in the complexity of the protocol addressed, thus, we searched for a protocol with
complex data manipulation and handling. A protocol that would seem unrealistically
testable with our initial approach, but that would allow us to show CoDec generation
and methodological bene�ts and move one step further in complexity. The protocol
selected was IPv6-IPsec. The selection forces us to embed cryptographic routines in
our test speci�cation, link the ATS with cryptographic libraries and reuse existing IPv6
libraries and functions.

The rest of this Section introduces relevant IPsec aspects, analyzes and describes the
di�erent test design options. We summarize the Section with recommendations based
on our �ndings for e�ective test design.

2.4.1 IPsec testing with TTCN-3

The most popular enhancement of IPv6 is the growth of the IP address space, but several
other changes are introduced. One important improvement is that the security aspects
are included in the speci�cation. In the IPv6 suite, con�dentiality and authentication
mechanisms have been speci�ed since the initial drafts. Thus testing IPv6 must include
the testing of the new Internet Protocol security features. This is already the case
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in the world wide IPv6 Ready Logo certi�cation program that provides test suites for
IPsec (Internet Protocol Security) [SK05, Ken05, Kau05]. IPsec is a set of protocols
that provides cryptographically based security at the IP layer, protecting the network
and upper layers. The services o�ered by IPsec includes: con�dentiality, connectionless
integrity and data origin authentication.

Test cases to be applied are taken from the IPv6 Ready Logo, as we did before. The
test cases themselves exchange only few messages between the tester and the Implemen-
tation Under Test (IUT), and could be considered quite simple to implement but they
hold the inherent complexity of the encryption, decryption and authentication/integrity
algorithms, among others. IPsec speci�cation (by means of an RFC - Request for Com-
ments) indicates which authentication/integrity and encryption algorithms are used.
The di�erent and already existing encryption algorithms are described elsewhere. The
RFC 4301 [SK05] does not specify the algorithms themselves, but describes how to use
them in order to assemble and disassemble IPsec messages. As encryption algorithms
are used as building blocks, their implementation is not considered as part of the test
purposes. Thus, in the test speci�cation, these algorithms are not required to be im-
plemented in TTCN-3, they are not part of the abstract test speci�cation. Already
existing libraries that implement the required algorithms are used.

This Section compares di�erent methodological approaches to reuse existing func-
tions and distribute complexity of the task across TTCN-3 standard interfaces. One
possibility is to model the encryption stage as an operation performed and speci�ed in
the TTCN-3 Abstract Test Speci�cation (ATS) of the test case. Other possibility is to
consider the encryption as a transmission problem, consequently, making the TTCN-3
ATS unaware of the encryption/decryption task. Di�erent decisions lead to di�erent
tester con�guration and Executable Test Suites for the same test requirement. We ex-
plore how these ATS design decisions impact the ETS, simplifying or hardening the test
development process. Pros and cons are discussed.

This work should help the reader to understand deeply the di�erent interfaces
present in TTCN-3 and how to use them e�ectively to address particular problems.
Di�erent decisions lead to di�erent capabilities and expressiveness of the TTCN-3 ATS.
All the experiences uses the T3DevKit, showing its versatility and power. Practical
results are presented.

The work is organized as follows. Section 2.4.2 highlights the principal aspects of the
IPsec protocol and presents a general description of IPsec tests. Section 2.4.3 introduce
the test selected to be implemented, the requirements and available tools used. In
Section 2.4.4 the two methodological approaches implemented are introduced. Their
detailed implementation are presented in sections 2.4.5 and 2.4.6. They are compared
in Section 2.4.7. Conclusions are presented in Section 2.4.8.

2.4.2 IPsec highlights

IPsec is a suite of security protocols that o�ers access control, connectionless integrity,
data origin authentication and con�dentiality, among other services, for IPv4 and IPv6.
These services o�ered protect the IP layer and upper layer protocols.
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2.4.2.1 Protocol description

Two protocols are used by IPsec to provide security: Authentication Header (AH) and
Encapsulating Security Payload (ESP). AH provides connectionless integrity, data ori-
gin authentication and optionally anti-replay service. Beside this, ESP may provide
con�dentiality too. Both protocols also provide access controls by the use of crypto-
graphic keys, that can be distributed manually or automatically. AH and ESP are used
in conjunction with a set of cryptographic algorithms speci�ed in RFC 4305 [Eas05].

Both protocols, AH and ESP, can be used alone or can be combined. ESP can be
used to provide both functionalities, integrity and con�dentiality, or it can be used to
provide only integrity, the same functionality provided by AH. This makes AH to be
not only a speci�cation requirement, but an option.

The IPsec protocols can be used in two modes: transport and tunnel. In transport
mode security is provided for the upper layer protocols and not for the IP header. In
the case of AH some portions of extension headers are also covered. In tunnel mode the
security protocols are applied to the entire IP datagram, including the IP header.

The security protocol (ESP or AH), the mode, the cryptographic algorithms, how to
combine the speci�ed protocols and services and the tra�c that will be protected, are
speci�ed by the Security Associations (SA) and the Security Policy Database (SPD).

As de�ned in [Kau05] an SA is a simplex �connection� that a�ords security services
to the tra�c carried by it. For a typical communication two SA are required, one for
each tra�c direction. Also, if AH and ESP protocols are combined, two SA must be
created, one for each protocol. Each SA is an entry in the SA Database (SAD). In
the SA the security protocol and the mode are speci�ed among other parameters that
de�nes the connection.

The SPD control whether and how IPsec is applied to tra�c transited or received.
The SPD must be consulted while processing the tra�c, incoming or outgoing, even in
tra�c such IPsec protection is not required.

2.4.2.2 General Test description

The IPv6 forum implements the IPv6 logo with the objective of give con�dence to users
that IPv6 is available and ready to use. They provide a suite of tests that should be
passed to get the logo. Speci�cation conformance and Interoperability are tested. For
this work we concentrate in the conformance test suites speci�ed by the IPv6 Ready
Logo Technical Committee (v6LC).

IPsec testing is about IPsec, and not about IPv6 testing. IPsec implementation
is strongly encouraged in IPv6, but di�erent parts of the protocol suite are tested
separately. By the moment IPsec is addressed, IPv6 must have been tested before, and
must have got a hundred percent of pass verdicts. The same principle of separation of
concerns is applied to the encryption and privacy providers, with the di�erence that
there is no test on the suite that addresses their correctness.

IPsec tests address, as said in Section 2.4.2.1, the two di�erent modes present in
IPsec: tunnel and transport. The mode requirement depends on the targeted usage.
For each of them, it tests the di�erent combinations of encryption algorithms and the
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authentication ones. For both algorithms' types two categories are de�ned: base and
advanced. The algorithms included in the base category are mandatory for all equipment
and the ones included in the advanced are required only for equipment that supports
these algorithms.

Manual key con�guration is used, but dynamic negotiation of keys nevertheless, is
an accepted alternative, using Internet Key Exchange (IKE) protocol. Although, IKE
is addressed in a di�erent test suite, devoted to it.

From the two security protocols used by IPsec, AH and ESP, only ESP is required
and tested.

During the execution of the selected test case, an IPsec-ICMPv6 Echo Request
message is sent to the Node Under Test (NUT). The NUT must receive the message,
process it and return an IPsec-ICMPv6 Echo Reply message.

2.4.3 Requirements on the testing platform

This work takes from granted the IPsec test suite de�nition published by the IPv6
Ready Logo Technical Committee. It is not addressed what to test in order to ascertain
the correctness of an IPsec implementation, but how to do it with TTCN-3.

IPsec test speci�cation is published by the IPv6 Ready Logo as an English written
document [TES07], complemented with some graphics. English ATS is translated into
TTCN-3 speci�cation, with additional, test speci�c, functions implemented through the
standard TTCN-3 interfaces. Main requirements include IPv6 data type handling and
cryptographic routines.

A TTCN-3 test system can be thought conceptually as a set of interacting entities,
each implementing a speci�c test functionality. Figure 1.3 shows the general structure
of a TTCN-3 test system. We will focus only on the main concepts addressed by this
work.

The TTCN-3 Executable (TE) interprets and executes compiled ATS. SA, which
stands for SUT Adaptor (System Under Test Adaptor), "adapts" communications be-
tween the TTCN-3 system and the SUT. The Platform Adaptor (PA) implements
(amongst others) external functions. External functions are convenient ways of ex-
ecuting platform language code, in our case, ANSI C. The Test Management (TM)
entity is responsible for overall management of a test system. Finally, the Coding and
Decoding (CD) entity is responsible for the encoding and decoding of TTCN-3 val-
ues into bitstrings suitable to be sent to the SUT. All these de�nitions can be found
in [ETS05a, ETS05b, ETS05c].

We will use the following simpli�ed examples to give a grasp of the semantic be-
havior. It is important to understand the interaction of these elements during a send

operation. The runtime behavior of a send operation is to take the template, hand it to
the associated CoDec through the TCI/CD interface and obtain its representation as a
BinaryString. The bit-oriented representation is passed then to the TRI/SA function
that implements the port implementation, ultimate responsible of the transmission.

Another important operation is the invocation of an external function. External
functions provide ways to extend TTCN-3 language with platform language functional-
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Figure 2.18: Test Topology.

ity. When an external function is invoked from the TTCN-3 ATS, the runtime behavior
requires that the TTCN-3 variable is converted into its BinaryString representation
using the associated CoDec through the TCI/CD interface. The bit-oriented represen-
tation is passed trough the TRI/PA interface to the registered external function, that
will perform the expected operation over the bitstring. Upon the function return, the
BinaryString is again used to invoke the corresponding CoDec, this time to obtain a
TTCN-3 variable out of the bitstring, through the TCI/CD interface again.

These are the basis for extending TTCN-3 functionalities with platform language.
Section 2.4.4 explains di�erent ways of using this API to generate IPsec messages.

2.4.3.1 The selected test case

This work bases its results on experiments made basically on a speci�c test case, number
5.2.3 of [TES07]. The test case has an large and detailed preamble detailing Security
Association Databases (SAD) con�guration and Security Policy Databases (SPD) for
each node. Exchanged packets are also detailed.

This work is focused in the implementation of transport mode test, with encryption
algorithm 3DES-CBC and authentication algorithm NULL. Figure 2.18 shows the test
topology: the way involved nodes are corrected.

Figure 2.19 extracted from [TES07], describes the test procedure (scenario) and
verdict criteria. It is noticeable that the procedure consists of a stimulus and a response,
with a statement regarding of the correctness (judgment).
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Procedure:

HOST1_Link1(TN) Target(NUT)

| |

|-------------------------->| ICMP Echo Request with ESP

| |

|<--------------------------| ICMP Echo Reply with ESP

| | (Judgment #1)

1. HOST1 sends "ICMP Echo Request with ESP"

2. Observe the packet transmitted by NUT

Judgment:

Judgment #1

Step-2: NUT transmits "ICMP Echo Reply with ESP"

Figure 2.19: TestCase 5.2.3: TransportMode ESP=3DES-CBC NULL

2.4.3.2 Available tools

At the time this work began, there were no TTCN-3 IPv6 IPsec libraries or tools
available on line that could be reused. IRISA's T3DevKit [t3d07] with IPv6 examples
and ETSI's TC MTS-IPT [ETS07] TTCN-3 IPv6 test tools and suites were publicly
available. Both of them seemed a suitable starting point for our development. IRISA's
T3DevKit was selected due to existing knowledge of the tool and to the fact that no
particular aid to IPsec testing on ETSI's public Abstract Test Suites (ATS).

As encryption routines are not part of the test purpose, it was decided to reuse
existing ones. GNU Libgcrypt was selected because it is freely available, there are good
examples of its usage and there is experience of its IPsec usage.

The rest of this Section analyzes these building blocks and the test development
challenges to be addressed.

2.4.3.3 T3DevKit

The T3DevKit is a helper for implementing TRI-PA, TRI-SA and TCI-CD interfaces in
order to build the executable test out of a TTCN-3 abstract speci�cation. It provides
the T3CDGen, an automatic generator that extracts type de�nitions present in the
TTCN-3 source �les and generates most of the C++ code needed to implement the
logic of the TCI-CD interface. The T3DevLib provides a framework of C++ classes that
eases TTCN-3 data type handling, together with port and timer de�nitions suitable for
working over Ethernet networks.

2.4.3.4 Libgcrypt

Libgcrypt is a general purpose cryptographic library which works on POSIX systems. It
is built based on the code from GNUPG and provides functions and support for several
cryptographic ciphers, hash algorithms, message authentication codes (MAC), etc. It
has a broad user base and provides all the functionality required for implementing IPsec.



78 Easing ETS derivation

2.4.3.5 What can be reused and what has to be developed

With the tools selected, we have enough building blocks to simplify our abstract test
design and development process. We already have implementations for IPv6 packets,
ICMP messages, UDP datagrams and TCP segments. Most of this code can be reused
to perform the IPsec test cases, and some just needs to be adapted with minor modi-
�cations. Implementations for 3DES, SHA and other cipher related functions are also
available. What is required now is to glue all these things together and to build the
ETS.

It is clear that IPsec TTCN-3 data types have to be developed, together with their
corresponding encoding and decoding functions. Also the TTCN-3 templates that will
be used for the tests have to be de�ned. Beside this, we have to integrate the new code
implemented and the reused one. Figure 2.20 shows the TTCN-3 data types de�ned for
representing the ESP message.

type record ESPMessage {

octetstring SPI length(4),

UInt32 SeqNum,

EncPayload Payload,

octetstring ICV optional

}

type record EncPayload {

IPDatagram Data,

integer TFCPadding optional,

octetstring Padding length(0..255) optional,

UInt8 PadLength,

UInt8 NextHdr

}

Figure 2.20: TTCN-3 data types for ESP message

Further explanation of the test cases implemented and details of the implementations
are presented in the following Section.

2.4.4 Alternatives on test case design

CoDec task is to convert TTCN-3 objects into transmittable bitstrings. Particular
details of the communication are removed from the TTCN-3 ATS and relayed to CoDecs.
The direct usage of the T3DevKit suggests also to relay other functionalities to the
CoDecs, like message size calculation or checksum computing. The natural way to
extend this methodology would be to perform cipher operations on the CoDec, moving
there all IPsec handling. This way of assembling IPsec messages does not seem natural,
as all the IPsec assembly is done in C++ CoDecs.

Another approach is to embed cryptographic operations inside the TTCN-3 code
using external functions. This approach provides more control to the ATS during the
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encryption process, lightening the weight of the CoDec. T3DevKit also o�ers a wrapper
to give access to external functions, which we used.

The following subsections describe these two test development implementation strate-
gies.

2.4.5 First approach: encryption and codi�cation relayed to the CoDec

The natural way of extending CoDec based, existing public ATS, to address IPsec was
to implement cryptographic and authentication functions in the CoDecs too. We should
analyze independently transmission and reception operations.

2.4.5.1 Transmission

Performing all the encoding in the CoDec removes most of the cryptographic details
from the TTCN-3 code. In this way the ESP packet is modeled in TTCN-3 without
applying any cipher algorithm and passed to the CoDec. The C++ CoDets perform
the corresponding cryptographic operations and assemble the packet that will be �nally
sent to the NUT.

Link1.send(ICMPv6WithESP_EchoRequest_AuthNULL(SPI_SA1, DATA));

Figure 2.21: Complete transmission processing in the ATS

The unencrypted message template is sent to the CoDec. The CoDec receives the
TTCN-3 values and encode them into bitstring, but there are several things to be done.
Before building the BinaryString with the transmittable representation, part of the
message must be encrypted, and before encrypting some values must be calculated.
T3DevKit provides Encode and Decode methods for each �eld of a packet. These
methods simplify �nding the �elds that must be encrypted but it is an intricate task to
calculate �elds like checksum, padding and padlength.

The length of all the �elds have to be calculated to be able to determine the
padlength. Handling of the bitstring representation is not natural in C++. Even though
the T3DevKit provides tools for handling the bitstring (a cursor and operations over
the bitstring representation), the task is error prone. Indeed, as the T3DevKit works
on the bitstring, but C++ native libraries work on memory addresses, byte oriented,
several translations have to be performed from the bitstring into byte representation
and vice versa. These operations are highly error prone.

Although the T3DevKit soothes the work, there is not a common representation of
types and data between TTCN-3 world and C++ one.

2.4.5.2 Reception

For the reception of messages, the same design decision of moving all the cryptographic
operations to the CoDec can be applied, leading to a very clear abstract speci�cation.
Figure 2.22 shows the piece of code corresponding to the test case implementation.
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alt

//Receive the correct answer

[] Link1.receive(ICMPv6WithESP_EchoReply_AuthNULL(SPI_SA2, ''O))

setverdict(pass);

replyTimer.stop;

//Receive incorrect answer

[] Link1.receive

setverdict(fail);

replyTimer.stop;

//Receive no answer

[] replyTimer.timeout

setverdict(fail);

Figure 2.22: Complete reception processing in the ATS

It is straightforward to follow the logic of the message reception. The pass verdict is
only issued if the received message can be matched to the ICMPv6With ESP_EchoReply_AuthNULL

template. In any other cases, a fail verdict is issued. All the logic regarding proper
encryption is placed on C++ CoDets.

The power given by the T3DevKit tool to the CoDec generation translated parts of
the protocol complexity to the coding operation. Length calculation can be considered
a simple operation, that can be handled during encoding. Checksum calculation is not
a simple operation (at least not as simple as length calculation), but the CoDec is an
elegant place to perform it. We should analyze the result of removing cryptographic
tasks from the CoDec in the following subsection.

2.4.6 Second approach: encryption/decryption done in external func-
tions

By "encryption/decrytion done in external functions" we describe the decoupling of
purely coding operations from semantically rich ones. Even though it is possible to
discuss what is purely coding, we think that performing cryptographic operations cannot
be considered a simple operation.

2.4.6.1 Transmission

The objective of this design decision is to be able to have a complete encoded value,
accessible and represented in TTCN-3 variables before the �nal BinaryString encoding
is performed. The CoDec do not need to perform operations to the objects received from
TTCN-3, but just to convert the TTCN-3 value into its bit oriented representation.
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template ESPMessage ICMPv6ESPMessage (IPv6AddressType src,

IPv6AddressType dst, octetstring m_spi,

octetstring m_data, UInt16 checksum) := {

SPI:= m_spi,

SeqNum := 1,

Payload := EncryptPayload(src, dst, EchoRequestType,

m_data, checksum),

ICV :=omit

}

Figure 2.23: TTCN-3 template for ESP with external functions

The Figure 2.23 shows how we use external functions to compute cryptographic gen-
erated values of the ESPMessage. It is possible to see how external function invocation
is embedded in the template de�nition with the EncryptPayload() function. The ESP
message template de�nition includes the parameters it receives, and the ones that have
to be passed to the external function responsible for performing the encryption.

var UInt16 checksum := GetCheckSum(PF1_1, PF0_1, EchoRequestType,

DATA, NextHeaderIcmpV6);

Link1.send(ICMPv6WithESP_EchoRequest(PF1_1, PF0_1, SPI_SA1,

DATA, checksum));

Figure 2.24: TTCN-3 checksum calculation

Before encrypting the payload, its content (the ICMPv6 packet) must be built.
Consequently, its length and checksum need to be calculated and accessed from TTCN-
3. Thus, we need to use external functions in this case too. We illustrate checksum
calculation in Figure 2.24. The checksum is calculated calling the external function
GetCheckSum() before assembling the packet. The calculated checksum is passed as a
parameter to the template de�ned for the ESP message.

2.4.6.2 Reception

This approach also introduces changes, challenges and di�erences in reception opera-
tions, and the way received information is treated. External functions can also help
validating the message and are used to decrypt the message. It is pretty straightfor-
ward to see that TTCN-3 matching mechanisms based on wildcards do not apply inside
encrypted structured data �elds. They have to be decrypted �rst.

Figure 2.25 shows actual alt[] used for encrypted message reception and verdict
issuing. The message is received and compared to the corresponding template, shown in



82 Easing ETS derivation

alt{

//Receive correct answer, unverified encrypted payload

[] Link1.receive(ICMPv6ESPMessage_Answer_AuthNULL

(PF0_1, PF1_1, SPI_SA2, DATA, checksum)) -> value Myvar {

var bitstring encpayload := Myvar.Payload;

var UInt8 payloadLength := lengthof(encpayload)/8;

var EncPayload payload := DecriptPayload(encpayload, payloadLength);

if (match(payload, ICMPv6EncPayload_Answer(PF0_1, PF1_1, DATA))) {

setverdict(pass);

} else {

setverdict(fail);

}

replyTimer.stop;

}

//Receive incorrect answer

[] Link1.receive {

setverdict(fail);

replyTimer.stop;

}

//Receive no answer

[] replyTimer.timeout {

setverdict(fail);

}

}

Figure 2.25: TTCN-3 code to validate received encrypted message using external func-
tions

Figure 2.26. The resulting value is assigned to the variable MyVar. From this variable
the encrypted payload is extracted and passed to an external function to be decrypted.
The decrypted value is then decoded into the type EncPayload and then passed to
the function match() (provided by TTCN-3), to be compared with the corresponding
template. Whether the result is true the issued verdict is pass. fail is issued in other
cases.

template ESPMessageAnswer ICMPv6ESPMessage_Answer_AuthNULL

(Ipv6AddressType src, Ipv6AddressType dst,

octetstring m_spi, octetstring m_data,

UInt16 checksum) := {

SPI:= m_spi,

SeqNum := ?,

Payload := ?,

ICV := omit

}

}

Figure 2.26: ESPMessageAnswer template

The checksum is also veri�ed with an external function invocation, de�ned in the
template to check the incoming ICMP echo request. Figure 2.27 shows the template
and the checksum calculation function.
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template ICMPv6MessageType icmpv6_EchoReply (Ipv6AddressType src,

Ipv6AddressType dst, octetstring m_data) := {

Type:=Icmpv6EchoReplyType,

Code:=uint8_0,

Checksum:=GetCheckSum(src, dst, Icmpv6EchoReplyType,

m_data , NextHeaderIcmpV6),

ChecksumShouldBe:=omit,

body := {

echo :={

Identifier := uint16_0,

SequenceNumber := uint16_0,

Data := m_data

}

},

Options := omit

}

Figure 2.27: icmp echo reply validation template

For handling external functions T3DevKit provides an implementation of triExter-
nalFunction() for multiplexing calls and presenting the data and a class for manipulating
the parameters. External functions permits building the complete message in TTCN-
3 types and data structures simplifying and reducing the codi�cation in the CoDec.
Comparison between the two methods is done in the following section.

2.4.7 Comparison

Two di�erent approaches to TTCN-3 test case design of IPsec protocol test cases were
implemented and shown. First we showed a direct extension of the IPv6 examples
provided with the T3DevKit, that performs all the required tasks at the CoDec level.
The other approach presented was using external functions to control the complete
message assembly from TTCN-3, using only CoDec for data representation conversion
between TTCN-3 variables and transmittable bitstrings. In the following, we compare
these two approaches, according to di�erent criteria.

2.4.7.1 ATS + TCI/TRI code design

We analyze all the aspects required to produce an executable test case, not only the
TTCN-3 ATS. We compare both TTCN-3 speci�cation and platform language readabil-
ity together, in spite of the fact that maybe di�erent groups of developers, with di�erent
backgrounds, address each part. First, we address message transmission and afterward,
reception.

Without external functions, message assembly and encryption are performed in a
single function. Moreover, as the CoDec (accessed from the send() operation) is not
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intended to be used as a regular function, it does not receive other extra parameters than
the template to be transmitted. No control on the encryption keys or other arguments
speci�ed in the test speci�cation is accessible from the TTCN-3 code. With the usage
of external functions, message is passed to the CoDec with all the data �elds calculated,
thus only BinaryString encoding is required. The logical sequence of the code is simpler
to understand, as separated abstract concepts are mapped to individual functions. The
test case becomes simpler to implement, as divide&conquer principles apply now. Just
speci�c functions are implemented in C++ to calculate some �eld values that could not
be implemented with TTCN-3, yet the message assembly logic and sequence is handled
from the TTCN-3 ATS.

While receiving the message for validation, an external function is used to decrypt
part of the message and then compare it with the corresponding template. The complete
validation process is done in TTCN-3. Without the usage of external functions, only
part of the message construction is controlled from the TTCN-3 ATS. Some �elds like
checksum, padding and padlength are not calculated in TTCN-3 and have to be added
in the CoDec. This becomes relevant for the payload generation. We need to have an
ICMPv6 Echo Request message, whose creation has been delegated to the CoDec. To
keep our implementation aligned and coherent with existing one, ESP assembly should
be relayed to the CoDec too. This fact forces that a part of the ATS is moved to
the CoDec and is not speci�ed in TTCN-3 language. The test case is then split into
TTCN-3 and C++ CoDets. To understand the test you have also to know the code
implemented by the CoDec. This approach seems not to follow the TTCN-3 philosophy
and tends to put too much semantic in the CoDec.

2.4.7.2 Test speci�cation size

As we are comparing two implementations of the same speci�cation developed with the
same language it is possible to compare the methodologies based on some code metrics.
The �rst thing that is important to consider is that existing IPv6 types and de�nitions
were reused, and they are the biggest part of the TTCN-3 code.

CoDec CoDec +
only Ext. Functions

TTCN-3 Test case 81 81
(loc) Accessory 812 797

C++ ext 0 234
(loc) CoDet 681 255

TTCN-3 893 878
C++ 681 489

Figure 2.28: Some loc based software metrics

Table 2.28 shows the di�erent parts of the code we measured. The metric used is
the e�ective lines of code (loc). Comments, blank lines, lines with only block delimiters
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and other kinds of �empty� lines were removed, and only a single command per line was
accepted. We separate the lines of codes directly required for the test case speci�cation
from all the accessory ones. Accessory lines of code are the existing de�nitions that
we re-use for modeling lower layer protocols or elements not directly required by the
test case. In this example it is mainly reused code with none or at most minimal
adjustments.

Size of TTCN-3 code is equivalent in both methodologies, with only slight adjust-
ments. It is noticeable that test case speci�c code accounts for a 10% of all the required
code. Modeling of IPv6, ICMPv6, options accounts for most of the TTCN-3 code, which
we managed to reuse from publicly available IPv6 ATS.
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Figure 2.29: loc graphically compared

An alternative, graphical, representation of Table 2.28 is shown in Figure 2.29. Dif-
ferences arise when we consider platform language coding, both for CoDec and External
functions. It was part of the methodological approach to avoid external functions in
the �rst implementation, accounting only for CoDec implementation. The second im-
plementation methodology splits the complexity, but it is more than splitting it. It
diminishes the number of lines of code required. The total number of lines of C++ code
shrunk almost 30%, spread over a bigger number of shorter functions. These properties
suggests that the code is also more maintainable.
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2.4.7.3 Performance

The main drawback found in the usage of external functions is the performance over-
head. Every time an external function is invoked, the TTCN-3 values are encoded
and passed to the external function. Upon exit, values are decoded and passed back to
TTCN-3. None of this happens in the approach that does not require external functions.

The code requires 4 external function invocations during transmission and reception,
thus 4 additional code and decode cycles. The performance impact of this is relevant
for time sensitive test cases, but not in general in the case of conformance testing.

2.4.8 Outcome

We acknowledge that the comparison was applied only to subset of the whole Confor-
mance test suite, but we believe interesting conclusions can be taken. The TTCN-3
ATS developed when putting all the operations in the CoDec is very clean and read-
able, but we feel that important parts of the test speci�cations have to be moved to the
CoDec. Too much IPsec behavior is not expressed in TTCN-3 language and is relied to
CoDec. CoDec abstraction level -even augmented with the T3DevKit- is too low and
operations are hard to maintain and implement. We think that this approach diverges
from TTCN-3 design strategy.

Moving all the operations to the external functions provide a much more comfortable
framework. No changes in the size of TTCN-3 were found, and it is still abstract enough,
while keeping all required semantic for more detailed test case operations. The weight
of the CoDec is lightened, but the number of invocations grew signi�cantly. The total
number of loc in platform language shrunk, making the test case smaller and easier to
develop. It seems that with this approach we obtain better designed test cases, at the
expense of performance degradation.

Further studies are in progress, but current �ndings seems to indicate that the best
option is to design test cases making use of the external functions, whenever perfor-
mance restrictions allows it. Despite that, we think it is a good approach to leave
simple operations in the CoDec. Without trying to de�ne what simple means for all
possible ATS, our experience seems to indicate that all operations that are related to
the experiment de�nition should not be relayed to the CoDec. If there is a doubt, then
is better to implement that operation as an external function.

2.5 Platform language independent CoDec generation

The relevance of CoDec generation has been presented and its consequences on the ATS
style, complexity and reusability. A solution for addressing automatic CoDec generation
was already presented in 2.3.4. The CoDec generator is a methodological proposal to
integrate additional information that eases bridging the ATS to ETS gap by bringing
closer to the testcase development cycle CoDec generation issues and automating manual
activities of the task.
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TTCN-3 language requires runtime entities to be bound through TCI and TRI
interfaces to build a runnable ETS. These runtime components are standardized either
in C++ or Java languages, what we call platform languages. The CoDec generator, an
automatic tool for implementing the TCI-CD entity is currently specialized in C++. In
spite of the methodological and practical achievements, the CoDec generator is still a
platform language dependent tool.

This Section proposes another approach for CoDec generation, a platform language
independent one. The proposal is to replace the CoDets described in 2.3.4.3 with
platform independent type meta-information. TTCN-3 type de�nition is extended with
meta-information about the types. Some concrete examples based on IPv6 message
oriented protocols are used to explain part of the proposed solution and for validation
purposes.

This Section is structured as follows. Firstly, section 2.5.1 recalls TTCN-3 ba-
sic component architecture, the type system and matching mechanisms for incom-
ing/outgoing data. Section 2.5.2 introduces our methodology and extensions for auto-
matic CoDec generation, together with a minimal example. The summary is presented
in section 2.5.3.

2.5.1 TTCN-3 messaging and matching

TTCN-3 architecture was globally presented in 2.3.1.2. For readability purposes, rel-
evant aspects are recalled and extended. TTCN-3 messaging architecture, described
in 2.1.1.2 and in 2.3.1, de�nes that the communication between the tester and the Im-
plementation Under Test (IUT) takes place through ports, modeled as an in�nite FIFO
queue for the reception. Incoming data is queued until processed by the component
that owes the port by consuming it. Two communication paradigms are implemented
in TTCN-3: message-based and procedure-based. As each port has a �xed type, the
kind of communication primitives supported is �xed too. Target protocols, like Internet
ones, are message oriented, thus, we concentrate on the message-based paradigm.

2.5.1.1 Short description to standard message reception

In TTCN-3 message reception -and transmission- is handled through ports. The way a
message is retrieved from the input queue associated to the port is issuing the receive()
method on the port instance. The receive() primitive is blocking. It receives optionally
a certain template as an argument to allow �ltering or determining which messages
are being waited for. This provides means for message classi�cation upon reception,
provided that all possible incoming messages are known.

In a given moment of the test execution, it is possible that the implementation
sends di�erent valid messages, making it impossible to base message reception on a
single blocking primitive. TTCN-3 introduces alt statements, collections of receive()
statements inside a block. When a message arrives, the di�erent receive() alternatives
are traversed top-down and the �rst matching option is taken. Each possible receive()
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alt {

[] somePort_1.receive (someAnswer (someValue_A)) { ... }

[] somePort_1.receive (someAnswer (someValue_B)) { ... }

[] somePort_1.receive () { ... }

[] somePort_2.receive () { ... }

}

Figure 2.30: Simple message reception

statement handles each of the possible messages, solving the problem for unknown,
unexpected or non conformant message arrival.

The piece of TTCN-3 code shown in �gure 2.30 depicts previous concepts. The �rst
two matching rules catch messages based on the same type and template, but di�ering
in some value. In most of the situations it is important to be able to receive other
messages apart from those initially expected. Several reasons impose that fact, ranging
from other auxiliary protocols running on the wire to wrong IUT messages. Thus,
message must be accepted from any of the ports somePort_1 and somePort_2.

When receiving a message, there will be speci�c parts of the message that are known
beforehand and others that will remain unknown (i.e. time-to-live �elds or checksums
in general). Within templates it is possible to indicate which parts of the message
are already known and have a �xed value and to leave other parts unknown. This is
done by interleaving �xed values with wildcards. TTCN-3 [ETS03, ETS05a] de�nes
two wildcards: "?" and "*", which stand for AnyElement and AnyElementsOrNone
respectively.

TTCN-3 does not standardize requirements for minimal TCI-CD implementations
by tool vendors. The reader is encouraged to review TCI and CoDec concepts in sec-
tion 2.3.1 before continuing.

2.5.2 Extensions for automatic codec derivation.

Manual CoDec writing is a time consuming task and sometimes error prone. CoDec are
intended to be reused through di�erent test cases in similar test suites, thus changes
generally force major code revisions, both in the TTCN-3 ATS and in the Java/C++
platform language. The proposed methodology automates the task at the expense of a
few type design constraints and the addition of CoDec metadata.

As the operations performed by the CoDecs are intended to cooperate with the
translated ATS, we do not need to change the TTCN-3 language itself. We need to
complement the ATS speci�cation thus, the modi�cations we propose are only exten-
sions to TTCN-3 ATS comment sections. This allows a simple integration with existing
tools, no modi�cations to standards and only extensions into comments sections, sim-
ilar to other comment extensions and philosophy as those used in products like JMX,
Doxygen, TestNG, JavaDoc, etc.
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We will present the methodology by example, showing how to map some simple
data types, compositional data structures and introducing metadata extensions. In sec-
tion 2.5.2.1, di�erent options of how to include the metadata are discussed. Other hy-
pothesis regarding the �eld of application of current work are introduced. Section 2.5.2.2
provides guides to achieve an adequate data de�nition, compatible with the CoDec im-
plementation. Afterward, section 2.5.2.3 discusses address-oriented issues relevant for
identifying and describing dependencies between parts of the types and their corre-
sponding bitstring representations. In section 2.5.2.4 functions relevant for determining
data length are introduced. Section 2.5.2.5 introduces rules for the coding and decod-
ing of �elds at CoDec level. Finally, the extension proposal is applied to a simple TCP
header type de�nition in section 2.5.2.6.

Current scope of the work copes requirements for IPv6 handling, while extension to
complete TTCN-3 data types and constructs is expected to be addressed too, in the
broadest TTCN-3 philosophy.

2.5.2.1 Hypothesis and extension options

This methodology addresses message-based communication paradigm. It was conceived
for network protocol testing, and even though several concepts can be easily extended,
it is not directly applicable to procedure-based paradigms.

We assume that we can address pieces of information inside messages using the
byte as the unit for expressing o�sets. This is a common practice in Internet related
protocols. We also assume that each packet carries enough information to be decoded.
This kind of practice is well known and extensively applied in most protocols and it is
based on prepending each uncertain content with a well known and de�ned descriptor.
We will propose extensions to describe this semantics later. The extensions are aimed to
be triggered by send() and receive() methods. Thus, they will refer to both TTCN-3
types and templates.

The CoDec are standardized outside TTCN-3 to be coded in either of Java or C++
languages and will interface TTCN-3 code through the TCI-CD interface. Thus, the
automatic derivation of the CoDec is a task that has to happen before actual TTCN-3
link-edition takes place. Moreover, it is a task left aside of the TTCN-3 language. The
extensions, aimed for this task, will not be considered during TTCN-3 code execution
and do not need to be included in TTCN-3 language. The extensions are dependent on
type de�nitions. Thus the decision was made to include them in the same source �les.
TTCN-3 provides the keyword extension, as an attribute that all TTCN-3 language
elements can have, speci�ed by the user. They are aimed for handling at compile-
time by tool vendors, which is not the type of use we intend. The unavailability of
an open compiler that can be extended, forces the de�nition of extensions independent
of the language compilation process. Another problem is that, for complex types, the
number of rules that have to be added might impose readability issues on the code.
The extension attribute is intended to be a single one for each language element. It
forces the packing of all required de�nitions into a single line of code, a�ecting code
readability as mentioned. Lastly, as extension attribute is not standardized, di�erent
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behaviors (including impossibility of compilation) might be expected from compilers.
The selected choice is to extend comment blocks (similar to extensions found for

JavaDoc, TestNG and other) so as to avoid any kind of incompatibility. The decision
is to extend /*...*/ blocks into /*CD...DC*/ CoDec de�nition blocks. In this way it
is possible to introduce metadata, while remaining compatible with TTCN-3 language
de�nition and solving readability issues. An interesting solution to this problem would
be if TTCN-3 would provide a block extension syntax for the extension attribute.

CoDec will be automatically built for types that have a /*CD ...DC*/ de�nition
prepended and all those reached through the transitive closure of the former.

2.5.2.2 TTCN-3 type de�nition and coding considerations

Type de�nition is tightly related to CoDec, as the reason for the CoDec is to convert
values (instances of TTCN-3 types) into TRImessages (bitstring representations) and
viceversa. The process of type de�nition has to take into account the fact that messages
have to be encoded and transmitted and also received and properly decoded.

Our methodology, and the automatically generated CoDec will encode and decode
messages traversing the underlying type de�nition tree, according to the precise de�-
nition and order of the �elds. The tree will be built starting from the type de�nition,
which will be the root. Basic types will be the leaf nodes and structured types, the
internal nodes. When encoding, the leaves -and only the leaves- of the de�nition tree
are traversed in the same order that they were de�ned, "left-to-right". When decoding,
the bitstring will be traversed and matched against known parts of the de�nition. As
more parts of the message become known, they will help determining the structure of
the message, and �nally the corresponding TTCN-3 data type.

This methodology implies that we require a precise knowledge of the sizes of all the
resulting encoding of each part of the message. This knowledge is not complete in all
TTCN-3 types, as will be discussed and extended in the following section. By now we
will only mention that it is important to avoid ambiguous type de�nitions at simple
type level. The main problem found here is regarding the integer type, which has an
unknown size. It has to be replaced by a known sized subtype (i.e. int8, uint16).
TTCN-3 char type is suitable for higher level message handling, where multilingual
message handling issues might be relevant. For network handling of general strings it
is more suited, and recommended, the use of int8 type.

As a compendium of the previous concepts, we might summarize the methodology
with the following statement: "the test designer has to de�ne types as close as possible
to physical encoding".

2.5.2.3 Addressing parts of the message and types

When describing properties inside types regarding its components, it is required that
we can univocally refer to speci�c parts. Our addressing keywords just follow standard
keywords used in languages like Java and C++.

We will use the keyword this to reference the current instance of the given type
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that will be known only in runtime. In the case of compound types, the name of the
�eld will be used to access its value, in the standard way. The use the standard dot
notation to address elements is available. Notations <field> and this.<field> are
equivalent.

Elements inside strings, arrays and record of de�nitions should be addressed using
the standard positional scheme. The some_field[4] refers to the �fth element of the
some_field[] array, as indexing begins with the value zero (0).

The last addressing schema de�ned is a physical oriented one. The keyword is addr
and it is intended to be used to specify determined positions into the encoded message,
even though it can be used while encoding. The syntax is presented in �gure 2.31.

addr(<reference>,<offset>,<target_type>)

addr(<reference>,<offset>,<target_type>,<encoding_type>)

Figure 2.31: Syntax of addr keyword

Conceptually, addr is equivalent to the casting concept in C language. It will allow us
to interpret a speci�c part of a message according to a given <target_type>. It will be
the one used for decoding and interpreting the raw bitstring addressed upon reception.
The part of the message addressed is given by an initial <reference>, like this or
this.<field>. The <offset> is the number of bytes skipped from the reference until
the beginning of the <target_type>. addr is overloaded and can receive the optional
<encoding_type> argument, intended for non standard encoding.

2.5.2.4 Unknown �eld length functions

We have discussed how to handle simple types and how to avoid length ambiguities by
the right selection of basic types. Unfortunately it is not always possible to determine
beforehand the size and type of the information to be transmitted.

The encoding process is straightforward, as all the values have to be instantiated
before issuing the send() method. The problem arises when there is a raw bitstring to
be decoded corresponding to multiple valid responses to a given stimulus. An hypothesis
to this proposal is that outside the unknown part of the message but in a well known
position, there exist some encoded description that makes the decoding process not
ambiguous. As an example, Internet Protocol version number is represented in the �rst
nibble of the message in the same position for both protocols IPv4 and IPv6. In this
way we can know the version of the protocol before further analysis. The payload length
is encoded in a �eld before the payload in the message, in a well known position. The
latter is di�erent in IPv4 and IPv6, but they follow the same design criteria, and the
payload length position is well known after examining the �rst nibble of the message.

Length of structured types can be calculated as the sum of elements, provided that
is possible to know their length. For simple types it is straightforward, as the type
de�nition implies encoding size.
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The following CoDec extension is introduced so as to provide direct dependencies
between message �elds that express the type and size. The selected tag and its syntax
is shown in picture shown in �gure 2.32.

@len_dep <orig> <dst> [<encoding_type>]

Figure 2.32: Simple message reception

The tag de�nes that the length of the variable <dst>, will be encoded into the
variable <orig>. <encoding_type> is an optional argument which can be used to over-
ride standard encoding. Both <dst> and <orig> should be de�ned and addressable at
compilation time, as the CoDec utility produces a CoDec for the static type de�nition.

This binding between data �elds only expresses a relation in the type de�nition that
makes decoding possible: when a message of this type is received, the length of the
unknown �eld is determined from the length of the known one based on the inverse of
the encoding function used for encoding the value. The relation can also be used for
automatically �lling �elds in the CoDec, as we will see in the next subsection.

This clause only expresses a relation between �elds, but does not particularly de-
termine the relation function. Default codi�cation (the number of bytes occupied by
<dst> is encoded in 2-base in <orig>), can be replaced by another one, as shown in the
next subsection.

Other possible situation is that the encoding schema is not based in a direct rep-
resentation of the data length, but a reference to a well known standardized index,
which is not represented in the protocol. This is the case of Ethernet type/length �eld,
whose possible values are de�ned by providing a map that binds the actual value2 with
the type of payload. For these situations we de�ne a di�erent dependency, shown in
�gure 2.33.

@map_dep <orig> <dst> {(<value>,<length>,<type>)[(<value>,<length>,<type>)...]}

Figure 2.33: Simple message reception

Again the relation binds a couple of �elds, speci�ed by <orig> and <dst>, but in
this case, the relation is expressed by the set of tuples containing the <value> found in
the �eld <orig> and the <type> and <length> of the �eld <dst>. In many cases <type>
and <length> are redundant, but in arrays they are not. A special keyword _DEFAULT_

is reserved for matching previously unmatched entries. As we are not rede�ning the
language, the type coding has to take care of this to avoid �eld name collision.

2http://www.iana.org/assignments/ethernet-numbers
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2.5.2.5 Coding and decoding functions

We have introduced extensions that express relations between parts of the type de�ni-
tions, and were prepended to type de�nition clauses. We will present further extensions
that are intended to perform modi�cations in the values of the data to be transmitted
and received, and basically aimed for template de�nition clauses.

Templates are used to either transmit a set of distinct values or to test whether
a set of received values matches the template speci�cation. It is possible to associate
di�erent templates to a single type de�nition. Thus, our methodology associates binding
rules to types and encoding/decoding actions to templates. In this way we are able
achieve �exibility of usage of rules based on the same type for di�erent purposes. As
an example, we would like to encode, in di�erent variables of the same type one correct
packet and one that would correspond to an erroneous checksum calculation so as to
test some property of the IUT. If the action of encoding the checksum is declared at type
de�nition level, all variables and templates declared after it would inherit the checksum
calculation, forcing us to declare di�erent types with di�erent extensions to achieve our
goal, at the expense of a non clean data modeling. With the possibility of de�ning
actions at template de�nition level, the test designer can create templates based on the
same type that best meets the test purposes.

There are basically two di�erent moments where the functions can be invoked: before
and after the conversion takes place. There are operations that are more suited to be
performed in one moment and not in the other. As an example, encoding the length of
a value in a certain �eld is an operation that has to be performed before codi�cation
takes place, because we have direct and easy access to the length of the TTCN-3 value.
On the other hand, an operation like a checksum calculation has to be performed over
the bitstring representation of the message. It would be ine�cient to calculate it before
the actual encoding takes place: we would need to perform it twice, one time for the
checksum calculation and another time for the intended encode operation. The same
applies for decoding.

Another important factor is the precedence of the operations. The operations should
be performed in the same order that they are declared, and respecting the order of
inclusions of templates into templates. In case of collision, only the most specialized
de�nition will be applied.

@<codec_function> <field> := <function> [<argument>...]

Figure 2.34: Syntax of encoding/decoding functions

As we can see in �gure 2.34, the general syntax is straightforward. The @<codec

_function> tag precises the moment that the operation will be performed, and the pos-
sible values are the following: @preencode, @predecode, @postencode and @postdecode.

The <field> attribute addresses the element inside the type or template where the
result of the functions is going to be stored. The function referenced by <function> are
not TTCN-3 functions, as they are going to be executed by the generated CoDec. The
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<function> belongs to proposed CoDec library that ought to be standardized. The
reserved keyword is auto, which represents the automatic execution of the associated
relation de�ned in the type. For example, if we de�ne a @len_dep relation between
field_1 and field_2, @preencode field_1:=auto means that we want the length
calculation to be performed and stored. @predecode length(field_2):=auto has a
special meaning (only valid for @dep_len relations): the length of the �eld field_2 will
be taken from the encoded value bound with the @dep_len tag.

Other required functions are length, valueof, checksum. The optional presence and
number of [<argument>...] is dependent of the function. The thorough de�nition of
the library of required functions is beyond the scope of this work.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowledgment Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Checksum | Urgent Pointer |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2.35: ASCII representation of TCP header

2.5.2.6 Example: TCP simple type de�nition

In this brief example we intend to summarize the previous concepts. We do not intend
to provide a complete de�nition for the TCP protocol here, but to show the concept
behind the extension proposal.

TCP is standardized in the RFC793 [Pos81b], and the packet header format is shown
in �gure 2.35.

The TTCN-3 type with our extensions can be seen in �gure 2.36. In this example
we can see the meaning of the concept of "physical representation of the type". Field
by �eld, all the parts of the �eld are mapped into the type, respecting the order in
which they will be placed in the underlying bitstring representation. So far, the only
�eld dependency expressed is regarding the size of the TCP header, which is expressed
in a non-standard way. We will see later how to override the situation.
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/*CD

@len_dep dataOffset this

DC*/

type record TCPpacket {

uint16 sourcePort,

uint16 destinationPort,

uint32 sequenceNumber,

uint32 acknowledgeNumber,

uint4 dataOffset,

uint6 reserved,

uint6 controlBits,

uint16 window,

uint16 checksum,

uint16 urgentPointer,

octectstring options,

octectstring padding,

octectstring data

}

Figure 2.36: Simple TTCN-3 type de�nition for a TCP packet with extensions

Let's now apply the encoding/decoding rules to a simple template. As we can see
on �gure 2.37, we can create a template for automatically �lling missing information
right before transmission.

This template can be parametrized to match other kind of information or used
directly. We can see that checksum is zeroed, but we know that it will be post-encoded
with the right value as it is speci�ed by the corresponding rule. Another relevant factor
to see is the way in which the default @len_dep relation is overridden.

2.5.3 Summary

This section presents a proposal for a methodology to ease CoDec development, not yet
implemented. It is an alternative to the platform language dependent solution presented
in 2.3.4.

Coding and decoding activities are not considered while test purposes and test design
tasks are addressed. This methodology proposes some basic rules to apply when types
are being de�ned and enables to express relations between �elds.

This work �lls a gap, where lack of standard solutions imposes time constraints or
additional costs to TTCN-3 based testing. It also helps becoming independent of speci�c
tool providers and their proprietary solutions. It is also platform language independent
and does not require compiler modi�cations too.

The proposal has been validated to cope with identi�ed requirements for IPv6 pro-
tocol handling. It is also possible to continue factorizing intelligence inside the CoDec,
as it was suggested by being able to de�ne properties between di�erent messages and
not only inside �elds of a single one.
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/*CD

@preencode dataOffset := valueof(5+ceil(length(options)/4))

@postencode checksum := ipchecksum(this)

DC*/

var template TCPpacket TCPpacket_template

(uint16 sport, uint16 dport, uint32 sn,

uint32 an, uint6 cb, uint16 win,

uint16 up, octectstring opt, octectstring uint8 d){

sourcePort := sport,

destinationPort := dport,

sequenceNumber := sn,

acknowledgeNumber := an,

dataOffset := '0000'B,

reserved := '000000'B,

controlBits := cb,

window := win,

checksum := '0000'H,

urgentPointer := up,

options := opt,

padding := 0,

data := d

}

Figure 2.37: Simple TTCN-3 type de�nition for a TCP packet with extensions

2.6 Conclusion

TTCN-3 language is a unique tool for testing. It addresses the problem of providing an
abstract language for test speci�cation by removing the low level executable details from
the speci�cation. But low level details cannot be completely avoided, thus, a complex
set of interfaces is de�ned. This set of interfaces communicate the TTCN- 3 executable
with entities responsible of implementing the details left aside from the speci�cation.

Despite the initial objective, a TTCN-3 ATS alone is not su�cient for specifying
a Test System. Details must be provided. We contributed with a tool that addresses
the automatic generation of this entities, currently implemented in C++ language. A
second proposal is set, even though not yet implemented, to tackle the problem from
a di�erent approach: being platform language independent. We were able to show the
methodological and test case design bene�ts of automating this activity too.

The main methodological lesson is that separating detailed executable aspects from
test de�nition leads to speci�cation abstraction, but it adds complexity to the process.
We propose di�erent ways to bring closer these two indivisible tasks in the process of
executable test case generation. We showed that the methodological gains are worth
and think that TTCN-3 must include them either in the standards or as sets of best
practices or recommendations. This closes a little more the gap between abstract and
executable test suites. The methodological discussion of CoDecs vs External Functions
as a placeholder for test associated logic gives the test expert knowledge of when to
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apply di�erent coding techniques.
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Chapter 3

Automating interoperability testing

execution

Program testing can be used to show the presence of bugs, but never to show their
absence!

Edsger Dijkstra

This chapter deals with the work done on Interoperability testing in the �eld of IPv6.
The �rst thing that should be pointed out is that this study addresses the work in the
interoperability testing domain, not conformance. Existing solutions and requirements
will be introduced to motivate the work. A general presentation of interoperability
testing requirements and tools that were available at the time this work started is pre-
sented in Section 3.2. After the di�erent needs are exposed, each of the building blocks
used to assemble the solution are introduced in Section 3.3. The solution presented in
section 3.3.1 was integrated to IRISA tool and now is a standard part of the testing
process. The methodology presented in section 3.3.2 was published under the name
Plug once, test everything. Con�guration management in IPv6 Interop Testing [SV06]
and presented during ATS 2006 in Fukuoka, Japan. The same methodology was also
presented to the IPv6 Ready Logo Technical committee during the 9th. Tahi Event in
may 2007.

The fully virtualized solution is presented in Section 3.4. Integration and con�gu-
ration of building blocks is presented too. The characteristics of the tool and execution
metrics are presented in Section 3.5. Some of the contents of this section are published
in the article Virtualized Interoperability Testing: Application to IPv6 Network Mobil-
ity [SBBV07] during DSOM 2007 in San José de California, United States. No complete
citation can be provided as the article was not yet published by the time of this writing.

A brief discussion on the scope and semantic of the usage of the di�erent interfaces
and operations during interoperability testing is presented in 3.6. The chapter concludes
in Section 3.7.

99
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3.1 Introduction

Interoperability testing is a pragmatical way of ascertaining that di�erent implementa-
tions of a protocol can work together. The number of interoperability events worldwide
is increasing in almost every �eld, from telecommunications to software. Interoperabil-
ity statements or certi�cations in the �eld of telecommunications provide vendors and
customers con�dence that an heterogeneous group of devices will be able to operate
in conjunction. It has demonstrated to be an important complement of the confor-
mance testing discipline, which has been formalized. The acceptance and relevance of
interoperability testing is growing, both in the academy and in the industry. It tackles
the industrial requirement of ensuring that an heterogeneous group of implementations
would work as expected. Several works like [BCKZ02, KOS+00, HLSG04] address the
generation of Interoperability test cases considering di�erent factors and strategies, ap-
plied to di�erent protocols. It is in the process of being considered a valid testing
approach, and many researchers are working to formalize and automate it (see, for
example [DK03, SKCK04, DV05, DV07]).

Interoperability testing requires di�erent implementations to interwork. As a dis-
cipline, it requires the deployment of several pieces of equipment through one or more
interconnected networks. The �eld practice is based on interconnecting implementations
with the objective of ensuring that they interact properly, according to their speci�ca-
tions and provide the expected services. The way it addresses the veri�cation of required
properties in implementations is based on populating con�gurations with existing im-
plementations and making them interwork. The observation of message exchanges and
their compliance with the standards is the input used for determining if a set of im-
plementations interoperate or not. This testing technique addresses the ultimate need
of the customers: to plug components together and play. It has deep roots in Internet
itself and in the Internet Community.

Interoperability testing considers di�erent IUT during their interaction. Objectives
pursued during interoperability testing are di�erent, but in general, the �rst one is that
it is required to validate that implementations communicate correctly. The second one
is to check that they behave according to their speci�cations. The third one is that they
provide their expected services. Among all di�erent existing criteria for interoperability
testing, the one followed by the Internet Community is to validate a non certi�ed im-
plementation against certi�ed ones. In this case, when a test fails, the implementation
that is considered non-interoperable (faulty) is the one being certi�ed. Other scenarios
or interoperability criteria exist, but are not being considered in this work. In spite of
the criteria selected by the IPv6 Ready Logo, other de�nitions exist and the presented
methodology and tools are applicable too.

Being able to do interoperability testing might be more complex and expensive than
what initially it might look like. There is an implicit need to connect the di�erent
implementations together and to monitor all the message exchanges among them. First
of all, we need to have together at the same time all the implementations that should
be tested: the implementation under test and the reference ones required for verify-
ing interoperability. Di�erent test purposes targeting di�erent network con�gurations
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require some physical or logical changes. It is also required to interconnect all the im-
plementations in con�gurations, which are test case dependent. Con�guration has to
be changed e�ciently and reliably during the execution of the test suite. Results of all
the probes executed have to be collected and stored. State of the art solutions present
automation or scalability issues.

There is a slow, but steadily ongoing process of migrating Internet from its current
protocol (IPv4) [Pos81a] to the new Internet Protocol (IPv6) [DH98, NNS98, TN98].
There is an international initiative to globally develop test speci�cations for IPv6 new
implementations. Testing requirements involve both classical Conformance and Inter-
operability testing. This chapter presents the work done on automating interoperability
testing applied to the IPv6 domain.

Interoperability testing requirements involves the deployment of several pieces of
equipment across di�erent network con�gurations. When testing the IPv6 core pro-
tocols, up to three di�erent collision domains are required. When addressing network
mobility, up to �ve collision domains must be handled. Moreover, di�erent hosts and
routers are required during the test, each of them being a di�erent implementation from
each other. The deployment and con�guration of all these elements is an error-prone
activity, that requires a detailed and precise execution. Di�erent errors exist due to the
complexity of the task, errors that may bias the verdict. We can �nd synchronization er-
rors, due to the execution of actions in the wrong order in some of the devices. Network
con�guration errors might be introduced too, due to the wrong manipulation of cables,
faulty connectors or other reasons. Trickier errors can be found due to di�erences in
the behavior of similar hardware. These last errors, which might include di�erent cache
erase policies or behavior of some commands are extremely di�cult to �nd, and more
common than expected when pieces of hardware are changed.

All forms of automation provide tangible bene�ts to the �eld. Another requirement
is the ability to execute the test suites outside the laboratory, during interoperability
events. Interoperability events occur several times a year in di�erent parts of the globe.
Laboratories in charge of o�ering testing services must be able to deploy their infras-
tructure reliably and run their services. When o�ering test services abroad, the full
test system has to be deployed so as to execute interoperability test suites. The full
platforms have to be transported.

The objective of the present work is to introduce a new methodological approach,
based on the utilization of di�erent virtualization technologies, to address existing prob-
lems in interoperability testing. Machine virtualization proved to be an adequate solu-
tion to converge implementations and communications services. Recently PC processor
manufacturers added to their products extensions to enhance virtualization support. A
new era of commodity components based virtualization is here now. The driving forces
of the industry towards virtualization are server consolidation, business continuity, man-
agement and resource optimization. Machine and network virtualization together might
give another meaning to consolidation.

The proposed virtualized testing platform solves several of the known problems in
interoperability testing. The solution presented solves management problems, allowing
us to deploy several con�guration scenarios with �xed hardware con�gurations. The
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operation of the virtualized test platform not only solves technical issues that previously
were only addressed with inaccurate physical manipulations, but saves resources and
time. Complete testbeds involving up to seven devices and �ve networks, as those
required for network mobility testing, can be virtualized into a single physical host.
The whole platform can be converged to a single node that hosts all of the required
implementations, thus o�ering a signi�cative cost advantage over existing solutions.
The solution also accepts hybrid con�gurations, with some components virtualized and
some others not.

Research and results presented in this work have an inherent executable character.
Practical aspects become particularly relevant when addressing interoperability test
execution. Regardless the way the abstract test speci�cation (ATS) is derived, the test
has to become executable and be run. Tests cannot become executable if we do not
bridge the gap existing between the ATS and the ETS.

This chapter is organized as follows. In Section 3.2 we describe general Interoper-
ability characteristics and in particular, Internet Community relevant ones. Afterward,
Section 3.3 introduces all the building blocks used for assembling the proposed solution.
Section 3.4 presents and describes the solution and how it is built using previously de-
scribed elements. Finally, Section 3.5 discusses the new characteristics of the solution,
presents its methodological contributions and summarizes the main contributions.

3.2 A glimpse on IPv6 Interoperability Testing

In the IP �eld in general, and IPv6 in particular, the interoperability plays a key role,
from the standardization process to industrial events. Well known events in the �eld
are: IPv6 PlugTests, organized by the European Telecommunications and Standards
Institute (ETSI); IPv6 Interoperability Test Events, organized by the TAHI group
in Japan; Connectathon events, in the United States.

The increasing number of events addressing interoperability can be seen both in
software and communication areas. Di�erent IPv6 interoperability events takes place
several times a year all over the world. They gather together telecommunication hard-
ware manufacturers and research institutions (among others) for a few days inside big,
cable-�lled noisy rooms. During the interoperability sessions, di�erent vendors connect
together their switches, routers, appliances, etc. so as to determine if they can inter-
work together. The general case is that ad-hoc probes are executed. Vendors generally
have their own checklist of probes for execution. They are generated by their protocol
experts based on the complexity of protocol development or expected misbehaviors.
Event though there is no general agreement on what tests to run, these events are a
very good opportunity to interconnect implementations before they get to the market.

During Interoperability events it is also possible to �nd a di�erent opportunity for
performing more structured, standardized tests and apply for a certi�cation. These
tests and IPv6 certi�cation initiative will be the subject of the next subsection.
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3.2.1 Some IPv6 Ready Logo test requirements

The IPv6 Forum1, who is committed to the promotion and development of IPv6 tech-
nologies, o�ers an IPv6 certi�cation programme. Developing a globally unique certi�-
cation programme helps to avoid confusion and transmit con�dence. The objective of
the IPv6 Logo programme, is to give con�dence that IPv6 is available and ready to be
used. The certi�ed devices are allowed to show an �IPv6 Ready� label indicating its
maturity, provided that they pass 100% of the tests executed.

The "IPv6 Ready" certi�cation consists of series of test suites designed to address
di�erent parts of IPv6 protocol implementations. The technical requirements for cur-
rent certi�cation are publicly accessible on line in documents like [For05]. Tests are
designed by experts trying to address relevant aspects that have to be ful�lled by any
implementation. Tests address IPv6 Core Protocols, Network Mobility, IPsec, IKE,
amongst others.

Figure 3.1: Single collision domain, two node test scenario.

To obtain the �IPv6 ready� certi�cation, the vendor must submit a set of documents
regarding the result of the execution of the tests. Tests can be performed by the
vendor or with the aid of a test laboratory. The role of the test laboratory is not
only to ascertain the required transparency in the certi�cation process, but to provide
the technical infrastructure and means for testing. A testing laboratory should posses
not only know-how on the subject, but provide the required testbed and methodology
for the test execution. All the pieces of equipment should be present, information
should be gathered and collected in a way that is suitable for submitting it to the
certi�cation entity. Most of all, it is required to provide a reliable process, methodology
and bullet-proof results. The test laboratory must transmit con�dence when it states
that an implementation passes, moreover, when it fails the developer of the device must

1http://www.ipv6forum.org/
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comprehend and agree on the results. Maturity, technology and automation of the
solution have direct impact on these subjective impressions.

3.2.1.1 General testing requirements

The requirements for IPv6 certi�cation are varied, nevertheless some of them will be
presented here. We will focus on those requirements that are addressed by this work
and those required to have a good understanding of the discipline. As we are dealing
with interoperability testing, a consequence is that existing implementations have to be
used during the test execution. We cannot test interoperability until di�erent imple-
mentations exist. This is di�erent from conformance, where executable test cases can
be built even before implementations exist. Moreover, we need at least two di�erent
implementations plus the IUT for each test. The implementations that are being tested
or used as central elements of the probes are named target, while the implementations
used to generate the test scenarios are named reference. For each test, there is a pream-
ble in which each node (target and reference) is con�gured to meet test requirements.
Afterward, commands are issued in every node to perform the speci�cation required op-
erations. All transmitted messages over the network are to be observed and recorded.
During the postamble particular test con�gurations are undone, leaving the nodes ready
for the next test of the suite. Issuing the right commands, in the right moment for every
node is an intricate and error-prone task. Even though many networking commands
are somehow standardized, the detailed level of con�guration required makes the test
execution itself a di�cult task.

Figure 3.2: Three collision domains, four node test scenario.

Each test has an associated network topology, and elements conforming the test
con�guration. The tests addresses di�erent protocol behaviors under di�erent network
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topologies. Some tests require two nodes on a single Local Area Network (LAN), see
Figure 3.1, to several LAN interconnected by routers, see Figure 3.2. Figures 3.1 and
3.2 were taken from [For05], and are part of the abstract test speci�cation of some
test cases corresponding to IPv6 core protocols. Other interoperability protocols have
di�erent requirements. As an example of higher complexity NEMO testing requires up
to �ve networks and seven pieces of equipment to be handled, as seen in Figure 3.3. It
is important that we devise a solution that is general enough to address all these cases.

Figure 3.3: NEMO initial test network topology

Additionally, each test has to be run against at least two di�erent implementations,
thus, the number of network con�gurations that have to be deployed doubles the number
of test layouts. This is one of the facts that turn con�guration management into an
important issue. All through the test suite execution, network con�guration changes
have to be made, together with corresponding changes in the involved nodes.

Apart from these con�guration management problems, we have to take into consid-
eration all the reference implementations required. Depending on the protocols that are
being tested, it is required to use 2 to 8 reference and helper nodes. Reference nodes
can take the role of hosts and/or routers and can be of any kind, from general purpose
operating systems to specialized devices. Due to the large number of operations that
have to be performed in each of the reference nodes, it is required to have reliable and
well known hardware, together with equivalent requirements on the operating system
software. Inside the laboratory, it is fairly simple to acquire required knowledge over
available systems, but it becomes a hard task using unknown hardware. When partic-
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ipating in abroad interoperability events, it is not always possible to travel with the
laboratory equipment, and the tests have to be executed over unknown combinations
of hardware and software. This fact adds additional complexity during interoperability
events. Ascertaining a non interoperable verdict with an unreliable platform is a very
big challenge and must be avoided. Deploying a reliable test environment is not an easy
task.

A part of the documentation that has to be delivered to apply for the IPv6 Ready
Logo certi�cation is a tra�c capture of all message exchange performed during each
test. This imposes some constraints to the way in which tests are executed and the
technologies that can be used. The work [SV06] is the �rst publication we made for
handling con�guration management in this environment. Detailed attention has to be
paid to tra�c capturing and recording so as to gather all the required information when
applying for the IPv6 Ready Logo. As the number of networks and hosts connected
change, it becomes a non-trivial task too.

State of the art solutions for implementing collision domains in the �eld of testing use
hubs, not switches. Hubs provide observability properties required for testing: packets
transmitted by any node can be observed in any port allowing full observability. The
roles of routers and nodes are implemented in standalone devices, usually using PC due
to their capability of multiple booting. Unfortunately these legacy devices -network
hubs- are harder to purchase year after year, and old hardware is stopping to work.
Moreover, new pieces of hardware like NIC present unexpected behaviors under these
legacy operation conditions (10 Mbps, half-duplex). Networking platform needs to be
upgraded.

It is beyond the scope of this work to present all the details regarding test execu-
tion. A detailed explanation of the execution of TAHI's automated tool can be found
in [End05].

3.2.2 IPv6 Mobility and Network Mobility Basic Support

Mobile IP provides an e�cient roaming mechanism within the Internet. Using it, nodes
can change their points of attachment to the Internet without changing their IP address.
This allows to maintain transport and upper layer connections on the go. Mobile IPv6
protocol is de�ned by the RFC 3775 [DJA04].

The IPv6 Network Mobility (NEMO) Basic Support protocol speci�cation can be
found in the Request For Comments (RFC) 3963 [V. 05]. It is an extension to the
Mobile IPv6 protocol and enables the support for the network mobility. This extension
allows session continuity and reachability for every node in the Mobile Network as the
network moves, not just a node moving. The protocol is designed so that network
mobility is transparent to the nodes inside the Mobile Network.

The IPv6 Ready Logo [For] provides a worldwide unique certi�cation program for
NEMO Basic Support. We should concentrate on the description of the requirements for
Network Mobility, and platform requirements for IP Mobility will be implicitly included.
Test speci�cation describes network topologies and test procedures to verify the correct
interaction between components, Home Agent (HA) and Mobile Router (MR), as de�ned
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in the NEMO standard.
To introduce the state of the art in IPv6 NEMO Testing, a real test case from IPv6

Ready Logo Phase 2 NEMO test speci�cations is presented. It concerns Priority A1
Architecture of MR [IPv07], the initial test network topology is shown in Figure 3.3.

Topologically, the con�guration consists of �ve collision domains and seven nodes.
Di�erent test cases of the suite may require other con�gurations. Let's assume that
we are testing the Mobile Router0 (MR0). Tests are organized through scenarios, this
one starts by setting up the MR0 under a Foreign Network0. After observing that
the registration (Binding Update/Binding Acknowledgment) with the HA0 is well per-
formed, MR1 and its associated Mobile Network moves to Mobile Network0. The next
stage is to wait to observe the re-registration with the HA0 after the expiration of the
MR0 lifetime. Then the Correspondent Node0 (CN0) must be able to ping Mobile Net-
work Node0 (MNN0). The �nal steps consists of moving the resulting Nested Network
(aggregation of Mobile Network) connected by MR0 from Foreign Network0 to Foreign
Network1 and test again the connectivity between CN0 and MNN0 with ping command.

As in the general case, when applying for the IPv6 Ready Logo Program, tra�c
capture �les containing all messages exchanged during each step have to be delivered
to the IPv6 Ready experts. In this case, the number of networks, thus, capture �les,
grows. Again, each test has to be executed twice against di�erent implementations.

3.2.2.1 Con�guration considerations

The tests addresses di�erent protocol behaviors. Sometimes from test to test, function-
alities have to be enabled or disabled in the Mobile Router or Home Agent con�guration
�le, in order to modify security restrictions or change the mode to obtain the Mobile
Network Pre�x. The NEMO Basic support uses IPsec to protect signaling between
the Home Agent and Mobile Router. The security considerations are de�ned in the
RFC3776 2 [JAD04]. According to the standard, Security Policy Database (SPD) and
Security Association Database (SAD) entries are de�ned to protect BU/BA, MPS/MPA
and Payload packets between HA and MR. IPsec SA con�gurations between HA and
MR is performed manually and can change between two tests. Automation of this task
is required to provide a reliable test environment.

3.2.2.2 Classical, non-virtualized, mobility testbed description

Mobility is often associated with wireless technology. In the case of IPv6 mobility, it is
a network layer mobility solution. Being a network layer solution, it is independent of
the data link layer, whether it is wireless or cabled. In the general IPv6 testing �eld,
the de-facto standard is the classical Ethernet technology. WiFi technology presents
transmission errors not negligible. There are, at least, 3 orders of magnitude more of
BER (Bit Error Rate) errors in WiFi connections than in Ethernet connections. Using
classical Ethernet it is considered that a packet seen in an observation point also means,
that it will be received by its target. When using WiFi, observing a packet does not

2April 2007: RFC4877 [V. 07] updates RFC3776
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directly imply that the receiver of the packet will receive it. Observing a packet in a
hub provides a higher con�dence that the receiver will receive it too. Ethernet is used
to minimize the bias in the verdict.

There are di�erent solutions for performing mobility events during the test execu-
tion. Some solutions implement mobility events manually, by un-plugging and plugging
Ethernet wires. Another solution is to connect a wireless access point to each net-
work and change the desired communication network (i.e. ESSID) from the Mobile
Components.

With a classical testbed, the aforementioned test case requires several pieces of
hardware: �ve hubs, six PC plus the Implementation Under Test (IUT) and all required
network cables. Hardware requirements makes it di�cult to attend to international
event carrying, deploying, con�guring and validating all these equipments.

Moreover, as the number of component needed during a test campaign grows, the
number of problems or errors which might happen in di�erent steps increases too (i.e.
availability of passports). The nature of these errors are varied. Maybe they are due to
physical handling of devices (i.e. shocks), wrong voltages (110/220VAC, 50/60Hz, etc.)
to simple aging of components. It is important to have a reliable platform during the
test execution.

3.2.3 Existing interoperability tools and solutions

There are not many interoperability testing tools available. We had access to two of
them during this work, both originally intended for IPv6 core protocols interoperabil-
ity testing. The two tools are IRISA's tool and TAHI's one. TAHI tool is available
for download while IRISA's one is an internal research and development solution, not
intended for distribution.

Both tools provide di�erent approaches to the problem. TAHI addresses the full
automation of test suite execution, while original IRISA tool provides an incomplete but
extremely �exible solution. We brie�y describe tool strengths and the way they address
the main requirements of interoperability testing. As this work uses and modi�es IRISA
solution, a deeper description of it is given.

3.2.3.1 IRISA interoperability testing solution

The solution developed by IRISA laboratory (referred as IRISA solution in the following)
is specialized on IPv6 interoperability testing, as de�ned by the IPv6 Ready Logo. It
addresses the automatic generation of per-node test scripts. Each of these individual
scripts implements one of the Parallel Test Components (PTC) of the test case. There
is a general model that abstractly implements the test cases described in the IPv6
Ready Logo programme technical documents [For05]. The distributed Abstract Test
Suite (ATS) is instantiated with particular platform Implementation eXtra Information
for Testing (IXIT) to produce actual Executable Test Suites (ETS). The methodology
is strongly in�uenced by ISO/IEC 9646 [ISO94] recommendation, while adapted for
interoperability testing. The generated scripts (PTC) are distributed to the nodes in an



A glimpse on IPv6 Interoperability Testing 109

initial deploy phase, where all the nodes are connected together in a same LAN. This
stage is prior to the whole test campaign. Nodes are connected to their corresponding
networks according to the test speci�cation and test execution is run. In the initial
solution hubs were used for handling con�guration management.

Figure 3.4: IPv6 Core Protocols, Interoperability suite Phase II, test 1.6.D network
layout, FreeBSD router

Scripts are generated for each of the �ve nodes required for the test: two hosts, two
routers and the node responsible of data gathering. The generated scripts automatizes
completely all the task and the sequence in which they have to be done in every node.
Internode synchronization of PTC was not addressed by the methodology, and is one
of the subjects of the present work. Scripts are executed at the console in each node,
starting from the initial con�guration of the node. During the initialization, each node
is con�gured as a host, as a router or as a data gathering node, according to its role,
as de�ned in the IXIT �les. The scripts are organized so as to allow simple manual
dispatching of the commands. Each action is numbered, with the test identi�cation and
a sequence number inside the test. Each script waits before each action for a keystroke
from the test expert and after the execution, it waits again so as to allow inspection
of the observable results of the command execution through their standard and error
outputs. The task of the expert is to check that all commands are executed without
errors in each host, and to execute in order all the steps in each node, according to their
respective sequence number.
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This is a routinized task, manual task, which is indeed error prone, as it is always
possible to make a mistake, executing some of the scripts out of order. This task
is interleaved with the execution of manual changes to the test con�guration. Task
dispatching and PTC synchronization role is assigned to the test expert.

Even though node con�guration and execution issues are completely automated,
interconnection of nodes is still a manual task. During the preamble, test execution
is paused so to allow physical intervention of the test expert. Nodes are connected
manually to their corresponding networks according to the test speci�cation and test
execution is resumed. Hubs are used so as to allow tra�c capturing of every transmission
in every collision domain by dumper nodes.

Figure 3.5: IPv6 Core Protocols, Interoperability suite Phase II, test 1.6.D network
layout, GNU/Linux router

Despite our e�orts to generate adequate schemas of what con�guration management
means in interoperability testing, we still �nd that the pictures shown as Figures 3.4
and 3.5 are the best way to show some of the technical problems. It is worth mentioning
that the Figure 3.2 corresponds to the abstract speci�cation of the test case shown in
the Figures 3.4 and 3.5. Pictures show how three networks are interconnected for the
same test in two di�erent con�gurations. The selection of the pictures tries to transmit
to the reader the di�culty of handling manual network con�guration when just the color
or tag of a cable separates right from wrong con�guration. It is di�cult to appreciate
the subtle di�erence in the black-and-white printed version. Please refer to the color or
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.pdf version of this document.

The test expert has to change the network topology, or con�guration, between test
cases during the execution of an abstract test suite. There is a inherent complexity with
the handling of all required network cables to connect all di�erent hosts. Moreover, there
is always the problem of loose connectors broken jacks and other failures that directly
impact the reliability of the test execution procedure. Whenever a misbehavior is found,
and specially those where tra�c is not observed, it is required to multiple check the
test platform before issuing a fail verdict. IPv6 Ready Logo de�nes 27 test cases to be
executed for a router when running IPv6 Core protocols interoperability test suite. As
each test has to be executed against two di�erent implementations at least, no less than
54 test cases have to be executed.

It is clear why this is a error prone task, even if it would be the only thing that the
test expert has to perform. Some mistakes may arise during the test suite execution.
Several physical connection problems might occur and the operator may plug wrong
patch-cords into wrong ports after hours of work. This produces wrong test verdicts. In
case of a fail verdict, everything has to be double-checked before validating the result.

Another source of complexity is data collection. Monitoring several interfaces might
also introduce some additional constraints during Interoperability events. Test experts
execute tests from portable computers, which do not present several expansion options.
Two network cards in a portable computer does not allow to gather all the information
from a single station. In some test con�gurations, it is required to use two di�erent
hosts to be able to capture all the tra�c generated in the required networks. This fact
complicates even more test con�guration and data gathering.

3.2.3.2 TAHI interoperability testing solution

A completely di�erent approach is followed by the tool developed by the TAHI Project [tah98].
TAHI distributes a set of tools named Interoperability Test Tools and scripts [TAH06].
They are highly specialized for IPv6 testing and provide a great control of the test exe-
cution. Regarding the test execution, they perform a similar task to the one described
for IRISA tools in 3.2.3.1: they provide a high-level layer abstraction for the execution
of network oriented commands in the host operating system. The main di�erence is
that the solution addresses automatic con�guration management. The details of such
execution are omitted.

We will concentrate on tester con�guration issues. The approach followed is more
ambitious than the one shown in 3.2.3.1, as it also addresses the automation of con-
�guration management. The underlying philosophy is to construct a superset of all
the possible networks and enable or disable required links on a test-by-test basis. The
Figure 3.6 shows the deployment of the solution. It requires a greater number of hosts
(eight plus the Implementation Under Test), with several network interfaces each (up
to four). This approach requires a very complex wiring scheme, making it di�cult to
deploy. The main drawback of the approach is that it is di�cult to scale for bigger
networks and host con�guration details are sometimes complex.
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Figure 3.6: Cabling required for TAHI's solution deployment
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3.2.4 Highlights

We reviewed details of the state of the art in interoperability testing in the IPv6 com-
munity. Existing solutions produce good results and level of automation regarding the
execution of commands on nodes, but con�guration management is addressed with dif-
ferent approaches. Original IRISA solution did not address con�guration management
automation and relays it as a manual task, while TAHI's approach is to reach full au-
tomation regardless initial deployment complexity. Existing testing methodology, and
thus, the Abstract Test Speci�cation does not derive from a formal approach, but from
expert experience. This fact is criticized, but it is undeniable that it has proven results,
and works, as this methodology built existing Internet.

It must be able to reliably and e�ciently perform test con�guration changes. It
should also transmit it's reliability and maturity. Manual operations must be avoided
to the maximum extent to avoid human errors and to release the test expert from rou-
tinized tasks and allow him concentrate on the implementation manipulation. Another
non trivial requirement is to be able to minimize the deployment complexity to simplify
its transportability, specially for international Interoperability events. Execution syn-
chronization, con�guration management and ease of deployment are the key elements
addressed in our solution.

3.3 Building blocks

In this section we present all the elements required for building the new interoperability
solution. Changes and their individual description are presented. The combined solution
description is presented in Section 3.4, where all the building blocks are combined in a
single solution.

3.3.1 Management network

The lack of an automatic test coordination procedures imposes constraints in the level
of automation of the solution. The version of IRISA solution we started working with,
did not address the synchronization of the di�erent tasks across the di�erent nodes.
The operator of the test system was responsible of dispatching the actions in the right
order over the nodes. The tool already addressed the automatic generation of scripts
for each platform and each test, so the required step is to be able of dispatching and
executing existing code automatically.

There are di�erent choices for remotely executing commands in a host. Remote
execution tools, specialized for networking include the execution of commands through
serial interface. Initial IRISA solution uses this technology from TAHI tool, and could
have been an option. This option is intended for routers, which provide a RS-232c
con�guration interface. The problem of extending this solution to address all the nodes
is that it does not scale well on the number of serial ports required. That kind of
hardware is already deprecated and becoming less and less common.
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3.3.1.1 Network con�guration: test and management networks

The modi�cation introduced consists of adding an additional NIC to each node that
allows remote execution of commands. These NICs are used to create a management
network. This network is physically independent from all other networks used for test
execution as speci�ed on the test suite speci�cations. The management network must
connect all the nodes of the test all the time, but must have no side e�ects on the results
of the test execution, keep the verdict unbiased. It is fairly simple and inexpensive to
add an additional NIC to hosts using USB devices, and avoiding expansion slot outage
issues, specially on portable computers.

All new NIC are interconnected in an additional hub or switch. As there are no
observability constraints on this network, any communication mechanism is adequate.

3.3.1.2 Remote command execution

All the modi�cations performed to the nodes in order to allow automation must not
introduce any bias to the verdicts. Side e�ects introduced by the fact of enabling a new
communication devices in the nodes must be avoided. To avoid con�icts of any kind
with IPv6 test execution we used IPv4 addresses and disabled IPv6 services related to
this management only network. Even though n-to-n connection is achieved, we will
only be concerned about 1-to-n communication, from the master node, responsible of
task synchronization, to each of the other nodes, the ones who take part in the test
execution.

After achieving connectivity, we should provide means for remote execution of gener-
ated scripts. Tools like rexec, rsh and ssh are available for most platforms and provide
adequate means for remote execution of commands. We concentrated and based our
solution on ssh. OpenSSH server daemon is deployed in all nodes used for IRISA
solution. To allow remote execution of commands without password-prompting we gen-
erated and distributed master node's RSA authentication keys. The master node can
simply execute the command <cmd> in the host <host> simply by issuing ssh <host>

<cmd> through the management network. This allows the complete execution of the
IPv6 Ready Logo Interoperability Test Suite to be coordinated and executed from the
master node.

Moreover, as there is no requirement that indicates that actions have to be dis-
patched simultaneously, the whole test campaign becomes a single (long) script that
executes commands in all test nodes, using OpenSSH, over the management network.
The way these new features were added to the existent solution managed to respect the
abstraction of the tool and allows easy extension of the whole solution. A new abstract
concept was introduced in the model, the master node, the one that controls the whole
execution. The instantiation of the tool, with all required extra information for testing
(IXIT) parameters produces a single meta-executable that is run on the master node.
It consists of the code that should be executed locally to control the execution, and
also, the remote code that must be executed in the nodes during each of the test cases.
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3.3.1.3 Full controllability of involved nodes

Usage of a parallel network for test control purposes is not new, and it is used for several
test methodologies. ISO9646 [ISO94] proposes a classi�cation of them for conformance
test procedures. As there is a coordination that has to follow speci�c procedures, this
method is called a coordinated test method, a particular case of a distributed one.

Collapsing together the master node and the dumper (host that records all the tra�c
in all collision domains during the test execution) allows us to have a single system that
controls the execution and gathers all relevant data. The level of controllability achieved
by this methodology allows the complete remote access to all test nodes. Moreover, we
achieve full observability, as we can monitor all generated network tra�c in all the
collision domains and complete results of command execution performed in each node.
As all the activities are controlled in a single system, we avoid all synchronization
problems: there is only one clock. All packets are timestamped according to the same
clock.

ssh method for remote execution allows us to redirect standard and error output of
remote commands locally. With this feature we can address speci�c requirements of the
IPv6 Ready Logo certi�cation procedure. As part of the documentation, it is required
provide the output of command execution in the nodes involved in the test. The output
redirection allows the automation of command execution output gathering too.

3.3.2 Network Virtualization

Virtualization is an old and vague term widely used since the 60'. It has been applied to
many di�erent aspects and scopes in computer science, from entire systems to services.
It is used to refer the abstraction of computer resources, including making a single phys-
ical resource appear to function as multiple logical resources. The common factor of
the di�erent virtualization technologies and techniques is the hiding of technical detail
through encapsulation. It allows the creation of an external interface that hides the
underlying implementation. In our scope, we will concentrate on machine virtualization
and network virtualization. As node is a generic term for hosts or routers in IP termi-
nology we will use node virtualization or machine virtualization indi�erently. Broader
usage of virtualization will not be addressed in this work. This section deals with the
usage of network virtualization to automate interoperability testing operations while
Section 3.3.3 explains how we applied machine virtualization to interoperability testing.

3.3.2.1 IEEE 802.1Q: tagged VLANs

The IEEE Std 802.1Q-1998 [IEE98] is a part of a family of standards for local and
metropolitan area networks. They address Physical and Data Link Layers and extend
de�nitions and applicability of widespread Ethernet networks amongst others. Classi-
cal usage of VLANs simpli�es tra�c engineering, deployment and security of network
infrastructure.

This work uses VLAN technology to multiplex tra�c into a GNU/Linux host. We
will present aspects of the standard that are to be used.
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The same objective of making a single physical resource appear as multiple logical
ones holds here. The IEEE 802.1Q standard [IEE98] was designed as an extension
of classical Ethernet to support multiple bridged networks to share the same physical
network.

3.3.2.2 VLAN design objectives

The standardization of Ethernet compatible VLANs aims to o�er several bene�ts to
this widespread ed and commodity networking technology. VLANs facilitate the easy
administration of logical groups of nodes that can communicate as if they were connected
in the same collision domain or link. VLANs also facilitate �eld activities that change
the members of those groups. Tra�c between VLANs is controlled, only internal VLAN
tra�c is forwarded automatically by bridges.

The VLANs extensions de�ned in 802.1Q are compatible over all IEEE 802 proto-
cols, both on shared and point-to-point LAN. They should maintain compatibility with
existing equipment as far as possible, communicating nodes in logical groups as if they
were connected in the same collision domain or link.

3.3.2.3 VLAN implementation details

Virtual LANs are required to span over di�erent Layer 2 network devices. Layer 2
frames had to be extended to carry an identi�cation of their originating VLAN, the
VLANID, which is inserted after the source address in the packet header. Additional
information, like priority, is also added to the frame header. In the Figure 3.7, the
format of a standard IEEE 802.3 Ethernet II frame is shown and its corresponding
VLAN-tagged version. The additional VLAN information is inserted after the source
address.

In order to maintain compatibility with existing equipment, VLAN-enabled switches
and bridges must be able to accept standard Ethernet packets and new VLAN packet
format. We will distinguish equipment that can handle VLAN-tagged frames referring
to them as VLAN-aware in contrast to VLAN-unaware devices, which cannot handle
tagged tra�c.

In our proposal, we use a VLAN-aware network switch. As said before, it must
be capable to handle both tagged and untagged tra�c. The links used for connecting
legacy unaware devices are known as Access Links. An Access Link is a LAN segment
used to multiplex one or more VLAN-unaware devices into a port of a VLAN Bridge.
All frames on an Access Link carry no VLANID.

The standard also de�nes Trunk Links as LAN segments used for multiplexing
VLANs between VLAN Bridges. All the devices that connect to a Trunk Link must be
VLAN-aware.

Untagged tra�c of an Access Link that enters the switch is treated according to
the VLAN membership rules de�ned in the device. Even though implementation is
vendor dependent, it can be thought that an incoming untagged-frame will be tagged
with its corresponding VLAN-tag and afterward will be treated as a tagged frame. The



Building blocks 117

User
priority

CRC

4 bytes

4 bytes

CRC

6 bytes

Destination
6 bytes

Address
Source

Address Field
Type
2 bytes

Payload

Payload

Up to 1500 bytes

Up to 1500 bytes

12378 456 12378 456 12378 456 12378 456 Bits

Bytes1 2 3 4
C

FI
802.1p

Tag Protoclo id (TPID) VLANID
12 bits

Ethernet II

Ethernet II with 802.1q tag

6 bytes

Destination
6 bytes

Address
Source

Address Field
Type
2 bytes

4 bytes

802.1q
Tag

Figure 3.7: 802.1Q Tagged VLAN frame format

opposite happens when a tagged frame is to be transmitted on an Access Link: the tag
is stripped, the frame converted into an untagged one and then it is transmitted.

Vendors provide di�erent set of policies for tagging Access Link tra�c. VLAN mem-
bership can be de�ned based on network addresses, network protocols, MAC addresses,
etc. We will only use port based VLANs on Access Links.

3.3.2.4 GNU/Linux support for VLANs and bridges

VLAN support was added to GNU/Linux soon after IEEE 802.1Q Std. was published.
The initial work was done by Alex Ze�ertt, which was ported to current kernel versions
and maintained by Ben Greear. Detailed information about their e�ort and GNU/Linux
VLAN capabilities can be found in [Gre05].

At the beginning Linux kernel had to be patched. Since kernel 2.4.14 was released
in March 2002, VLAN support entered mainstream Linux distribution. Current Linux
vanilla kernels are VLAN-aware, if con�gured properly. There exist some MTU problems
for speci�c Network Interface Cards (NIC), but as VLAN support is independent from
the actual NIC, it is possible to use it with almost any hardware con�guration.

The kernel module required for handling VLANs is called 8021q and can be inserted
simply by issuing a modprobe 8021q command, provided the required permissions. The
userspace command to handle Linux VLAN capabilities is vconfig. As an example,
the command to add the VLAN with the VLANID 10 to the interface eth0 is vconfig
add eth0 10. The Figure 3.8 shows the list of interfaces available to the GNU/Linux
host after virtual interfaces on VLANs 10 and 11 were added.

The relation between the physical interface (eth0) and the virtual one that uses it
is clear as they share the same name pre�x name and MAC address. There is a single
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odie:~ # ip link list

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:15:c5:c0:c3:07 brd ff:ff:ff:ff:ff:ff

3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:18:de:94:b9:cb brd ff:ff:ff:ff:ff:ff

4: sit0: <NOARP> mtu 1480 qdisc noop

link/sit 0.0.0.0 brd 0.0.0.0

5: eth0.10: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

link/ether 00:15:c5:c0:c3:07 brd ff:ff:ff:ff:ff:ff

6: eth0.11: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

link/ether 00:15:c5:c0:c3:07 brd ff:ff:ff:ff:ff:ff

Figure 3.8: Standard and VLAN interfaces in GNU/Linux

transmission queue attached to the physical interface, but apart from these details, the
virtual interface can be handled as a regular interface.

GNU/Linux networking options do not only cover host or router related issues, but it
can address lower layer operations, like bridges. Before Ethernet switches become com-
modity components, PC based software bridges were deployed to segment networks.
This functionality is part of the Linux kernel since the very beginning of Linux net-
working. Bridge capabilities were kept updated and support bridging even with VLAN
interfaces too, not only physical ones. This feature allows us to communicate di�erent
VLAN using the GNU/Linux kernel capabilities and still having full controllability on
the tra�c.

To have bridge support it is required to load the Kernel module bridge. The
userspace command to handle bridge operations is brctl. Arbitrary number of software
bridges can be created on a Linux host and can get any interface associated to them.
Figure 3.9 shows how to create a bridge named Network1 and associate the VLANs
with VLANID 10 and 11 to it. Nodes on VLAN 10 and 11 now can get communicated
through the software bridge.

odie:~ # brctl addbr Network1

odie:~ # brctl addif Network1 eth0.10

odie:~ # brctl addif Network1 eth0.11

Figure 3.9: Software bridge creation and handling

Access to the bridge interface from Linux is indistinguishable from other interfaces,
thus, tra�c can be captured and observed in a standard way. We can observe all
the tra�c that traverses the bridge as we do when sni�ng a hub. We achieve full
observability and automation of bridge con�guration.
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3.3.3 Machine virtualization

The main goal behind machine virtualization is to abstract physical hardware imple-
mentation from its physical implementation. It allows to deploy a virtual machine over
more than one physical system for high availability purposes, or, to collapse a set of
virtual machines into a single physical computer. The driving forces for current vir-
tualization deployments are based on the fact that most servers operate at less than
15 percent capacity. Virtualization allows consolidation of workloads, making a single
physical system host multiple virtual ones. It allows decoupling software needs from
hardware needs, as it is possible to deploy new servers and services without the pur-
chase of hardware, reusing available resources. We can see in Figure 3.10 a schematic
representation of several virtual machines running over a virtual platform on a sin-
gle system. Figure 3.15 shows a screen-shot of the implemented platform, consisting
of several virtual operating systems running on virtual hardware, over a physical sys-
tem. Our objective is to use virtualization to cut the explosion of nodes required for
interoperability testing.
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Figure 3.10: General virtualized platform

Virtualization took a new momentum in the industry with the latest developments
in PC microprocessor industry. Even though the IA-32 processor architecture does
not fully meet Popek-Goldberg requirements for virtualization [PG74] several software
packages overcome the limitation and managed to provide virtualization solutions on the
PC. Implemented solutions include techniques like dynamic recompilation of privileged
code that makes use of processor's unprivileged instructions. Both major manufacturers
of PC processors, AMD and Intel, have included hardware support for virtualization.
AMD's AMD-V technology [Zei06] and Intel's IVT [NSL+06], even though not compat-
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ible, provide required hardware support to run an unmodi�ed guest operating system
without the need to emulate signi�cant parts of the hardware. Even though virtualiza-
tion products exists for i32 architecture since 1999, it is these new changes in hardware
capabilities what enables powerful virtualization to take place.

It is important to distinguish the host system and the guest one. The host system
is responsible to create a simulated computer environment for the guest system. Host
virtualization techniques address di�erent levels of abstraction of the underlying hard-
ware, and get di�erent specialized names. What could be considered the lowest level
of virtualization considered for our purpose is called paravirtualization. It consists of a
host system that does not simulate hardware, but o�ers a special API that can only be
used by modifying the guest OS. As we intend to replace only hardware, this is not a
feasible option. It was considered due to availability of freely available solutions, like
Xen 3. The other relevant issue that prevent us to adopt this technology is that we
need to use four di�erent OS implementations, and current Xen only addresses Linux
as a guest OS.

The other extreme is the emulation of a complete hardware platform, including even
the emulation of the CPU. This solution indeed allows an unmodi�ed guest OS run on a
host. Moreover, it allows even mix-and-match of architectures and system types, as it is
possible to emulate a little endian guest architecture on a big endian host or vice versa.
Emulators like Bochs 4, that run on Windows, Linux, AIX, etc. supports unmodi�ed
systems like Windows, xBSD, Linux, etc. The principal drawback is the performance.

A sort of intermediate solution is called native virtualization, and is the one used
in this work. Native virtualization addresses the same challenge as the emulation but
without emulating the CPU. The rest of the hardware is emulated, but it uses the host
CPU. The native virtualization solution selected is the VMWare Server [Inc07], which
is distributed closed source and free of charge. Due to legal issues, parts of the platform
that directly link to the Linux Kernel, even though some parts of the code is open. The
technology delivers processor performance levels similar to the same OS running on the
raw hardware.

Our goal applying virtualization is to collapse m virtual hosts into n physical ones
without introducing any bias in the verdict. We expect m > n, and preferably, n = 1.
This allows very simple deploy of test con�gurations and high levels of automation in
con�guration management issues.

3.3.3.1 Virtualization and networking

Despite all the shine of virtualization, we need a solution that is �exible, observable and
unbiased from the networking point of view. As we are testing network protocols, we
must be very cautious about network virtualization and the possible consequences on
the test verdict. We concentrate our discussion on VMware, the virtualization solution
used during this study.

3http://www.xensource.com
4http://bochs.sourceforge.net
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VMware o�ers an adequate deal of options regarding networking. It allows up to
four virtual network interfaces to be de�ned on a per-virtual machine basis. The way
the network interfaces are made visible to the guest system is based on the emulation of
a well known AMD PCnet32 (lance) network speci�cation. For Linux, Solaris and BSD
operating systems, the standard unmodi�ed driver is used. In the case of Windows XP,
a special VMware driver is used, even though, distributed in the standard Windows XP
driver suite.

The way networking options are incorporated to the virtual machine is at a very
low level, physical emulation. Same kernel modules (drivers) and networking in general
are used in a virtual machine as in real PC using a lance NIC. No modi�cations are
performed on the kernel or special drivers are required. We are running on a virtualized
environment the same software that we would run on raw hardware. This fact allows
us to rely (as much as we would do over real hardware) on the subject of our test.

O�-the-shelf networking options fall in three di�erent categories: NAT, used to share
host's IP address; Host-only where a private network is shared with the host; Bridged,
connected directly to the physical network. At a �rst glance, none of this options are
adequate for testing. If we use NAT, we are modifying the packets, something we do
not want to happen. Host only networks are internal to the host where the VMware
server is running, thus, we cannot communicate them to external implementations. The
most suitable option is bridged networking.

The main problem arises due to the availability of NICs. If we virtualize two routers,
we would need 4 di�erent NICs for the working interfaces, plus two more for the man-
agement network. As we keep on adding hosts, we also grow on the number of NICs
required. We have to use network virtualization too.

One fact that has to be considered is that there are some limitations on the way and
moment that networking is done. Networking options can only be changed at virtual
server con�guration time. Changing the binding of a virtual NIC to a physical NIC
can only be done with all virtual machines powered o�. Some changes even require
to rebuild (re-compile) kernel modules, removing them and inserting them back in the
host OS. The solution must be kept as simple and practical as possible, trying to avoid
these manipulations.

3.3.3.2 Virtualized machines using VLANs

The logical conclusion for avoiding physical interfaces is to use virtual ones. As shown
in 3.3.2.4, we can create as much virtual interfaces as we need over a single physical
interface. The issue behind this idea is that VMware does not allow virtual interfaces to
be speci�ed for networking. If virtual interfaces are speci�ed, no communication occurs
after the guest OS boots. Inspection of log �les shows an error specifying that virtual
interfaces cannot be used for bridging.

Another solution would be to de�ne virtual interfaces inside the guest OS. This
was tested using also GNU/Linux as guest and host OS without problems, but the
option is not available for all required operating systems. As an example, on Windows
XP, tagged VLAN support is a driver dependent and not an OS dependent issue. The
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VMware provided driver does not support VLAN tagging. This would lead us to non
standard solutions.

Additionally, this approach presents methodological implications. If our solution
was based on handle VLANs inside the guest OS, the one we are either testing or using
as a reference implementation, we would changing the data link layer used. It must be
kept in mind that the solution presented in Section 3.3.2 is transparent to all nodes.
VLAN tagging and tag removal is done either by the switch or the GNU/Linux host,
but transparently to the nodes that take part of the test. For them, untagged packets
are transmitted and received. They cannot di�erentiate the original hub-based solution
from the one using network virtualization.

Before giving up, we decided to analyze the reason why VMware fails using virtual
interfaces for bridging. Due to GPL/LGPL license issues, VMware distribution for
GNU/Linux is not completely closed source. Kernel modules must be distributed open
source too, thus, we have access to the source code of the bridge networking module.
After analyzing the problem we found out that there is no particular reason for virtual
interfaces cannot to work. From our understanding of the source code, they try to
bridge Ethernet tra�c into Ethernet physical interfaces. We think that the reason is
to avoid users to send Ethernet frames over PPP links or tun devices, but the case of
virtual interfaces is not considered.

After several approaches and modi�cations, we designed a patch that accepts stan-
dard Ethernet and 802.1Q frame formats. The patch is shown in Figure 3.11. Initial
versions of the patch addressed handling of VLAN information through di�erent places
of the bridge module, but we �nally realized that we can skip all processing and simply
accept header lengths corresponding to 802.1Q headers. What the patch does is to
include VLAN headers in the include section of the source. Afterward, in the check-
ing of the device associated header size, we keep the checking for standard Ethernet
header size (12 bytes represented by the ETH_LEN constant). We replaced the part of
the code that rejected other possible values for a conditional clause that checks and
accepts header lengths corresponding to VLAN tagged packets (comparing to the con-
stant VLAN_ETH_HLEN). The result is in the style of minimalism and simple. With the
application of this patch to the corresponding bridge source, unmodi�ed virtualized
Ethernet interfaces can be mapped to virtual Ethernet interfaces on the GNU/Linux
host OS. The tagging process occurs automatically, transparently to the guest OS.

It seems that this is an unforeseen combined usage of these virtualization techniques.
Stability of the bridge code through the last versions of the VMware Server shows
that this code is not evolving, and we would like to see o�-the-shelf VLAN usage on
virtualization solutions.
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--- ../../vmware-config2/vmnet-only/bridge.c 2006-08-10 00:59:13.000000000 +0200

+++ bridge.c 2006-12-17 13:40:50.000000000 +0100

@@ -18,6 +18,7 @@

#include <linux/netdevice.h>

#include <linux/etherdevice.h>

+#include <linux/if_vlan.h>

#include <linux/mm.h>

#include <linux/skbuff.h>

#include <linux/sockios.h>

@@ -820,11 +821,16 @@

*/

if (bridge->dev->hard_header_len != ETH_HLEN) {

- LOG(1, (KERN_DEBUG "bridge-%s: can't bridge with %s, bad header length %d",

- bridge->name, bridge->dev->name, bridge->dev->hard_header_len));

- dev_unlock_list();

- retval = -EINVAL;

- goto out;

+ if (bridge->dev->hard_header_len == VLAN_ETH_HLEN) {

+ LOG(1, (KERN_DEBUG "bridge-%s: %s, assuming 801.1q device",

+ bridge->name, bridge->dev->name));

+ } else {

+ LOG(1, (KERN_DEBUG "bridge-%s: can't bridge with %s, bad header length %d",

+ bridge->name, bridge->dev->name, bridge->dev->hard_header_len));

+ dev_unlock_list();

+ retval = -EINVAL;

+ goto out;

+ }

}

/*

Figure 3.11: VMware patch to support virtual interfaces
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3.4 Usage of virtualized nodes on the interoperability test

platform

The building blocks used for the solution were already presented in the previous section.
Chronologically, the �rst problem addressed in this work was the one related to con-
�guration management for physically implemented nodes. The way this problem was
solved was by replacing hub-based collision domains with a combination of VLANs and
software bridges. This solution was implemented together with a virtualized version of
the management network. The solution is described in the Subsection 3.4.1.

The next step was to address machine virtualization, as a way to cut the explosion
of hosts and networks required for interoperability testing beyond core protocol testing.
Mixing ant matching real and virtualized implementations provides a great deal of
�exibility, easing not only deployment, but management of the test system. Moreover,
if all implementations are virtualized, we only need the host system to have a full
interoperability testing platform. We can even get rid of the VLAN aware switch.
Virtualized solution is presented in 3.4.2. A description of the full solution summarizes
current section.

3.4.1 VLAN based con�guration management

The objective is to replace legacy Ethernet network devices (hubs) with VLAN-aware
ones. The solution does not introduce any change into reference or target nodes used for
interoperability testing, allowing us to completely reuse existing and validated method-
ology. We would like to �nd a solution that can handle simultaneously real and vir-
tualized nodes during the test execution. This section describes the con�guration and
setup of Tester's network.

There are several reasons for replacing hubs. The �rst of them is that they are very
old. Even though they are a good, solid and reliable technology, nobody uses them
anymore. It is not only that nobody uses, but very few sell them. Each time it is more
di�cult to �nd a provider that still sells hubs, and we need to �nd a solution before all
the second hand equipment we use �nally wears out. Another important reason is that
new hardware (i.e. network interface cards) shows unexpected delays or packet losses
working in half-duplex mode. This observation has been discussed and con�rmed with
network administrators. We take this fact as an indication that hardware manufacturers
stopped paying attention to the 10Mbps, half-duplex Ethernet network. We need to
avoid bias in our testing tool. Last, but not least, the newest Ethernet technologies
only work in switches, not hubs. The 100MB Ethernet collapsed the 2Km network
radius of the 10Mbps one into 200m, but it was not the path followed by the designers
of Gigabit Ethernet. Instead of shrinking the network to 20m, their decision was to
avoid collision domains and build a fully switched network, without the option of hubs.
Clearly, 10GigabitEthernet will not collapse the network to 2 meters. Collision domains
are not available in some physical mediums, like �ber optics.

It is clear that we need to �nd an updated solution. We describe the solution, which
is based on tagged VLANs and a GNU/Linux host.
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3.4.1.1 Switch con�guration

In general, switches are not used for network testing in the �elds of conformance and
interoperability testing. The reason is that tra�c is relayed only to the intended des-
tination, making it di�cult to see all the tra�c that is being generated. The initial
naïve solution to use one VLAN per test network and changing the con�guration from
the switch holds that problem. The solution introduces a problem of observability, as
it is not possible to monitor all the tra�c of the collision domain in a standard way.
Some vendors provide mirror or monitor ports. Commands for con�guring the VLANs
are not standard, and have to be adapted to di�erent switch vendors. To avoid that
problem a di�erent approach is followed: VLANs are statically allocated during all test
execution.

We will plug every reference and target implementation of the test directly to the
switch. Hosts (reference or target) will use only one port, as they only have one network
connection. Routers (reference or target) will use two ports on the switch. Ports
that connect implementations will be con�gured as Access Links and each port will
receive a di�erent VLANID. As we connect every implementation directly to the switch,
there is only one node interface per link. We are using the switch for tagging packets
from di�erent interfaces of di�erent implementations with distinct and known tags.
Identifying the tag, we can know the tra�c origin.

All the port based VLANs must have a �way out� of the switch to allow analysis and
interconnection. We will use a Trunk Link for this purpose, all previous VLANs will be
combined into a Trunk Link. We perform this task using the switch so as to avoid making
modi�cations on reference and target implementations used. It may be possible to tag
tra�c from the source and use Trunk Links instead of Access Links, but we would have
changed the con�guration of the nodes. The objective of this con�guration is to only
replace the intercommunication hardware, but to leave untouched the implementations.

A set of ports are kept together in another VLAN reserved for management. We
should use this VLAN to implement the management network described in Subsec-
tion 3.3.1. The management VLAN does not hold any particular requirement regarding
observability, just to provide connection. The VLANID must be reserved and not used
for any other purpose.

Most of VLAN-aware switches provide several value added features. It is important
to disable all features that would introduce tra�c like Spanning Tree Protocol on the
links. We want to avoid noise in our test scenarios to keep capture �les clean and easier
to analyze. Another features that should be disabled is priority or QoS tagging that
might a�ect transmitted tra�c.

For our purposes, the switch con�guration is static all the time. In this way we avoid
introducing in our scripts proprietary command sequences. We can use any 802.1Q
compliant switch, provided that it is con�gured according to our needs. The solution
does not introduce any requirement on the con�guration options of the switch. Web-
based con�guration, console or command-line are suitable for our solution. We use the
switch as a tra�c tagger and to multiplex all the tra�c into a Trunk Link. The solution
was successfully deployed using diverse VLAN aware switches. We used 3Com, Foundry
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Networks and Hewlett Packard ones. Despite the diversity of the con�guration options,
the solution is straightforward to con�gure and deploy.

3.4.1.2 GNU/Linux con�guration

The GNU/Linux host (Lh) introduced is not part of the test, and has to be thought as
part of the network infrastructure. The Lh is connected to the Trunk Link, therefore,
it has to be con�gured to be VLAN-aware. As shown in 3.3.2.4, it is required to load
the 8021q kernel module to support IEEE 802.1Q tra�c. The way to access the tra�c
of any certain VLAN from the Lh is to con�gure a virtual interface inside that VLAN.
Afterward, the interface can be handled as a standard network interface in GNU/Linux.
It is possible to attach a packet sni�er, add a network interface or perform any (software)
operation on the virtual interface.

Tra�c generated from the Lh and transmitted into the Trunk Link contains the
corresponding tag. The switch receives the frame and determines the physical port to
be forwarded according to the information provided by the VLANID and the destination
MAC address. As the switch is con�gured to have only two ports in each VLAN (the
Access and the Trunk), and the tra�c came from the Trunk, it will be forwarded through
the other port. The tag is stripped and it is transmitted as a regular Ethernet packet.

A virtual interface must be placed in the management VLANID. This would allow
to implement all the remote command issuing on the nodes.

We are able to plug (virtually) as many network interfaces as required to our
GNU/Linux host and connect directly each interface of the reference/target nodes to
them. We have emulated a Linux host with up to 4094 Ethernet ports and the refer-
ence/target nodes directly connected to it.

3.4.1.3 Con�guration management

What follows is done by software inside the GNU/Linux host, which can be fully auto-
mated. According to the test being executed, the nodes and network topology is known
beforehand. The Lh will not consider any of the virtual interfaces that are not being
used during the test execution. As all network interfaces used during the test are as-
signed to di�erent VLANID, none of them is capable of communicating with each other
only with the described con�guration. Communication takes place due to the de�nition
of software bridges in the GNU/Linux host.

The Lh will bridge the tra�c of the hosts directly connected into a same network
according to the test purposes, and will emulate as many networks as required. We have
full control of the tra�c that reaches every host, as they cannot communicate to each
other through the switch, but only through the Lh. This gives us an excellent place
where to capture and store all the tra�c required for documentation purposes. As we
are emulating the physical links (collision domains) inside the Lh, we can also monitor
and log all the tra�c.

All required changes during the test execution can be performed without any kind
of physical interaction. We only control how the packets are bridged between VLANs.
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Con�guration management becomes a VLAN management issue, adding and removing
VLANs to them. All the dynamic operations of physically connecting di�erent ports can
be mapped to software con�guration operations, and automated inside the GNU/Linux
host. Connecting two implementations consists of enabling bridging operations between
their corresponding VLAN, regardless of the fact that the implementations run on
physical hardware connected through the switch, or, that they are virtualized inside the
GNU/Linux host.

3.4.1.4 Mobility events

Mobility events can be treated in the same way as con�guration changes described
in 3.4.1.3. Con�guration management operations, instead of happening only during pre
or postamble, are interleaved during test execution. Test cases will include operations
that will be executed on the GNU/Linux host and correspond to mobility events. The
VLAN corresponding to the network interface of a Mobile Node can be changed from
one software bridge to another. Equivalently, one network interface of a Mobile Router
can be changed from one software bridge to another, implementing the mobile event.

3.4.2 Virtualized addition of nodes

The need for machine virtualization did not appear in the laboratory, but traveling
to interoperability events and providing test services abroad. In the laboratory there
is enough time to know the hardware, master the solution and debug detailed hard-
ware/software problems. When the testbed has to be moved to another country prob-
lems start. You have to carry as little equipment as possible.

3.4.2.1 Need for virtualized nodes

The �rst option is to ask the responsible of the organization of the event to provide you
with the required hardware. Despite the quality of the hardware provided, there are
always problems. Maybe the network cards do not have the same revision as those you
use and the behavior of the protocol is di�erent as the one expected. We found several
of these problems related to bu�ers, caches and internal tables that a�ect protocol
observable behavior. During some tests you are required to �ush caches to force neighbor
discovery solicitation, and a minor change in the hardware makes you face an unknown
problem during a test execution, with a customer.

Another option is that you ask the organizer 4 network hubs, and thinking that they
are making you a favor, they provide you 4 network switches. Or even worse, 10/100
hubs. 10/100 hubs, even though they are called hubs, implement a bridge between the
10Mbps collision domain and the 100Mbps one. If due to link speed negotiation ma-
chines get connected to di�erent collision domains, the tester will get into observability
problems. You will see multicast tra�c, but maybe not unicast responses, �ltered by
the bridge. This might introduce bias in your verdict unless you suspect problems in
your platform. But you must rely on the platform to be able to run tests successfully.
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Assuming that you would carry a complete platform with you -as we did several
times- you will only carry what is minimally required. Five hubs, 15 NICs and 7
computers is enough. It is di�cult to explain this at the customs and it is very risky to
damage (or forget) something. After you get to the place, deploy the platform and are
ready to test, you are informed about a last minute request from an implementation
that you did not consider. Let's say that people from Kernel.org want to test their new
IPv6 support. Then, that computer you carried with Linux, is tested, you know how it
works and you rely on becomes useless and your platform needs a new implementation.

Assuming that the number of requests for interoperability testing grows and you
do not have enough time to test them all with your platform, then you need a second
platform to run tests in parallel. Either you carry two platforms or you return to the
problems discussed before.

Virtualization of machines comes as a way of bringing more, carrying less.

3.4.2.2 Con�guring a virtualized machine

Here we present how to con�gure a virtual machine to be integrated in the platform.
We will not stop to present all virtualization capabilities and bene�ts in this work, but
those relevant to interoperability testing. We concentrated our work on VMware due to
its maturity, capabilities, prior experience and for being a proven virtualization solution.

As presented in 3.3.3.2, standard VMware Server distribution does not support
bridging tra�c over virtual Linux interfaces. This is a critical need for us, as the
con�guration management solution we developed is based on the usage of VLAN tra�c.
We need to integrate virtualized hosts seamlessly to our solution. With the patch
presented in Figure 3.11 we enabled bridging into virtual interfaces.

Now that we have a solution that can communicate over VLANs, everything we
developed in the IRISA tool can be applied to virtual machines.

For virtualized nodes, each virtual NIC is bridged to its corresponding VLAN inside
the GNU/Linux host. It is important to precise that the mappings must be performed
over the same physical interface of the GNU/Linux host where the VLAN aware switch is
connected. In this way, mapping of VLANs is consistent across physical and virtualized
implementations. This fact, and the ability to mix and match physical and virtualized
implementations enhances the applicability of this solution. A virtual machine can
be communicated transparently with any other machine (virtual or physical) that is
connected to that VLAN or through the software bridges con�gured.

Separate Virtual Machines are con�gured for each of the hosts required according
to the test speci�cation. Di�erent operating systems or network stacks must be used
to meet test case requirements. We con�gured virtual machines with Linux, Solaris,
FreeBSD, OpenBSD, Kame, etc. To have a comfortable working environment, each
virtual machine is allocated 256 MB of RAM. It allows the execution of state of the art
*nix environments with adequate speed for IPv6 related con�guration and command
execution. Deploying 5 virtual machines on a single node is possibly with commodity
PCs.

There are few requirements regarding the software that needs to be installed in each
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host, basically, IPv6 networking tools. Each of the virtual machines is con�gured with
the required number of virtual network interfaces, and each interface is mapped to a
di�erent VLAN in the Linux host OS. This mapping is static, and cannot be modi�ed
during the test execution. Being more precise, it is required to stop VMware server and
recompile it to change the mapping of a network device (/dev/vmnet) to a particular
virtual interface. All virtual machines are con�gured to have enough interfaces to play
any con�guration in any test, either as a host or router. They are allocated 2 networking
interfaces and a management one. Unused interfaces remain disabled in test cases that
do not use them.

3.5 Characteristics of the virtualized interoperability tool

This section describes and presents the main results found during the implementation
and usage of the virtualized solution. Presented results validate practically the results
of �eld application. Moreover, it shows the usefulness of providing higher level of ab-
straction to concrete, network level, con�guration management operations.

3.5.1 Implementation and execution

All of the di�erent aspects of the tool were implemented and combined in the IRISA
laboratories. Di�erent stages of the evolution of the tool, and the complete one, were also
presented during recent Plugtest and IPv6 Ready Logo Interoperability events. Some
parts of the presented methodology are already accepted and applied by the Internet
Community, while some others are yet to be approved for certi�cation purposes.

Figure 3.12 shows a deployment of the solution, addressing automation of the test
suite execution, but not taking pro�t of any virtualization technology. The deployment
corresponds to a platform corresponding to IPv6 core protocols interoperability testing.

The solution consists of one node (on the right) that manages the execution and
performs all tra�c capturing. It is connected to all networks: it issues all the commands
to the remote nodes through the management network; it observes all the tra�c on the
testing networks. The three test networks are implemented using 3 hubs, where nodes
are plugged manually. The fourth network is the one used for management. It does not
require any kind of handling during the test suite execution. The four nodes on the left
are the target and reference ones used during test execution. No manipulation needs to
be performed on their consoles, as all the commands are automated except on the IUT,
which remains unknown.

Figure 3.13 shows a complete solution deployment, based on physical nodes while
implementing network virtualization.

The master node is not directly observable on the picture, but counts just one
physical cable that connects it to the switch (under the screen). The cable transmits 9
di�erent VLAN into the GNU/Linux host, where software bridges are used for automat-
ing con�guration management. The cable density is higher, as all required cables enter
a single device, but conceptually it is the same number of cables from the switch to
the platform. Usage of both solutions is the same. All commands are dispatched from



130 Interoperability automation

Figure 3.12: Fully deployed platform, addressing only automation

the master node through the management network (real or virtual) to the nodes. The
di�erence are pre and postambles, where there is no need for manual manipulations.
Cables are plugged at the beginning of the event in the platform and no further physical
manipulation is required.

What remains is a fully virtualized solution. Figure 3.14 shows the physical aspect
of the virtualized solution. The node on the right implements the complete platform,
hosting the 9 required VLAN and 4 virtual machines of the platform. The VLAN aware
switch is not required anymore, as the number of interface cards can be reached simply
using USB NICs. The host on the right plays the role of the IUT.

The complete platform was virtualized into a single host, achieving the maximum
level of virtualization we can think of. The consoles of the di�erent virtual machines can
be seen in Figure 3.15. A screen-shot shows the four consoles of the di�erent systems
deployed. Four implementations of di�erent *nix systems with di�erent IPv6 stacks are
run: Linux, USAGI, Solaris and FreeBSD. No manipulation has to be performed on any
of the systems through the execution, as it was the case with the two prior solutions.
The test is run from the same console, with the same options and without any particular
modi�cation.

We can take even one step further. The platform also allows us to virtualize the IUT,
something we also did. We successfully virtualized the IUT and managed to execute
the platform and the IUT inside the same host. In that case, there is nothing tangible,
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Figure 3.13: Fully deployed platform, using physical nodes and virtualized con�guration
management

Figure 3.14: Fully deployed platform, network and machine virtualization
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but the host system that runs the test platform, virtualizes network connections and
all hosts.

Figure 3.15: Virtualized console view

All the forms of virtualization used during the di�erent steps and stages were in-
troduced transparently to the test platforms. In any of the previous cases, the IUT
receives the same set of stimuli and the responses are processed in the same way. From
the IUT point of view, all the changes introduced are transparent. From the testing
point of view, all the procedures used to generate the message exchanges are the same.

Behavior of any platform and deploy option was consistent. Verdicts of the test
execution on the same IUT are consistent too. We can validate each of the virtual
machines using a classical platform. Afterward all the tested virtual machines can be
used as an option for interoperability testing. We can use a completely tested platform
running on a single system.

3.5.2 New platform capabilities

The described set of solutions and techniques enhances mix and match possibilities for
building an interoperability test system. Presented solution provides permanent and
full access to all nodes and full observability of all the collision domains. It allows
automation of di�erent test execution tasks like tra�c recording or gathering of IXIT
information automatically. The activity of the test expert has become simpler with this
methodology, as the whole activity can be described as: "pressing enter and observing
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that expected tra�c is generated in each network". Informally we call the master node
the enter machine, because it is the only operation performed there all test long.

3.5.2.1 Solution convergence

As a result of the joint application of presented tools and methodology, we managed to
collapse the complete control and observation activities to a single node. This fact not
only provides means for automatization of the execution, but releases the test expert
from performing unnecessary tasks and allows him to concentrate on important issues
during the test execution. This diminishes the risk of having a biased verdict due to
wrong order of actions during test execution.

As a proven methodology, the test expert takes from granted that network changes
took place the way they should, the platform adjusted to the required con�guration,
and can concentrate on the IUT currently being tested. It is in the end, his ultimate
responsibility there.

3.5.2.2 Observability spin-o�: synchronization

Collapsing control and observation in a single system also solves synchronization issues,
as all the control can be referenced to a single clock. There is more to be said on this
issue.

Changes performed due to network management issues also introduce changes re-
garding observability. When collision domains were built based on hubs, it was possi-
ble that two di�erent messages were transmitted simultaneously on di�erent collision
domains. Observation of di�erent sources requires synchronization, which cannot be
guaranteed. As hubs are replaced with VLAN aware switches, collision domains dis-
appear. Every interface is connected directly to a full-duplex switch port. Thus, no
collisions occur at physical layer. Even though two packets might get transmitted at
the same time, they will be bu�ered, ordered and transmitted in a certain order. From
that point on, what is observed at the Network Layer level is ordered and the order is
preserved in the switch. Packet rate generated during test execution is very low, and is
far from generating bu�er over�ows in state-of-the-art switches. This means that tra�c
generated will not be lost.

Every packet coming from every node is transmitted through a unique link to the
master node. Even though it is possible that two nodes transmit packets simultaneously,
they will be ordered in the switch and transmitted serially to the master node. Inside
the master node there are no collisions as packets arrive serially. After serialized, they
are bridged serially too and forwarded back to the switch. From the observability point
of view, all packets will arrive sequentially to the bridges and they will be forwarded
sequentially, preserving the incoming order. We have no control on the order that
simultaneous packets will get serialized, but we can ensure that after that, there is no
data loss and we can ensure serialized behavior without ambiguities from there on.

On the other hand, this generates a hardware limit to the data rate that can be
handled with this technology. It can never be faster than the link that connects the
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master node to the switch. For state of the art interoperability tests in our �eld, it
proved to be enough. For testing other properties like stress test or performance test,
it might not be enough.

3.5.2.3 Host virtualization bene�ts

It is also worth mentioning that the usage of host virtualization is a signi�cant bene�t
from several points of view. The fact that a single host can condense a complete
interoperability test suite has the direct and obvious bene�t of cost reduction.

Some of the key bene�ts can be found when platform commuting is considered.
Attending to an international event carrying 5 computers and a VLAN aware switch
is not simple. Having all nodes X-Rayed at airports is not always simple, and might
lead to enhanced security checks. Another possibility to avoid the transportation is to
ask the organizer to provide the required hardware. The option is not simple, as even
slight changes in hardware con�guration have direct impact on the platform and how the
tests are executed. The behavior of the platform might change unexpectedly with minor
hardware changes. Failures observed range from failures in cache operations (unable to
clean Neighbor Discovery tables between tests) to complete node hangs, forcing not only
to reboot, but to restart the test case. Failures like cache operations might introduce
bias in the verdict, as observable results might lead to absence of expected messages.
It is important to rely on the testbed while executing a test. Con�guring a test system
based on foreign hardware and unknown combinations does not lead to a platform
you can blindly rely on. It takes several hours of work and some complete test suite
execution to rely on a test system.

The capability to integrate physical and virtual hardware also provides a great deal
of functionality. A solution that only counts with virtual node testing is adequate for
operating system testing, but might not be adequate for testing arbitrary implementa-
tions. With the ability of connecting our implementations through VLAN during the
test execution, we can apply this methodology also to VLAN aware implementations.
It would be possible to test devices independently from the physical medium. Current
limitations of the technology is 10/100 Half-Duplex, but we can move to anything that
can be switched into Ethernet with VLAN tagging. We can test the capabilities of a
router connecting a single cable to one of it ports and working over di�erent VLAN, in-
teroperating with virtual machines. Similar modi�cations as those we added to VMware
can be performed on other emulators and move testing to the same prototyping stages
before product implementation.

Other spin-o� of virtual hardware is its homogeneity. The virtual machine ab-
straction o�ers the same services and behaves equally over any deploy. The abstraction
provided isolates hardware details and allowed us to re-deploy virtual machines over dif-
ferent hardware, without �nding biased results. The same virtual machine was moved
from AMD to Intel processors, single to dual core without changes in the observed
behavior.

Another interesting factor is the reduction of the time it requires to build new test
platforms. It is as fast as copying the virtual machines from one host to the other
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and solving some minor identi�cation details. Also backup and snapshot operations are
simple and useful. Before performing maintenance on the virtual nodes, they can be
backed up or snap-shoot-ed. If any problem is introduced, it is easily rolled back to the
previous version.

3.5.3 Field application results

This section exposes �gures from �eld experience together with laboratory results. Au-
tomation of interoperability execution is a must. It presents all the complex signaling
required for network protocol testing, plus, distribution management requirements of
distributed testing. It has been reported that manual execution of IPv6 Ready Logo
Interoperability test suite requires more than a man-week.

Virtualization technology used delivers performance levels similar to the same OS
running on the raw hardware. Even though it is reported that there is a noticeable
performance impact on disk and network access on VMware Server, it proved adequate
for our purposes. In our experience, Unix based operating systems, like FreeBSD,
Solaris and Linux have very low CPU requirements after booted. An idle Unix running
on VMware introduces almost no overhead on the host system, thus, very low side
e�ects are propagated to other virtual machines sharing the same physical host. All
of our experiments are consistent, and no bias was introduced in any test case by the
usage of virtualization.

Our tests on bridged networking characteristics were successful. A virtualized OS
bridged over a network interface is indistinguishable from a physically deployed one.
Full conformance and interoperability IPv6 Ready Logo tests suites were passed by the
virtualized hosts.

3.5.3.1 Field error analysis

Manual operations are still required, and might always be required when there is no
possibility to automate the IUT. The platform used for testing consists of several hubs, in
which the di�erent nodes are plugged test after test. Using IPv6 Ready Logo accepted
technologies and practices, we studied the source of errors encountered during test
execution in the �eld.

Errors found were classi�ed in �ve di�erent categories. The �rst class, synchroniza-
tion errors, counts the frequency of mistakes in the sequence of events, mainly between
the tool and the IUT. Whenever out of order execution is performed, the test have to be
re-executed. The class network con�guration counts wrong connection of test elements
to networks during test suite execution. Non standard IUT con�guration counts the
number of errors found during the execution due to con�guration parameters of the
implementation found during the execution. They are not errors, and can be tuned
to meet test requirements, but forces test case re-execution. Single errors of the IUT
counts observations of wrong behavior, but that dissappear in subsequent executions of
the test. They do not correspond to tunable parameters and could lead to fail verdicts
if misbehavior holds. The last class correspond to e�ective IUT �aws detected.
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Synchronization 29.41%

Network configuration 23.53%

Non-standard IUT config 14.71%

Single errors of the IUT 11.76%

IUT flaws 20.59%

Figure 3.16: Distribution of execution errors

The Figure 3.16 shows graphically a comparison of the distribution of errors found
during test execution. It is important to recall that the ideal situation would be that
100% of the errors encountered correspond to IUT �aws and no other errors might be
present.

Presented methodology completely removes network con�guration errors, which ac-
count for almost one quarter of the �eld errors. In our laboratory, where we also able
to automate the execution script for the IUT, this solution fully solves synchronization
task, disappearing the source of errors too.

3.5.3.2 Execution time

Interoperability testing is a time consuming activity, and requires the permanent par-
ticipation of a test expert. Figures presented here were gathered during real interop-
erability events and in laboratory. The addition of the management network, solved
the synchronization overhead and errors amongst the nodes of the test platform. The
�rst solution was manually synchronized, even though automated and average times
for test suite execution exceeded four hours -no time execution data was gathered with
that tool-. With the addition of the parallel network, average execution times shrank
to 2:50hs. In spite of that, some test executions might take up to 4:55hs. This is due to
complexity of operation of the IUT or presence of unforseen problems. Due to this fact,
when interoperability events are scheduled only two devices per day are scheduled, per
test platform and test expert.
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In laboratory executions, where conditions are better controlled, execution time
averages 2:05hs.

3.5.3.3 Cost and reliability

State of the art solution and methodology accepted by the IPv6 Ready Logo involves up
to 6 test nodes and the test manager node. Five di�erent networks are required for test
execution and a sixth for management, thus, 6 network hubs are required. Presented
solution can be completely collapsed inside a single physical computer, avoiding all
network complexity and using standard Ethernet interfaces to connect to the IUT.
Without trying to put a monetary value to hardware involved, hubs dissappear and
only a single physical computer is required. State of the art hardware can handle the
whole workload, thus the saving ratios can be estimated between 5:1 to 10:1.

Reliability of the collapsed testbed is drastically enhanced. Let's consider the plat-
form requirements for the testing platform used for addressing IPv6 Mobility. Initial
solution requires that 6 nodes, 6 hubs, the test manager and lots of cables were 100% op-
erational. Let's also assume that the probability of failure of the nodes (pn) is the same
amongst them. The same hypothesis is considered for the probability of failure of hubs
(ph). The probability of an operative physically deployed platform can be estimated
with (1− pn)7.(1− ph)6.

Let's now consider the virtualized, collapsed platform that requires a single node.
It is direct to see that the probability of having an operative platform is (1−pn), which
is the probability that the single node required for running the collapsed platform is
operative.

It is straightforward that (1− pn) ≥ (1− pn)7.(1− ph)6, what shows the enhanced
reliability of the collapsed testing platform. If we consider physical operations with
cables, reliability is even more degraded. Reliability becomes more relevant in inter-
national interoperability events, where the complete platform has to be commuted.
Transporting seven notebooks might sometimes lead to a broken node, leading to a non
operational platform. Care of a single host can be achieved more easily, and a second
backup equipment can be transported, easily doubling the chances of having a single
operational testbed.

3.5.3.4 Quantitative tool execution changes

We quantify the di�erent contributions performed to the interoperability tool in ta-
ble 3.17, particularly, the one used for IPv6 Core Protocol testing. By the time of this
writing, equivalent results are being obtained for the mobility one, but not 100% of the
test cases are implemented. The decision is to present de�nitive and mature results. The
di�erent metrics used are objective enhancements that can be used to distinguish the
di�erent aspects addressed at di�erent stages. It is straightforward to see the di�erent
aspects addressed at each stage, what changed and the impact in the tool operation.

We measure the number of computers used, assuming that the deployed platform
only uses operating systems deployed on computers that can be virtualized. If we use
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hardware-bound devices, then there is a limit for virtualization, but the rest of the
analysis remains equivalent. The number of PCs count the number of real, physical,
systems required to deploy the solution, regardless the fact if they conform the platform
or if it is the management node. The number of cables just count the number of
Ethernet cables required to cable the complete solution. Hubs/switch counts the number
of network active devices required to communicate all the elements. Synchronization
describes the means for ordering the distribution of the tasks according to the test
speci�cation. Connections count the optimal number of con�guration management
manipulations that have to be performed during a complete interoperability test suite.

Original Management Management Fully
network + VLANS virtualized

PC 5 + IUT 5 + IUT 5 + IUT 1 + IUT
cables 12 18 15 2

Hubs/switches 3 4 1 0
Synchronization manual auto auto auto
Con�guration 45 45 0 0

operations

Figure 3.17: Metrics on the evolution of IRISA tool

We cross these inputs with four di�erent platform deployments, those described
in 3.5.1. The �rst one corresponds to the existing IRISA tool taken at the beginning of
this work. The second column corresponds to the addition of the management network,
that solves synchronization issues and automates the dispatch of commands across the
nodes. The next column corresponds to the solution built using physical nodes but
replacing classical networking infrastructure with a VLAN based infrastructure. The
last column corresponds to the fully virtualized solution, where only the IUT is physi-
cally implemented. We assume that we are testing a router for counting the number of
con�guration operations.

We can see that the platform shrunk, manual operations disappeared and networking
devices become unnecessary too.

3.6 What do we test when we test interoperability, short

discussion on de�nition limits

After several years of seeing the application of testing on the �eld, subtle, but yet
important questions arise. Di�erent notions of interoperability testing exist. Despite
the fact of which one we select, a common characteristic is that we do not have control
over the lower layer, we can only observe messages exchanged there, without controlling
what is being transmitted. Figure 3.18 shows architectural components of a test system
and possible points of control and observation on a two implementation interoperability
scenario.
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Figure 3.18: Two IUT interoperability architecture

The test system is conceptually divided into two di�erent parts, T1 who controls and
observes IUT1 and T2 who is responsible for IUT2. Every tester T contains entities that
control the upper and lower layers of the IUT being tested. The entities may or may
not be coordinated, as shown by the dashed-lines. Each IUT is controlled through their
upper interfaces and observed on their lower ones. This architecture can be extended to
multiple IUT following the same principles: lower interfaces can only be observed, not
controlled and upper interfaces are those we use for controlling the implementations.
Based on this philosophy interoperability test suites are designed and de�ned.

There is a problem regarding the abstraction of the concept of "upper interface".
What do we mean by "upper interface"? Who, using which privileges, should be the
user of that interface? At �rst glance it does not seem very important, but we should
take a closer approach to this issue.

General interoperability test requirements concentrate on the lower interface tra�c,
and do not specify the upper interface requirements. It is a reasonable and logical re-
quirement, as it is the interface where peer entities interoperate, and where the protocol
we are testing is speci�ed. Most of the times the upper interface, specially when it is
not providing a standardized service, is not standard, completely implementation de-
pendent. Moreover, new devices developed over an embedded general purpose operating
system do require a better de�nition of what services of the upper interfaces could be
used to control the implementation and which ones could not.

Di�erent privileges exist for di�erent users of the device. In some cases, the vendor
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can bypass the upper interface where the implementation customer is con�ned. Back-
doors or simply extended command line access might allow the vendor to execute and
have access to commands and options which are not available to the �nal user. Is it
right to ascertain a interoperable-pass verdict when the customer is not able to repeat
the test? This scenario is pretty common on embedded systems, where an application
is running on top of general purpose operating systems. Let's say that the application
o�ers a web user interface and it is still possible to get shell access to the host operating
system. Let's also assume that the host operating system is fully interoperable with
other implementations, according to certain criteria, and that all required operations
could be performed through the command line interface provided through the shell
access. Which one should be the verdict if some required operations were not published
through the web interface, but could be accessed -by the vendor- through the command
line interface?

We think that upper interfaces used for interoperability testing must be those ef-
fectively exported to the end user of the system. In this way we can ascertain that
whichever verdict issue, it could be repeated by the ultimate user of the implementa-
tion under test. It is important that in the end the customer is able to execute all the
tests.

Another possible problem is regarding the semantic of the operations allowed on the
upper interface of the implementation. In the solution presented during this chapter
all operations performed on the hosts consist of execution of network con�guration
commands on each host. As we have full access to general purpose operating systems, we
could do even more. We could remotely order the node to just transmit a packet that we
crafted (in a conformance-like approach), without using the protocol implemented by the
device. It corresponds to the functional characteristics represented on Figure 3.18 but
not to the concept behind interoperability testing: we want to test real implementations
to interoperate, no arti�cially crafted actions.

Interoperability de�nitions must address these facts to be able to re�ect more accu-
rately the concept addressed.

3.7 Conclusions

We have presented methodological, technical and implementation achievements in inter-
operability testing execution. Interoperability testing automation simpli�es and reduces
the bias due to con�guration management manipulation faults and manual synchroniza-
tion of tasks in the tester. Usage of VLAN based switching allows the testing to get
rid of legacy hub-based technologies and scale the number of hosts that can be handled
one or two orders of magnitude. This fact would allow us to even go beyond known
formally derived test case requirements. The synchronization of the full test system
that removes causal dependency bias solves even more problems that just automation
addresses.

Experimental results support the applicability of the solution. Deployment, main-
tenance, transportation and cost of the tester were positively a�ected. From 25 to 50%
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of execution errors are removed, making testing process smoother and more reliable.
The ultimate most extreme application of network and host virtualization allows to

collapse a platform of several nodes and collision domains into a single system. With
this level of automation and virtualization, we provide abstract operations over the
full interoperability platform that can be used by formally derived test speci�cations.
Formal interoperability testing has the tools required for mapping abstract operations
into executable ones.
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Chapter 4

Conclusions

Making predictions is hard, especially about the future.
Niels Bohr

This chapter concludes the thesis. As previous chapters already presented their
speci�c conclusions, we will concentrate of what we consider the three core contributions
of the thesis as a whole. Hints and ideas of future work are suggested too.

4.1 Contribution summary

In this thesis we address the problems found turning an abstract test speci�cations into
an executable ones. This is a problem disregarded by many researchers, but that has
a deep impact in the practice. As it is the usual case when there is a distance, it is
possible to start working from both ends. We did so. In the Chapter 2 we presented our
results taking TTCN-3 language as an abstract test speci�cation language and solving
�eld issues. Starting from the execution side we also provided solutions to existing
problems, and the results were presented in Chapter 3. Even though relevant solutions
were built on both sides there is more to be done. Moreover, both sides are not static,
but they are moving. Executable requirements are growing, as protocols implemented
by devices are more complex day after day. Abstract requirements are broader too, as
the level of abstraction required is always higher, and execution details are removed
from the speci�cation.

143
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TTCN-3 based methodology and framework

TTCN-3 is great for abstract speci�cation of test suites, but more work has to be done
on the language. The expressiveness and power of the language itself for precisely
describing abstract test cases and behavior is not matched by platform adaptation and
communication related entities. The language does not provide the developer required
tools for agile test case development, making it di�cult and a time consuming activity
to apply it. TTCN-3 standard does not specify or place requirements except on the
TTCN-3 Runtime Interface and TTCN-3 Control Interface. The result is a lack of
portability of the test cases between tools and a di�cult design decision for the test
developer. Either you choose a tool that provides o�-the-shelf components that ease
the development, but you end up tied to a single provider, or you develop yourself
the whole set of components you need, raising the amount of time required for the
development of the solution. As shown in Chapter 2 we developed and distributed a
tool to ease not only coding-decoding code generation but to achieve portability of test
suites among TTCN-3 C++ tools. Automation in the coding-decoding code generation
isolates the test expert from manual development issues. Automation provides a higher
level environment, allowing faster development cycles. The methodology also provides
independence of the platform. Adaptation tasks are automated in the tool.

The core contribution of this thesis work on the TTCN-3 �eld propose solutions to
the problem of turning a TTCN-3 abstract test suites into executable test suites. Two
di�erent approaches were proposed. They are based on the fact that there is a tight
correlation between abstract speci�cation of the messages interchanged with the IUT
and their codi�cation. This relationship can be exploited and automated approaches
can take pro�t of this fact and provide methodological bene�ts to the test speci�cation
lifecycle. Despite the high initial e�ort of developing the tools, the bene�ts of these
techniques are worth the time invested, as shown by the metrics. The test expert
does not need to manually develop coding-decoding extensions from scratch or use tool
dependent, non standard, extensions of the language. It is only required to follow a
methodology for type de�nition, that is augmented with platform language pieces of
code named CoDets. Tool independence has been achieved. ATS, CoDet and external
function reuse become simpler and more e�ective.

The results of this �eld of work were presented in di�erent conferences as [SFRV05,
SBFV05, SBV06, SBD+06, SCV07]. Results seem to be interesting to the TTCN-
3 user community, as a Best Presentation Award was obtained in 2005 and di�erent
works were accepted three years in a row in TTCN-3 User Conferences. The spe-
cial issue on The Evolution of TTCN-3 of the Software Tools for Technology Trans-
fer journal con�rmed the acceptance of the article Automatic CoDec generation to
reduce test engineering cost. The IPv6 Test Toolkit was registered with the number
IDDN.FR.001.030006.001.S.A.2006.000.10600 by the Agence por la Protection des Pro-
grammes.
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Internet Protocol testing

Results of our work were not only presented to TTCN-3 and academic testing commu-
nity, but also to the Internet Community. Di�erent vendors bene�ted from our testing
services, using TTCN-3 developed test suites. We showed to the Internet Community
that TTCN-3 is a viable option for testing Internet Protocols, despite the fact of being
a general purpose testing tool.

The research done on the executable side, mostly on interoperability testing of In-
ternet Protocols, is presented in Chapter 3. We produced and showed tangible, concrete
results, as shown by indicators in Table 3.17. The complexity of assembly, deployment
and operation of a full interoperability test bed collapsed into a single computer. It is
di�cult to say if complexity of the solution grew or shrank, but indeed, manual oper-
ations were minimized. Complete test case execution is automated and collapsed into
a single system. From the physical point of view, interoperability testing now requires
the same number of pieces of hardware than conformance testing. From the signals ex-
changed, conformance and interoperability are indistinguishable too. We can say that
now there exists the methodology and technology to make state of the art interoperabil-
ity test suites runnable from single systems. There is also availability of methodologies
and techniques for test case generation, message assembly and transmission.

Independence from legacy networking technologies was achieved too. This method-
ological and technical advances not only allow to test devices over new physical mediums,
but to ease testing platform requirements. Recently it has been hard to implement colli-
sion domains using newly purchased equipment. With the proposed tools, every sort of
tra�c that can be virtualized and transmitted to the management node can be included
in an interoperability test campaign.

Tester control and management applying virtualization

Automation solutions based on virtualization provides new means for interoperability
testing. Results are presented addressing Internet Protocols, and are presented in Chap-
ter 3 too. Con�guration management in interoperability testing is no longer a problem
for automation. Either using physical or virtual implementations, the complete con�g-
uration management was automated. Test cases can be now designed with new levels of
freedom. Interoperability testing can be automated together with regression testing or
other automatic testing activities. We foresee that these interoperability management
tools are capable of matching the requirements of automatic test suite derivation based
on formal methods.

Two publications were done with the results of this line of work: [SV06, SBBV07].
Di�erent parts were also presented during ETSI Plugtest events and Tahi events to the
testing community.
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4.2 Future work

Several lines of work were addressed during this work. Most of them reached to an
end, while others still remain open. Moreover, other new ideas were born too. Here we
present some ideas of future research aspects related to what was presented here. Some
of them are just the required steps forward to continue the evolution of ideas a even
further. Other were just conceived, but we had no opportunity to research on them.

TTCN-3 Open/Free compiler

This is ongoing work, but we �rmly believe that we will only see the limits for the
TTCN-3 language after we have a compiler to play with. During di�erent parts of this
work we would have bene�ted from digging our hands in the internals of the compiler or
making proposals on language properties. The lack of an Open/Free compiler makes the
proposals too abstract or unreal to be even thought about. We expect that after we have
access to �rst generation of Open/Free compilers language evolution will occur faster
and new proposals will be backed with prototype implementations. We foresee a bigger
and wider application of TTCN-3 language in di�erent test �elds based on the universal
availability of TTCN-3 tools and test suites based on the open/free development process.

Portable Library format

TTCN-3 ATS reusability is based on cut and paste operations over source code. The
language speci�cation does not standardize means for pre-compiled code distribution
binary formats. These details are left aside of the implementations and considered tool
vendor implementation decisions. We believe that it is necessary to provide means
for pre-compiled ATS distribution, as it is the case with major programming languages.
Library usage provides better reusability characteristics to the language and better tools
for test experts to design ATS and develop ETS.

Automatic tra�c inspection

Automation of the interoperability platform reached full observability from a single
master node. Execution decision still relies on the test expert, who is observing the
evolution of the test and exchanged messages among systems. It is possible now to
extend the tool with additional control features that allow automatic tra�c inspection.
With the evaluation of the tra�c it is possible to automate the decisions concerning evo-
lution of the test case and even real-time verdict issuing. Clearly automatic inspection
of the tra�c can verify more details than those controlled by the test expert. Automatic
tra�c inspection features can turn centralized-manual test execution synchronization
into fully-automated execution of the test cases. Only manual operations remaining
would a�ect vendor provided IUT, for which we lack automation capabilities.
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Formal derivation of interoperability test suites

Provided the degrees of automation makes real the possibility of executing automated
interoperability test suites generated formally. One of the common drawbacks of au-
tomatic derivation of test suites is that the number of test cases generated is several
orders of magnitude higher than those manually designed. Up to now it is not feasible
to execute manually thousands of test cases in reasonable amounts of time. Combined
techniques of con�guration management automation, virtualization and tra�c inspec-
tion enables full automatic execution of interoperability test suites. We want to see full
execution of interoperability test suites formally derived. A more precise de�nition of
interoperability testing should be found too, specially one that addresses the semantic
problems discussed in Section 3.6.
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Glossary

ASN : Abstract Syntax Notation
ATS : Abstract Test Suite
BER : Basic Encoding Rules
BER : Bit Error Rate
BSD : Berkeley Software Distribution
CBC : Cipher Block Chaining
CCITT : Comité Consultatif International Téléphonique et Télégraphique
CD : (External) Coding/Decoding
CH : Component Handling
CRC : Cyclic Redundancy Check
CSMA/CD : Carrier Sense Medium Access / Collision Avoidance
CTS : Clear To Send
DAD : Duplicated Address Detection
DCF : Distributed Coordination Function
DES : Data Encryption Standard
ECMA : European Computer Manufacturers Association
ESP : Encapsulating Security Payload
ETS : Executable Test Suite
ETSI : European Telecommunications Standards Institute
GNU : GNU's not Unix
GPL : General Public License
GUI : Graphical User Interface
HA : Home Agent
HG : Home Gateway
HMAC : key-Hashed Message Authentication Code
ICMP : Internet Control Message Protocol
IDE : Integrated Development Environment
IDL : Interface De�nition Language
IEC : International Electrotechnical Commission
IEEE : Institute of Electric and Electronic Engineers
IETF : Internet Engineering Task Force
IKE : Internet Key Exchange
INRIA : Institut National de Recherche en Informatique et en Automatique
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IP : Internet Protocol
IPng : Next Generation Internet Protocol
IPsec : Internet Protocol Security
IPv4 : Internet Protocol version 4
IPv6 : Internet Protocol version 6
IRISA : Institute de Recherche en Informatique et Systèmes Aléatoires
ISO : International Organization for Standardization
ITU : International Telecommunication Union
IUT : Implementation Under Test
IXIT : Implementation eXtra Information for Testing
LCoA : Local Care-of Address
LGPL : Lesser General Public License
MAC : Media Access Control
MAC : Message Authentication Code
MD : Message Digest
MDA : Model Driven Architecture
MSC : Message Sequence Charts
MTC : Main Test Component
MTS : Methods for Testing and Speci�cation
ND : Neighbor Discovery
NEMO : Network Mobility
NIC : Network Interface Card
NIST : National Institute of Standards and Technology
OMG : Object Management Group
OS : Operating System
OSI : Open Systems Interconnection
OSS : Open Source Software
PA : Platform Adaptor
PCO : Point of Control and Observation
PDU : Packet Data Unit
PDML : Packet Details Markup Language
PER : Packed Encoding Rules
PO : Point of Observation
PPP : Point to Point Protocol
PTC : Parallel Test Component
QoS : Quality of Service
RFC : Request For Comments
RTE : Routing Table Entry
SA : SUT Adaptor
SHA : Secure Hash Algorithm
SA : Security Association
SN : Sequence Number
SPD : Security Policy Database
SPI : Security Parameters Index
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SUT : System Under Test
STF : Specialist Task Force
TA : Tentative Address
TCI : TTCN-3 Control Interface
TCP : Test Control Procedure
TCP : Transmission Control Protocol
TE : TTCN-3 Executable
TL : Test Logging
TM : Test Management
TMC : Test Management and Control
TR : Technical Report
TRI : TTCN-3 Runtime Interface
TSI : Test System Interface
TTCN : Tree and Tabular Combined Notation
TTCN-2 : Tree and Tabular Combined Notation, version 2
TTCN-3 : Testing and Test Control Notation, version 3
U2TP : UML 2.0 Testing Pro�les
UML : Uni�ed Modeling Language
VM : Virtual Machine
VPN : Virtual Private Network
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Résumé

Dans le contexte des protocoles de communication, il existe deux approche fondamentales pour tester
les implémentations et s'assurer qu'elles fonctionneront correctement ensemble: le test de conformité
et d'interopérabilité. Le but des deux approches est de fournir des suites de test exécutables (ETS)
qui sont exécutées contre les implémentations. De grands e�orts ont été fournis pour dé�nir des
langages de spéci�cation de suites de tests abstraits (ATS) et des environnements pour dériver les
ETS. Les langages de spéci�cation d'ATS doivent être le plus abstrait possible. D'un autre côté, les
environnements utilisés pour exécuter ces ETS sont conçus pour être proche de ceux utilisés par les
implémentations. Il en résulte un gap entre les ATS et les ETS. La dérivation d'ETS à partir d'ETS est
complexe, di�cile et souvent sujette à erreurs, obligeant les développeurs de test à écrire les ATS qui
soient très proches des ETS. Ceci entraîne la perte de l'abstraction nécessaire pour les décrire les ATS,
leur portabilité et les propriétés intéressantes de maintenance et de réutilisation. Pour être exécutés sur
d'autres implémentations, les tests ainsi développés doivent être pour la plupart complètement réécrits.

Cette thèse tente de réduire le gap entre ATS et ETS aussi bien du côté des ATS que des ETS.
Elle propose des solutions qui préservent l'abstraction des ATS, qui facilitent la dérivation des ETS en
garantissant leur portabilité. Le langage TTCN-3 est utilisé comme langage de spéci�cation des ATS
et plusieurs protocoles Internet nouvelle génération sont utilisées pour expérimenter les solutions et
méthodes proposées. La virtualisation est également proposée comme solution pour gérer les problèmes
de con�guration, d'exécution et de contrôle lors des exécutions des tests, rendant ainsi les systèmes de
tests d'interopérabilité indépendants des aspects matériels.

Abstract

In the context of communication protocols, there are basically two approaches to testing implementa-
tions to ensure that they will work e�ectively together: conformance and interoperability testing. The
goal of both approaches is to provide ETS (Executable Test Suites) which are executed against imple-
mentations. Big e�ort has been invested de�ning languages for specifying ATS (Abstract Test Suites)
and environments for deriving ETS. Languages for specifying ATS need to be as abstract as possible.
On the contrary, environments used to execute ETS are designed to be close to the implementations.
There is a gap between ATS and ETS. The work of deriving ETS from ATS is complex, intricate and
often error-prone, making testers trying to write directly ATS close to the ETS. Abstraction, porta-
bility and other life-cycle relevant properties are lost. To be executed on another implementations
or in another environment, the so obtained tests have to be completely rewritten most of the times.
The complexity of the ATS to ETS transformation is not understood at �rst glance. No matter how
abstract you are on your ATS, all details must be present on your ETS. The problems addressed go
further than just a one-time ETS development, but ATS-ETS lifecycle management.

This thesis tackles the problem of bridging the gap by working on both the abstract and executable
sides. TTCN-3 language is taken as an abstract test speci�cation language, and several Internet
Protocols are used to apply di�erent methodological solutions. Virtualization is used to automate
several con�guration and test management problems. Virtualized interoperability testing also allows
test systems become independent of hardware components.


