
A case of teaching practice founded on a
theoretical model

Sylvia da Rosa, Marcos Viera, and Juan Garćıa-Garland

Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República.
{darosa,mviera,jpgarcia}@fing.edu.uy

Abstract. This paper tries to clarify the way in which our theoretical
model relates to teaching practice in response to questions about how the
model could potentially be applied. The theoretical model introduces an
extension of Jean Piaget’s general law of cognition to explaining the
difference between algorithmic thinking and computational thinking by
adequately locating the latter in the specificities of the subject instruct-
ing a computer. The teaching practice consists on activities introducing
programming in high school mathematics courses. These are organised
in a functional programming course to high school mathematics teach-
ers and didactic instances in which the teachers teach their students to
program solutions to mathematics problems.
Through examples we explain how the model helps teachers in finding
a meaning of the popular and controversial expression “computational
thinking”. The goal of the didactic instances is to educate students in
thinking algorithmically and computationally.

1 Introduction

This paper tries to clarify the way in which a theoretical model relates to teaching
practice in order to response to question of how the model could potentially be
applied.

The theoretical model introduces an extension of Jean Piaget’s general law of
cognition, that explains how conceptual knowledge is constructed when an indi-
vidual solves a problem [10]. We have applied Piaget’s general law of cognition to
investigate the construction of knowledge of algorithms and data structures. In
the case of knowledge of programs, the research led us to extend Piaget’s general
law of cognition, because the goal is to know how to help students learning how to
program, not just to know how to help them learning how to write program texts
(algorithms). The ontological approach of our programming didactics considers
that a program is in some sense a synthesis between a text (an algorithm) and
a machine that executes it. That means that knowledge about the text becomes
necessary but not sufficient to deal with programming problems. The research of
the construction of knowledge about programs has two main results: it offers a
theoretical model that explains the relationship between conceptual knowledge
of algorithms and of programs [13], and gives a clear definition of the controver-
sial expression “Computational Thinking” (hereinafter CT) [12]. In this paper



2 S. da Rosa et al.

we describe how and why teachers activities introducing programming in high
school mathematics courses are an example of the application of the theoret-
ical model. At the same time, the experience describes a way of introducing
CT into school, contributing to educators’ concern since CT became popular in
educational settings [5, 9].

The rest of the paper is organised into the following sections: in Section 2
we describe the theoretical model, while in Subsection 2.1 we introduce the
extended law of general cognition; in Section 3 we describe a teaching experience
with mathematics teachers and explain how and why it relates to the theoretical
model, and contributes to clarify teachers and students ideas of CT. Finally, we
include conclusions and references.

2 The theoretical model

In Piaget’s theory, human knowledge is considered essentially active, that is,
knowing means acting on objects and reality, and constructing a system of trans-
formations that can be carried out on or with them [11].

The problem of determining the role of experience and operational structures
of the individual in the development of knowledge before the formalisation was
studied in depth by Piaget in his experiments about genetic psychology. From
these he formulated a general law of cognition [10], governing the relationship
between know-how and conceptualisation, generated in the interaction between
the subject and the objects that he/she has to deal with to solve problems or
perform tasks. It is a dialectic relationship, in which sometimes the action guides
the thought, and sometimes the thought guides the actions.

Piaget represented the general law of cognition by the following diagram:

C ← P → C’

where P represents the periphery, that is to say, the more immediate and exterior
reaction of the subject confronting the objects to solve a problem or perform a
task. This reaction is associated to pursuing a goal and achieving results, without
awareness neither of actions nor of the reasons for success or failure. The arrows
represent the internal mechanism of the (algorithmic) thinking process. By that
process the subject becomes aware of the coordination of the actions -a method-
that she/he has employed to solve the problem (P → C in the diagram) and
of the modifications that these actions impose to objects, as well as of objects’
intrinsic properties (P → C’ in the diagram). C and C’ represent awareness
of the actions (maybe mental) encapsulated in the algorithm and of the data
structures, respectively. The process of the grasp of consciousness described by
the general law of cognition constitutes a first step towards the construction of
concepts.

2.1 The extended law of general cognition

The construction of knowledge about algorithms and data structures is a process
regulated by the general law of cognition. Over the years we have investigated the



A case of teaching practice founded on a theoretical model 3

construction of knowledge by novice learners of algorithms and data structures
(for instance sorting, counting, searching elements) basically by applying Piaget’s
law. A synthesis of previous work can be found in [14].

However, in the cases where the subject must instruct an action to a com-
puter, the thought processes and methods involved in such cases differ from
those in which the subject instructs another subject, or performs the action
him/herself. In order to program a computer to solve a problem, the learners
have to establish a causal relationship between the algorithm (he/she acting on
objects), and the elements relevant to the execution of the program (the com-
puter acting on states). By way of analogy with Piaget’s law we describe that
causal relationship by the following diagram:

C ← P → C ′︸ ︷︷ ︸
newC ←− newP −→ newC ′

where newP is characterised by a periphery centred on the actions of the subject
and the objects he/she acts on. The centres newC and newC’ represent awareness
of what happens inside the computer: newC of the execution of the program
instructions and newC’ of the undergone modifications of the representation of
data structures. The causal relationship between the first row and the second row
is the key of the knowledge of a machine executing a program. It is indicated
with the brace in the diagram above. The diagram describes the situation in
which the subject reflecting on his/her role as problem solver becomes aware of
how to do to make the computer solve the problem [16].

According to Piaget, we identify that the construction of knowledge of meth-
ods (algorithms) and objects (data structures) occurs in the interaction between
C, P and C’. Likewise, we claim that the construction of knowledge of a program
as an executable object takes place in the internal mechanisms of the thinking
process; marked by the arrows between newC, newP and newC’. In other words,
the general law of cognition remains applicable to the thinking process repre-
sented by the arrows; in both lines of the diagram pictured above. In [13] we
describe an empirical study in which we introduce the extended law of cogni-
tion (hereinafter extended law). In [12] we explain that our extension of Piaget’s
law introduces a clear definition of the notion of CT (represented by the second
line of the above diagram). Further, this new definition is adequately located in
relation to the notion of algorithmic thinking (represented by the first line of
the above diagram). The above diagram represents the theoretical model of the
construction of knowledge of algorithms, data structures and programs.

In the next section we describe a teaching experience and explain how and
why it relates to the theoretical model and contributes to clarify ideas of CT in
educational settings. It consists of activities that provide teachers with a clear
description of CT according to our theoretical definition. The teachers become
trained to help the students learning to program, in a way that respects the
process of learning how to think algorithmically and computationally.



4 S. da Rosa et al.

Fig. 1: MateFun IDE

3 CT in educational settings

The activities were developed in 2019 and consisted of a six weeks programming
course for high school mathematics teachers and the supervision of six weeks
activities that these teachers carried out with their students after taking the
course. The teachers teach in diverse educational centres in different regions of
Uruguay. They also teach in different high school years, and most of them teach
to more than one group of students.

The main objective of the activities is the integration of mathematics and
programming as a way to facilitate understanding and learning of mathematical
concepts and at the same time to provide basic programming knowledge to high
school students (see [15] for more details).

The guiding idea of the experience comes from [8] (page 327), in the sense
that programming a solution to a problem exposes aspects of the resolution
process that are otherwise hidden. Some examples are the need of formulating
algorithmic problems as such; the role of programming for the training of ab-
straction; the possibility of comparing algorithms and choosing those that are
more efficient; and the introduction of a method of proof of equivalence between
algorithms (see Section 3.2, first, second, third and fourth example respectively).

The functional language MateFun, briefly described in the next subsection,
was used in the experience (see [15] for more details).

3.1 The language MateFun

The language MateFun [3,4] is a functional programming language designed with
the specific purpose of being a tool to support mathematical learning, especially
in high school.

MateFun is purely functional, meaning that functions do not introduce side
effects and they only depend on their arguments. To be easily approachable it



A case of teaching practice founded on a theoretical model 5

is available as a web integrated development environment (Matefun IDE1), as
shown in Figure 1. The left frame is a text editor, where the program is written,
and the right frame is a shell with a read-eval-print-loop, where the programs
can be loaded (if they are correct) and the expressions evaluated.

Syntax and semantics of MateFun are both influenced by the seek to be
a tool to express mathematics. The syntax is minimal and close to the usual
mathematical notation. Semantically, it has the peculiarity of being strongly
typed, while having no type inference. The skill to specify the domain and range
of a function is part of the learning process when learning about functions. In
MateFun type information must be given by users, and types in MateFun are
called sets.

A MateFun script is a list of definitions of sets and functions over such sets.
Predefined sets such as R (representing real numbers) or Z (representing integer
numbers) are available as built-in constructs.

The user can define new sets either by comprehension or by extension, just
as usually presented in mathematics courses. In the following example we define
the sets of natural numbers (N), non-zero real numbers (Rno0), days of the week
(Day) and (Bool):

1 set N = { x in Z | x >= 0 }

2 set Rno0 = { x in R | x /= 0 }

3 set Day = { Mon , Tue , Wed , Thu , Fri , Sat , Sun }

4 set Bool = {True , False}

Sets such as Rno0, defined by comprehension, take a base set (R in this case)
and refine it with a predicate. Predicates can be built by relational operators
and from other predicates by conjunctions.

Functions are defined giving a signature and a proper definition. For example,
one could define the inverse function over the non-null real numbers:

5 inv :: Rno0 -> R

6 inv (x) = 1/x

MateFun supports some of the idioms used to define functions in mathe-
matics. For instance, piece-wise functions can be defined, while, unlike most
functional languages, it does not support pattern matching or conditional ex-
pressions. The following MateFun definition specifies the absolute value function
over the real numbers:

7 abs :: R -> R

8 abs (x) = x if x >= 0

9 or -x

This program resembles the definition in the usual mathematical notation:

abs : R→ R

abs(x) =

{
x if x ≥ 0

−x otherwise

1 https://matefun.math.psico.edu.uy

https://matefun.math.psico.edu.uy


6 S. da Rosa et al.

Fig. 2: Function plot: ?plot abs Fig. 3: moveRight(redCirc(1),10)

Then, if we load the program in the interpreter, we can ask to compute the
absolute value of the number -10 by typing the expression:

Example>abs(-10)

10

The interpreter evaluates expressions and interprets special commands. For in-
stance, we can graph a (one-variable) function using the command ?plot. The
result of plotting abs is shown in Figure 2.

Example>?plot abs

To emphasise that not all functions are numeric, MateFun allows to define
non-numeric sets (eg. Day and Bool) and functions between those sets, such as
holiDay:

10 holiDay :: Day -> Bool

11 holiDay (d) = True if d == Sun

12 or True if d == Sat

13 or False

We can also define sequences of elements of a given set; usually called lists
in programming. The sequence set A* is defined inductively as:

– [], the empty sequence
– a:as, a sequence composed by an element a belonging to A and a sequence

as belonging to A*.

For instance, N* is the set of sequences of natural numbers.
There exist some primitive functions to operate with sequences: first(s)

returns the first element of the sequence s, rest(s) returns the sequence s

without its first element, and range(n,m,k) returns a sequence of numbers
(n, n + k, n + 2k, ...) from n to m with step k. With range, combined with a
function to sum the elements of a sequence, we can for instance implement the

summatory

n∑
i=m

i.



A case of teaching practice founded on a theoretical model 7

14 summatory :: N X N -> N

15 summatory (m, n) = sum(range(m, n, 1))

16

17 sum :: R* -> R

18 sum (xs) = 0 if xs == []

19 or first(xs) + sum(rest(xs))

Notice the use of recursion in the implementation of sum and the domain using
two variables. Domains with multiple variables can be defined using n-tuples
(the generalisation of Cartesian products).

The language includes the primitive sets Figure and Color, and a set of
primitive functions to create and transform figures. For example, the following
function returns a red-coloured circle of a given radius, centred in the (0, 0) point
of a Cartesian plane.

20 redCirc :: R -> Fig

21 redCirc (r) = color(circ(r), Red)

In MateFun, animations are sequences of figures. The following function takes
a figure fig and a number n of steps, and returns an animation in which the
figure is moved n times one step to the right on the x-axis:

22 moveRight :: Fig X Z -> Fig*

23 moveRight (fig , n)

24 = [] if n == 0

25 or fig : moveRight(move(fig , (1, 0)), n - 1)

The expression move(fig, (1, 0)) moves fig to the point obtained adding
1 and 0 to the abscissa and the ordinate of the centre of fig respectively. Figure 3
shows the sixth frame of the following animation:

Example>moveRight(redCirc(1),10)

3.2 Teachers and students activities

The first part of the experience is a MateFun programming course to mathemat-
ics teachers and the second part consists of activities that teachers do with their
students. A complete description of teachers and students activities can be found
in [15], as well as teachers’ reasons of their choices of problems and comments
about students work. Here some activities are selected to describe how those
relate to our theoretical model and offer a way of introducing CT in classrooms.

In educational settings, the starting point for developing a program is usually
the design of the program’s text, that is, an algorithm. In other words, the first
step in getting the computer to solve a problem is to have an algorithm that
allows an individual to solve specific cases of the problem. The construction of
knowledge in this first step is regulated by Piaget’s general law of cognition (see
Section 2). Many of the problems covered in the course, are contributed by the
teachers themselves and they know the solutions. In the course they are trained
to program these solutions in MateFun, that is, to teach a computer to solve



8 S. da Rosa et al.

the problems, a process regulated by the extended law (see Section 2.1). Facing
this challenge teachers’ thinking starts from the new periphery (newP), since
they manage to elaborate an algorithm to solve the problem, and it has to move
towards the elements of program execution (newC and newC’). However, the
process is dialectical and often, the transition of the thought from the algorithm
and data structures, (C and C’) to elements of program execution (newC and
newC’), shows the need to modify the algorithm, and even the formulation of
the problem. In the examples below, part of that dialectical process is described.

First example: computability A theme introduced by the teachers in a group
of third-year high school students (aged 13-14) is related to the problem of finding
the multiples of a natural number. The accumulated experience2 has taught us
that often mathematics teachers are not used to rigorously formulate problems;
many times they formulate problems forgetting details that are unconsciously
interpreted, as in this case. The result could be expressed as “0, 3, 6, 9, ...” or “0,
3, 6, 9, and so on”. However, if the question is to write the solution in a rigorous
language, such as a programming language, and executing the program, neither
the dots nor “and so on” are acceptable. That means that the problem has to
be reformulated in terms of input-output [7], to explicitly including the natural
number and a bound as input. This is an example of going from algorithmic to
computational thinking, or in terms of the extended law, from newP to newC and
newC’, because thinking on program execution requires new knowledge about
the input (newC’) and the actions (newC).

It is worth mentioning that MateFun is a more powerful tool than other lan-
guages (Python, C), since being strongly typed, it requires to write the signature
of the function as part of its definition (in this case, forcing to express the input
as a pair of natural numbers). The solution in MateFun can be found in [15].

Simple examples like this give teachers the opportunity to introduce comput-
ing problems such as computability, in an understandable way by the students.

Second example: abstraction Although a solution of a general problem has
to be expressed as an algorithm, the power of abstracting is revealed in all
its magnitude when the algorithm is transformed into a program that can be
executed for several cases. The process has a greater impact in the case of novice
learners, for whom the possibilities of experimenting their solutions in action is
a reason of high motivation, as teachers comment in [15]. We illustrate the case
using the following example.

Teachers asked the students to program a function that makes a circle move
n steps through the points of multiples of three on the x axis. A solution is pre-
sented below, in which the students adapted the function moveRight (see 3.1)
to program a function move3 that moves a figure n steps through points corre-
sponding to multiples of three on the x axis. They also programmed move3cir

in which the parameter fig of move3 is instantiated to a red circle previously

2 We have taught the course for about twelve years using other languages [15].



A case of teaching practice founded on a theoretical model 9

defined. Notice that adapting moveRight induced the students to write move3,
abstracting the figure in the parameter fig as in moveRight.

1 circle :: R X Color -> Fig

2 circle (r, c) = color(circ(r), c)

3

4 move3 :: Fig X Z -> Fig*

5 move3(fig ,n) = [] if n < 0

6 or fig : move3(move(fig , (3, 0)), n-1)

7

8 move3cir :: N -> Fig*

9 move3cir (n) = move3(circle (0.5, Red), n-1)

Since the problem asks for the multiples of three, the students used the
concrete case of the point (3,0) in the function move3. When the teachers
presented this solution in our course they were asked how to generalise it to the
multiples of any natural number, that is, abstracting the point (3,0) to (num,0).
To construct a general solution they observed that move(fig,(num, 0)) moves
the figure fig through the multiples of any natural number -represented by
num- on x axis. The point discussed was how to define a single function that
also performs the movement n times. Observe that in terms of the general law of
cognition that means that the thought advances towards newC’ (the parameters)
and newC (the action of moving), respectively. Finally, teachers introduced the
definition of moveMultiples below.

10 moveMultiples :: Fig X Z X N -> Fig*

11 moveMultiples(fig , n, num)

12 = [] if n == 0

13 or fig : moveMultiples (move(fig ,(num , 0)),n-1, num)

For instance, moving the red circle through the multiples of three, five times,
is obtained with moveMultiples(circle(0.5, Red), 5, 3).

The point is to always start from teachers or students solutions to construct
new ones. In this type of exercises not only the abstraction is trained but also
the skill of getting better programs by composing and combining other functions
(predefined or not).

Third example: complexity In our course the teachers are asked to solve
many problems involving programming of functions over sequences, using re-
cursion and/or composition of functions. The example below shows a MateFun
program for the factorial function (fact). This is a well known definition by the
teachers and all of them succeed in solving this problem.

1 fact :: N -> N

2 fact (n) = 1 if n == 0

3 or n * fact(n-1)

Then the teachers are asked to write another program (factorial) for the same
function using two functions: productSeq that returns the product of the ele-
ments of a sequence (see below), and range introduced in Section 3.1.



10 S. da Rosa et al.

1 productSeq :: Z* -> Z

2 productSeq (l) = 1 if l == []

3 or first (l) * productSeq(rest(l))

Most of the teachers arrived to a solution similar to:

1 factorial :: N -> N

2 factorial (n) = 1 if n == 0

3 or productSeq(range(1, n, 1))

It can be observed that the definition has a redundant equation in line 2, induced
by the recursive definition of fact. The equation in line 2 is used for a case that
is actually encompassed by the definitions of functions range (case b < a) and
productSeq (productSeq([]) = 1). This kind of errors in which edge cases are
mishandled are frequently made by both teachers and students. Several lessons
are learnt from solving that kind of exercises. One of the most important is
that a program perhaps gives the correct result (teachers’ solution of factorial
does), but has errors anyway. From the point of view of programming it is an
error to make the computer do things that are not necessary or are redundant.
Understanding why the redundant equation is an extra effort for a computer is a
clear example of transiting from algorithmic to computational thinking. In terms
of the the general law of cognition that means understanding how the computer
performs the actions (newC) on the objects (newC’). One could argue that the
redundant equation can be noted even in the algorithm and this is true, espe-
cially to more experienced programmers. In early stages of learning, however, to
experience the need of a concept is the first step of constructing the concept [10]
(in this case the need of efficiency). This training gives teachers the opportunity
of introducing their students into topics such as programs complexity, inducing
them to think computationally.

Fourth example: program correctness Programming more than one solu-
tion to a problem gives us the opportunity of introducing teachers to a topic
that brings mathematics and functional programming even closer: the use of the
principle of structural induction to prove properties of programs. For instance,
one can prove that the two above definitions of the function factorial are equiva-
lent in the sense that both give the same result when applied to the same value.
The property is:

Property 1. ∀ n ∈ N, fact(n) = factorial(n).

and is proved using the principle of structural induction. For space reasons it is
not included here, but can be found in [15].

Although the proofs are done with pen and paper, it is possible to do them
using equational reasoning (substituting equals for equals where every step has
to be well founded) since MateFun is a pure functional language (without side
effects).

It is worth saying that traditionally, the principle of induction is used in a very
restricted way in high school education, usually making no sense for students.



A case of teaching practice founded on a theoretical model 11

Teachers could teach this method as a way of verifying program correctness, in
other words, thinking about the correctness of the computer’s actions (newC)
on the objects (newC’). At the same time, the students would learn the basis of
a topic of mayor relevance for understanding computer science.

4 Conclusions

The absence of clear definitions and substantiated claims about CT, “... leave
teachers in the awkward position of not knowing exactly what they supposed to
teach or how to assess whether they are successful”. Those are P.Denning’s words
in [5]. In fact, the application of a concept that is theoretically weak can even
be counterproductive. As L.Paulson notes in [9]: “Unless somebody can come
up with a more insightful definition, it is indeed time to retire ‘computational
thinking’”.

Taking principles of Jean Piaget’s theory, Genetic Epistemology [12], our
theoretical model offers an insightful definition for CT adequately located in
relation to the notion of algorithmic thinking. Therefore, our definition leaves
teachers in a position of knowing ideas of CT in educational settings and being
able to decide how to apply them.

Our claim is that any learning process is built stepwise and is governed by the
general law of cognition. In the specific case of learning to program, the process
is governed by the new law of cognition as we have formulated it on Section 2.1.
Teachers activities presented in this paper show how our theoretical model of
CT relates to teaching practices. Particularly, these activities help teachers to
understand what CT means and how introduce the students in learning to pro-
gram, in a way that respects their teaching practices. As a consequence teachers
and students are educated to think algorithmically and computationally.

Furthermore, our contribution satisfies Denning and Matti Tedre definition
(chapter 1 of [6]) in the sense that not only the activities show how “to get
computers to do jobs for us”, but introduce teachers and students in some of
the relevant problems of computer science, that make “the world a complex of
information processes” [6]. For instance, the examples show how computability
and complexity of programs could be discussed at high school level. The exam-
ples also reveal the power of abstraction in all its magnitude when putting into
practice one of the main contributions of CT: to make the computer to solve
general problems. Abstracting from concrete cases to obtain generic elements is
not a trivial issue, and learning to program plays a fundamental role in training
of abstraction from early stages, as several authors indicate [1, 2, 16,17].

Our theoretical model explains -in the framework of Piaget’s theory of con-
struction of knowledge- the relationship between logic, definitions, properties
and proofs (algorithmic thinking), and the elaboration and execution of pro-
grams (computational thinking). The presented examples constitute examples
of a didactic application of the model insofar as they show how the model sup-
ports teaching practice.



12 S. da Rosa et al.

References

1. Aho, A.V.: Computation and Computational Thinking. The Computer Journal 55
(2012)

2. Ambrosio, A.P., da Silva, L., Macedo, J., Franco, A.: Exploring Core Cognitive
Skills of Computational Thinking. Proceedings of the 25th Annual Psychology of
Programming Interest Group Workshop, University of Sussex (2014)

3. Cameto, G., Carboni, A., Koleszar, V., Méndez, M., Tejera, G., Viera, M., Wagner,
J.: Using functional programming to promote math learning. In: 2019 XIV Latin
American Conference on Learning Technologies (LACLO). pp. 306–313 (2019)

4. Carboni, A., Koleszar, V., Tejera, G., Viera, M., Wagner, J.: Matefun: Functional
programming and math with adolescents. In: Conferencia Latinoamericana de In-
formática (CLEI 2018) - SIESC (2018)

5. Denning, P.J.: Remaining Trouble Spots with Computational Thinking. Commu-
nications of the ACM 60 (2017)

6. Denning, P.J., Tedre, M.: Computational Thinking. The MIT Press, Cambridge,
Massachusetts, London, England (2019)

7. Harel, D., Feldman, Y.: Algorithmics The Spirit of Computing. Addison-Wesley.
An imprint of Pearson Education Limited (2004)

8. Knuth, D.: Computer Science and its relation to mathematics. Basic Books, Inc.,
Publishers / New York (1974)

9. Paulson, L.C.: Computational Thinking is not Necessarily Computational. Com-
munications of the ACM 60 (2017)

10. Piaget, J.: La Prise de Conscience. Presses Universitaires de France (1964)
11. Piaget, J.: Genetic Epistemology, a series of lectures delivered by Piaget at

Columbia University, translated by Eleanor Duckworth. Columbia University Press
(1977)

12. da Rosa, S.: Piaget and Computational Thinking. CSERC ’18: Proceedings of the
7th Computer Science Education Research Conference pp. 44–50 (2018)

13. da Rosa, S., Aguirre, A.: Students teach a computer how to play a game. LNCS
11169: 11th International Conference on Informatics in Schools: Situation, Evolu-
tion, and Perspectives, ISSEP 2018 pp. 55–67 (2018)

14. da Rosa, S., Gómez, F.: Towards a research model in programming didactics. Pro-
ceedings of 2019 XLV Latin American Computing Conference (CLEI) p. 1–8 (2019).
https://doi.org/10.1109/CLEI47609.2019

15. da Rosa, S., Viera, M., Garćıa-Garland, J.: Mathematics and MateFun, a natu-
ral way to introduce programming into school. https://hdl.handle.net/20.500.
12008/25233 (Last accessed September 2020)

16. Seymour Papert: Papert, S. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books (1980)

17. Wing, J.: Computational thinking and thinking about computing. Philosophical
transitions of the Royal Society Phil. Trans. R. Soc. A 366, 3717–3725 (2008)

https://doi.org/10.1109/CLEI47609.2019
https://hdl.handle.net/20.500.12008/25233
https://hdl.handle.net/20.500.12008/25233

	A case of teaching practice founded on a theoretical model 

