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Abstract. Piaget’s theory offers a model for explaining the construction of knowledge that can be
used in all domains and at all levels of development, based on establishing certain parallels between
general mechanisms leading from one form of knowledge to another, both in psychogenesis and in
the historical evolution of ideas and theories. The most important notion of these mechanisms is
the triad of stages, called by Piaget the intra, inter and trans stages. The main goal of our work
is to build an instance of that model for research about the knowledge of basic algorithms and
data structures constructed by novice students. This paper presents some aspects of our work,
focusing on the passage from conceptual knowledge (intra-inter stages) to formalized knowledge
(trans stage).
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1 Introduction

The central points of Piaget’s theory -Genetic Epistemology- have been to study the construction of knowledge
as a process and to explain how the transition is made from a lower level of knowledge to a level that is judged to
be higher (Piaget, 1977).

The supporting information comes mainly from two sources: first, from empirical studies of the construction
of knowledge by subjects from birth to adolescence (giving rise to Piaget’s genetic psychology)(Piaget, 1975, 1964;
Piaget & coll., 1963; Piaget, 1978b), and second, from a critical analysis of the history of sciences, elaborated by
Piaget and Garćıa to investigate the origin and development of scientific ideas, concepts and theories. In (Piaget
& Garćıa, 1980) the authors present a synthesis of Piaget’s epistemological theory and a new perspective on his
explanations about constructing knowledge. They investigate the possible analogy between the mechanisms of
psycho-genetic development concerning the evolution of intelligence in children, and sociogenetic development
concerning the evolution of the leading ideas and theories in some domains of science. Throughout the chapters
the authors present striking examples of this analogy in relation to the history of geometry, algebra, mechanical
and physical knowledge in general. The main idea of their synthesis consists of establishing certain parallels
between general mechanisms leading from one form of knowledge to another - both in psychogenesis and in the
historical evolution of ideas and theories -, where the most important notion of these mechanisms is the triad
of stages, called by the authors the intra, inter and trans stages. The triad explains the process of knowledge
construction by means of the passage from a first stage focused on isolated objects or elements (intra stage), to
another that takes into account the relationships between objects and their transformations (inter stage), leading
to the construction of a système d’ensemble, that is, general structures involving both generalized elements and
their transformations (trans stage), integrating the constructions of the previous stages as particular cases.

Piaget’s theory offers a model for explaining the construction of knowledge that can be used in all domains
and at all levels of development. The main goal of our work is to build an instance of that model for research on
the knowledge of basic algorithms and data structures constructed by novice students. Over the years we have
investigated the intra-inter-trans stages in the construction of knowledge of algorithms and data structures and
in previous papers (da Rosa, 2010, 2007, 2005, 2004; da Rosa & Chmiel, 2012; da Rosa, 2003) we have described
our research about this passage:

– from an intra stage, in which the knowledge is instrumental, that is, in the plane of actions (the students
pursue a result but are unaware of how they achieve it)

– to an inter stage giving rise to conceptual knowledge, that is in the plane of thought (the students give
accurate descriptions of how they did it and why they succeeded, being aware of the coordination of their
actions and the transformation of objects).

A summary of this research is included in Section 3.1. The goal of this paper is to describe our research about
the passage from earlier stages above to



– a trans stage of formal knowledge (where the students are able to express algorithms in given formalisms and
modify their knowledge to solve similar problems).

Regarding the methodology of our research, the passage from intra to inter stage is investigated by means
of conducting individual interviews, in the sense of Piaget’s studies of genetic psychology (da Rosa, 2010, 2007,
2005, 2004; da Rosa & Chmiel, 2012; da Rosa, 2003). The passage to the trans stage is investigated by means of
conducting instructional episodes where students work in groups and some formalism is introduced (mathematical
language, pseudo code and/or programming languages). In this part, our methodology follows Piaget’s studies
about the role of social relations and formal education in knowledge construction (Youniss & Damon, 1997;
Ferreiro, 1996)1. The goal is to help students in establishing correspondences between the concepts that they
have previously constructed and expressions of the formalisms in order to obtain formal descriptions of their
solutions. The dialectic process of this construction is explained in Section 3.2 and constitutes the main goal of
this paper, and includes brief descriptions included in previous work. Our investigations have been conducted
with students entering university or enrolled in the final year pre-university. That means that they have no (or
very little) experience with programming (in Uruguay Computer Science is not part of High School curriculum).
All the research episodes were recordered and/or filmed and students wrote out some of their responses.

Finally, we offer some comments about the motivation and the questions behind our research. Several re-
searchers consider programming as a powerful and essential subject not only in computer science studies but
in other studies as well (Dowek, 2005, 2013; Wing, 2000; Peyton Jones, 2013a; Bradshaw & Woollard, 2012;
Peyton Jones, 2013b; R.Page & Gamboa, 2013). At the same time it is seen as a difficult topic both to teach and
to learn, and studies in the didactics of informatics have become necessary (Holmboe, McIver, & E.George, 2001;
Saeli, 2012; Hubwieser, 2013; Nickerson, 2013; Ambrosio, 2014).

In contrast to several proposals to help students in the learning of programming involving the use of some
programming language or computer tool (Gomes Anabela, 2007; Moström, 2011; Linda Mannilaa, 2007; Budd,
2006; E.George, 2000; Tina Götschi, 2003), our approach is based on observations of situations in day-to-day life
in which people successfully use methods to solve problems or perform tasks such as games, ordering of objects,
different kinds of searches, mathematics problems, etc. In such situations an action or a sequence of actions
is repeated until a special state is reached, which can be solved easily by a straight-forward action. People’s
descriptions include phrases like ”I do the same until ... ” and ”now I know how to do it”, referring to cases
where they use the same method and arrive at the easy-to-solve special state respectively. These descriptions
are related to programming in the sense that repeating actions until a special case is reached, is formalized by
recursive or iterative program instructions.

These observations lead us to formulate questions such as ”does there exist any connection between the
’knowing how to’ (instrumental knowledge) revealed by people solving problems and formal algorithms? If there
is, what is the nature of this connection and what is the role of the instrumental knowledge in the learning process?
How is this instrumental knowledge generated and how can it be transformed into conceptual knowledge? How
can the algorithms that the students learn to use taken into account in the learning of programming? Will the
answer to these questions help in improving the teaching and learning of programming and how should this be
done?” The approach of our research arises from the above observations and questions and from studying the
theory of Jean Piaget that explains the construction of knowledge and the evolution of cognitive instruments
from the interaction of the subject (his/her methods) with the objects (data structures).

The following sections of this paper include: the main theoretical principles of our research (Section 2), how
these are applied (Section 3), some related work (Section 4) and conclusions and further work (Section 5).

2 Main theoretical principles

In Piaget’s theory, human knowledge is considered essentially active, that is, knowing means acting on objects
and reality, and constructing a system of transformations that can be carried out on or with them (Piaget, 1977).
The more general problem of the whole epistemic development lies in determining the role of experience and
operational structures of the individual in the development of knowledge, and in examining the instruments by
which knowledge has been acquired before their formalization. This problem was deeply studied by Piaget in
his experiments about genetic psychology. From these he formulated a general law of cognition (Piaget, 1964,
1978b), governing the relationship between know-how and conceptualization, generated in the interaction between
the subject and the objects that he/she has to deal with to solve problems or perform tasks. It is a dialectic
relationship, in which sometimes the action guides the thought, and sometimes the thought guides the actions.

Piaget represented the general law of cognition by the following diagram

C ← P → C’

1 Piaget’s ideas about social construction are integral to his epistemological theory but less known than those
about child’s construction of logical thought.



where P represents the periphery, that is to say, the more immediate and exterior reaction of the subject con-
fronting the objects to solve a problem or perform a task. This reaction is associated to pursuing a goal and
achieving results, without awareness neither of actions nor of the reasons for success or failure. The arrows rep-
resent the internal mechanism of the thinking process, by which the subject becomes aware of the coordination
of his/her actions (C in the diagram), the modifications that these impose to objects, as well as of their intrinsic
properties (C’ in the diagram). The process of the grasp of consciousness described by the general law of cognition
constitutes a first step towards the construction of concepts.

Piaget also describes the cognitive instrument enabling these processes, which he calls the reflective abstrac-
tion and constructive generalization. Reflective abstraction is described as a two-fold process (Piaget, 1964):
in the first place, it is a projection (transposition) to the plane of thought of the relations established in the
plane of actions. Second, it is a reconstruction of these relations in the plane of thought adding a new element:
the understanding of conditions and motivations. The motor of this process is called by Piaget the search of
reasons of success (or failure). On the other hand, facing new problems presenting variations and similarities
with the old ones causes a desequilibrium of students’ cognitive structures which have to be transformed in
order to attain a new equilibrium, making possible the construction of appropriate knowledge to solve the new
situation. Once a particular method is understood, students’ reasoning attempts to generalize what has been suc-
cessfully constructed to all the situations, by means of inductive generalization where deductions or predictions
are extracted from observations of the new objects. A process of inferences and reflections about the subject’s
actions or operations by means of constructive generalization gives raise to new methods (Piaget, 1978a, 1975;
Jacques Montangero, 1997) and opens possibilities for constructing structures characteristic of the trans stage.

The table below summarizes the main points of the theory related to our methodology of research.

Table 1. A model of applying Piaget’s theory

Methodology Goals Cognitive tools Stages

individual actions → operations reflective abstraction intra-inter
interviews search of reasons

detaching concrete cases automatization

instructional reflective abstraction inter-trans
instances
work groups formal description inductive and cons-
similar problems operations → structures tructive generalization

3 Applying the theory

Our previous work focused on the first part of our studies, in which we conducted individual interviews applying
the general law of cognition described above, in the manner of (Piaget, 1964), accounting for the passage from
intra to inter stage. In Section 3.1 we include a summary of these investigations. The main goal of this paper is to
describe the second part of our studies, where instructional instances were conducted and the students worked in
groups. The main point is to illustrate, on the one hand, the way we introduced a formalism and encouraged the
students to represent their descriptions of algorithms in it, and on the other hand, how students attempted to
solve new problems presenting similarities and differences to those already solved, applying previously constructed
concepts. This is presented in Section 3.2 using as an example, the study of the construction of knowledge about
sorting algorithms.

3.1 Summary of investigations conducted through individual interviews

This section includes a summary of our previous work (da Rosa, 2010, 2007, 2005, 2002, 2004; da Rosa &
Chmiel, 2012). The problems that students had to solve were instances of some of the problems studied in basic
programming courses (sorting, searching, counting) and the objects were instances of data structures (a paper-
dictionary, numbered cards, words). All students succeeded in solving the problem in the plane of actions and the
questions were aimed to obtain accurate descriptions of what they did and why it worked, as a first step towards
conceptualization. Further, the students were encouraged to derive a general solution for the problem (detached
from concrete cases) by means of teaching to a robot (played by the teacher) to do the task.

In the example used here, a bag containing an undetermined amount of numbered cards was given out to the
students. These numbers were not necessarily consecutive and were not repeated. Students were asked to take
cards from the bag, one by one, and to order them in an upward sequence on the table. A set of questions was
elaborated for the interviews which were posed once students have solved the problem in the plane of actions.
Throughout the interview, it was possible to pose new questions depending on the answers provided by the
students. The interviews pursued three goals:



– to conduct a process in which the students reflected about how they solved the problem. By means of reflective
abstraction their actions were transformed into actions-in-the-plane-of-thought (concepts). This process was
the source of knowledge of the repeating part of the algorithm. For the case of sorting the cards the actions
were: pick up a card, compare numbers, insert the card in the right place, repeat the actions, finish.

– to apply Piaget’s ideas about the role of ”searching for the reasons of success” in the conceptualization:
the constant motor driving the subject to complete or to replace the observables of facts, by deductive or
operative inferences is the search of reasons for the obtained result (Piaget, 1964, 1978b). We applied this
principle by making the students comprehend that the reasons of success lie both in their actions and in the
modifications of the objects. For the case of sorting the cards, in each repetition, a card was inserted in a
partially sorted row and the number of cards in the bag decreased (until the bag was empty). This process
was the source of knowledge of the base case, the invariants of the algorithm and its relationship with data
structures.

– to help students to go from particular cases towards a general algorithm. We found that introducing automa-
tization is of great help because the students have to strive to give general descriptions to a robot (played by
the teacher) which otherwise does not understand the instructions. A set of primitive operations was given
and the students had to design a list of instructions to make the robot do the task.

In the following a summary of results from students’ interviews for the case of sorting the cards is presented.

Towards to know how
The first descriptions of the students about how they sorted the cards clearly demonstrate that their thought
was in the periphery (P in the diagram of the general law of cognition in Section 2), in other words, they were
concentrated on the result: asked about how they did, they answered what they did (”I sorted the cards in
increasing order ...”). The goal of the questions was that students explicitly mentioned the actions composing
the method, as accurately as possible. For instance, almost all students said something like ”I compared the card
I picked up from the bag with all the cards on the table ...” that actually corresponded to the case in which the
picked card was greater than all the cards in the row. Otherwise, they compared just to find the right place
for the picked card2. One of the goals of the questions was to help the students become better able to describe
accurately how they managed to insert a card into a partially ordered row, realizing that they compared only
until a certain result of the comparison occurred.

Towards to know why
Further questions were related to the search of reasons for success: on the one hand, the existence of a base
case (or several) (in this example, the bag became empty) and on the other hand, the invariant (or several), (in
this example, all partial rows were sorted). The questions posed to students were like the following ”Is it always
possible to construct a row in this way, in a finite time? In other words, do we always finish the task with a
ordered row on the table? Why?”

According to the theory the answers can be classified as:

– the reasons lie with the objects: ”... because they are numbers” or ”... because of the order of numbers”,
– the reasons lie with the actions: ”... because of my systematic actions” or ”... because I do always the same”.

To make students realize that the reasons for success lie both in their actions and in their modifications of
objects, these kinds of question were posed:

– for the first type of answer:
”If you are asked to sort cards with letters in alphabetic order, should you change your method? What about
sorting objects of different sizes?”

– for the second type of answer:
”Imagine you are asked to take one card at a time from the bag, and to set them on the table, one after the
other. Would you have a sorted row? Observe that what you are doing is also systematic.”

Although students answered correctly, none of them gave a satisfactory explanation of the existence of a base
case as the reason for success. In previous work (da Rosa, 2010, 2007, 2005) we found, as well as other authors
(Haberman & Averbuch, 2002; Velazquez, 2000), that it is significantly difficult to comprehend the base case (or
base cases). To help students with this difficulty in an effective way, they themselves have to experience the need
for the existence of a base case (or more). To do that, we asked the students to use another method by which
the bag was never emptied: ”Take from the bag one card at a time, and write down the numbers of the cards you
took - in upwards sequence - on a piece of paper. Toss the cards back into the bag. Do you think that you will be
able to finish by using this method?”

This strategy was effective: after using this method, all the students immediately became aware of the
sequence of states of the bag, each time getting smaller until it became an empty bag, as a reason for success.

2 This is the source of a common programming mistake in which students use a for loop to access an element of
a structure in cases where a while loop is more adequate.



Observe that by means of reflective abstraction the students reconstructed what they do in the plane of
actions in the plane of thought, where the relationships become enriched by the comprehension of conditions and
motivations (how and why). To finish, each student was asked to write down both the problem and the algorithm,
step by step. Taking those descriptions as a starting point, they were asked to teach a robot to do the task, as
described in the following section.

A general sorting algotithm: the role of automatization
In (Piaget & coll., 1963) Benjamin Matalon published a chapter entitled Recherches sur le nombre quelconque,
in which he analyzed the relation between the generic element concept and the reasoning by induction, which
requires a proof that P(n) → P (n+1) for a generic number n and a given property P. Matalon worked with
the structure of natural numbers, stating that it is necessary to abstract away all the particular properties of n,
except the property of it being a number, that is, an element belonging to the series of natural numbers.

Matalon addressed the problem of making the leap from particular cases to general ones and introduced
variables for their reference. For example, he explained that Fermat made his arithmetic demonstrations using
a particular number, but treating it as a generic number, for example, the number 17. If none of the specific
properties of the number 17 were involved in the demonstration, then the demonstration could be considered
valid for all numbers. Matalon added that in geometry, when a property is to be proven and the statement is
”given a generic triangle” a particular triangle is drawn, avoiding right triangles, equilateral triangles or isosceles
triangles, and not involving any particular properties of the triangle in the demonstration of the property. Among
other things, Matalon concluded that to construct the concept of the ”generic” element, it would be necessary
to perform a generic action, that is, the repeated action to build a generic element. We applied these results
interpreting the generic action that Matalon mentioned as the automatic version of an algorithm, that is to say,
a program.

In this section we describe the process of going from a correct description of an instance of the method, to
a general algorithm as the first step of program construction. Here is an example of a starting description: ”To
order the numbers that are in the bag on the table, I did the following: First, I took a card and placed it on the
table, then I took another card from the bag. If the second card I took is of a higher value than the card on the
table, I placed it on the right side of the card already on the table, while if it is of a lower value, I placed it on
the left side. Then I continued the process in the same way, I took more cards and ordered them with the cards
that were already ordered on the table as reference. For example, if I have these numbers: -2, 0, 5 and 8, and
I pick number 1, I place it between 0 and 5, since 1 is less than 5 and greater than 0.” Starting from that we
asked the students to give oral instructions to a robot, played by a teacher, who tried to construct the ordered
row by following the instructions. Our goal was to confirm the role of automatization to help students to detach
themselves from particular cases, according to our interpretation of Matalon’s results.

The students read the instructions and the robot acted, until the sentence Then I continued the process ...
which the robot was not able to follow. Further questions were posed to encourage the students to give more
precise descriptions, until they came to a description similar to ”What we are going to do is compare the card we
want to insert with each card on the row, starting from the first card. When we find a card of higher value, then
we insert our card before it. We do that until there are no more cards in the bag”. That instruction the robot was
able to perform (the robot was assumed to know how to compare the numbers of the cards).

The type of knowledge briefly described above is involved in the construction of concepts before formal
knowledge, that is, no formalism intervenes (except for natural language). The introduction of a formal language
was done in a group class as described in the next section.

3.2 Working groups: thematized knowledge or formalization

The main goal of this section is to describe our investigation about the process of formalizing constructed
knowledge. We interpret this as the means to put into correspondence mental constructions (concepts) with some
universal system of symbols or formal language.

Often, formal definitions or descriptions are presented to the students without taking into consideration
their non-formal knowledge, that is, with no connection with what students already know about the subject
(da Rosa, 2004). By contrast, in our approach the formalism introduced by the teacher is considered as a new
object that students need to interact with in a process governed by the general law of cognition. As pointed out
by Piaget (Piaget & Garćıa, 1980), the process of transiting the stages of the triad (intra-inter-trans) is of a
dialectic nature, that is, the construction of formalized knowledge traverses its own stages. That means that an
interaction between the students and formal representation of the objects (in our example rows, bag, cards) and
their methods (inserting, comparing, deciding) has to take place. Our starting point is what students have said
(and written) to teach a robot: ”What we are going to do is compare the card we want to insert with each card
on the row, starting from the first card. When we find a card of higher value, then we insert our card before it.
We do that until there are no more cards in the bag”. Our goal is that the students succeed in transforming that
description into an algorithm using given pseudo code and primitives.

We adopted a notation suitable for expressing rows as lists, similar to that used in functional programming
(empty row as [ ], non-empty row as first:tail (where first is the first element of the list, tail is the rest (a list) and



: is the constructor function for lists), or with elements between brackets separated by commas (S.Thompson,
1999)). From the interviews we have learnt that the description of the action to place a card in a given non-empty
row is relevant. Consequently, we decided to work on this part of the algorithm first. The main point here is
that students understand that if we call this action insert t in row then if the value of t is not lower than the
value of the first card in the row, then the first card remains the same and with t and the tail it is necessary to
carry out the same action, that is to say, the result is first : insert t in tail. In the case that the picked card
is greater than all the cards in the row, it is placed at the end, which means that it is inserted in an empty row
(the tail). The students are asked to fill some tables as in Table 2 below. Observe that in this way, understanding
the repetition of actions and the new objects in each repetition is straightforward.

Table 2. Inserting a card in a non-empty row

row picked card comparison first of current tail result
insertion

[ -2,0,1,4 ] 3 -2 < 3 -2 [ 0,1,4 ] -2 : (insert 3 in [ 0,1,4 ])

0 < 3 0 [ 1,4 ] -2 : 0 : (insert 3 in [ 1,4 ])

1 < 3 1 [ 4 ] -2 : 0 :1 : (insert 3 in [ 4 ])

4 > 3 3 [ 4 ] -2 : 0 : 1 : 3 : 4 : [ ]

Students were given a list of primitive actions that the robot (played by one of the students of the group)
understands. In this first step towards formalization, the repetition of actions is modeled by ”go to” instructions:

– decision: if something do a else do b (a and b are actions)
– compare cards: t < first, first < t
– insert card t in a row: t:[ ] or t:first:tail or first: (insert t in tail)
– update (a variable becomes a new object): row ← tail
– sequence of actions: {action1, action2, ..., actionn}
– go to an action of the sequence: go to n (n is a natural number)
– a = b (the robot is able to verify if an object a is equal to an object b)

The students were allowed to go back to making the actions with the bag and the cards as many times as
they needed. They attempted several lists of instructions, until the robot student succeeded, in approximately
15 minutes. The following primitives were added to the list and students are asked to modify and complete the
instructions for the robot to be able to order the cards from the bag on the table:

– pick a card from the bag
– decide if the bag is empty
– finalize

In 40 minutes aproximately, all groups produced a list similar to the following:

0 pick a card t from the bag

1 if row = [] then {t: [], go to 2}

else if t < first then {row <- t:first:tail, go to 2}

else first : {row <- tail, go to 1}

2 if the bag is empty then finalize

else go to 0

The final stage of the study included introducing an interactive sentence in the manner of Pascal. We handed
out to each group of students, a collection of small pieces of paper with ’if then else’ and ’while’ sentences, with
suggested indentation in order to guide them. We explained the semantics of the sentences and the references
to objects in each iteration (the rows on the table are H and H1, and the picked card and first are T and T1
respectively).

The interesting point to observe here is that students had to be able to construct another description of the
same algorithm (the ”while” sentences instead of the ”go to” description). This means that the students needed to
find a solution to a situation that had some similarities and differences with the one that they had already solved,
by means of the cognitive instrument of generalization, both phases of which Piaget described (Piaget, 1978a):
inductive generalization and constructive generalization. In the first phase, the individual transfers to new objects
what has been previously constructed, without taking into account the transformations of the knowledge required
for the conditions of the new situation. In this case, students tried to use the relation between cards (t < first)
and the termination condition (if the bag is empty) of the ”go to” version in the ”while” version. (Observe that in
the ”while” version, these are ”T is greater than T1” (that is, t > first) and ”the bag is not empty” respectively).



Further instances in which the robot-student tried to follow the while version of the algorithm, resulted in correct
positions for each piece of paper, as shown in Figure 1 below (in Spanish, an English version is included in
Appendix A). That means that, because of constructive generalization, students understood the new conditions
giving rise to structures of the trans stage, thus opening the possibility of studying new elements, such as other
sorting algorithms and more formal representations, as well. This constitutes the focus for further work.

Fig. 1. A version of the insertion sort algorithm

4 Related Work

Although the amount of research in Computer Science Education (CSE) has grown significantly, in many countries
the didactics of informatics is not considered as part of Computer Science (CS), including Uruguay where our
work develops. The training of teachers of CS, for example, emphasizes content issues (which must be treated
seriously) and neglects issues of Pedagogical Content Knowledge (Saeli, 2012; Hubwieser, 2013) of the concepts
of CS. Few teachers of CS can answer with solid theoretical foundations, questions as to what, for whom, why
and how to teach CS. Mathematics education is in this sense a model not only for having introduced the notion
of specific didactics, that is, education of a discipline is part of that discipline, but also for the importance
which it gives to the theoretical foundation in research. We share the concern of some authors (Holmboe et al.,
2001; Zendler & Spannagel, 2008; Winslöw, 2005) about the need to conduct a significant amount of educational
research in order for CSE to accomplish the same level as mathematics education.

Related works can be analyzed from several points of views, some of which we have included in previous work
(for instance: learning of algorithms by novices, relationship between algorithms and data structures, recursion
and induction, discrete mathematics and programming). Here we include some related work that shares Piaget’s
theory as a theoretical framework with us. On the one hand, the question of how students learn is deeply
investigated in the didactics of mathematics by mathematic academics, giving rise to theories and methodologies
based on Piaget’s work (Dubinsky, 1996; Sánchez-Matamoros, Garćıa, & Llinares, 2006; Clark, 1997; Sadovsky,
2000). Among these, the Theory of Situations (Sadovsky, 2000) is closely related to our work as explained in
Section 4.1. On the other hand, Section 4.2 includes recently developed neo-Piagetian work, research that considers
advances in neuroscience and influences constructivist theories. Finally, we add a few words about related work
referring to the content of our research (basic algorithms and data structures).

4.1 Brousseau’s theory and our work

Brousseau’s theory of didactical situations is one of the ways of thinking about mathematics as a subject for
teaching. The theoretical bases are described in the following quotation (taken from the English translation of
Brousseaus book ”Theory of didactical situations in mathematics” (Brousseau, 1997) in (Winslöw, 2005)):



”Mathematicians don’t communicate their results in the form in which they discover them; they re-
organize them, they give them as general a form as possible. Mathematicians perform a ”didactical
practice” which consists of putting knowledge into a communicable, decontextualized, depersonalized,
detemporalized form.
The teacher first undertakes the opposite action; a recontextualization and a repersonalization of knowl-
edge. She looks for situations which can give meaning to the knowledge to be taught. But when the
student has responded to the proposed situation (...) she will, with the assistance of the teacher, have to
redepersonalize and redecontextualize the knowledge which she has produced so that she can see that it
has a universal character, and that it is re-usable cultural knowledge.”

In the 60s, when Brousseau was studying mathematics, he studied cognitive psychology with one of Jean
Piaget’s collaborators, Pierre Greco. Not surprisingly, Brousseau applies the central hypothesis of genetic epis-
temology by Jean Piaget as a model framework for the production of knowledge. He argues that mathematical
knowledge is constituted essentially from recognizing, addressing and resolving problems, which are generated in
turn by other problems.

The constructivist concept leads Brousseau to postulate that individuals learn as a result of their adaptation
to an environment that is a factor of contradictions, difficulties and imbalances. He suggests a model to teach
and learn based on two basic types of interactions:

a) the interaction of the student with a problem that offers resistance and feedback on the mathematical
knowledge used, and, b) the interaction of the teacher with students, in terms of their interaction with mathe-
matical problems.

From this model, he postulates that an ”environment” is required, with a didactical purpose: he defines an
adidactical situation as a situation in which the student is allowed to use some knowledge to solve a problem (the
environment) ”without appealing to didactical reasoning [and] in the absence of any intentional direction [from
the teacher]” (Sadovsky, 2000). The concept of an environment includes an initial mathematical problem which
the individual copes with, and a set of mathematical relations, which are modified in the course of the subject’s
actions during his production of knowledge, thus transforming his cognitive reality. The interaction of the teacher
with the student is related to the student’s interaction with the environment and it is called didactical situation
by Brousseau.

Brousseau’s model has points in common with ours: on the one hand, adidactical situations correspond in our
model to instances in which the teacher does not intervene and students interact with an instance of a problem
(Brousseau’s environment) or discuss in groups. The didactical situations, on the other hand, correspond to the
instructional instances, where the interventions of the teacher are based on the knowledge constructed by the
students through their interaction with the environment (the problem).

A significant difference arises, however. While Brousseau’s model is used in classrooms to the learning of
mathematics, we have not had enough institutional support to do the same. One of the most important conse-
quences of that is the difficulty of training the teachers.

4.2 Neo-Piagetian theory and our work

Several teaching investigations regarding basic algorithms have been performed within the frameworks of con-
structivism and mental model studies (E.George, 2000; Tamar, Dalit, & Paz, 1999; Ben-Ari, 2001). The central
matters of these studies are implicitly related to tenets of the epistemological theory of Jean Piaget. Recent studies
following neo-Piagetian theory consider the advances in neuroscience and whether these can influence construc-
tivist learning theories. Neo-Piagetian theory is deemed as a suitable theoretical framework for some authors
(Lister, 2011; Murphy, 2012; Falkner, Falkner, & Vivian, 2013; Gluga, 2012). Neo-Piagetian theory of cognitive
development is a branch of cognitive psychology. It is influenced by the information-processing paradigm, the idea
of linguistic theorists regarding the specific domain of cognition as well as the advances in neuroscience. Although
several authors focus on different considerations, encompassed under the term ”neo-Piagetian theories”, they all
have a common starting point, which are Piaget’s ideas from his earliest studies regarding children’s progress in
cognitive development by stages (genetic psychology). Neo-Piagetian theory extends and complements the studies
referred to. Genetic and cognitive psychology have almost always been related. Close collaborators of Piaget have
continued and extended research on genetic psychology, reinforcing its bonds with cognitive psychology (Inhelder
& Cellérier, 1992).

On the other hand, sustained by historical investigations, Piaget and Garćıa improved some aspects of Piaget’s
theory (Garćıa, 2000, 1997; Piaget & Garćıa, 1980). They synthesized results from psycho-genetic studies and
science history. Our work follows these results, including the application of a general mechanism, from the analysis
of objects (intra-stage or instrumental knowledge) to the analysis of relations or transformations between objects
(inter-stage or conceptual knowledge). This leads to the analysis of the construction of structures (trans-stage or
thematized knowledge), a characteristic of the development of scientific theories and school subjects. In (Sánchez-
Matamoros et al., 2006) the authors present a similar study in mathematics education, for the concept of the
derivative of a function.



Finally, some words in relation to the content of our work (basic algorithms and structures). In (Zendler,
2013; Zendler & Spannagel, 2008; Zendler, McClung, & Klaudt, 2012) the authors indicate as examples of content
concepts central to CS, problem and algorithm among others, and as central process concepts, categorizing and
classifying. In our approach we consider that the source of knowledge for these concepts are basic actions that
the students are familiar with, such as defining correspondences, sorting, searching and comparing. We explain
the process by which students are able to transform this knowledge into conceptual and formal (thematized)
knowledge, as well as the means by which teachers support this task.

5 Summary and further work

Piaget’s epistemological theory explains the construction of knowledge giving detailed descriptions of the pro-
cesses, mechanisms and cognitive instruments intervening. The theory is suitable for most of scientific domains
and all levels of knowledge. In this paper we present an application of that theory to investigate the construc-
tion of Computer Science concepts by students entering University or in the last years of High School. We have
built this application over several years of study of learning different basic algorithms and corresponding data
structures. Our approach can be taken as a model for doing research in Computer Science Education and also
for designing instructional guidelines.

The questions of our research are related to ways of helping students to use their cognitive resources to
attain higher levels of knowledge. One of the most important theoretical ideas about knowledge construction is
the categorization of different stages, called by Piaget and Garcia in ”Psychogenesis and the History of Sciences”
as the triad intra-inter-trans. Accordingly, our research on the construction of concepts focuses on how students
transform their instrumental knowledge (intra stage) into conceptualized knowledge (inter stage) and how this
becomes an academic formalization (trans stage). The latter involves on the one hand, the construction of
correspondences between concepts and expressions of some formal language as a universal system of symbols
and on the other hand, the application of knowledge by students to solve new problems with differences and
similarities to those already solved. Describing this process has been the goal of this paper, while the construction
of knowledge before any formalization (except the natural language) is only briefly presented here as it has been
described in previous papers, including excerpts from interviews.

At all stages of our research, results described by Piaget and collaborators in their work are indicated. The
main points on which our strategies were effective are:

– students succeed in conceptualizing their know-how, by means of reflecting about how they solve a problem
and why the solution works, especially when they themselves experience the need for a base case (or several).
The evidence is given by students’ correct descriptions in natural language of their algorithmic solutions and
of the reasons for their success (Section 3.1)

– how to surmount one of the main difficulties, that is, that students’ thought detaches from particular cases
and makes the leap to general solutions, by means of introducing automatization (Section 3.1).

– introducing a formal language as a new object about which the students have to construct knowledge using
the same principles as any other object. That means starting the interaction in the plane of action, allowing
students to work with particular cases of formal expressions to facilitate the transition to a general algorithm
in the formal language (Section 3.2).

– to face students with problems that encourage them to apply their knowledge taking into account necessary
transformations. This is a first step to the construction of structures of the trans stage and the beginning of
the comprehension of algorithms as classes of methods (sorting, searching, counting, etc) (Section 3.2 and
further work).

Three lines of research are relevant as further work: on the one hand, to elaborate pedagogical proposals
and didactic guidelines based on our model, which can be useful to teachers in supporting their researches and
practices, and a way of getting institutional support as well. On the other hand, to study the construction of
elements of the trans stage, that is to say, of classes of algorithms and formal representations. This includes for
instance, other sorting algorithms, that could be compared with each other, and recursive or iterative imple-
mentations. Finally to complement this research, we need to investigate the historical evolution of the concepts
of iteration, induction and recursion, that are the higher forms of themathized (formalized) knowledge of ways
of solving problems by repeating actions. According to the methodological analysis of Piaget’s theory, a critical
historical analysis of those concepts teaches about the construction of knowledge and can therefore cast light on
the learning process.
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Tina Götschi, V. G., Ian Sanders. (2003). Mental models of recursion. ACM 1-58113-648-
X/03/0002 .

Velazquez, J. (2000). Recursion in Gradual Steps (Is Recursion Really that Difficult?). Pro-
ceedings of the thirty-first SIGCSE technical symposium on Computer science education,
SIGCSE’00. ACM 2000 , 310–314.

Wing, J. (2000). Computational thinking. CACM , 49 , 33–34.
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A English version of Figure 1

let B be the bag

while B is not empty do

take a card T from B

let H be the row on the table

if H is empty then

put T in H

else

let T1 be the first card of H

H1 be the tail of H

while T is greater than T1 do

if row H1 is empty then

place T in H1

else

let T1 be the first card of H1

H1 be the tail of H1

place T in front T1 in H


