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Ergodic measures with infinite entropy

by

Eleonora Catsigeras (Montevideo) and Serge Troubetzkoy (Marseille)

Abstract. We construct ergodic probability measures with infinite metric entropy for
generic continuous maps and homeomorphisms on compact manifolds. We also construct
sequences of such measures that converge to a zero-entropy measure.

1. Introduction. Let M be a C1 compact manifold of finite dimension
m ≥ 1, equipped with a Riemannian metric dist. The manifold M may
or may not have boundary. Let C0(M) be the space of continuous maps
f :M →M with the metric

‖f − g‖C0 := max
x∈M

dist(f(x), g(x)) ∀f, g ∈ C0(M).

We denote by Hom(M) the space of homeomorphisms f :M →M with the
metric

‖f − g‖Hom := max {‖f − g‖C0 , ‖f−1 − g−1‖C0} ∀f, g ∈ Hom(M).

We note that the topology induced in Hom(M) by the above metric
is the subspace topology induced by C0(M). Nevertheless, the metrics are
different.

Since the metric spaces C0(M) and Hom(M) are complete, the Baire
category theorem holds, namely a countable intersection of open dense sets
is dense. A subset S ⊂ C0(M) (or S ⊂ Hom(M)) is called a Gδ-set if it is
a countable intersection of open subsets of C0(M) (resp. Hom(M)). We say
that a property P of maps f ∈ C0(M) (or f ∈ Hom(M)) is generic, or that
generic maps satisfy P , if the set of maps that satisfy P contains a dense
Gδ-set in C0(M) (resp. Hom(M)).

The main result of this article is the following theorem.
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Theorem 1.1. A generic map f ∈ C0(M) has an ergodic Borel proba-
bility measure µ such that hµ(f) = +∞ and there exists p ≥ 1 such that µ
is mixing for the map fp.

Remark. In the case where M is a compact interval, Theorem 1.1 was
proved in [CT, Theorem 39, and p. 33, second paragraph]. The statements
and proofs of [CT] also hold for continuous maps of the circle S1. In fact,
each f ∈ C(S1) can be represented by a continuous map f in [0, 1] such that
f(0) = f(1). In the proof of genericity of the properties studied in [CT], no
restrictions on the images of the endpoints 0 and 1 are imposed. In particular,
the proof of the denseness condition was obtained by perturbing the map only
in the interior of a finite number of compact subintervals contained in [0, 1].
Finally, if a one-dimensional compact manifold M is not connected, the
arguments of [CT] applied to a recurrent connected component of M extend
the results to C(M). This is why in this paper we will prove Theorem 1.1
only for m-dimensional manifolds with m ≥ 2.

Yano proved that generic continuous maps of compact manifolds with or
without boundary have infinite topological entropy [Ya]. Therefore, from the
variational principle, there exist invariant measures with metric entropies
as large as required. Nevertheless, this property alone does not imply the
existence of invariant measures with infinite metric entropy. In fact, it is
well known that the metric entropy function µ 7→ hµ(f) is not upper semi-
continuous for C0-generic systems. Moreover, we prove that it is strongly
non-upper-semicontinuous in the following sense:

Theorem 1.2. For a generic map f ∈ C0(M) there exists a sequence of
ergodic measures µn such that for all n ≥ 1 we have hµn(f) = +∞ and

lim∗
n→∞

µn = µ with hµ(f) = 0,

where lim∗ denotes the limit in the space of probability measures endowed
with the weak∗ topology.

Theorem 1.2 holds for any m-dimensional manifold, including m = 1.
In this paper we will prove it for m ≥ 2, but the proof for m = 1 is easily
obtained by repeating our proof after some trivial substitutions that are
explained at the beginning of Section 5.

Even if we had a priori some f -invariant measure µ with infinite metric
entropy, we do not know if this property alone implies the existence of er-
godic measures with infinite metric entropy as Theorems 1.1 and 1.2 state.
Actually, if µ had infinitely many ergodic components, the proof that the
metric entropy of at least one of those components must be larger than or
equal to the entropy of µ uses the upper semicontinuity of the metric entropy
function (see for instance [Ke, Theorem 4.3.7, p. 75]).
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Yano also proved that generic homeomorphisms on manifolds of dimen-
sion 2 or larger have infinite topological entropy [Ya]. Thus one wonders if
Theorems 1.1 and 1.2 hold also for homeomorphisms. We give a positive
answer to this question for m ≥ 2. If M is one-dimensional then a homeo-
morphism of M has zero topological entropy, so the following two theorems
do not hold for one-dimensional manifolds.

Theorem 1.3. If dim(M) ≥ 2, then a generic homeomorphism f ∈
Hom(M) has an ergodic Borel probability measure µ satisfying hµ(f) = +∞
and there exists p ≥ 1 such that µ is mixing for the map fp.

Theorem 1.4. If dim(M) ≥ 2, then for a generic homeomorphism f ∈
Hom(M) there exists a sequence of ergodic measures µn such that for all
n ≥ 1 we have hµn(f) = +∞ and

lim∗
n→∞

µn = µ with hµ(f) = 0.

To prove Theorems 1.1, 1.3 and 1.4 in dimension 2 or larger, we construct
a family H of continuous maps, called models, on the cube [0, 1]m, including
some homeomorphisms of the cube onto itself, which have a complicated
behavior on a Cantor set (Definition 2.5). In the proof of Theorem 1.2 in
dimension 1, the familyH of model maps inM we use is the set of continuous
maps that have an “atom doubling cascade”, according to [CT, Definition 35].

In any dimension m ≥ 1, a periodic shrinking box is a compact set
K ⊂ M that is homeomorphic to the cube [0, 1]m and such that for some
p ≥ 1, the setsK, f(K), . . . , fp−1(K) are pairwise disjoint and fp(K)⊂ int(K)
(Definition 4.1).

The main steps of the proofs of Theorems 1.1 and 1.3 are the following
results.

Lemma 3.1. For m ≥ 1, any model Φ ∈ H on the cube [0, 1]m has a
Φ-invariant mixing measure ν such that hν(Φ) = +∞.

Lemmas 4.2 and 4.5. For m ≥ 1, generic maps in C0(M), and generic
homeomorphisms of M , have a periodic shrinking box.

Lemmas 4.7 and 4.8. If m ≥ 1 then generic maps f ∈ C0(M), and if
m ≥ 2 also generic homeomorphisms of M , have a periodic shrinking box K
such that the return map fp|K is topologically conjugate to a model Φ ∈ H.

We prove and use Lemma 3.1 only for m ≥ 2 since the case m = 1 was
proven in [CT, Theorem 38]. The other results in the above list will be fully
proven here even in the case m = 1, independently of [CT].

A good sequence of periodic shrinking boxes is a sequence {Kn}n≥1 of
periodic shrinking boxes which accumulate (with the Hausdorff distance) on
a periodic point x0, and moreover their iterates f j(Kn) accumulate on the
periodic orbit of x0, uniformly for j ≥ 0 (see Definition 5.1). The main tools
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used in the proofs of Theorems 1.2 and 1.4 are Theorems 1.1 (for m ≥ 1)
and 1.3 and Lemmas 4.2, 4.5, 4.7 and 4.8, together with

Lemma 5.7. If m ≥ 1 then a generic map f ∈ C0(M), and if m ≥ 2
also a generic homeomorphism f , has a good sequence {Kn} of boxes such
that the return map fpn |Kn is topologically conjugate to a model Φn ∈ H.

2. Construction of the family of models. We call a compact set
K ⊂ Dm := [0, 1]m or more generally K ⊂M (whereM is anm-dimensional
manifold with m ≥ 1) a box if it is homeomorphic to Dm. Models are certain
continuous maps of Dm that we will define in this section.

We denote by Emb(Dm) the space of embeddings Φ : Dm → Dm (i.e.,
Φ is a homeomorphism onto its image), with the topology of a subspace
of C0(Dm).

Definition 2.1. For m = 1 a model is a map that has an “atom doubling
cascade” according to [CT, Definition 35]. LetH be the set of all model maps.

In the rest of this section we construct the family H of model maps for
m ≥ 2.

Definition 2.2 (Φ-relation from a box to another). Let Φ ∈ C0(Dm).
Let B,C ⊂ int(Dm) be two boxes. We write

B
Φ−→ C if Φ(B) ∩ int(C) 6= ∅.

Observe that this condition is open in C0(Dm). Let A be a finite family of
boxes. Denote

A2∗ := {(B,C) ∈ A2 : B
Φ−→ C},

A3∗ := {(D,B,C) ∈ A3 : D
Φ−→ B, B

Φ−→ C}.
For all n ≥ 0 we now define atoms of generation n for a map Φ ∈ C0(Dm).

Definition 2.3 (Atoms of generations 0 ≤ n ≤ k; see Figure 1). Fix
Φ ∈ C0(Dm) and collectionsA0,A1, . . . ,Ak of boxes contained in the interior
of Dm. For n ≥ 1 and for (D,B,C) ∈ A3∗

n−1 we define

Ωn(B) := {G ∈ An : G ⊂ int(B)},

Ωn(D,B) := {G ∈ Ωn(B) : D
Φ−→ G},

Γn(D,B,C) := {G ∈ Ωn(D,B) : G
Φ−→ C}.

Suppose that the following conditions hold for all 1 ≤ n ≤ k:
(i) The family An consists of 2n2 pairwise disjoint boxes.
(ii) For all B ∈ An,

#{C ∈ An : B
Φ−→ C} = 2n, #{D ∈ An : D

Φ−→ B} = 2n.
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Fig. 1. An atom A of generation 0 and two atoms B,C of generation 1 for a map Φ of D2.

Suppose furthermore:

(a) #Ωn(B) = #Ωn(B
′) for all B,B′ ∈ An−1, and An =

⋃
B∈An−1

Ωn(B).

(b) For all (D,B) 6= (D′, B′) ∈ A2∗
n−1,

#Ωn(D,B) = #Ωn(D
′, B′) and Ωn(D,B) ∩Ωn(D′, B′) = ∅.

Moreover, Ωn(B) =
⋃
D: (D,B)∈A2∗

n−1
Ωn(D,B) for all B ∈ An−1.

(c) For all (D,B,C) 6= (D′, B′, C ′) ∈ A3∗
n−1,

#Γn(D,B,C) = #Γn(D
′, B′, C ′) and Γn(D,B,C)∩Γn(D′, B′, C ′) = ∅,

and for all (D,B) ∈ A2∗
n−1,

(2.1) Ωn(D,B) =
⋃

C: (B,C)∈A2∗
n−1

Γn(D,B,C),

(d) For each (D,B,C) ∈ A3∗
n−1 and each G ∈ Γn(D,B,C),

Φ(G) ∩ E = ∅ ∀E ∈ An \Ωn(B,C).
Then we call the members of An atoms of generation n or n-atoms.

Remark 2.4. From conditions (i), (ii) and (a)–(d) of Definition 2.3 we
deduce the following properties of the families of atoms for Φ ∈ C0(Dm):

• #Ωn(B) = 22n−1 for all B ∈ An−1. In fact, the families Ωn(B) are
pairwise disjoint because any two different atoms of generation n are disjoint.
Therefore, from condition (a), we obtain

#An = #An−1 ·#Ωn(B) = 2(n−1)
2 ·#Ωn(B) = 2n

2
,

hence #Ωn(B) = 22n−1.

• #Ωn(D,B) = 2n for all (D,B) ∈ A2∗
n−1. In fact, from condition (b),

Ωn(B) =
⋃

D: (D,B)∈A2∗
n−1

Ωn(D,B) ∀B ∈ An−1,
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where the families of atoms in the above union are pairwise disjoint. Thus,
for any B ∈ An−1 we have

#Ωn(B) = #{D ∈ An−1 : D
Φ−→ B} ·#Ωn(D,B)

= 2n−1 ·#Ωn(D,B) = 22n−1,

hence #Ωn(D,B) = 2n.

• #Γn(D,B,C) = 2 for all (D,B,C) ∈ A3∗
n−1. In fact, from conditions

(ii) and (c), for each 2-tuple (D,B) ∈ A2∗
n−1 the collection Ωn(D,B) is par-

titioned into 2n−1 pairwise disjoint subcollections Γn(D,B,C), where the
atoms C ∈ An−1 are such that B Φ−→ C. Since #Ωn(D,B) = 2n (proved
above), we deduce that #Γn(D,B,C) = 2. For example, in Figure 2 we have
Γ2(C,B,C) = {F,G}.

Fig. 2. An atom A of generation 0, two atoms B,C of generation 1, and 16 atoms of gen-
eration 2. In particular, the two atoms G,H of generation 2 satisfy Γ2(C,B,C) = {G,H}.

• As a straightforward consequence of conditions (a)–(c) we obtain

(2.2) An =
⋃

(D,B,C)∈A3∗
n−1

Γn(D,B,C),

where the families of atoms in the union are pairwise disjoint.

• For each (D,B,C) ∈ A3∗
n−1, each G ∈ Γn(D,B,C) and all E ∈ An,

either G Φ−→ E, and this occurs if and only if E ∈ Ωn(B,C), or Φ(G)∩E = ∅,
and this occurs if and only if E 6∈ Ωn(B,C). In fact, from condition (d), if
Φ(G) ∩ E 6= ∅ then E ∈ Ωn(B,C). So, recalling condition (ii), we obtain

2n = #{E ∈ An : G
Φ−→ E}

≤ #{E ∈ An : Φ(G) ∩ E 6= ∅} ≤ #Ωn(B,C) = 2n.

Hence, all the above inequalities are equalities and the assertion is proved.
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• #A3∗
n = 2n

2+2n. In fact, all the 3-tuples (D,B,C) ∈ A3∗
n can be con-

structed by choosing freely D ∈ An, later choosing B ∈ An such that
D

Φn−−→ B, and finally choosing C ∈ An such that B Φn−−→ C. Taking into
account the equalities in (i) and (ii) we deduce

#A3∗
n = #{(D,B,C) ∈ A3

n : D
Φn−−→ B, B

Φn−−→ C}

= #An ·#{B ∈ An : D
Φn−−→ B} ·#{C ∈ An : B

Φn−−→ C}

= 2n
2
2n2n = 2n

2+2n.

Notation. In certain statements we refer to families of atoms for several
different maps. When necessary we will write A ∈ An(Φ) or (B,D) ∈ A2∗

n (Φ),
etc., where Φ is the map to which the family of atoms is associated.

Definition 2.5 (Models). We call Φ ∈ C0(Dm) a model if Φ(Dm) ⊂
int(Dm) and there exists a sequence {An}n≥0 of finite families of pairwise
disjoint boxes contained in int(Dm) that are atoms of generations n ≥ 0 for
Φ such that

(2.3) lim
n→∞

max
A∈An

diam(A) = 0.

Denote by H the family of all models in C0(Dm).

Definition 2.6. For any Φ ∈ H, we denote by HΦ the family of maps
in C0(Dm) that have the same atoms of all generations as Φ. Note that
HΦ ⊂ H.

Construction of models. The rest of this section is dedicated to the
proof of the following lemma.

Lemma 2.7. The family H ∩ Emb(Dm) is nonempty. As a consequence,
we can choose a map Φ in this family such that the subfamilies HΦ and
HΦ ∩ Emb(Dm) are nonempty Gδ-sets in C0(Dm) and Emb(Dm) respec-
tively.

Proof. For each fixed n ≥ 1 the conditions (a)–(d) of Definition 2.3 are
open conditions. So, for fixed n ≥ 0, and for any given map Φ having families
A0,A1, . . . ,An of atoms of generations 0, 1, . . . , n, the set of maps that have
the same families of atoms of generations up to n as Φ (for that fixed n and
not necessarily for all n) is an open set. Moreover, the condition Φ(Dm) ⊂
int(Dm) is open.

From Definition 2.6 we deduce that if there existed some Φ ∈ H, the
family HΦ ⊂ H would be a nonempty Gδ-set in C0(M). In other words,
H would contain a nonempty Gδ-set if H were nonempty.

Analogously, if there existed Φ ∈ H∩Emb(Dm) (note that HΦ is not nec-
essarily composed of embeddings of Dm), it would contain HΦ ∩Emb(Dm),
which would be a nonempty Gδ-set in Emb(Dm).
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The difficult part is to prove the first assertion: H∩Emb(Dm) 6= ∅. This
will be proved in Lemma 2.8 below, in which we give a procedure to construct
a map in that family.

Note that the nonempty Gδ-set HΦ is not necessarily dense in C0(Dm)!

Lemma 2.8. For all f ∈ Emb(Dm) such that f(Dm) ⊂ int(Dm), there
exists ψ ∈ Hom(Dm) such that

ψ|∂Dm = id|∂Dm and Φ := ψ ◦ f ∈ H ∩ Emb(Dm).

We now outline the strategy of the proof of Lemma 2.8. The homeomor-
phism ψ is constructed as the limit of a convergent sequence ψn ∈ Hom(Dm)
such that Φn := ψn ◦f ∈ Emb(Dm) is convergent. The embedding Φn, by an
inductive hypothesis, has atoms of generations 0, 1, . . . , n. Further, Φn+1 will
be constructed so that it coincides with Φn outside the interiors of all atoms of
generation n for Φn. Hence, the collections of atoms of generations 0, 1, . . . , n
for Φn is also a collection of atoms of the same generations for Φn+1 (see the
proof of Lemma 2.11(a)).

To change Φn in the interior of each atom A of generation n for Φn, we
will change ψn only inside some properly defined boxes f(R) such that R ⊂
int(A) is a box (recall that f is an embedding). We will construct ψn+1|f(R)

so that ψn+1|∂f(R) = ψn|∂f(R), and finally extend ψn+1(x) := ψn(x) for all x
in the complement of the union of all boxes f(R).

The new homeomorphism ψn+1, if properly constructed inside the
boxes f(R), will allow us to define the atoms of generation n+1 for Φn+1 =
ψn+1 ◦ f . These atoms will be many little boxes in the interior of each box
f−1(f(R)) = R ⊂ A, where A is an atom of generation n for both Φn
and Φn+1.

Lemma 2.8 will be proved by induction via several technical lemmas.
One inductive hypothesis in the proof is that for a fixed n ≥ 0 we have
constructed an embedding Φn along with associated atoms of generations
0, 1, . . . , n. For each (P,Q) ∈ A2∗

n , we will choose a connected component
S(P,Q) of Φn(P )∩Q. For each (D,B,C) ∈ A3∗

n we choose two disjoint boxes
G0(D,B,C), G1(D,B,C) contained in int(S(D,B) ∩ Φ−1n S(B,C)). By an
additional inductive hypothesis on Φn a choice of the connected components
S(D,B) and S(B,C) is assumed to exist such that the interior of this inter-
section is nonempty.

Remark 2.9. We provisionally adopt an abusive notation for the families
of such boxes G·(·, ·, ·). Even if they are not atoms of generation n+1 for Φn,
we use the notation as if they were. We use this notation since in the proof of
Lemma 2.8 we will modify Φn to construct a new embedding Φn+1 for which
the same atoms up to generation n for Φn are also atoms up to generation n
for Φn+1, and moreover the boxes G·(·, ·, ·) are the atoms of generation n+1
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for Φn+1. In brief, we first choose the boxes, candidates to be the atoms of
generation n + 1 for a new embedding Φn+1, and later we construct Φn+1.
Let

An+1 := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n (Φn)};

Ωn+1(B) := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n (Φn)}

for each fixed B ∈ An(Φn);

Ωn+1(D,B) := {Gj(D,B,C) : j ∈ {0, 1}, B
Φn−−→ C}

for each fixed (D,B) ∈ A2∗
n (Φn); and

(2.4) Γn+1(D,B,C) := {Gj(D,B,C) : j ∈ {0, 1}}

for each fixed (D,B,C) ∈ A3∗
n (Φn). We will apply this abusive notation in

Lemmas 2.10 and 2.11 and in Remark 2.12.

Lemma 2.10. For all (B,C) ∈ A2∗
n (Φn) and all E ∈ An+1 we have

E ⊂ Φ−1n (S(B,C)) if and only if E ∈ Γn+1(D,B,C) for some D ∈ An such
that D Φn−−→ B.

Proof. By the construction in Remark 2.9, for all E ∈ An+1 we have
E ∈ Γn+1(D,B,C) = {Γ0(D,B,C), Γ1(D,B,C)} for some (D,B,C) ∈ A3∗

n .
This means that E = Gj(D,B,C) ⊂ int(S(D,B) ∩ Φ−1n (S(B,C))) for some
j = 0, 1. Therefore, E ⊂ Φ−1n (S(B,C)) if and only if there exists D ∈ An
such that D Φn−−→ B and E ∈ Γn+1(D,B,C).

Lemma 2.11. Suppose that

int(S(D,B) ∩ Φ−1n S(B,C)) 6= ∅ ∀(D,B,C) ∈ A3∗
n (Φn).

Consider any Φn+1 ∈ Emb(Dm) which satisfies Φn+1(x) = Φn(x) for each
x 6∈

⋃
(B,C)∈A2∗

n (Φn)
int(Φ−1n S(B,C)). Then:

(a) For all 0 ≤ j ≤ n and any atoms B,C ∈ A2
j (Φn) we have Φn(B) =

Φn+1(B); hence B Φn−−→ C if and only if B
Φn+1−−−→ C.

(b) #An+1 = 2(n+1)2 and E ∩ F = ∅ for all E,F ∈ An+1 such that E 6= F.
(c) The family An+1 is partitioned into the pairwise disjoint subfamilies

Ωn+1(B) where B ∈ An. Moreover, #Ωn+1(B) = 22n+1 and Ωn+1(B) =
{G ∈ An+1 : G ⊂ int(B)} for all B ∈ An.

(d) For all B ∈ An the family of boxes Ωn+1(B) is partitioned into the
pairwise disjoint subfamilies Ωn+1(D,B) where D ∈ An is such that

D
Φn+1−−−→B. Moreover, for all (D,B) ∈ A2∗

n (Φn+1) we have #Ωn+1(D,B)

= 2n+1 and Ωn+1(D,B) = {G ∈ Ωn+1(B) : D
Φn+1−−−→ G}.
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(e) For all (D,B) ∈ A2∗
n (Φn+1) the family of boxes Ωn+1(D,B) is parti-

tioned into the pairwise disjoint subfamilies Γn+1(D,B,C), where C∈An
is such that B

Φn+1−−−→ C. Moreover, for all (D,B,C) ∈ A3∗
n (Φn+1) we

have #Γn+1(D,B,C) = 2 and Γn+1(D,B,C) = {G ∈ Ωn+1(D,B) :

G
Φn+1−−−→ C}.

(f) For all (D,B,C)∈A3∗
n (Φn+1), all G∈Γn+1(D,B,C), and all E∈An+1,

Φn+1(G) ∩ E 6= ∅ only if E ∈ Ωn+1(B,C).

Proof. (a) We prove (a) under the more general hypothesis Φn+1(x) =
Φn(x) for all x 6∈

⋃
B∈An int(B). (Note that x 6∈ int(S(D,B) ∩ Φ−1n S(B,C))

implies x 6∈ B.)
By hypothesis, Φn, Φn+1 ∈ End(Dm) and Φn|∂A = Φn+1|∂A for the boxes

A ∈ Aj for all 0 ≤ j ≤ n (recall that, from condition (a) of Definition 2.3,
each atom of generation n for Φn is contained in the interior of an atom of
generation 0 ≤ j ≤ n). Then Φn+1(A) = Φn(A) for all B ∈

⋃
0≤j≤nAj . Part

(a) follows immediately.
(b) By construction, E = Gj(D,C,B), F = Gj′(D

′, B′, C ′). If E 6= F ,
then either (D,C,B) = (D′, C ′, B′) and j 6= j′, or (D,C,B) 6= (D′, C ′, B′).
In the former case, by construction,

G0(D,C,B) ∩G1(D,C,B) = ∅,
in other words E ∩ F = ∅. In the latter case, either D 6= D′ or B 6= B′

or C 6= C ′. By construction, Gj(D,B,C) ⊂ Φn(D) ∩ B ∩ Φ−1n (C) and
Gj′(D

′, B′, C ′) ⊂ Φn(D′) ∩B′ ∩ Φ−1n (C ′). Since members of An are pairwise
disjoint, and Φn ∈ Emb(Dm), we deduce that Gj(D,B,C) ∩Gj′(D′, B′, C ′)
= ∅, hence E ∩ F = ∅ as required.

By the construction in Remark 2.9,

An+1 =
⋃

(D,C,B)∈A3∗
n

Γn+1(D,B,C),

where the families in the union are pairwise disjoint and each one has two
different boxes of An+1. Therefore, taking into account the last assertion of
Remark 2.4, we deduce that

#An+1 = 2 ·#A3∗
n = 2 · 2n2+2n = 2(n+1)2 .

(c) Using the notation of the end of Remark 2.9, we have

An+1 =
⋃

B∈An

Ωn+1(B).

Moreover, for all G ∈ An+1 we have G ⊂ int(B) if and only if G ∈ Ωn+1(B),
because by construction, G ⊂ int(S(D,B)) ⊂ int(B) for some B ∈ An. Since
members ofAn are pairwise disjoint, we deduce thatΩn+1(B)∩Ωn+1(B

′) = ∅
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ifB 6= B′. We conclude that the above union of different subfamiliesΩn+1(B)
is a partition of An+1, as required.

Note that
Ωn+1(B) =

⋃
D∈An, D

Φn−−→B

⋃
C∈An, B

Φn−−→C

Γn+1(D,B,C),

where the families in the union are pairwise disjoint and each of them has
two different boxes. Therefore, taking into account that An is a family of
atoms for Φn (by hypothesis), equality (ii) of Definition 2.3 implies

#Ωn+1(B) = 2 ·#{D ∈ An : D
Φn−−→ B} ·#{C ∈ An : B

Φn−−→ C}
= 2 · 2n · 2n = 22n+1.

(d) By the construction at the end of Remark 2.9,

Ωn+1(B) =
⋃

D∈An, D
Φn−−→B

Ωn+1(D,B).

Moreover, Ωn+1(D,B) ∩ Ωn+1(D
′, B) = ∅ if D 6= D′ in An, since different

atoms of generation n are pairwise disjoint, and G ∈ Ωn+1(D,B) implies
G ⊂ Φn(D), which is disjoint from Φn(D

′) since Φn is an embedding.
By the construction in Remark 2.9,

Γn+1(D,C,B) = {G0(D,C,B), G1(D,C,B)},
where G0 and G1 are disjoint, hence different. Thus the cardinality of
Γn+1(D,C,B) is 2.

Also, Ωn+1(D,B) =
⋃
C∈An:B

Φn−−→C
Γn+1(D,B,C). Moreover,

Γn+1(D,B,C) ∩ Γn+1(D,B,C
′) = ∅

if C 6= C ′ in An, because any two different atoms of generation n are disjoint
and G ∈ Γn+1(D,B,C) implies G ⊂ Φ−1n (C).

From the above assertions and from the equalities in (ii) of the definition
of atoms of generation n, we deduce that

#Ωn+1(D,B) = 2 ·#{C ∈ An : B
Φn−−→ C} = 2 · 2n = 2n+1.

Finally, for all G ∈ Ωn+1(B) there exists a (unique) D ∈ An such that

G ⊂ S(D,B) ⊂ Φn(D) = Φn+1(D). Hence D
Φn+1−−−→ G if and only if G ∈

Ω(D,B).
(e) Above we proved that Ωn+1(D,B) is partitioned into the pairwise

disjoint subfamilies Γn+1(D,B,C), where C is such that (B,C) ∈ A2∗
n .

We have also noticed that #Γn+1(D,B,C) = 2. Finally, by the con-
struction of Remark 2.9, for all G ∈ Ωn+1(D,B) there exists C ∈ An such
that G ∈ S(D,B)∩Φ−1n (S(B,C). Therefore Φn+1(G) ⊂ Φn+1(Φ

−1
n (S(B,C)).

This latst set coincides with Φn(Φ
−1
n (S(B,C)) because, by hypothesis, Φn
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and Φn+1 are embeddings and coincide outside the interiors of all the sets
Φ−1n (S(B,C)). We deduce that

Φn+1(G) ⊂ Φ−1n (S(B,C)) ⊂ Φn
(
Φ−1n (S(B,C))

)
⊂ S(B,C) ⊂ Φn(B) ∩ C ⊂ C.

Thus, the interior of Φn+1(G), which is nonempty because G is a box and
Φn+1 is an embedding, is contained in the interior of C ∈ An. Since mem-
bers of An are pairwise disjoint, we conclude that, for all G ∈ Ω(D,B),

G ∈ Γn+1(D,B,C) if and only if G
Φn+1−−−→ C, as required.

(f) If G ∈ Γn+1(D,B,C) then G ⊂ S(D,B) ⊂ Φn(D) ∩B. Therefore

Φn+1(G) ⊂ Φn+1(B) = Φn(B).

Moreover, we have proved above that

Φn+1(G) ⊂ C.

Assume that Φn+1(G) ∩ E 6= ∅ for some E ∈ An+1. Since E ∈ Ωn+1(B
′, C ′)

for some (B′, C ′) ∈ A2∗
n , we have

E ⊂ S(B′, C ′) ⊂ Φn(B′) ∩ C ′.

Since Φn+1(G)∩E 6= ∅, we deduce that Φn(B)∩Φn(B′)∩C ∩C ′ 6= ∅. Since
distinct atoms of generation n are disjoint and Φn is one-to-one, we conclude
that B = B′, C = C ′ and E ∈ Ωn+1(B,C).

Remark 2.12. Lemma 2.11(a) immediately implies that for 0 ≤ j ≤ n:

• the families A2∗
j and A3∗

j for Φn and for Φn+1 coincide,
• the members of the same families Aj are also atoms of the respective

generations 0, 1, . . . , n for Φn+1.

Parts (b)–(e) of Lemma 2.11 ensure that the family An+1 of boxes con-
structed in Remark 2.9 satisfies conditions (i) and (a)–(d) of Definition 2.3
for Φn+1. Thus, the members of An+1 are good candidates to be atoms of
generation n+ 1 for Φn+1.

To actually obtain atoms of generation n + 1 for Φn+1 we will further
modify the map in the interior of S(D,B) ∩ Φ−1n S(B,C) for all (D,B,C)
∈ A3∗

n (Φn) in such a way that for the new embedding Φn+1 the boxes of
An+1 also satisfy condition (ii) of Definition 2.3.

Lemma 2.13. Keeping the notation of Remark 2.9, let L̃n+1 ⊂ Dm be a
finite set of cardinality 2(n+1)22n+1, with a unique point ẽi(E) ∈ L̃n+1 for
each (i, E) ∈ {1, . . . , 2n+1} × An+1. Assume that

ẽi(E) ∈ int(E) ∀(i, E) ∈ {1, . . . , 2n+1} × An+1.

Then there exists a permutation θ : L̃n+1 → L̃n+1 such that:
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(a) For all (i, E) ∈ {1, . . . , 2n+1} × Γn+1(D,B,C) for some (D,B,C) ∈
A3∗
n (Φn),

θ(ẽi(E)) = ẽi′(E
′)

for a unique i′ ∈ {1, . . . , 2n+1} and a unique E′ ∈ Ωn+1(B,C).
(b) For all (D,B,C) ∈ A3∗

n (Φn), all E ∈ Γn+1(D,B,C) and all F ∈
Ωn+1(B,C) there exists a unique

(i, i′) ∈ {1, . . . , 2n+1}2

such that θ(ẽi(E)) = ẽi′(F ).
(c) For all (B,C) ∈ A2∗

n (Φn),

θ
({
ẽi(E) : E ∈

⋃
D∈An: (D,B)∈A2∗

n

Γn+1(D,B,C), i ∈ {1, . . . , 2n+1}
})

= {ẽi′(F ) : F ∈ Ωn+1(B,C), i
′ ∈ {1, . . . , 2n+1}} = L̃n+1 ∩ S(B,C).

Proof. From the construction of An+1 (see Remark 2.9), we deduce that
for all E ∈ An+1 there exist a unique j ∈ {0, 1} and a unique (D,B,C) ∈ A3∗

n

such that
E = Gj(D,B,C) ∈ Γn+1(D,B,C)

(recall (2.4)) and thus we will write

ẽi(Gj(D,B,C)) = ẽi(E)

for all (i, E) ∈ {1, . . . , 2n+1} × An+1.
By hypothesis, An is the family of atoms of generation n for Φn, thus we

can apply the equalities in (ii) of Definition 2.3. So, for each B ∈ An, we can
index the different atoms D ∈ An such that D Φn−−→ B as follows:

(2.5) {D ∈ An : D
Φn−−→ B} = {D−1 (B), . . . , D−2n(B)},

where D−k1(B) 6= D−k2(B) if k1 6= k2.
Analogously,

(2.6) {C ∈ An : B
Φn−−→ C} = {C+

1 (B), . . . , C+
2n(B)},

where C+
l1
(B) 6= C+

l2
(B) if l1 6= l2.

Now, we index the distinct points of L̃n+1 as follows:

êi,j(k,B, l) := ẽi(Gj(D,B,C)) = ẽi
(
Gj(D

−
k (B), B,C+

l (B))
)

for all (i, j, B, k, l) ∈ {1, . . . , 2n+1} × {0, 1} × An × {1, . . . , 2n}2.
Define a correspondence θ : L̃n+1 → L̃n+1 by

θ(êi,j(k,B, l)) = êi′,j′(k
′, B′, l′),

where
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• B′ := C+
l (B),

• k′ is such that B = D−k′(C) (exists and is unique because B Φn−−→ C,
by (2.5)),
• l′ = i (mod 2n),
• j′ = 0 if i ≤ 2n and j′ = 1 if i > 2n,
• i′ = k + j · 2n.

Let us prove that θ is surjective; hence it is a permutation of the finite
set L̃n+1.

Let êi′,j′(k′, B′, l′) ∈ L̃n+1 be given, where

(i′, j′, B′, k′, l′) ∈ {1, . . . , 2n+1} × {0, 1} × An × {1, . . . , 2n}2.
Construct:

• i := l′+ j′ · 2n. Then l′ = i (mod 2n), j′ = 0 if i ≤ 2n and j′ = 1 if i > 2n.
• B := D−k′(B

′). Then B Φn−−→ B′. So, there exists l such that B′ = C+
l (B).

• k := i′ (mod 2n), j := 0 if i′ ≤ 2n and j := 1 if i′ > 2n. Therefore
i′ = k + 2nj.

Thus we have constructed some θ−1 such that θ◦θ−1 is the identity map.
So, θ is surjective, hence also one-to-one in the finite set L̃n+1, as required.

Now, let us prove that θ satisfies the assertions of Lemma 2.13.
(a) Fix ẽi(E) ∈ L̃n+1. By construction, θ(ẽi(E)) = ẽi′(E

′) ⊂ int(E′) for
some (i, E) ∈ {1, . . . , 2n+1} × An+1. Since members of An+1 are pairwise
disjoint (recall Lemma 2.11(b)), the box E′ is unique. Moreover, by hypoth-
esis, ẽi′(E′) 6= ẽj′(E

′) if i′ 6= j′. So, the index i′ is also unique. Therefore,
to finish the proof of (a), it is enough to check that E′ ∈ Ωn+1(B,C) if
E ∈ Γn+1(D,B,C).

By the definition of the family Γn+1(D,B,C) in Remark 2.9, if E ∈
Γn+1(D,B,C), there exists j ∈ {0, 1} such that E = Gj(D,B,C). Thus,
using the notation at the beginning, ẽi(E) = ẽi(Gj(D,B,C)) = êi,j(k,B, l),
where D = D−k (B) and C = C+

l (B). Then, using the definition of the
permutation θ and the computation of its inverse θ−1, we obtain ẽi′(E) =
θ(ẽi(E)) = êi′,j′(k

′, B′, l′), where

B′ = C+
l (B) = C, D′ = D−k′(B

′) = B.

We have proved that ẽi′(E′) = ẽi′(Gj′(B,C,C
′)). Finally, from the def-

inition of the family Ωn+1(B,C) in Remark 2.9 we conclude that E′ ∈
Ωn+1(B,C), as asserted in part (a).

(b) Fix (D,B,C) ∈ A3∗
n and E ⊂ Γn+1(D,B,C). Then, using the defini-

tion of Γn+1(D,B,C), we have a unique (j, k, l) ∈ {0, 1}× {1, . . . , 2n}2 such
that E = Gj(D,B,C), D = D−k (B), C = C+

l (B). Consider the finite set Z
of 2n+1 distinct points ẽi(E) = êi,j(k,B, l), with j, k,B, l fixed as above and
i ∈ {1, . . . , 2n+1}. Let i′ := k + 2nj; then the image of each point in Z by
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the permutation θ is θ(ẽi(E)) = ẽi′(Gj′(B,C,C
′) (here we use assertion (a)).

Since k, j are fixed, we deduce that there exists a unique i′ such that all the
points of θ(Z) are of the form ẽi′(F ), F = Gj′(B,C,C

′) with j′ ∈ {0, 1},
C ′ = C+

k′(C), k
′ ∈ {1, . . . , 2n+1}. We have proved that the permutation θ|Z

is equivalent to

{1, . . . , 2n+1} 3 i 7→ (j′, k′) ∈ {0, 1} × {1, . . . , 2n}
such that θ(ẽi(E)) = ẽi′(Gj′(B,C,C

+
k′(C))) with i

′ fixed.
Since #{1, . . . , 2n+1} = #({0, 1}× {1, . . . , 2n}), from the injectivity of θ

we deduce that θ(Z) = {0, 1} × {1, . . . , 2n}. Thus for every F ∈ Ω(B,C)
there exists a unique i such that θ(ẽi(E)) = ẽi′(F ) (where i′ is uniquely
defined given E). This ends the proof of (b).

(c) For fixed (B,C) ∈ A2∗
n , denote

P :=
{
ẽi(E) : E ∈

⋃
D∈An, D

Φn−−→B

Γn+1(D,B,C), i ∈ {1, . . . , 2n+1}
}
,

Q := {ẽi′(F ) : F ∈ Ωn+1(B,C), i
′ ∈ {1, . . . , 2n+1}} ⊂ L̃n+1.

Applying (a) we deduce that θ(P ) ⊂ Q. So, to prove that θ(P ) = Q it is
enough to prove that #P = #Q. Applying Lemma 2.11 for the family of
boxes An+1 for the family of atoms An, we obtain

#P = 2n+1 ·#Γn+1(D,B,C) ·#{D ∈ An : D
Φn−−→ B} = 2n+1 · 2 · 2n,

#Q = 2n+1 ·#Ωn+1(B,C) = 2n+1 · 2n+1,

which proves that #P = #Q and thus θ(P ) = Q.
Finally, let us prove that Q = L̃n+1 ∩ S(B,C). On the one hand, if

F ∈ Ωn+1(B,C), then F = Gj(B,C,C
′) for some (j, C ′). Applying the

construction of the boxes of An+1 in Remark 2.9, we obtain F ⊂ S(B,C),
hence ẽi′(F ) ∈ L̃n+1 ∩ int(F ) ⊂ L̃n+1 ∩ S(B,C). This proves that Q ⊂
L̃n+1 ∩ S(B,C).

On the other hand, if ẽi′(F ) ∈ L̃n+1 ∪ S(B,C), then F ∈ An+1. We
obtain F = Gj(D

′, B′, C ′) ⊂ S(D′, B′) for some (D′, B′, C ′) ∈ A3∗
n . Since

S(D′, B′) ⊂ Φn(D
′) ∩ B′ and S(B,C) ⊂ Φn(B) ∩ C, we deduce that

S(D′, B′)∩S(B,C) = ∅ if (D′, B′) 6= (B,C). But ẽi′(F ) ∈ int(F )∩S(B,C) ⊂
S(D′, B′)∩S(B,C). Consequently, (D′, B′) = (B,C), thus F = Gj(B,C,C

′)

∈ Ωn+1(B,C), hence ẽi′(F ) ∈ Q. We have proved that L̃n+1∩S(B,C) ⊂ Q.

Lemma 2.14. Assume the hypotheses of Lemmas 2.11 and 2.13. Let Φn+1

∈ Emb(Dm) moreover satisfy

Φn+1(ẽ) = θ(ẽ) ∀ẽ ∈ L̃n+1,

where θ is the permutation of L̃n+1 constructed in Lemma 2.13. Then:
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(a) A0,A1, . . . ,An+1 are collections of atoms up to generation n + 1
for Φn+1.

(b) For each (E,F ) ∈ A2
n+1 such that E

Φn+1−−−→ F , there exists exactly one
point ẽi(E) ∈ L̃n+1 ∩ int(E), and exactly one point ẽi′(F ) ∈ L̃n+1 ∩
int(F ), such that

Φn+1(ẽi(E)) = ẽi′(F ).

Proof. (a) By Remark 2.12, it is enough to establish the truth of condition
(ii) of Definition 2.3 with n+ 1 instead of n.

Take E ∈ An+1. There exists (D,B,C) ∈ A3∗
n with E ∈ Γn+1(D,B,C).

Take F ∈ Ωn+1(B,C). By Lemma 2.13(b), there exists a unique (i, i′) such
that θ(ẽi(E)) = ẽi′(F ). Therefore

Φn+1(ẽi(E)) = ẽi′(F ).

As ẽi(E) ∈ int(E) and ẽi′(F ) ∈ int(F ), we conclude that Φn+1(E) ∩ int(F )

6= ∅, that is, E Φn+1−−−→ F . We have proved that

E
Φn+1−−−→ F ∀E ∈ Γn+1(D,B,C), ∀F ∈ Ωn+1(B,C).

Combining this with Lemma 2.11(f), we deduce that for all (D,B,C)
∈ A3∗

n , all E ∈ Γn+1(D,B,C), and all F ∈ An+1,

(2.7) E
Φn+1−−−→ F if and only if F ∈ Ωn+1(B,C).

Given E ∈ An, let us count how many F ∈ An satisfy E
Φn+1−−−→ F .

Given E, there exists a unique (D,B,C) ∈ A3∗
n with E ∈ Γn+1(D,B,C).

Applying (2.7) and Lemma 2.11(d), we deduce

#{F ∈ An : E
Φn+1−−−→ F} = Ωn+1(B,C) = 2n+1.

Finally, given F ∈ An, let us count how many E ∈ An satisfy E
Φn+1−−−→ F .

Given F , there exists a unique (B,C) ∈ A2∗
n such that F ∈ Ωn+1(B,C).

Applying (2.7), Lemma 2.11(e), and Definition 2.3(ii) for the atoms of gen-
eration n (for Φn and for Φn+1), we obtain

#{E ∈ An : E
Φn+1−−−→ F}

= #{E ∈ An+1 : ∃D ∈ An such that D
Φn+1−−−→ B,E ∈ Γn+1(D,B,C)}

= #{D ∈ An : D
Φn+1−−−→ B} ·#Γn+1(D,B,C) = 2n · 2 = 2n+1.

We have proved that the boxes of An+1 satisfy the equalities in (ii) of Defi-
nition 2.3 for Φn+1. The proof of (a) is complete.

(b) Take (D,B,C) ∈ A3∗
n and E ∈ Γn+1(D,B,C). Take F ∈ An+1. From

Remark 2.4 (putting n + 1 instead of n), we know that Φn+1(E) ∩ F 6= ∅
if and only if F ∈ Ωn+1(B,C). Applying Lemma 2.13(b) we find a unique
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(i, i′) ∈ {1, . . . , 2n+1}2 such that Φn+1(ẽi(E)) = θ(ẽi(E)) = ẽi′(F ). The
proof of part (b) is complete.

Lemma 2.15. Let ψ ∈ Emb(Dm), r ≥ 1, P1, . . . , Pr ⊂ Dm be pairwise
disjoint boxes, and Qj := ψ(Pj) for all j ∈ {1, . . . , r}. For k ≥ 1 and j ∈
{1, . . . , r}, let p1,j , . . . , pk,j ∈ int(Pj) be distinct points and q1,j , . . . , qk,j ∈
int(Qj) also be distinct points. Then there exists a ψ∗ ∈ Emb(Dm) such that

ψ∗(x) = ψ(x) ∀x 6∈
r⋃
j=1

int(Pj),

ψ∗(pi,j) = qi,j ∀(i, j) ∈ {1, . . . , k} × {1, . . . , r}.

Proof. This is straightforward.

Proof of Lemma 2.8. We divide the construction of ψ and Φ ∈ H into
several steps:

Step 1: Construction of the atom of generation 0. Since f(Dm)⊂ int(Dm),
there exists a box A0 ⊂ int(Dm) such that f(Dm) ⊂ int(A0). The box
A0 is the atom of generation 0 for the embedding Φ0 := f which satisfies
Φ0 = ψ0 ◦ f , where ψ0 is the identity map. By the Brouwer Fixed Point
Theorem, there exists a point e0 ∈ int(Φ0(A0)) such that Φ0(e0) = e0. Define
S(A0, A0) to be the connected component of A0 ∩ Φ0(A0) containing e0.

Note that A0 ∩Φ0(A0) = Φ(A0) is connected. We introduce the notation
S(A0, A0) to stress that the inductive hypothesis is satisfied for n = 0.

Step 2: Construction of the atoms of generation n+ 1. Inductively as-
sume that we have constructed the families A0,A1, . . . ,An of atoms up to
generation n for Φn = ψn ◦ f , where ψn ∈ Hom(Dm), satisfying:

(I) ψn|∂Dm is the identity map.
(II) maxB∈Ai max {diam(B), diam(f(B))} < 1/2i for i ∈ {0, 1, . . . , n}.
(III) Φi(x) = Φi−1(x) for x ∈ Dm \

⋃
B∈Ai−1

B and i ∈ {1, . . . , n}.
(IV) For all (D,B,C) ∈ A3∗

n (Φn) there exists a point e(D,B,C) such that

Ln := {e(D,B,C) : (D,B,C) ∈ A3∗
n }

is Φn-invariant, and

(2.8) e(D,B,C) ∈ int
(
S(D,B) ∩ Φ−1n (S(B,C))

)
,

where S(D,B) and S(B,C) are (properly chosen) connected compo-
nents of B∩Φn(D) and of C∩Φn(B) respectively. (Recall the notation
in Remark 2.9). Note that the sets S(B,C) and S(B′, C ′) are disjoint
if (B,C) 6= (B′, C ′), because two different atoms of generation n for
Φn are disjoint (recall Definition 2.3) and Φn is one-to-one.
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Next we will construct the family An+1 of boxes, candidates to be atoms
of generation n+1 for a new embedding Φn+1 (as in Remark 2.9), and ψn+1

such that Φn+1 = ψn+1 ◦ f .
First, for each (B,C) ∈ A2∗

n (Φn), we choose a box R(D,B) such that

(2.9) e(D,B,C) ∈ int(R(B,C)), R(B,C) ⊂ int(Φ−1n (S(B,C))

∀D ∈ An such that D Φn−−→ B.

Note that such boxes R(·, ·) are pairwise disjoint, because they are con-
tained in pairwise disjoint sets.

Recall that e(D,B,C) ∈ Ln and the set Ln is Φn-invariant. Consider
assertions (2.8) and (2.9). Thus,

e(D,B,C) ∈ int
(
R(B,C) ∩ Φn(R(D,B))

)
6= ∅.

Next, for each (D,B,C) ∈ A3∗
n we choose two disjoint boxes, G0(D,B,C)

and G1(D,B,C), contained in the interior of R(B,C) ∩ Φn(R(D,B)) that
satisfy

(2.10) max {diam(Gi(D,B,C)), diam(f(Gi(D,B,C)))} <
1

2n+1

for i = 0, 1. Now, we use the notation of Remark 2.9 to construct the family
An+1 of all the boxes Gi(D,B,C). These boxes will be the (n+1)-atoms of
two new embeddings Φ̃n+1 and Φn+1 that we will construct as follows.

First, in the interior of each box E ∈ An+1 we choose 2n+1 distinct points
ẽi(E), i = 1, . . . , 2n+1, and denote

L̃n+1 := {ẽi(E) : E ∈ An+1, 1 ≤ i ≤ 2n+1}.

Second, we build a permutation θ̃ of L̃n+1 satisfying the properties of
Lemma 2.13.

Third, we would like to apply Lemma 2.15 to construct ψ̃n+1 ∈ Hom(Dm)
satisfying the following constraints:

(a) For all (B,C) ∈ A2∗
n (Φn),

ψ̃n+1|f(R(B,C)) : f(R(B,C))→ ψn ◦ f(R(B,C)) = Φn(R(B,C)),

(b) For all x 6∈
⋃

(B,C)∈A2∗
n forΦn

f(R(B,C)),

ψ̃n+1(x) = ψn(x).

(c) For all ẽ ∈ L̃n+1,
ψ̃n+1(f(ẽ)) = θ̃(ẽ).

We turn to the verification of the hypotheses of Lemma 2.15. The boxes
R(B,C) where (B,C) ∈ A2∗

n are pairwise disjoint, so their images by f are
also pairwise disjoint boxes. Furthermore, for each (B,C) ∈ A2∗

n (Φn), the
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finite set

{f(ẽ) : ẽ ∈ L̃n+1 ∩ int(R(B,C))} = {f(ẽ) : ẽ ∈ L̃n+1 ∩ int(Φ−1n (S(B,C)))}

is contained in the interior of f(R(B,C)). Moreover, it coincides with

{f(ẽi(E)) : E ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, . . . , 2n+1}

(recall Lemma 2.10). So, the image by θ̃ of such points ẽ(·) is

{θ̃(ẽi(E)) : E ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, . . . , 2n+1}.

By Lemma 2.13(c), this set is

{ẽk(F ) : F ∈ Ωn+1(B,C), k = 1, . . . , 2n+1} = L̃n+1 ∩ S(B,C),

which is contained in the interior of Φn(R(B,C)) = ψ̃n(f(R(B,C))).
We have proved that the points f(ẽ(·)) are in the interior of the boxes

f(R(·, ·)), and their images θ(ẽ(·)) by ψ̃n+1 (to be constructed) are in the
interiors of the images by ψ̃n of those boxes. So, the hypothesis of Lemma 2.15
is satisfied.

Let
Φ̃n+1 := ψ̃n+1 ◦ f.

Since

Φ̃n+1(x) = ψ̃n+1 ◦ f = ψ̃n ◦ f = Φn(x)

∀x 6∈
⋃

(B,C)∈A2∗
n forΦn

int(R(B,C)) ⊂
⋃

(B,C)∈A2∗
n forΦn

int(Φ−1n (S(B,C))),

the hypothesis of Lemma 2.11 is satisfied. Therefore the same atoms up to
generation n for Φn are still atoms up to generation n for Φ̃n+1. But moreover,
by Lemma 2.14(a), the boxes of the new family An+1 are now (n+1)-atoms
for Φ̃n+1.

Step 3: Construction of Φn+1 and ψn+1. To argue by induction, we
will not use Φ̃n+1 and ψ̃n+1, even if Φ̃n+1 = ψ̃n+1 ◦ f already has families
A0, . . . ,An,An+1 of atoms up to generation n + 1, as required. Rather, we
will modify them to obtain a new Φn+1 and a new ψn+1 such that the
inductive hypothesis (IV) and (2.8) also hold for n + 1 instead of n. We
will modify ψ̃n+1 only in the interiors of the boxes f(G) for all the atoms
G ∈ An+1 for Φ̃n+1, and we will construct a new homeomorphism ψn+1 such
that Φn+1 := ψn+1 ◦ f has the same atoms up to generation n+ 1 for Φ̃n+1

(see the proof of Lemma 2.11(a)), and moreover satisfies (IV) with n + 1
instead of n.
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From the above construction of ψ̃n+1 and Φ̃n+1, and from Lemma 2.14(b),
we know that for each (G,E) ∈ A2∗

n+1 for Φ̃n+1 there exists a unique point
ẽi(G) ∈ int(G), and a unique point ẽk(E), such that

Φ̃n+1(ẽi(G)) = ψ̃n+1 ◦ f(ẽi(G)) = θ̃(ẽi(G)) = ẽk(E) ∈ int(E).

Therefore
ẽk(E) ∈ int(E ∩ Φ̃n+1(G)).

Denote by S(G,E) the connected component of E ∩ Φ̃n+1(G) that con-
tains ẽk(E). Choose 2n+1 distinct points

ei(G,E) ∈ int(S(G,E)), i = 1, . . . , 2n+1,

and a permutation θ of the finite set

(2.11) Ln+1 := {ei(G,E) : (G,E) ∈ A2∗
n+1 for Φ̃n+1, i = 1, . . . , 2n+1}

such that for each fixed (G,E, F ) ∈ A3∗
n+1 for Φ̃n+1, there exists a unique

point ei(G,E), and a unique point ek(E,F ), satisfying

(2.12) θ(ei(G,E)) = ek(E,F ).

The proof of the existence of such a permutation is similar to (but simpler
than) the proof of Lemma 2.13.

Applying Lemma 2.15, construct ψn+1 ∈ Hom(Dm) such that

(2.13)

ψn+1|f(G) : f(G)→ ψ̃n+1(f(G)) = Φ̃n+1(G) ∀G ∈ An+1 for Φ̃n+1,

ψn+1(x) = ψ̃n+1(x) ∀x 6∈
⋃

G∈An+1

f(G),

ψn+1(f(ei(G,E)) = θ(ei(G,E))

∀(E,G) ∈ A2
n+1 such that G

Φ̃n+1−−−→ E, ∀i = 1, . . . , 2n+1,

and extend ψn+1 to the whole box Dm by defining ψn+1(x) = ψ̃n+1(x) for
x ∈ Dm \

⋃
G∈An+1

f(G). In particular,

ψn+1|∂Dm = ψ̃n+1|∂Dm = id|∂Dm .
Define

(2.14) Φn+1 := ψn+1 ◦ f.

As said above, the property that Φn+1 coincides with Φ̃n+1 outside all the
atoms of An+1 for Φ̃n+1 implies that the boxes of the families A0, . . . ,An+1,
which are the family of atoms up to generation n for Φ̃n+1, are also atoms
up to generation n + 1 for Φn+1. But now, due to (2.12)–(2.14), they have
the following additional property: there exists a one-to-one correspondence
between the triples (G,E, F ) ∈ A3∗

n+1 (for Φ̃n+1 and also for Φn+1) and the
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points of the set Ln+1 of (2.11), such that

(2.15) e(G,E, F ) := ei(G,E) ∈ int
(
S(G,E) ∩ Φ−1n+1(S(E,F ))

)
.

Recall that S(G,E) and S(E,F ) are the connected components of E∩Φn(G)
and of F ∩Φn(E) respectively that were chosen after Φ̃n+1 was constructed.

By construction, the finite set Ln+1 satisfies Φn+1(Ln+1)=ψn+1(f(Ln+1))
= θ(Ln+1) = Ln+1. Therefore, (I)–(IV) hold for n + 1 and the inductive
construction is complete.

Step 4: The limit homeomorphisms. From the above construction we
have

ψn+1(x) = ψ̃n+1(x) = ψn(x) if x 6∈
⋃
B,C

ψ−1n (R(B,C)) ⊂
⋃
B

f(B)

and

ψn+1 ◦ ψ−1n (R(B,C)) = ψ̃n+1 ◦ ψ−1n (R(B,C))

= ψn ◦ ψ−1n (R(B,C)) = R(B,C) ⊂ C.
Therefore,

dist(ψ−1n+1(x), ψ
−1
n (x)) ≤ max

B∈An
diam(f(B)) <

1

2n
∀x ∈ Dm,

dist(ψn+1(x), ψn(x)) ≤ max
C∈An

diam(C) <
1

2n
∀x ∈ Dm,

‖ψn+1 − ψn‖Hom <
1

2n
.

From these inequalities we deduce that the sequence ψn is Cauchy in
Hom(Dm). Therefore, it converges to a homeomorphism ψ. Moreover, by
construction, ψn|∂Dm = id|∂Dm for all n ≥ 1. Then ψ|∂Dm = id|∂Dm .

The convergence of ψn to ψ in Hom(Dm) implies that Φn = ψn ◦ f ∈
Emb(Dm) converges to Φ = ψ ◦ f ∈ Emb(Dm) as n → ∞. Since f(Dm) ⊂
int(Dm) and ψ ∈ Hom(Dm), we deduce that Φ(Dm) ⊂ int(Dm). Moreover,
by construction, A0,A1, . . . ,An are families of atoms up to generation n
for Φn, and Φj(x) = Φn(x) for all x ∈ Dm \

⋃
B∈An B and all j ≥ n. Since

limj Φj = Φ, the boxes of the family An are n-atoms for Φ for all n ≥ 0.
From (II) the diameters of the n-atoms converge uniformly to zero as n→∞.
Thus Φ is a model. This completes the proof of Lemma 2.8.

3. Infinite metric entropy and mixing property of the models.
The purpose of this section is to prove the following lemma.

Lemma 3.1. Let H ⊂ C0(Dm) be a family of models with m ≥ 2. For
each Φ ∈ H there exists a Φ-invariant mixing (hence ergodic) measure ν
supported on a Φ-invariant Cantor set Λ ⊂ Dm such that hν(Φ) = +∞.
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Throughout this section we assume m ≥ 2 and we suppose there is a
given Φ ∈ H with a given sequence of families An (n ≥ 0) of atoms of
generations n ≥ 0 for Φ. When we refer to the atoms of generation n, we
omit writing Φ and the families of atoms of previous generations.

Remark 3.2. Lemma 3.1 holds, in particular, for H ∩ Emb(Dm).

To prove Lemma 3.1 we need to define the paths of atoms and to discuss
their properties. We also need to define the invariant Cantor set Λ that
will support the measure ν and prove some of its topological dynamical
properties.

Definition 3.3 (Paths of atoms). Let Φ ∈ H ⊂ C0(Dm), l ≥ 2 and let
(A1, . . . , Al) be an l-tuple of atoms for Φ of the same generation n such that

Ai
Φ−→ Ai+1 ∀i ∈ {1, . . . , l − 1}.

We call (A1, . . . , Al) an l-path of n-atoms from A1 to Al. Let Al∗n denote the
family of all the l-paths of atoms of generation l.

Lemma 3.4. For all n ≥ 1, all l ≥ 2n, and all A1, A2 ∈ An there exists
an l-path of n-atoms from A1 to A2.

Proof. For n = 1, the result is trivial. Let us assume by induction that
the result holds for some n− 1 ≥ 1 and let us prove it for n.

Let E,F ∈ An. From equality (2.2) of Remark 2.4, there exist unique
atoms B−1, B0, B1 ∈ An−1 such that E ∈ Γn(B−1, B0, B1). Then B−1

Φ−→ B0,
E ⊂ B0 and, by Remark 2.4,

(3.1) E
Φ−→ E1 ∀E1 ∈ Ωn(B0, B1).

Analogously, there exist unique atoms B∗, B∗+1 ∈ An−1 such that F ∈
Ωn(B∗, B∗+1). Then B∗

Φ−→ B∗+1, F ⊂ B∗+1 and

(3.2) E∗
Φ−→ F ∀E∗ ∈

⋃
B∗−1∈An−1

B∗−1
Φ−→B∗

Γn(B∗−1, B∗, B∗+1).

Since B1, B∗ ∈ An−1, the induction hypothesis ensures that for all l ≥
2n − 2 there exists an l-path (B1, . . . , Bl) from B1 to Bl = B∗. We write
B∗−1 = Bl−1, B∗ = Bl, B∗+1 = Bl+1. So (3.2) becomes

(3.3) El
Φ−→ F ∀El ∈ Γn(Bl−1, Bl, Bl+1).

Taking into account that Bi−1
Φ−→ Bi for 1 < i ≤ l, and applying

Remark 2.4, we deduce that if Ei−1 ∈ Γn(Bi−2, Bi−1, Bi) ⊂ An, then

(3.4) Ei−1
Φ−→ Ei ∀Ei ∈ Ωn(Bi−1, Bi), ∀1 < i ≤ l.
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Combining (3.1), (3.3) and (3.4) yields an (l + 2)-path (E,E1, . . . , El, F ) of
atoms of generation n from E to F , as required.

Lemma 3.5. Let n, l ≥ 2. For each l-path (B1, . . . , Bl) of (n − 1)-atoms
there exists an l-path (E1, . . . , El) of n-atoms such that Ei ⊂ int(Bi) for all
i = 1, . . . , l.

Proof. In the proof of Lemma 3.4, for each l-path (B1, . . . , Bl) of (n−1)-
atoms we have constructed an l-path (E1, . . . , El) of n-atoms as required.

Definition 3.6 (The Λ-set). Let Φ ∈ H ⊂ C0(Dm) be a model map.
Let A0,A1, . . . be its sequence of families of atoms. The subset

Λ :=
⋂
n≥0

⋃
A∈An

A

of int(Dm) is called the Λ-set of the map Φ.

From Definition 2.3, we know that, for each fixed n ≥ 0, the set Λn :=⋃
A∈An A is nonempty, compact, and int(Λn) ⊃ Λn+1. Therefore, Λ is also

nonempty and compact. Moreover, Λn is composed of a finite number of
connected componentsA ∈ An, which satisfy limn→∞maxA∈An diam(A) = 0
by Definition 2.5. Since Λ :=

⋂
n≥0 Λn, we deduce that the Λ-set is a Cantor

set contained in int(Dm).

Lemma 3.7. Let n, l ≥ 1 and A1, A2 ∈ An. If there exists an (l+1)-path
from A1 to A2, then Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅.

Proof. Assume that there exists an (l+1)-path from A1 to A2. So, from
Lemma 3.5, for all j ≥ n there exist atoms Bj,1, Bj,2 ∈ Aj and an (l+1)-path
from Bj,1 to Bj,2 (with constant length l + 1) such that

Bn,i = Ai, Bj+1,i ⊂ Bj,i ∀j ≥ n, ∀i = 1, 2.

Construct the following two points x1 and x2:

{xi} =
⋂
j≥n0

Bj,i, i = 1, 2.

By Definition 3.6, xi ∈ Ai ∩ Λ. So, to finish the proof it is enough to prove
that Φl(x1) = x2.

Recall that l is fixed. Since Φ is uniformly continuous, for any ε > 0 there
exists δ > 0 such that if (y0, y1, . . . , yl) ∈ (Dm)l satisfies d(Φ(yi), yi+1) < δ
for 0 ≤ i ≤ l − 1, then the points y0 and yl satisfy d(Φl(y0), yl) < ε. We
choose δ small enough that additionally d(Φl(x), Φl(y)) < ε if d(x, y) < δ.

From (2.3), there exists j ≥ n such that diam(Bj,i) < δ. Since there
exists an (l + 1)-path from Bj,1 to Bj,2, there exists a (y0, . . . , yl) as in the
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previous paragraph with y0 ∈ Bj,1 and yl ∈ Bj,2. Thus

d(Φl(x1), x2) ≤ d(Φl(x1), Φl(y0)) + d(Φl(y0), yl) + d(yl, x1)

< diam(Φl(Bj,1)) + ε+ diam(Bj,2) < 3ε.

Since ε > 0 is arbitrary, we obtain Φl(x1) = x2, as required.

Lemma 3.8 (Topological dynamical properties of Λ).

(a) The Λ-set of a model map Φ ∈ H is Φ-invariant, i.e., Φ(Λ) = Λ.
(b) The map Φ restricted to the Λ-set is topologically mixing.
(c) In particular, Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅ for any n ≥ 1, any atoms

A1, A2 ∈ An and l ≥ 2n− 1.

Proof. (a) Let x ∈ Λ and let {An(x)}n≥0 be the unique sequence of atoms
such that x ∈ An(x) andAn(x) ∈ An for all n ≥ 0. Then Φ(x) ∈ Φ(An(x)) for
all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists an atom Bn ∈ An
such that An(x)

Φ−→ Bn. Therefore Φ(An(x)) ∩ Bn 6= ∅. Let d denote the
Hausdorff distance between subsets of Dm. We deduce

d(Φ(x), Bn) ≤ diam(Φ(An(x))) + diam(Bn).

Moreover, equality (2.3) and the continuity of Φ imply

lim
n→+∞

max {diam(Φ(An(x))), diam(Bn)} = 0.

Then for all ε > 0 there exists n0 ≥ 0 such that d(Φ(x), Bn) < ε for some
atom Bn ∈ An for all n ≥ n0. Since any atom of any generation intersects Λ,
we deduce that d(Φ(x), Λ) < ε for all ε > 0. Since Λ is compact, this implies
Φ(x) ∈ Λ. We have proved that Φ(Λ) ⊂ Λ.

Now, let us prove the other inclusion. Let y ∈ Λ and let {Bn(y)}n≥0
be the unique sequence of atoms such that y ∈ Bn(y) and Bn(y) ∈ An for
all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists an atom An ∈ An
such that An

Φ−→ Bn(y). Therefore Φ(An) ∩ Bn(y) 6= ∅. We deduce that, for
all n ≥ 0, there exists a point xn ∈ An ∈ An such that Φ(xn) ∈ Bn(y). Since
any atom An contains points of Λ, we obtain

d(xn, Λ) ≤ diam(An) and d(Φ(xn), y) ≤ diam(Bn(y)) ∀n ≥ 0.

Let x be the limit of a convergent subsequence of {xn}n≥0. Applying (2.3)
and the continuity of Φ, we deduce that d(x,Λ) = 0 and d(Φ(x), y) = 0.
This means that y = Φ(x) and x ∈ Λ. We have proved that y ∈ Φ(Λ) for all
y ∈ Λ; that is, Λ = Φ(Λ), as required.

(c) We will prove a stronger assertion: for any two atoms, even of different
generations, there exists l0 ≥ 1 such that

(3.5) Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅ ∀l ≥ l0.
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It is not restrictive to assume that A1 and A2 are atoms of the same gen-
eration n0 (if not, take n0 equal to the larger generation and substitute
Ai by an atom of generation n0 contained in Ai). By Lemma 3.4, for all
l ≥ 2n0− 1 there exists an (l+1)-path from A1 to A2. So, from Lemma 3.7,
Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅, as required.

(b) The intersection of Λ with the atoms of all the generations generates
its topology, thus (3.5) implies that Λ is topologically mixing.

For fixed (A0, Al) ∈ A2
n we set

Al+1 ∗
n (A0, Al) := {(A0, A1, . . . , Al−1, Al) ∈ Al+1 ∗

n }.

Lemma 3.9. Let l, n ≥ 1. Then:

(a) #Al+1 ∗
n = 2nl ·#An.

(b) #Al+1 ∗
n (A0, Al) = 2nl/#An for all (A0, Al) ∈ A2

n and all l ≥ 2n− 1.

Proof. (a) Each (l + 1)-path (A0, A1, . . . , Al) of n-atoms is determined
by a free choice of the atom A0 ∈ An, followed by the choice of the atoms
Aj ∈ An such that Aj

Φ−→ Aj−1 for all j = 1, . . . , l. From the equalities in (ii)
of Definition 2.3, we know that for any fixed A ∈ An the number of atoms
B ∈ An such that B Φ−→ A is 2n. This implies (a), as required.

(b) We argue by induction on n. Fix n = 1 and l ≥ 1. Since any two
atoms Aj , Aj+1 ∈ A1 satisfy Aj

Φ−→ Aj+1, the number of (l + 1)-paths

(A0, A1, . . . , Aj , Aj+1, . . . Al−1, Al)

of 1-atoms with (A0, Al) fixed equals #(A1)
l−1 = 2l−1 = 2l/2 = 2nl/#An

with n = 1.
Now, let us assume that (b) holds for some n ≥ 1 and let us prove it

for n + 1. Let l ≥ 2(n + 1) − 1 = 2n + 1 ≥ 3 and let (B0, Bl) ∈ A2
n+1.

From equality (2.2) and conditions (a) and (b) of Definition 2.3, there exists
a unique (A−1, A0, A1) ∈ A3∗

n and a unique (Al−1, Al) ∈ A2∗
n such that

B0 ∈ Γn+1(A−1, A0, A1), Bl ∈ Ωn+1(Al−1, Al).

As (A1, Al−1) ∈ A2
n and l − 2 ≥ 2n − 1, the induction hypothesis ensures

that the number of (l − 1)-paths (A1, . . . , Al−1) from A1 to Al−1 is

(3.6) #Al−1 ∗n (A1, Al−1) =
2n(l−2)

#An
=

2n(l−2)

2n2 = 2nl−2n−n
2
.

Let

C(B0, Bl) :=
⋃

(A1,...,Al−1)∈Al−1 ∗
n (A1,Al−1)

{(B0, B1, . . . , Bl) ∈ Al+1
n+1 :

Bj ∈ Γn+1(Aj−1, Aj , Aj+1) ∀j}.
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The families in the union C(B0, Bl) are pairwise disjoint, because for A 6= Ã

in An the families Γn+1(·, A, ·) and Γn+1(·, Ã, ·) are disjoint.
A straightforward verification shows that

(3.7) Al+1 ∗
n+1 (B0, Bl) = C(B0, Bl).

Now, applying (3.6) and (3.7), we obtain

#Al+1 ∗
n+1 (B0, Bl)

=
∑

(A1,...,Al−1)∈Al−1 ∗
n (A1,Al−1)

#{(B0, B1, . . . , Bl) ∈ Al+1
n+1 :

Bj ∈ Γn+1(Aj−1, Aj , Aj+1) ∀j}

=
∑

(A1,...,Al−1)∈Al−1 ∗
n (A1,Al−1)

l−1∏
j=1

#Γn+1(Aj−1, Aj , Aj+1)

= #Al−1 ∗n (A1, Al−1) · 2l−1 = 2nl−2n−n
2+l−1 = 2(n+1)l−(n+1)2 =

2(n+1)l

#An+1
,

as required.

Let ~Aln := (A0, A1, . . . , Al) be an (l+1)-path of n-atoms, and Fn,l( ~Aln) :=
{G ∈ An+l : G ∩ Λ ⊂

⋂l
j=0 Φ

−j(Aj)}.

Lemma 3.10 (Intersection of Λ with l-paths). Fix l, n ≥ 1. Then:

(a) For any G ∈ An+l, there exists a unique (l+ 1)-path (A0, A1, . . . , Al) of
n-atoms such that G ∩ Λ ⊂

⋂l
j=0 Φ

−j(Aj).
(b) For any atoms G ∈ An+l, A ∈ An and j ∈ {0, 1, . . . , l},

(G ∩ Λ) ∩ Φ−j(A) 6= ∅ ⇐⇒ G ∩ Λ ⊂ Φ−j(A).

(c) For any (l + 1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms,

(3.8) Λ ∩
l⋂

j=0

Φ−j(Aj) =
⋃

G∈Fn,l( ~Aln)

G ∩ Λ,

(d) For any atom G ∈ An+l and any path ~Aln ∈ Al+1 ∗
n , we have G ∈ Fn,l( ~Aln)

if and only if there exists (G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l such that G0 = G

and Gj ⊂ Aj for all j = 0, 1, . . . , l.
(e) For any (l + 1)-path (A0, A1, . . . , Al) of n-atoms,

#Fn,l( ~Aln) =
1

2nl
· #An+l

#An
.

Proof. (a) From (2.1) and (2.2), for any atom G of generation n+ l there
exist two unique atoms B,C of generation n+l−1 such that B Φ−→ C, G ⊂ B
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and G Φ−→ E for all E ∈ Ωn+l(B,C). Moreover, from Remark 2.9, we have

(3.9) Φ(G) ∩ F 6= ∅ if and only if F ∈ Ωn+l(B,C).

We claim that

(3.10) Φ(G ∩ Λ) ⊂ int(C).

Since Λ is Φ-invariant, for any x ∈ G ∩Λ, we have Φ(x) ∈ Φ(G) ∩Λ. There-
fore Φ(x) is in the interior of some atom E(x) of generation n + l (see
Definition 3.6). From (3.9), E(x) ∈ Ωn+l(B,C). Thus E(x) ⊂ int(C) and
Φ(x) ∈ int(C) for all x ∈ G ∩ Λ, proving (3.10).

So, there exists C1 ∈ An+l−1 such that Φ(G∩Λ) ⊂ int(C1)∩Λ. Applying
the same assertion to C1 instead of G, we deduce that there exists C2 ∈
An+l−2 such that Φ(C1 ∩ Λ) ⊂ int(C2) ∩ Λ. So, by induction, we construct
atoms C1, . . . , Cl such that

Cj ∈ An+l−j and Φj(G ∩ Λ) ⊂ int(Cj) ∩ Λ, ∀j = 1, . . . , l.

Since any atom of generation larger than n is contained in a unique atom of
generation n, there exist A0, A1, . . . , Al ∈ An such that A0 ⊃ G and Ai ⊃ Ci
for all i = 1, . . . , l. We obtain

Φj(G ∩ Λ) ⊂ int(Aj) ∀j = 0, 1, . . . , l.

Moreover, (A0, A1, . . . , Al) is an (l+1)-path since ∅ 6= Φj(G∩Λ) ⊂ Φ(Aj−1)∩
int(Aj); hence Aj−1

Φ−→ Aj for all j = 1, . . . , l. Then G∩Λ ⊂ Φ−j(Aj) for all
j = 0, 1, . . . , l, proving the existence statement in (a).

To prove uniqueness assume that (A0, A1, . . . , Al) and (A′0, A
′
1, . . . , A

′
l)

are paths of n-atoms such that

G ∩ Λ ⊂ Φ−j(Aj) ∩ Φ−j(A′j) ∀j ∈ {0, 1, . . . , l}.

Then Aj ∩ A′j 6= ∅ for all j ∈ {0, 1, . . . , l}. Since two different atoms of
the same generation are pairwise disjoint, we deduce that Aj = A′j for all
j ∈ {0, 1, . . . , l}, as required.

(b) Trivially, if G ∩ Λ ⊂ Φ−j(A), then (G ∩ Λ) ∩ Φ−j(A) 6= ∅. Now,
let us prove the converse assertion. Fix G ∈ An+l and A ∈ An satisfying
(G ∩ Λ) ∩ Φ−j(A) 6= ∅. Applying part (a) we find Ã ∈ An such that G ∩ Λ
⊂ Φ−j(Ã). Therefore G∩Λ∩Φ−j(A) ⊂ Φ−j(Ã∩A) 6= ∅. Since A and Ã are
atoms of generation n, and two different atoms of the same generation are
disjoint, we conclude that Ã = A, hence G ∩ Λ ⊂ Φ−j(A), as required.

(c) For the (l + 1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms, construct

(3.11) F̃n,l( ~Aln) := {G ∈ An+l : G ∩ Λ ∩ Φ−j(Aj) 6= ∅ ∀j ∈ {0, 1, . . . , l}}.

From the definitions of the families Fn,l and F̃n,l, and taking into account
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that Λ is contained in the union of (n+ l)-atoms, we obtain⋃
G∈Fn,l( ~Aln)

G ∩ Λ ⊂ Λ ∩
l⋂

j=0

Φ−j(Aj) ⊂
⋃

G∈F̃n,l( ~Aln)

G ∩ Λ.

Therefore, to prove (3.8) it is enough to show that

(3.12) F̃n,l( ~Aln) = Fn,l( ~Aln);
but this equality immediately follows from the construction of the families
Fn,l( ~Aln) and F̃n,l( ~Aln) by assertion (b).

(d) For each (l+1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms construct the
family

Gn,l( ~Aln) := {G0 ∈ An+l : ∃(G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l such that Gj⊂Aj ∀j}.

We will first prove that Gn,l( ~Aln) ⊃ Fn,l( ~Aln). In fact, take G ∈ Fn,l( ~Aln),
and any x ∈ G∩Λ. We have Φj(x) ∈ Aj∩Λ for all j ∈ {0, 1, . . . , l} (recall that
Λ is Φ-invariant). Since any point in Λ is contained in the interior of some
atom of any generation, there exists an atom Gj of generation n+ l such that
Φj(x) ∈ int(Gj). Recall that each atom of generation n+ l is contained in a
unique atom of generation n. As Φj(x) ∈ Gj ∩ Aj 6= ∅, and different atoms
of the same generation are disjoint, we conclude that Gj ⊂ Aj . Moreover,
G0 = G because x ∈ G ∩ G0. Finally, (G0, G1, . . . , Gl) is an (l + 1)-path
because Φj+1(x) = Φ(Φj(x)) ∈ Φ(Gj)∩ int(Gj+1) for all j ∈ {0, 1, . . . , l−1};
namely Gj

Φ−→ Gj+1. We have proved that G ∈ Gn,l( ~Aln), as required.
Now, let us prove that Gn,l( ~Aln) ⊂ Fn,l( ~Aln). Assume that G0 ∈ An+l and

(G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l satisfies Gj ⊂ Aj for all j ∈ {0, 1, . . . , l}. Therefore

(G0, G1, . . . , Gj) is a (j + 1)-path of (n + l)-atoms for all j ∈ {1, . . . , l}.
Applying Lemma 3.7, we obtain G0 ∩ Λ ∩ Φ−j(Gj) 6= ∅. Therefore, taking
into account Gj ⊂ Aj , we deduce that

G0 ∩ Λ ∩ Φ−j(Aj) 6= ∅ ∀j ∈ {0, 1, . . . , l}.

Consequently, G0 ∈ F̃n,l( ~Aln) = Fn,l( ~Aln) (recall (3.11) and (3.12)). This
holds for any G0 ∈ Gn,l( ~Aln), thus Gn,l( ~Aln) ⊂ Fn,l( ~Aln), as required.

(e) From assertion (a) we obtain

(3.13) An+l =
⋃

~Aln∈A
l+1 ∗
n

Fn,l( ~Aln),

where the families in the above union are pairwise disjoint, due to the unique-
ness property (a).

Recall the characterization of the family Fn,1( ~Aln) given by assertion (d).
From conditions (a) and (ii) of Definition 2.3, the number of atoms of each
generation larger than n that are contained in each Aj ∈ An, and also
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the number of atoms Gj ∈ An+1 such that Gj
Φ−→ Gj+1, are constants that

depend only on the generations but not on the chosen atom. Therefore, there
exists a constant kn,l such that #Fn,l( ~Aln) = #Gn,l( ~Aln) = kn,l for all the
(l + 1)-paths of n-atoms. So, from (3.13) we obtain

#An+l = #Al+1 ∗
n ·#Fn,l({Aj}),

and applying Lemma 3.9 we conclude that

#An+l = 2nl ·#An ·#Fn,l({Aj}),
as required.

We turn to the proof of Lemma 3.1. We will first construct the measure
ν and then prove that it has the required properties.

We start by defining an additive premeasure on the Λ-set of Φ by

ν∗(A ∩ Λ) := 1

#An
∀A ∈ An, ∀n ≥ 0.

Since ν∗ is a premeasure defined on a family of sets that generates the Borel
σ-algebra of Λ, there exists a unique Borel probability measure ν supported
on Λ such that

(3.14) ν(A ∩ Λ) := 1

#An
∀A ∈ An, ∀ n ≥ 0.

In the following lemmas we will prove that ν is Φ-invariant, mixing, and
that the metric entropy hν(Φ) is infinite. This will yield Lemma 3.1.

Lemma 3.11. ν is invariant by Φ.

Proof. Since the atoms of all generations intersected with Λ generate the
Borel σ-algebra of Λ, it is enough to prove that

(3.15) ν(C ∩ Λ) = ν(Φ−1(C ∩ Λ)) ∀C ∈ An, ∀n ≥ 0.

From (2.2), taking into account that Λ is invariant and that any point in Λ
belongs to an atom of generation n+ 1, we obtain

Φ−1(C ∩ Λ) =
⋃

B∈An
B
Φ−→C

⋃
D∈An
D

Φ−→B

⋃
G∈Γn+1(D,B,C)

(G ∩ Λ),

where both unions are of pairwise disjoint sets. Using the equalities in (ii)
of Definition 2.3, we obtain

ν(Φ−1(C ∩ Λ)) =
∑
B∈An
B
Φ−→C

∑
D∈An
D

Φ−→B

∑
G∈Γn+1(B,C,D)

ν(G ∩ Λ)(3.16)

= NC ·NB ·#Γn+1(B,C,D) · 1

#An+1
,
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where NX := #{Y ∈ An : Y
Φ−→ X} = 2n for all X ∈ An. Since

#Γn+1(B,C,D)) = 2

(see Remark 2.4) and #An+1 = 2(n+1)2 , we conclude

ν(Φ−1(C ∩ Λ)) = 2n · 2n · 2 · 1

2(n+1)2
=

1

2n2 =
1

#An
= ν(C ∩ Λ),

proving (3.15), as required.

Lemma 3.12. ν is mixing.

Proof. The family of atoms of all generations intersected with Λ generates
the Borel σ-algebra of Λ, thus it is enough to prove that for any pair (C0, D0)
of atoms (of equal or different generations) there exists l0 ≥ 1 such that

(3.17) ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀l ≥ l0.
Let us first prove this in the case where C0 and D0 are atoms of the

same generation n. Take l ≥ 2n − 1. Applying Lemma 3.8(c), we have
Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) 6= ∅ for all l ≥ 2n− 1.

Fix l ≥ 2n− 1. We will use the notation
~Aln := (C0, A1, . . . , Al−1, D0) ∈ Al+1 ∗

n (C0, D0)

for any one of the 2nl/#An different (l+1)-paths of n-atoms from C0 to D0

(see Lemma 3.9(b)).
We assert that

(3.18) Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) :=
⋃

~Aln∈A
l+1 ∗
n (C0,D0)

⋃
B∈Fn,l( ~Aln)

(B ∩ Λ) =: T,

where the family Fn,l( ~Aln) of (n+ l)-atoms is defined in Lemma 3.10(c).
First, let us prove Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) ⊂ T . Fix x ∈ (D0 ∩ Λ)

∩ (C0 ∩ Λ). Then C0, D0 are the unique atoms of generation n that con-
tain x and Φl(x) ∈ Φl(Λ) = Λ respectively. Since x ∈ Λ, there exists a
unique atom B of generation n+ l that contains x. By Lemma 3.10(a) there
exists a unique (A0, A1, . . . , Al) ∈ Al+1 ∗

n such that B ∩ Λ ⊂ Φ−j(Aj) for
all j ∈ {0, 1, . . . , l}. Since the n-atom that contains x is C0, and two dif-
ferent n-atoms are disjoint, we deduce that A0 = C0. Analogously, since
the n-atom that contains Φl(x) is D0 and the preimages of two differ-
ent n-atoms are disjoint, we deduce that Al = D0. Thus we have found
~Aln = (C0, A1, . . . , Al−1, D0) and B ∈ Fn,l( ~Aln) such that x ∈ B∩Λ. In other
words, x ∈ T , as required.

Next, let us prove that Φ−l(D0∩Λ)∩(C0∩Λ) ⊃ T . Take B ∈ Fn,l( ~Aln) for
some ~Aln = (C0, A1, . . . , Al−1, D0). From the definition of the family Fn,l( ~Aln)
in Lemma 3.10(c), we have B ∩Λ ⊂ (C0 ∩Λ)∩Φ−l(D0). Moreover, B ∩Λ ∈
Φl(Λ) because Φl(Λ) = Λ. We conclude that B∩Λ ⊂ (C0∩Λ)∩Φ−l(D0∩Λ),
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proving that T ⊂ Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ), as required. This ends the proof
of (3.18).

By definition, n-atoms are pairwise disjoint, thus the sets in the union
forming T are pairwise disjoint. Therefore, from (3.18), and applying Lem-
mas 3.9(b) and 3.10(e), we deduce

ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ)) =
∑

~Aln∈A
l+1 ∗
n (C0,D0)

∑
B∈Fn,l( ~Aln)

ν(B ∩ Λ)

= #Al+1 ∗
n (C0, D0) ·#Fn,l( ~Aln) ·

1

#An+l

=
2nl

#An
· 1

2nl
· #An+l

#An
· 1

#An+l
=

1

#An
· 1

#An
= ν(C0 ∩ Λ) · ν(D0 ∩ Λ).

This ends the proof of (3.17) when C0 and D0 are atoms of the same gener-
ation n, taking l0 = 2n− 1.

Now, let us prove (3.17) when C0 and D0 are atoms of different gener-
ations. Let n equal the maximum of the two generations. Take l ≥ 2n − 1.
Since Λ is contained in the union of the atoms of any generation, we have

C0 ∩ Λ =
⋃

C∈An, C⊂C0

C ∩ Λ,

where the sets in the union are pairwise disjoint. Analogously,

Φ−l(D0 ∩ Λ) =
⋃

D∈An, D⊂D0

Φ−l(D ∩ Λ),

where also the sets in the union are pairwise disjoint. So,

(C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ) =
⋃

C∈An, C⊂C0

⋃
D∈An, C⊂D0

(C ∩ Λ) ∩ Φ−l(D ∩ Λ).

Since the sets in the union are pairwise disjoint, we deduce

ν((C0∩Λ)∩Φ−l(D0∩Λ)) =
∑

C∈An, C⊂C0

∑
D∈An,C⊂D0

ν((C ∩Λ)∩Φ−l(D∩Λ)).

As C,D are atoms of the same generation n, and l ≥ 2n − 1, we can
apply the first case proved above to deduce that

(3.19) ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ))

= #{C ∈ An : C ⊂ C0} ·#{D ∈ An : C ⊂ D0} ·
1

(#An)2
.

The number of atoms of generation n contained in an atom C0 of generation
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n1 ≥ n does not depend on the chosen atom C0. Therefore,

#{C ∈ An : C ⊂ C0} =
#An
#An1

= #An · ν(C0 ∩ Λ).

Analogously

#{D ∈ An : D ⊂ D0} = #An · ν(D0 ∩ Λ).
Finally, substituting this in (3.19) we conclude that

ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀l ≥ 2n− 1.

Lemma 3.13. hν(Φ) = +∞.

Proof. For n ≥ 1 we consider the partition An of Λ consisting of all the
n-atoms intersected with Λ. By the definition of metric entropy,

(3.20) hν(Φ) := sup
P
h(P, ν) ≥ h(An, ν),

where

(3.21) h(An, ν) := lim
l→∞

1

l
H
( l∨
j=0

(Φ−jAn), ν
)

with

(3.22) H(Ql, ν) := −
∑
X∈Ql

ν(X) log ν(X)

and

Ql :=
l∨

j=0

Φ−jAn :=
{ l⋂
j=0

Φ−jAj ∩ Λ 6= ∅ : Aj ∈ An
}
.

For any nonempty X := Λ ∩
⋂l
j=0 Φ

−jAj ∈ Ql, Lemma 3.10(c) yields

ν(X) = ν
( l⋂
j=0

Φ−jAj ∩ Λ
)
=

∑
G∈Fn,l( ~Alj)

ν(G ∩ Λ).

Since G is an atom of generation n+ l, we have ν(G ∩ Λ) = 1/#An+l, thus
applying Lemma 3.10(e) yields

ν(X) =
#Fn,l({Aj})

#An+l
=

1

2nl ·#An
.

Combining this with (3.22) yields H(Ql) = log#An + nl log 2. Finally, sub-
stituting this in (3.21), we obtain

h(An, ν) := lim
l→∞

1

l
H(Ql, ν) = n log 2.

Combining this with (3.20) yields hν(Φ) ≥ n log 2 for all n ≥ 1; hence
hν(Φ) = +∞.



Ergodic measures with infinite entropy 33

4. Periodic shrinking boxes. In this section we will prove Theo-
rems 1.1 and 1.3 for m ≥ 2. The argument is based on the properties of
models proved in the previous sections, and on the existence of periodic
shrinking boxes which we construct here.

Throughout this section we consider m ≥ 1, unless the condition m ≥ 2
is explicitly stated.

Definition 4.1 (Periodic shrinking box). Let f ∈ C0(M) and K ⊂ M
be a box. Then we call K periodic shrinking with period p ≥ 1 for f if
K, f(K), f2(K), . . . , fp−1(K) are pairwise disjoint, and fp(K) ⊂ int(K). In
that case, we call fp|K : K → int(K) the return map.

Recall that the manifold M is compact. This assumption is important to
obtain Lemmas 4.2 and 4.3 below. We will construct periodic shrinking boxes
whose return maps are homeomorphisms onto their images. Although this
last condition is unnecessary for the construction of the periodic shrinking
boxes, it will be used later in the proofs of Lemmas 4.7 and 4.8, where the
return maps must be topologically conjugate to model maps.

Lemma 4.2. For any δ > 0, there exists an open and dense set of maps
f ∈ C0(M) that have a periodic shrinking box Kf with diam(Kf ) < δ. For
a dense set of f ∈ C0(M) the return map to Kf is one-to-one.

The proof of this lemma uses the following technical result.

Lemma 4.3. Let f ∈ C0(M) and x0 ∈ M . For all ε > 0, there exists
g ∈ C0(M) and a neighborhood H of x0 such that ‖g − f‖C0 < ε, g|H is
a homeomorphism onto its image and coincides with f off a neighborhood
of x0.

Proof. Since the assertion is of local character, we may assume M = Rn.
Composing with a translation we may also assume that x0 = f(x0) = 0.
Let 0 < δ < ε be so small that the ball ‖x‖ < δ is mapped under f to a
set of diameter smaller than ε. Let λ : Rn → [0, 1] be a continuous function
such that λ(x) = 0 if ‖x‖ ≤ δ/2 and λ(x) = 1 if ‖x‖ ≥ δ. We define g by
the formula g(x) := λ(x)f(x) + (1 − λ(x))x if ‖x‖ ≤ δ and g(x) = f(x) if
‖x‖ ≥ δ.

Proof of Lemma 4.2. According to Definition 4.1, the periodic shrinking
box Kf for f is also a periodic shrinking box with the same period for all
g ∈ C0(M) close enough to f , proving the openness assertion.

We turn to the denseness assertion. Let f ∈ C0(M) and ε > 0. We will
construct g ∈ C0(M) and a periodic shrinking box Kg for g with diam(K)
< δ such that ‖g − f‖C0 < ε. We suppose δ > 0 to be smaller than the
ε-modulus of continuity of f .
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By the Krylov–Bogolyubov theorem, invariant measures exist (recall that
the manifold M is compact), and thus by the Poincaré Lemma, there exists
a recurrent point x0 ∈ M for f . First assume that x0 6∈ ∂M . So, there
exists a box B ⊂ M with diam(B) < δ such that x0 ∈ int(B). Since x0 is
a recurrent point, there exists a smallest p ∈ N such that fp(x0) ∈ int(B).
Taking B slightly smaller if necessary, we can assume that f j(x0) 6∈ B for
all j = 1, . . . , p − 1. So, there exists a small compact box U ⊂ int(B) as in
Figure 3 such that x0 ∈ int(U), the sets U, f(U), . . . , fp−1(U) are pairwise
disjoint, and fp(U) ⊂ int(B).

Fig. 3. Construction of g near f with a periodic shrinking box K for g

Since U, fp(U) ⊂ int(B), there exists a box K such that U, fp(U) ⊂
int(K) ⊂ K ⊂ int(B), and there exists a homeomorphism ψ : B → B such
that ψ(x) = x for all x ∈ ∂B, and ψ(K) = U .

Finally, we construct g ∈ C0(M) as follows:

g(x) :=

{
f(x) ∀x 6∈ B,
f ◦ ψ(x) ∀x ∈ B.

By construction, K is a periodic shrinking box for g, say K = Kg; by the
choice of δ we have ‖g − f‖ < ε.

Now, let us study the case for which M is a compact manifold with
boundary and all the recurrent points of f belong to ∂M . Choose one such
recurrent point x0 ∈ ∂M . For any δ > 0, there exists a compact box B ⊂M
with diam(B) ≤ δ such that x0 ∈ ∂M ∩B. Since x0 is recurrent, there exists
a smallest natural number p ≥ 1 such that fp(x0) ∈ B. But fp(x0) is also
recurrent. So, fp(x0) ∈ ∂M ∩B. The previous proof does not work as is. To
overcome this problem, we choose a new point x̃0 6= x0, close enough to x0,
such that x̃0 ∈ int(B) \ ∂M and fp(x̃0) ∈ B. By applying Lemma 4.3 and
slightly perturbing f if necessary, we can assume that the restriction of f to
a small neighborhood of x̃0 is a local homeomorphism onto its image. Hence,
fp(x̃0) ∈ int(B) \ ∂M. To conclude, we repeat the construction of g and Kg

above, replacing the recurrent point x0 by x̃0.
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Now, let us show that we can construct, for a dense set of g ∈ C0(M),
a periodic shrinking box Kg such that the return map gp|Kg is a homeo-
morphism onto its image. We repeat the beginning of the proof, up to the
construction of the points x0, f(x0), . . . , fp(x0) such that x0, fp(x0) ∈ int(B)
and f j(x0) 6∈ B. Apply Lemma 4.3, and slightly perturb f if necessary in-
side small open neighborhoods W0,W1, . . . ,Wp−1 of the points x0, f(x0),
. . . , fp−1(x0) respectively, so that f |W i

is a homeomorphism onto its image
for all i = 0, 1, . . . , p− 1. Finally, construct the box U (Figure 3), but small
enough so f j(U) ⊂Wj for all j = 0, 1, . . . , p−1, and repeat the construction
of K = Kg and g as above.

Remark 4.4. Note that to obtain the denseness property in the proof of
the first sentence of Lemma 4.2, we only need to perturb the map f in the
interior of the initial box B with diameter smaller than δ.

The following lemma is the homeomorphism version of Lemma 4.2.

Lemma 4.5. For any δ > 0, there exists an open and dense set of maps
f ∈ Hom(M) that each have a periodic shrinking box K with diam(K) < δ.

Proof. The proof of Lemma 4.2 also works when f ∈ Hom(M): in fact,
the ε-perturbed map g constructed there is a homeomorphism, and to obtain
‖g− f‖Hom(M) < ε it is enough to take δ > 0 smaller than the ε-modulus of
continuity of f and f−1.

Remark 4.6. In the proof of Lemmas 4.2 and 4.5, if the starting recurrent
point x0 were a periodic point of period p, then the periodic shrinking box K
so constructed would contain x0 in its interior and have the same period p.

Lemma 4.7. Assume m ≥ 2. Fix δ > 0 and Φ ∈ H ∩ Emb(Dm) (recall
Definition 2.5). Each generic map f ∈ C0(M) has a periodic shrinking box K
with diam(K) < δ such that the return map fp|K is topologically conjugate
to a model map in HΦ (recall Definition 2.6).

Proof. Let K ⊂ M be a periodic shrinking box for f . Fix a homeomor-
phism φ : K → Dm.

To prove the Gδ-set property, assume that f ∈ C0(M) has a periodic
shrinking box K with diam(K) < δ such that φ ◦ fp|K ◦ φ−1 ∈ HΦ (recall
Definition 2.6 and Lemma 2.7). From Definition 4.1, the same box K is also
periodic shrinking with period p for all g ∈ N , where N ⊂ C0(M) is an open
neighborhood of f . From Lemma 2.7, HΦ is a nonempty Gδ-set in C0(Dm),
i.e., it is the nonempty countable intersection of open familiesHn ⊂ C0(Dm).
We define

Vn := {g ∈ N : φ ◦ gp|K ◦ φ−1 ∈ Hn}.
Since the restriction to K of a continuous map g, and the composition of
continuous maps, are continuous operations in C0(M), we deduce that Vn is
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an open family in C0(M). Moreover,

(4.1) φ ◦ gp|K ◦ φ−1 ∈ H =
⋂
n≥1
Hn if g ∈

⋂
n≥1
Vn ⊂ C0(M).

In other words, the set of maps g ∈ C0(M) that have a periodic shrinking
box K with diam(K) < δ, such that the return map gp|K coincides, up to a
conjugation, with a model map in HΦ, is a Gδ-set in C0(M).

To show the denseness, fix f ∈ C0(M) and ε > 0. Applying Lemma 4.2,
it is not restrictive to assume that f has a periodic shrinking box K with
diam(K) < min {δ, ε} such that fp|K is a homeomorphism onto its image.
We will construct g ∈ C0(M) ε-near f and such that φ ◦ gp|K ◦ φ−1 ∈ H.

Choose a box W such that fp−1(K) ⊂ int(W ). If p ≥ 2, take W disjoint
from f j(K) for all j ∈ {0, 1, . . . , p − 2} (Figure 4). Let us see that we can
assume that W has an arbitrarily small diameter. It is enough to prove that
f can be chosen such that fp−1(K) has an arbitrarily small diameter. In
fact, in the construction of f in the proof of Lemma 4.2, we can choose the
box U (see Figure 3), after choosing K, as small as needed. So, we choose
U small enough such that the (p − 1)th image of U by the map before the
perturbation has a small diameter. (Note that we do not change p.) After
that, we construct the perturbed map, which we call f again, as in the proof
of Lemma 4.2: the image fp−1(K) of the new map f coincides with the
(p − 1)th image of U by the map before the perturbation (Figure 3). So, it
has an arbitrarily small diameter, as required.

Fig. 4. Perturbation g of f such that gp|K = Φ

To construct g ∈ C0(M) (see Figure 4) we consider the Φ ∈ H chosen in
the hypothesis, and let g(x) := f(x) if x 6∈W and

g(x) := φ−1 ◦ Φ ◦ φ ◦ (fp|K)−1 ◦ f(x) ∀x ∈ fp−1(K).

This defines a continuous map g : fp−1(K) ∪ (M \ W ) → M such that
|g(x)− f(x)| < diam(K) < ε for all x ∈ fp−1(K) ⊂ W and g(x) = f(x) for
all x ∈ M \ W. By the Tietze Extension Theorem, there exists a contin-
uous extension of g to the whole compact box W , hence to M , such that
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‖g − f‖C0 < ε. Finally, by construction we obtain

gp|K = g|fp−1(K) ◦ fp−1|K
= φ−1 ◦ Φ ◦ φ ◦ (fp|K)−1 ◦ f ◦ fp−1|K = φ−1 ◦ Φ ◦ φ.

Lemma 4.8. Let δ > 0. Fix Φ ∈ H ∩ Emb(Dm). A generic homeo-
morphism f ∈ Hom(M) has a periodic shrinking box K with diam(K) < δ
such that the return map fp|K is topologically conjugate to a model embedding
in HΦ.

Proof. We repeat the proof of the Gδ-set property of Lemma 4.7, using
H ∩ Emb(Dm) instead of H, and Hom(M) instead of C0(M).

To show the denseness, fix f ∈ Hom(M) and ε > 0. Applying Lemma 4.2,
it is not restrictive to assume that f has periodic shrinking boxes of arbitrar-
ily small diameters. Let δ ∈ (0, ε) be smaller than the ε-moduli of continuity
of f and f−1. Consider a periodic shrinking box K with diam(K) < δ
(Lemma 4.5). Fix a homeomorphism φ : K → Dm. We will construct g ∈
Hom(M) ε-near f in Hom(M) with φ ◦ gp|K ◦ φ−1 = Φ ∈ H ∩ Emb(Dm).

From Definition 4.1 we know that the boxesK, f(K), f2(K), . . . , fp−1(K)
are pairwise disjoint and that fp(K) ⊂ int(K). Denote W := f−1(K). Since
f is a homeomorphism, we deduce that W is a box as in Figure 4 such that
W ∩ f j(K) = ∅ for all j = 0, 1, . . . , p − 2 if p ≥ 2, and fp−1(K) ⊂ int(W ).
Since diam(K) < δ, we have diam(W ) < ε.

Consider φ ◦ fp|K ◦φ−1 ∈ Emb(Dm). By Lemma 2.8, there exists a hom-
eomorphism ψ : Dm → Dm such that

ψ|∂Dm = id|∂Dm , ψ ◦ φ ◦ fp|K ◦ φ−1 = Φ ∈ H ∩ Emb(Dm).

So, we can construct g ∈ Hom(M) such that g(x) := f(x) for all x 6∈ W ,
and g(x) := φ−1 ◦ψ ◦φ◦f(x) for all x ∈W. Since ψ|∂Dm is the identity map,
we obtain g|∂W = f |∂W . Thus, the above equalities define a continuous
map g : M → M . Moreover, g is invertible because g|W : W → K is a
composition of homeomorphisms, and g|M\W = f |M\W : M \W → M \K
is also a homeomorphism. So, g ∈ Hom(M). Moreover, by construction we
have |g(x) − f(x)| < diam(K) < ε for all x ∈ W, and g(x) = f(x) for all
x 6∈W. Also, the inverse maps satisfy |g−1(x)− f−1(x)| < diam(f−1(K)) =
diam(W ) < ε for all x ∈ K, and g−1(x) = f−1(x) for all x 6∈ K. Therefore
‖g − f‖Hom < ε.

Finally, let us check that gp|K is topologically conjugate to Φ:

gp|K = g|fp−1(K) ◦ fp−1|K = g|W ◦ fp−1|K = φ−1 ◦ ψ ◦ φ ◦ f ◦ fp−1|K
= φ−1 ◦ (ψ ◦ φ ◦ fp|K ◦ φ−1) ◦ φ = φ−1 ◦ Φ ◦ φ.

Remark 4.9. In the proof of the denseness property in Lemmas 4.7
and 4.8, once a periodic shrinking boxK is constructed with period p ≥ 1, we
only need to perturb the map f insideW ∪

⋃p−1
j=0 f

j(K), whereW = f−1(K)
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if f is a homeomorphism, and int(W ) ⊃ fp−1(K) otherwise. In both cases,
by reducing the set U of Figure 3 from the very beginning, we can construct
W such that diam(W ) < ε for any given small ε > 0.

Proof of Theorems 1.1 and 1.3. From Lemmas 4.7 and 4.8, a generic map
f ∈ C0(M), and also a generic f ∈ Hom(M), has a periodic shrinking box
K such that the return map fp|K : K → int(K) is conjugate to a model
map Φ ∈ H. We consider the homeomorphism φ−1 : K → Dm such that
φ−1 ◦ fp ◦ φ = Φ ∈ H. Lemma 3.1 states that every map Φ ∈ H has a
Φ-invariant mixing measure ν with infinite metric entropy for Φ. Consider
the push-forward measure φ∗ν, defined by (φ∗ν)(B) := ν(φ−1(B ∩K)) for
all the Borel sets B ⊂ M . By construction, φ∗ν is supported on K ⊂ M .
Since φ is a conjugation between Φ and fp|K , the push-forward measure φ∗ν
is fp-invariant and mixing for fp and moreover hφ∗ν(fp) = +∞.

From φ∗ν, we will construct an f -invariant and f -ergodic measure µ
supported on

⋃p−1
j=0 f

j(K), with infinite metric entropy for f . More precisely,
for each Borel set B ⊂M , define

µ(B) :=
1

p

p−1∑
j=0

(f j)∗(φ∗ν)(B ∩ f j(K)).

By this equality, and the fact that φ∗ν is fp-invariant and fp-mixing, it is
standard to check that µ is f -invariant and f -ergodic. From the convexity
of the metric entropy function, we deduce that

hµ(f
p) =

1

p

p−1∑
j=0

h(fj)∗(φ∗ν)(f
p) = +∞.

Finally, recalling that hµ(fp) ≤ phµ(f) for any f -invariant measure µ and
any natural number p ≥ 1, we conclude that hµ(f) = +∞.

5. Good sequences of periodic shrinking boxes. We now prove
Theorems 1.2 and 1.4. Throughout this section we assume that dim(M) ≥ 2.
When M is a one-dimensional manifold, Theorem 1.2 can be proved by
repeating the proof of the 2-dimensional case after replacing Definition 2.5
by Definition 2.1.

Definition 5.1. Let f ∈ C0(M) and let K1,K2, . . . be a sequence of
periodic shrinking boxes for f . We call {Kn}n≥1 good if it has the following
properties (see Figure 5):

• {Kn}n≥1 is composed of pairwise disjoint boxes.
• There exists a natural number p ≥ 1, independent of n, such that Kn is a

periodic shrinking box for f whose period pn is a multiple of p.
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Fig. 5. Construction of a good sequence of periodic shrinking boxes

• There exists a sequence {Hn}n≥0 of periodic shrinking boxes, all with
period p, such that Kn ∪ Hn ⊂ Hn−1, Kn ∩ Hn = ∅ for all n ≥ 1, and
diam(Hn)→ 0 as n→∞.

Remark. Definition 5.1 implies that
⋂
n≥1Hn = {x0}, where x0 is pe-

riodic with period p. Furthermore, for any j ≥ 0 we have

d(f j(Kn), f
j(x0)) ≤ diam(f j(Hn−1)) ≤ max

0≤k≤p−1
diam(fk(Hn−1))

n→∞−−−→ 0,

and thus

(5.1) lim
n→∞

sup
j≥0

d(f j(Kn), f
j(x0)) = 0.

We will construct a good sequence of periodic shrinking boxes for maps
that are arbitrarily close to a given f . We start by constructing the zeroth
level boxes:

Lemma 5.2. Let f ∈ C0(M) (resp. f ∈ Hom(M)) and ε, δ > 0. Then
there exist g1 ∈ C0(M) (resp. g1 ∈ Hom(M)), periodic shrinking boxes H0

and K1 for g1 with periods p and p1 respectively, where p1 is multiple of p,
and a periodic point x0 ∈ int(H0) for g1 such that K1 ⊂ H0 \ {x0}, and

gp11 |K1 is topologically conjugate to Φ1 ∈ H,
diam(H0) < δ, ‖g1 − f‖ < ε/2.

Proof. A generic map f̃ ∈ C0(M) (resp. f̃ ∈ Hom(M)) has a periodic
shrinking box H0 with period p ≥ 1 such that diam(H0) < δ and f̃p|H0 is
conjugate to a model map Φ ∈ H (Lemma 4.7, resp. 4.8). Fix such an f̃ in
the (ε/6)-neighborhood of f . The same box H0 will be a shrinking periodic
box for the map g1 to be constructed.

Since f̃p : H0 → int(H0) ⊂ H0 is continuous, by the Brouwer Fixed Point
Theorem there exists a periodic point x0 ∈ int(H0) of period p. Lemma 3.1
and the argument at the end of the proof of Theorems 1.1 and 1.3 show
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that the map f̃ has an ergodic measure µ supported on
⋃p−1
j=0 f̃

j(H0) such
that hµ(f̃) = +∞. Therefore, by the Poincaré Recurrence Lemma, there
exists some recurrent point y1 ∈ int(H0) for f̃ . We can choose y1 6= x0
(see Figure 5) because µ is not supported on the orbit of the periodic point
x0 (recall that µ has infinite entropy and by construction its support is a
perfect set).

Choose δ1 > 0 small enough and construct a box B1 such that y1 ∈
int(B1), diam(B1) < δ1, the f̃ -orbit of x0 (which is finite) does not intersect
the finite piece of the f̃ -orbit of B1 (until the first iterate of y1 is in H0) and
B1 ⊂ int(H0).We repeat the proofs of the denseness property of Lemmas 4.2
and 4.5, using the recurrent point y1 instead of x0, and the box B1 instead
of B (see Figure 3). We deduce that there exist an (ε/6)-perturbation f̂ of f̃
and a periodic shrinking box K1 ⊂ B1 for f̂ with some period p1 ≥ p (see
Figure 5). Moreover, f̂ coincides with f̃ in M \ int(B1) (recall Remark 4.4).
Therefore, the same periodic point x0 of f̃ survives for f̂ . Moreover, by the
openness of the existence of the periodic shrinking box H0, the same initial
box H0 is still periodic shrinking with period p for f̂ , provided that f̂ is
close enough to f̃ . So, the compact sets of the family {f̂ j(H0)}j=0,1,...,p−1
are pairwise disjoint, and f̂p(H0) ⊂ int(H0). This implies that the period p1
of the new periodic shrinking box K1 for f̂ is a multiple of p.

Now, we apply the proofs of the denseness property of Lemmas 4.7
and 4.8, using the shrinking box K1 instead of K (see Figure 4). We de-
duce that there exists an (ε/6)-perturbation g1 of f̂ such that K1 is still
a periodic shrinking box for g1 with the same period p1, but moreover the
return map gp11 |K1 is now topologically conjugate to Φ1 ∈ H.

Consider a box W1 satisfying f̂p1−1(K1) ⊂ W1 ⊂ K1, small enough
so its f̂ -orbit is disjoint from the f̂ -orbit of the periodic point x0. Taking
into account Remark 4.9, we can construct g1 to coincide with f̂ in the
complement of W1 ∪

⋃p1−1
j=0 f̂ j(K1). If g1 is sufficiently close to f̂ , the point

x0 is still periodic of period p for g1, and moreover H0 is still a periodic
shrinking box of period p for g1 (recall that such a property is open). Finally,

‖g1 − f‖ < ‖g1 − f̂‖+ ‖f̂ − f̃‖+ ‖f̃ − f‖ <
ε

6
+
ε

6
+
ε

6
=
ε

2
.

Assume that we have constructed the jth level of periodic shrinking boxes
for all 0 ≤ j ≤ n − 1 of a good sequence. We will construct the periodic
shrinking boxes of the nth level by perturbing the given map once more. Let
us first define the following family of maps.

Definition 5.3. Fix δ > 0, and let p, n be natural numbers such that
p, n ≥ 1. We denote by Gp,n,δ ⊂ C0(M) the family of all the maps g ∈ C0(M)
such that there exist n boxes K1, . . . ,Kn satisfying the following properties:
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• {Kj}1≤j≤n is composed of pairwise disjoint boxes.
• For all 1 ≤ j ≤ n the box Kj is periodic shrinking for g with period pj

that is a multiple of p, and
gpj |Kj is topologically conjugate to Φj ∈ H.

• There exists a sequence {Hj}0≤j≤n−1 of periodic shrinking boxes for g, all
of period p, and a periodic point xn−1 ∈ int(Hn−1) of period p such that
Kj ∪Hj ⊂ Hj−1, Kj ∩Hj = ∅ for all 1 ≤ j ≤ n− 1, Kn ⊂ Hn−1 \ {xn−1}
and diam(Hj) < δ/2j for all 0 ≤ j ≤ n− 1 (see Figure 5).

Lemma 5.4. Fix ε, δ > 0 and natural numbers n, p ≥ 1. Assume that gn ∈
Gp,n,δ or gn ∈ Gp,n,δ ∩ Hom(M). Then there exists an (ε/2n+1)-perturbation
gn+1 of gn such that gn+1 ∈ Gp,n+1,δ or gn+1 ∈ Gp,n+1,δ ∩ Hom(M), re-
spectively. Moreover, for all j = 1, . . . , n the same boxes K1, . . . ,Kn and
H0, . . . ,Hn−1 are shrinking periodic for the new map gn+1 and for the given
map gn, with the same periods, and

gin|Kj = gin+1|Kj ∀i = 1, . . . , pj .

Proof. All the perturbations of gn that we will construct are sufficiently
close to gn so that the same boxes H0, . . . ,Hn−1 and K1, . . . ,Kn that are
periodic shrinking for gn are still periodic shrinking with the same periods for
the perturbed maps. This is possible because the periodic shrinking property
of a box and its period are open conditions. Moreover, we will only consider
perturbations of gn that coincide with gn except in the interior of a finite
number of boxes B,W, etc. whose gn-iterates, up to the (max1≤j≤n pj)th
iterate, are disjoint from all the boxes of the family {gin(Kj) : 1 ≤ j ≤ n,
0 ≤ i ≤ pj−1}. Therefore, if such a perturbation g̃ of gn is close enough to gn,
then the iterates by g̃ of the boxes B,W, etc. (where g̃ differs from gn) are
still disjoint from the gn-iterates of Kj . This implies that for all 1 ≤ j ≤ n,

gin|Kj = g̃i|Kj ∀i = 1, . . . , pj

and hence
g̃pj |Kj = g

pj
n |Kj is topologically conjugate to Φj ∈ H.

Now let us perturb gn as above, in several steps, to construct the boxes
Hn and Kn+1.

By hypothesis, gn has a periodic shrinking box Hn−1 of period p, a pe-
riodic point xn−1 ∈ int(Hn−1) of period p, and a periodic shrinking box
Kn ⊂ Hn−1\{xn−1} of period pn, a multiple of p. It also has periodic shrink-
ing boxes K1, . . . ,Kn−1,Kn whose gn-orbits are disjoint from the periodic
orbit of xn+1. So, we can construct a box B̃n ⊂ Hn−1 containing the periodic
point xn−1 in its interior, whose gn-orbit up to the (max1≤j≤n pj)th iterate is
disjoint from all the sets of the family {f i(Kj) : 1 ≤ j ≤ n, 0 ≤ i ≤ pj − 1}.
Moreover, we construct B̃n such that diam(B̃n) < δ̃/2n. Repeating the proof
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of the density properties in Lemmas 4.2 and 4.5 (putting xn−1 instead of x0),
we construct an (ε/(3 ·2n+1))-perturbation g̃n of gn, close enough to gn, and
a periodic shrinking box Hn ⊂ int(B̃n) for g̃n. Moreover, since xn−1 is a
periodic point with period p for gn, the period of Hn for g̃n can be made
equal to p (see Remark 4.6). By construction, Hn ⊂ B̃n ⊂ Hn−1 is disjoint
from Kn. To construct g̃n we only needed to modify gn inside B̃n (recall
Remark 4.4). Therefore, if g̃n is close enough to gn, as observed at the begin-
ning, the same periodic shrinking boxes H0, H1, . . . ,Hn−1 and K1, . . . ,Kn

of gn are preserved for g̃n with the same periods, and g̃n coincides with gn
on the gn-orbits of the boxes K1, . . . ,Kn.

Now, as in the proofs of Lemmas 4.7 and 4.8, we will construct a new
(ε/(3 · 2n+1))-perturbation ĝn of g̃n such that ĝpn|Hn is conjugate to a map
in H. To construct ĝn we only need to modify g̃n in W̃n ∪

⋃p−1
j=0 g̃

j
n(Hn),

where W̃n is a small neighborhood of g̃p−1n (Hn) (see Remark 4.9). Since the
g̃n-orbit of Hn is disjoint from the g̃n-orbits of Kj for all 1 ≤ j ≤ n (because
Hn and Kj are disjoint periodic shrinking boxes for g̃j), we can choose Wn

close enough to g̃p−1n (Hn) and ĝn close enough to g̃n so ĝn coincides with g̃n
on the orbits of the boxes Kj , as observed at the beginning.

We conclude that the same shrinking boxes K1, . . . ,Kn;H0, . . . ,Hn−1 for
g̃n and gn are still periodic shrinking for ĝn, with the same periods, and that
ĝ
pj
n |Kj = g̃

pj
n |Kj , which is conjugate to Φj ∈ H for all j = 1, . . . , n.

When modifying gn to obtain g̃n and ĝn, the periodic point xn−1 ∈
int(Hn−1) of period p for gn may not be preserved as periodic for ĝn. But
since Hn ⊂ Hn−1 \ Kn is a periodic shrinking box with period p for ĝn,
by the Brouwer Fixed Point Theorem, there exists a periodic point xn ∈
int(Hn) \Kn for ĝn, with the same period p.

Since the return map ĝpn|Hn is conjugate to a model map, there exists an
ergodic measure µ with infinite entropy for ĝn (see Lemma 3.1), supported
on the ĝn-orbit of Hn. Therefore, there exists a recurrent point yn ∈ int(Hn).
We can choose yn 6= xn, because µ is not supported on the periodic orbit
of xn (in fact, µ has infinite entropy).

We now argue as in the proof of Lemma 5.2 (using ĝn, Hn and xn in the
role of f̃ , H0 and x0) to construct an ε/(3 · 2n)-perturbation gn+1 of ĝn, and
a box Kn+1 ⊂ Hn \ {xn} that is periodic shrinking for gn+1 of period pn+1

which is a multiple of p, and such that gpn+1

n+1 |Kn+1 is topologically conjugate
to a model map.

As observed at the beginning, if we choose gn+1 close enough to ĝn, the
boxes H0, . . . ,Hn and K1, . . . ,Kn are still periodic shrinking for gn+1 with
the same periods, and

g
pj
n+1|Kj = ĝ

pj
n |Kj = g

pj
n |Kj

is topologically conjugate to a model map for all 1 ≤ j ≤ n.
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By construction we have gn+1 ∈ Gp,n,δ and

‖gn+1 − gn‖ ≤ ‖gn+1 − ĝn‖+ ‖ĝn − g̃n‖+ ‖g̃n − gn‖ < 3 · ε

3 · 2n+1
=

ε

2n+1
,

as required.

Definition 5.5. Fix δ > 0. We denote by Gδ ⊂ C0(M) the family of all
maps g ∈

⋃
p≥1

⋂
n≥1 Gp,n,δ such that, for all n ≥ 1, the boxes H0, . . . ,Hn−1

and K1, . . . ,Kn of Definition 5.3 for g as belonging to Gp,n,δ coincide with
the boxes for g as belonging to Gp,n+1,δ.

Lemma 5.6. Fix δ > 0. The family Gδ is dense in C0(M) and its inter-
section with Hom(M) is dense in Hom(M).

Proof. Let f ∈ C0(M) or f ∈ Hom(M), and ε > 0. We will construct
g ∈ Gδ such that dist(g, f) ≤ ε.

By Lemma 5.2, there exist p≥1 and g1∈Gp,1,δ such that dist(g1, f)≤ε/2.
Denote by H0,K1 ⊂ H0 the periodic shrinking boxes for g1 as a map of Gp,1,δ
(recall Definition 5.3 for n = 1). By continuity, there exists 0 < ε1 < ε such
that for all g in the ε1-neighborhood of g1, H0 is still a periodic shrinking
box of period p for g.

By induction on n ≥ 1 (Lemma 5.4 provides the inductive step), there is
a sequence of maps g1, g2, . . . and a strictly decreasing sequence of positive
real numbers ε > ε1 > ε2 > · · · such that, for all n ≥ 1, gn ∈ Gp,n,δ,
dist(gn+1, gn) ≤ εn/2n, the boxes H0, H1, . . . ,Hn−1 and K1, . . . ,Kn are still
periodic shrinking for gn+1 with the same periods p, p1, . . . , pn as for gn, and
gn+1 = gn when restricted to the gn-orbits of the boxes Kj for j = 1, . . . , n.
Moreover, for all g in the εn-neighborhood of gn, Hn−1 is still a periodic
shrinking box of period p for g.

Since ‖gn+1−gn‖ ≤ ε/2n+1 for all n ≥ 1, the sequence {gn}n≥1 is Cauchy
in C0(M) or Hom(M); let g be the limit map. Since gn is an ε-perturbation
of f for all n ≥ 1, the limit map g satisfies dist(g, f) ≤ ε.

Moreover, by construction, gk(x) = gn(x) for all x ∈
⋃pn
j=0 g

j
n(Kn), for

all k ≥ n ≥ 1. So gpnk |Kn = gpnn |Kn is topologically conjugate to Φn ∈ H
for all n ≥ 1 and all k ≥ n (recall gn ∈ Gp,n,δ and Definition 5.3). Thus
Kn is still a periodic shrinking box for g of period pn, and gpn |Kn = gpnn |Kn
is topologically conjugate to a model map for all n ≥ 1. Finally, for all
k > n ≥ 1 we have, by construction, dist(gk, gn) < εn(1/2

n+1 + 1/2n+2 +
· · ·+ 1/2k) ≤ εn. So, taking the limit as k →∞, we obtain dist(g, gn) ≤ εn.
This implies that Hn−1 is still a periodic shrinking box of period p for g as
it was for gn. We have proved that g ∈ Gδ, as required.

Lemma 5.7. A generic map f ∈ C0(M) for m ≥ 1, and a generic homeo-
morphism f for m ≥ 2, has a good sequence {Kn} of boxes such that the
return map fpn |Kn is topologically conjugate to a model Φn ∈ H.
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Proof. To see the Gδ property assume that f has a good sequence {Kn}n
of periodic shrinking boxes. For each fixed n, the boxes Kn and Hn are also
periodic shrinking with periods pn and p respectively, for all g in an open set
in C0(M) or in Hom(M) (see Definition 4.1). Taking the intersection of such
open sets for all n ≥ 1, we deduce that the same sequence {Kn} is also a
good sequence of periodic shrinking boxes for all g in a Gδ-set. Now, assume
that moreover fpn |Kn is topologically conjugate to a model map for all n ≥ 1.
From Lemmas 4.7 and 4.8, for each fixed n ≥ 1, the family of continuous
maps g such that the return map gpn |Kn is topologically conjugate to a
model, is a Gδ-set in C0(M) or in Hom(M). The (countable) intersection of
these Gδ-sets produces a Gδ-set, as required.

To prove denseness, recall Definitions 5.3 and 5.5. Observe that the family
of continuous maps or homeomorphisms that have a good sequence {Kn}n≥1
of periodic shrinking boxes such that the return map to each Kn is topolog-
ically conjugate to a model map, contains the family Gδ (or the intersection
of this family with Hom(M)) for any value of δ > 0. Applying Lemma 5.6
we see that this last family is dense.

Remark 5.8. As a consequence of Lemmas 5.7 and 3.1 (after applying
the same arguments as at the end of the proof of Theorems 1.1 and 1.3),
generic continuous maps and homeomorphisms f have a sequence of ergodic
measures µn, each supported on the f -orbit of a box Kn of a good sequence
{Kn}n≥1 of periodic shrinking boxes for f , satisfying hµn(f) = +∞ for all
n ≥ 1.

Let M denote the metrizable space of Borel probability measures on a
compact metric space M , endowed with the weak∗ topology. Fix a metric
dist∗ inM.

Lemma 5.9. For all ε > 0 there exists δ > 0 with the following property:
if µ, ν ∈ M and {B1, . . . , Br} is a finite family of pairwise disjoint compact
balls Bi ⊂ M , and if supp(µ) ∪ supp(ν) ⊂

⋃r
i=1Bi, and µ(Bi) = ν(Bi),

diam(Bi) < δ for all i = 1, . . . , r, then dist∗(µ, ν) < ε.

Proof. If M = [0, 1], the proof is in [CT, Lemma 4]. If M is any other
compact manifold of finite dimension m ≥ 1, with or without boundary, just
copy the proof of [CT, Lemma 4], substituting the pairwise disjoint compact
intervals I1, . . . , Ir ⊂ [0, 1] in that proof by the family of pairwise disjoint
compact boxes B1, . . . , Br ⊂M .

Proof of Theorems 1.2 and 1.4. Fix ε > 0, and let δ > 0 be as in
Lemma 5.9. By Lemma 5.7, generic continuous maps or homeomorphisms f
have a good sequence {Kn}n≥1 of periodic shrinking boxes, and a sequence
{µn} of ergodic f -invariant measures such that hµn(f) = +∞ (see Re-
mark 5.8) and supp(µn) ⊂

⋃pn−1
j=0 f j(Kn), where pn = lnp is the period
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of the shrinking box Kn. Taking into account that {f j(Kn)}0≤j≤pn−1 is a
family of pairwise disjoint compact sets, and fpn(Kn) ⊂ int(Kn), we obtain,
for each j ∈ {0, 1, . . . , pn},
µn(f

j(Kn)) = µn(f
−j(f j(Kn))) = µn

(
f−j(f j(Kn)) ∩ supp(µn)

)
= µn(Kn).

Since 1 =
∑pn−1

j=0 µn(f
j(Kn)) = pn · µn(Kn), we get

µn(f
j(Kn)) = µn(Kn) =

1

pn
=

1

ln p
∀j = 0, 1, . . . , pn.

From Definition 5.1, there exists a periodic point x0 of period p such that
limn→∞ supj≥0Hdist(f

j(Kn), f
j(x0)) = 0, where Hdist denotes the Haus-

dorff distance. Therefore, there exists n0≥1 such that d(f j(Kn), f
j(x0))<δ

′

for all j ≥ 0 and all n ≥ n0, where δ′ < δ/2 is chosen such that the balls
B0, B1, . . . , Bp−1 centered at f j(x0) and with radius δ′ are pairwise disjoint.
We obtain f j(Kn) ⊂ Bj (mod p) for all j ≥ 0 and all n ≥ 0. Therefore,

µn(Bj) =
1

p
∀j = 0, 1, . . . , p− 1, ∀n ≥ n0.

Finally, applying Lemma 5.9, we conclude that dist∗(µn, µ0) < ε for all
n ≥ n0, where µ0 := (1/p)

∑p−1
j=0 δfj(p) is the f -invariant probability measure

supported on the periodic orbit of x0, which has zero entropy.

6. Open questions. Lipschitz maps have finite topological entropy and
thus cannot have infinite entropy invariant measures. The following question
arises: do Theorems 1.1 and 1.3 hold also for maps with more regularity than
continuity but lower regularity than Lipschitz? For instance, do they hold
for Hölder-continuous maps?

A priori there is a chance to answer this question positively in situa-
tions where the topological entropy is generically infinite, for example for
one-dimensional Hölder-continuous endomorphisms and also for bi-Hölder
homeomorphisms on manifolds of dimension 2 or larger. In both cases generic
infinite entropy is known [FHT1, FHT2]. This is a good question for further
research.

Theorems 1.1 and 1.3 are proved for compact manifolds; we wonder if
some of the results also hold in other compact metric spaces that are not
manifolds. Do they hold if the space is a Cantor set K?

If the aim were just to construct f ∈ Hom(K) with ergodic measures
with infinite metric entropy, the answer is positive. Theorem 1.3 holds for
the 2-dimensional square D2 := [0, 1]2. One of the steps of the proof consists
in constructing a Cantor set Λ ⊂ D2, and a homeomorphism Φ on M that
leaves Λ invariant, and possesses an Φ-invariant ergodic measure supported
on Λ with infinite metric entropy (see Lemma 3.1 and Remark 3.2). Since
any two Cantor sets K and Λ are homeomorphic, we deduce that any Cantor
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set K supports a homeomorphism f and an f -ergodic measure with infinite
metric entropy.

If the purpose were to prove that such homeomorphisms are generic in
Hom(K), the answer is negative. On the one hand, there also exist homeo-
morphisms on K with finite, and even zero, topological entropy, for example
f ∈ Hom(K) conjugate to the homeomorphism on the attractor of a Smale
horseshoe, or to the attractor of the C1-Denjoy example on the circle. On
the other hand, it is known that each homeomorphism on a Cantor set K
is topologically locally unique, i.e., it is conjugate to any of its small per-
turbations [AGW]. Therefore, the topological entropy is locally constant in
Hom(K). We conclude that the homeomorphisms on the Cantor set K with
infinite metric entropy, which do exist, are not dense in Hom(K); hence they
are not generic.
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