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Abstract

We prove that the (necessarily existing) pseudo-physical or SRB-like measures of
C1 expanding dynamical systems on a compact Riemannian manifold satisfy Pesin’s
entropy formula.
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1 Introduction

We consider the dynamical system by iteration of a map f : M → M of C1 class on a
compact Riemannian manifold M of finite dimension. The search for “natural” invariant
measures that describe the statistical behavior of an observable set of orbits of the system
is a key point in the ergodic theory. Usually, the concept of observability of a set of
orbits is associated to its volume, namely, a set of orbits is observable if it has positive
Lebesgue measure. This is particularly restrictive if the map is not Lebesgue preserving.
The ergodicity of an invariant measure, if the system is not volume preserving, does not
ensure that the measure is “natural”. In fact, an ergodic measure µ describes the statistical
behavior of µ-almost all the orbits, but if µ is mutually singular with the Lebesgue measure,
the set of such orbits may zero volume.

1.1 Physical and pseudo-physical measures.

We denote by M the set of Borel probability measures on M , endowed with the weak∗-
topology (see for instance [34]). The weak∗ topology in M is defined by the following
equality:

lim
n→+∞

∗ µn = µ for µn, µ ∈ M if and only if
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lim
n→+∞

∫
ϕ dµn =

∫
ϕ dµ for all the continuous functions ϕ :M → R.

We denote by Mf ⊂ M the subset of measures µ that are invariant by f , i.e. f ∗µ = µ,
where f ∗ : M → M is the pull-back of f , defined by f ∗µ(B) = µ(f−1(B)) for any Borel-
measurable set B.

In [21] a measure µ ∈ Mf is called natural if it satisfies

µ = lim
n→+∞

∗ 1

n

n−1∑
j=0

(f ∗)jν,

for some (not necessarily invariant) Borel probability measure ν that is absolutely con-
tinuous with respect to the Lebesgue measure. The problem in this definition of natural
measures, is that they do not necessarily exist.

One of the most used concept of relevance of an invariant measure, from the statistical
viewpoint for a positive volume set of orbits, is the property of being “physical”, that we
will define below:

Definition 1.1. (Empiric probabilities and basin of statistical attraction.)

For any initial point x ∈M the empiric probability measure σn(x) ∈ M up to time n of
the orbit of x is

σn(x) :=
1

n

n−1∑
j=0

δfj(x),

where δy denotes the Dirac delta probability measure supported on y. In other words, the
empiric probability is equally supported on the points of the finite piece of orbit from x up
to fn−1(x).

For any point x ∈ M the sequence {σn(x)}n≥1 ⊂ M of empiric probability has conver-
gent subsequences, because M is a compact space with the weak∗-topology. We call the set
of probabilities measures that are the limits∗ of the convergent subsequences of {σn(x)}n≥1,
the p-omega limit of the orbit of x (i.e. the omega limit in the space of probabilities), and
denote it by pω(x). Precisely,

pω(x) = {ν ∈ M : ν = lim∗
j→+∞σnj

(x)

for some convergent subsequence {σnj
(x)}j≥1}.

For any invariant measure µ, the basin B(µ) of statistical attraction of µ is the set

B(µ) := {x ∈M : µ = lim∗
n→+∞σn(x)} = {x ∈M : pω(x) = {µ}}.

Definition 1.2. (Physical measures.) We call an invariant probability measure µ phys-
ical if its basin of statistical attraction has positive Lebesgue measure, i.e.

m(B(µ)) > 0,

where m denotes the Lebesgue measure.
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The physical measures are also called Sinai-Ruelle-Bowen (SRB) measures, due to the
early works in the decade of 1970’s of Ya. Sinai [29], D. Ruelle and R. Bowen [11], [10],
[27], introducing the physical measures for smooth dynamical systems with uniform hyper-
bolicity.

When working in the C1 topology, we prefer to call them physical measures, instead of
SRB-measures, to avoid confusions: In fact, there is abundant literature studying the phys-
ical or SRB-measure for smooth systems or at least C1+α systems with α > 0. With such
regularity, relevant properties appear: the conditional measures of the physical probabili-
ties along the unstable submanifolds are absolutely continuous with respect to the Lebesgue
measures of these submanifolds [24] [19]. In the literature, these properties are required or
proved, before calling the invariant measures SRB [35]. But in our context, where regular-
ity is only C1 (but not necessarily C1+α), the existence of unstable submanifolds fails [25].
Besides, also in the particular cases for which the unstable manifolds exist, the properties
of absolute continuity do not hold [7].

One of the most relevant problems in the ergodic theory, is to prove the existence of
physical measures, since a priori the sequence of empiric probabilities may be non convergent
for a set of orbits with positive volume. The existence of physical measures, is mainly
obtained in a scenario of some kind of uniform or non-uniform hyperbolicity or, at least,
domination of the expanding directions. The existence of physical measures was proved for
C1-generic expanding map of the circle in [12], for C1 generic diffeomorphisms having an
hyperbolic attractor in [26], and for C1+α diffeomorphisms with dominated splitting in [6].
More recently, a characterization in the C1+α scenario of the existence of SRB measures on
surfaces was given in [16].

Besides the existence, the problem of uniqueness or, at least finitude, of the physical
measures is the object of research mainly for partially hyperbolic systems. In [22] it is
proved the existence and uniqueness of SRB measures for certain class of C2 partially
hyperbolic systems. In [2] the authors prove the existence of at most a finite number of
SRB-measures for a class of C1+α partially hyperbolic dynamical systems.

As said above, the existence of physical or SRB measures was mainly proved for systems
that are C1+α regular (and with some kind of hyperbolicity or expanding properties), except
some few articles that explore their existence in the C1 topology. In an intermediate
situation, in [9] the author finds SRB measures for hyperbolic systems that are more regular
than C1 but with weaker regularity than C1+α.

To overcome the problem of nonexistence of physical measures, a generalization of such
measures, was introduced in [14]: the concept of pseudo-physical or SRB-like measure,
which we define in the following paragraphs.

Recall Definition 1.1 of the pω-limit set of an orbit in the space of probabilities and of
basin of statistical attraction of an invariant measure.

Definition 1.3. (Epsilon-weak basin of statistical attraction.) Choose a distance
dist∗ in M that endows the weak∗ topology.

For any f -invariant probability measure µ, and for ϵ > 0, we call the following set
Bϵ(µ) ⊂M the ϵ-weak basin of statistical attraction of µ:

Bϵ(µ) := {x ∈M : dist∗(pω(x), µ) < ϵ}.
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We note that the basin of statistical attraction defined in 1.1, may not coincide with
the zero-weak basin of statistical attraction. In fact, the weak∗-distance between pω(x)
and µ may be zero, but the sequence of empiric probabilities may not converge, and have
convergent subsequences whose limits are different from µ.

Definition 1.4. (Pseudo-physical measures.)

We call an invariant probability measure µ pseudo-physical or SRB-like, if its ϵ-weak
basin of statistical attraction has positive Lebesgue measure for all ϵ > 0. In brief

m(Bϵ(µ)) > 0 for all ϵ > 0.

The following properties were proved in [14]:

The pseudo-physical measures do always exist for any continuous f , and do not depend
of the chosen dist∗ in the space of probability measures (provided it endows the weak∗-
topology). Besides for Lebesgue-almost all the orbits, any convergent subsequence of em-
piric probabilities converges to a pseudo-physical measure. In other words, the set of all
the pseudo-physical measures completely describes the observable statistical behavior of
the system if the criteria of observability is that of the orbits with positive volume. Any
physical measure is pseudo-physical, so pseudo-physicality is a generalization of physicality.
If the set of all the pseudo-physical measures is finite, then all the pseudo-physical measures
are physical.

1.2 Equilibrium states and Pesin’s entropy formula.

Other important definition in the study of statistical properties of a dynamical system,
coming from the statistical mechanics, is the concept of equilibrium states of a variational
principle (see for instance [10], [18]), and in particular the set of measures that satisfy
Pesin’s entropy formula. We will state the definitions of those concepts in the following
paragraphs.

To define the equilibrium states we will use the metric entropy of the map f with respect
to an f -invariant probability measure µ. For a definition of the metric entropy, see Section
3 of this article. For a more detailed exposition of the properties of the entropy see also for
instance the book [34].

Definition 1.5. (Equilibrium States.)

Let ψ :M 7→ R be a continuous function called potential. .

We call the following supremum P (f, ψ) the pressure of f with respect to the potential
ψ:

P (f, ψ) := sup
ν∈Mf

{
hν(f) +

∫
ψ dν

}
,

where hν(f) is the metric entropy of f with respect to the f -invariant measure ν.

An f -invariant measure µ is an equilibrium state of f with respect to the potential ψ if

hµ(f) +

∫
ψ dµ = P (f, ψ).
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In the decade of 1970’, Sinai, Ruelle and Bowen proved important relations between
the equilibrium states and the physical measures for smooth hyperbolic systems [29], [11],
[10], [27]. More recently, [1] proves the existence of equilibrium states for certain type of
partially hyperbolic endomorphisms of C1 class, and for certain type of potentials. In [17],
the existence and uniqueness of equilibrium states are proved for non-uniformly expanding
skew products and for Hölder continuous potentials. Also the uniqueness of equilibrium
states, besides their existence, is proved in [23] for a class of flows satisfying a version of
the specification property among other conditions. In [4] the existence of finitely meany
ergodic equilibrium states for a type of non-uniformly expanding maps, with respect to
Hölder continuous potentials.

The equilibrium states are mainly applied when the potential is related with the posi-
tive Liapunov exponents which translate to the tangent space the chaotic behavior of the
dynamics by iterations of f .

Oseledet’s Theorem (see for instance [8]) states that for any f -invariant measure µ, at
almost all the points x with respect to µ there exists a splitting of the tangent space

TxM = ⊕k(x)
i=1 E

i
x

into Df -invariant measurable subspaces Ei
x along which the Liapunov exponents exist ac-

cording with the following definition:

Definition 1.6. (Liapunov exponents.) The Liapunov exponent χi(x) of f at the point
x ∈M along the measurable Df -invariant tangent subspace Ei

x is:

χi(x) := lim
n→±∞

∥Dfn
x v∥
n

for all 0 ̸= v ∈ Ei
x.

The Liapunov exponents are the exponential rate of increasing (if positive) or decreasing
(if negative) of the vectors of the tangent space, when iterating Df : TM 7→ TM .

We denote by
m(x)∑
i=1

χ+
i (x)

the sum of the Liapunov exponents that are strictly larger than zero at the point x, counting
each one as many times as its multiplicity. If all the Liapunov exponents are smaller or
equal than zero, that sum is null. The following Theorem is due to Margulis [20] and Ruelle
[28], and states an upper bound for the metric entropy, related with the positive Liapunov
exponents:

Theorem 1.7. (Margulis-Ruelle inequality)

For any f -invariant measure µ,

hµ(f) ≤
∫ m(x)∑

i=1

χ+
i (x) dµ

For a proof, see for instance [34].
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Definition 1.8. (Pesin’s entropy formula) An f -invariant measure µ satisfies Pesin’s
entropy formula if

hµ(f) =

∫ m(x)∑
i=1

χ+
i (x) dµ

Measures satisfying Pesin’s entropy formula may not exist. But if someone exists, its
metric entropy is the maximum possible with respect to the chaotic behavior of f that is
expressed by the positive Liapunov exponents.

When the system has a continuous Df -invariant unstable sub-bundle U ⊂ TM , the
integral of the sum of the positive Liapunov exponents equal the integral of

ϕ := log | detDf |U |.

If this latter function is continuous, its opposite ψ = −ϕ can be used as the potential to
study the equilibrium states. In this case the pressure P (f, ψ) ≤ 0, due to Margulis-Ruelle
inequality. So the measures satisfying Pesin’s entropy formula, if someone exists, are the
equilibrium states of f with respect to the potential ψ, and the pressure is zero.

Ya. B. Pesin [24] early initiated the so called Pesin’s Theory, proving important relations
between the Liapunov exponents and the existence of measures satisfying Pesin’s entropy
formula for some smooth systems, is a scenario for which there exists invariant measures
that have properties of absolute continuity with respect to the Lebesgue measure along the
unstable submanifolds.

Later, Ledrappier and Young [19] proved that the condition of absolute continuity used
in Pesin’s Theory is indeed a characterization of the measures (if they exist) that satisfy
Pesin’s entropy formula, provided the system is of C1+α (α > 0) class. This characterization
is relevant: it is the key point in the later research proving the existence of measures satisfy-
ing Pesin’s entropy formula. For instance in [6] the existence of a SRB measure that satisfies
Pesin’s entropy formula is proved for C1+α diffeomorphisms with dominated splitting. In [3]
it is proved the existence and uniqueness of SRB measure satisfying Pesin’ entropy formula
for Gibbs-Markov induced maps, that translate to a piecewise C1+α dynamics.

The characterization of Ledrappier and Young of measures satisfying Pesin’s entropy
formula via the properties of absolute continuity with respect to the Lebesgue measure
along the unstable submanifolds, do not hold for C1 systems if they are not C1+α. In
fact, generic C1 systems do not have measures with that property of absolute continuity
[25], [7]. Nevertheless, under some kind of hyperbolicity, C1 systems still have measures
satisfying Pesin’s entropy formula: In [31], A. Tahzibi proved that generic C1 systems of
dimension two have an invariant measure satisfying Pesin’s entropy formula. Later, in [30],
Sun and Tian extended Tahzibi’s result to C1- generic volume-preserving diffeomorphisms
in any dimension with a dominated splitting. In [13] it is proved that the necessarily
existing pseudo-physical measures satisfy Pesin’s entropy formula for all the C1 systems
with dominated splitting in any dimension. In [15] it was proved the same result but for
C1 expanding maps in dimension one. And in [5] it is proved the result for C1 nonuniform
expanding maps in any dimension.
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1.3 Statement of the result for expanding maps.

Definition 1.9. (Expanding maps.)

The C1 map f :M →M is (uniformly) expanding if there exists a constant λ > 1 such
that

∥Dfx(v)∥ ≥ λ∥v∥ ∀ (x, v) ∈ TM.

Recall Definition 1.6 of the Liapunov exponents. Since for an expanding map, the norm
of all the vectors in the tangent space grow more than λ > 1 at each iterate, the exponential
rate of growing for the vectors of any direction, is larger than log λ > 0. So all the Liapunov
exponents are positive.

Theorem 1.10. (Liouville formula) For any C1 map f and for any f -invariant measure
µ ∫ k(x)∑

i=1

χi(x) dµ =

∫
log | det(Df)| dµ,

where
∑k(x)

i=1 χi(x) is the sum of all the Liapunov exponents at the point x, counting each
one as many times as its multiplicity.

For a proof of Liouville formula, see for instance [32].

Corollary 1.11. If the C1 map f is expanding then, for any f -invariant measure µ

∫ m(x)∑
i=1

χ+
i (x) dµ =

∫
log | det(Df)| dµ,

where
∑m(x)

i=1 χ+
i (x) is the sum of all the positive Liapounov exponents at the point x, count-

ing each one as many times as its multiplicity.

Proof. Since the map is expanding, all the Liapunov exponents are positive. Therefore,
this corollary is a restatement of Liouville formula.

Proposition 1.12. For a C1 expanding map f , an invariant probability measure µ satisfies
Pesin’s entropy formula if and only if it is an equilibrium state for the potential ψ =
− log | det(Df)| and the pressure P (f, ψ) = 0.

Proof. Due to Theorem 1.7 and Corollary 1.11, we have

P (f, ψ) = sup
µ∈Mf

(hµ(f) +

∫
ψ dµ) =

= sup
µ∈Mf

(hµ(f)−
∫

log | det(Df)| dµ) ≤ 0.

So the pressure P (f, ψ) is not positive.
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Now, recalling Definition 1.8 of Pesin’s entropy formula, and using again Corollary 1.11,
an f -invariant measure µ satisfies Pesin’s formula if and only if

0 = hµ(f)−
∫

log | det(Df)| dµ = hµ(f) +

∫
ψ dµ = sup

µ∈Mf

(hµ(f) +

∫
ψ dµ).

The main result to be proved along this paper is the following:

Theorem 1. Let f :M 7→M be an expanding C1 map on a compact Riemannian manifold
M of finite dimension.

Then, any (necessarily existing) pseudo-physical measure µ for f satisfies Pesin’s en-
tropy formula. Namely,

hµ(f) =

∫ m(x)∑
i=1

χ+
i (x) dµ =

∫
log | det(Df)| dµ.

Equivalently, µ is an equilibrium state for the potential

ψ = − log | det(Df)|,

and the pressure P (f, ψ) = 0.

Theorem 1 is a generalization to any finite dimension of the result previously proved in
[15] in dimension one. The proof of Theorem 1, which we will expose along this paper, was
presented by F. Valenzuela is his unpublished thesis in 2017 [33]. In 2019, and previously
in 2017 as a preprint, Araujo and Santos [5] proved a more general result that holds not
only for C1 (uniformly) expanding maps of Theorem 1 (according to Definition 1.9), but
also for maps that are non-uniformly topologically expanding.

2 Expanding maps are expansive.

To prove Theorem 1 we need an important topological property defined for continuous
maps, called expansiveness. We need to show that, in particular, the C1 expanding maps,
accoding to Definition 1.9, are expansive.

Definition 2.1. (Expansive maps.)

A continuous map f : M 7→ M is expansive in the future , if there exists a constant
α > 0, called the expansivity constant, such that if x, y ∈M satisfy

dist(fn(x), fn(y)) ≤ α ∀ n ≥ 0,

then x = y.

The expansiveness is understood as the sensitivity to the initial condition. In fact, the
two orbits with two different initial states, even if these initial states are arbitrarily near,
they separate more than α for some iterate in the future.
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Proposition 2.2. If the C1 map f : M 7→ M on the compact Riemannian manifold M is
expanding, then it is expansive in the future.

Proof. Let x ∈M , and δ > 0. Denote by Bδ(0) ⊂ TxM the open ball in the tangent space
at x, centered at 0 with radius δ, i.e. the set of vectors in TxM with norm smaller than
δ. Choose δ small enough such that the exponential map expx : Bδ(0) ⊂ TxM → M is a
diffeomorphism onto its image. Explicitly, for any y ∈ M such that dist(x, y) < δ, there
exists a unique vector v = exp−1

x (y) ∈ TxM , and this vector satisfies ∥v∥ = dist(x, y) < δ1.
Since M is compact, we can choose a uniform δ > 0, namely δ does not depends on x.

In the sequel we will denote y − x to refer to the vector v = exp−1
x (y) ∈ Bδ(0) ⊂ TxM .

Since f is of C1 class
∥f(y)− f(x)∥ = ∥Dfz(y − x)∥,

for some point z in the (convex) ball centered at x of radius δ.

Then
∥f(y)− f(x)∥ ≥ λ∥y − x∥,

where λ > 1 is the constant in Definition 2.1 of the expanding map f .

It is enough to prove that δ > 0 is a constant of expansivity for f , as in Definition 2.1.
Assume that

dist(f j(x), f j(y)) = ∥f j(y)− f j(x)∥ ≤ δ ∀ j ≥ 0.

Then
∥f j+1(y)− f j+1(x)∥ ≥ λ∥f j(y)− f j(x)∥ ∀ j ≥ 0,

and therefore

δ ≥ dist(fn(x), fn(y)) = ∥fn(y)− fn(x)∥ ≥ λn∥y − x∥ ∀ n ≥ 0.

Since λn → +∞ with n, while λn∥y − x∥ ≤ α for all n ≥ 0, we deduce that x = y.

3 The metric entropy.

In this section we review the definition of metric entropy of f with respect to an invariant
measure µ and state some of its properties that we will use in the proof of Theorem 1.

A finite measurable partition P is a finite family of measurable sets P ⊂ M that are
pairwise disjoint and whose union is M . The sets P ∈ P are the pieces of P . We agree to
simply name partition to refer to a finite measurable partition.

The boundary ∂P of a partition is the union of the topological boundaries of its pieces.
Namely,

∂P :=
⋃

{∂P : P ∈ P}.

The diameter diam(P) of a partition is the maximum diameter of its pieces. Namely,

diam(P) = max
P∈P

diam(P ).
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The product P ∨ Q of two partitions is the new partition whose pieces are P
⋂
Q, where

P ∈ P and Q ∈ Q.

More generally, for each natural number N ≥ 1, if {Pi}1≤i≤N is a collection of N
partitions Pi, we define their product as follows:

N∨
i=1

Pi =

{
N⋂
i=1

Pi : Pi ∈ Pi ∀ 1 ≤ i ≤ N

}
.

Definition 3.1. The entropy H(P , µ) of the partition P with respect to a probability
measure µ is

H(P , µ) := −
∑
P∈P

µ(P ) log µ(P ),

where we agree to take 0 · log 0 = 0.

Now, let us introduce the dynamics of f : M 7→ M to the study of the entropy of the
partitions with respect to a probability measure.

For any partition P , we consider the following product partition:

Pn
f :=

n−1∨
i=0

f−iP = P ∨ f−1P ∨ . . . ∨ f−(n−1)P , (1)

where f−iP := {f−i(P ) : P ∈ P}.

Proposition 3.2. If µ is f -invariant, then the following limit exists and satisfies the equal-
ity and inequality at right:

lim
n→∞

H(Pn
f , µ)

n
= inf

n≥1

H(Pn
f , µ)

n
≤ H(P , µ).

Proof. See for instance [34], Lemma 9.1.12.

Definition 3.3. Let P be a partition, and µ be an f -invariant measure, We call the
following expression hµ(f,P) the entropy of f with respect to the partition P and to the
measure µ:

hµ(f,P) := lim
n→∞

H(Pn
f , µ)

n
= inf

n≥1

H(Pn
f , µ)

n
.

Definition 3.4. (The metric entropy.)

Let µ be an f -invariant probability measure. We call the following expression hµ(f) the
metric entropy of f with respect to the measure µ:

hµ(f) := sup {h(f,P) : P finite measurable partition}.
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3.1 Properties of the entropy of partitions.

In this subsection we state some properties of the entropy of partitions that will be used in
the proof of Theorem 1. For more properties of the entropy, see for instance the books [18]
and [34].

Proposition 3.5. For any (finite measurable) partition P and any probability measure µ

H(P , µ) ≤ log p,

where p is the number of pieces of P.

Proof. See for instance [34], Lemma 9.1.3.

Proposition 3.6. . Let P , Q be two partitions and µ any probability measure. Then,

H(P , µ) ≤ H(P ∨Q, µ) ≤ H(P , µ) +H(Q, µ).

Proof. See for instance [34], Section 9.1.

Proposition 3.7. For any partition P and any (not necessarily f -invariant) probability
measure µ:

H(Pn
f , µ) ≤

n−1∑
i=0

H(f−iP , µ) =
n−1∑
i=0

H(P , f ∗iµ).

Proof. Applying Equality (1) and Proposition 3.6 we have

H(Pn
f , µ) = H

(
n−1∨
i=0

f−iP , µ

)
≤

n−1∑
i=0

H(f−iP , µ). (2)

Besides, from Definition 3.1:

H(f−iP , µ) = −
∑
P∈P

µ(f−iP ) log µ(f−iP ),

and from the definition of the pull-back f ∗, we have µ(f−iP ) = f ∗iµ(P ). So,

H(f−iP , µ) = H(P , f ∗iµ).

Finally, substituting this last equality in (2), we deduce

H(Pn
f , µ) ≤

n−1∑
i=0

H(f−iP , µ) =
n−1∑
i=0

H(P , f ∗iµ),

as wanted.

Proposition 3.8. For any partition P and any (not necessarily f -invariant) probability
measure µ,

H(Pn
f , µ)

n
≤ 1

n

n−1∑
i=0

H(P , f ∗iµ) ≤ H

(
P , 1

n

n−1∑
n=0

f ∗iµ

)
.
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Proof. Consider the following continuous real function ϕ : [0, 1]R:

ϕ(u) = −u log u if u ∈ (0, 1], ϕ(0) = 0.

It is easy to check that ϕ is C∞ in (0, 1), and that ϕ′′(u) < 0 for all u ∈ (0, 1). Therefore,
the graph of ϕ is above the secant line. Thus, the value of ϕ at the convex combination of n
values u0, . . . , un−1 ∈ [0, 1] (which is the ordinate of a point in the graph of ϕ), is larger or
equal than the convex combination of ϕ(u0), . . . , ϕ(un−1) (which is the ordinate of a point
in the secant line). Precisely, if 0 < λi < 1 for all 0 ≤ i ≤ n− 1 and

∑n−1
i=0 λi = 1, then

ϕ

(
n−1∑
i=0

λiui

)
≥

n−1∑
i=0

λiϕ(ui).

Therefore

H

(
P , 1

n

n−1∑
n=0

f ∗iµ

)
=
∑
P∈P

ϕ

(
1

n

n−1∑
i=0

f ∗iµ(P )

)
≥

∑
P∈P

1

n

n−1∑
i=0

ϕ(f ∗iµ(P )) =

1

n

n−1∑
i=0

∑
P∈P

ϕ(f ∗iµ(P )) =
1

n

n−1∑
i=0

H(P , f ∗iµ).

Finally, using Proposition 3.7 the last expression is greater or equal than (1/n)H(Pn
f , µ),

as wanted.

Proposition 3.9. Let P be a (finite measurable) partition and µ a probability measure such
that

µ(∂P ) = 0.

If {µn}n≥0 is a sequence of probabilities measures such that

lim∗
n→+∞ µn = µ,

then
lim

n→+∞
H(P , µn) = H(P , µ).

In other words, this proposition states the continuity at µ of the entropy of a partition
P as a function of the measure µ, if the boundary of the partition has zero µ-measure.

To prove Proposition 3.9, we will use the following lemma:

Lemma 3.10. Let µn, µ be probability measures such that

lim∗
n→+∞ µn = µ

(1) If K ⊂M is compact, then lim supn→+∞ µn(K) ≤ µ(K).

(2) If V ⊂M is open, then lim infn→+∞ µn(V ) ≥ µ(V ).

(3) If A is a Borel set such that µ(∂A) = 0, then

lim
n→+∞

µn(A) = µ(A).

12



Proof. (1) Let ϵ > 0 and V ⊂ M such that K ⊂ V and µ(V \K) < ϵ. Let ϕ : M 7→ [0, 1]
be a continuous function such that ϕ|K = 1 and ϕ|M\V = 0. Then

µn(K) ≤
∫
ϕdµn ∀ n ≥ 1.

From the continuity of ϕ, and the convergence in the weak∗ topology of µn to µ, we obtain∫
ϕdµn →

∫
ϕdµ =

∫
ϕ ̸=0

ϕ dµ ≤
∫
V

ϕ dµ ≤
∫
V

1 dµ =

= µ(V ) = µ(K) + µ(V \K) < µ(K) + ϵ.

Luego

µn(K) ≤
∫
ϕ dµn < µ(K) + ϵ ∀ n ≥ 1.

Now, taking lim sup we obtain

lim sup
n→+∞

µn(K) ≤ µ(K) + ϵ.

Since the above inequality holds for all ϵ > 0, we conclude

lim sup
n→+∞

µn(K) ≤ µ(K),

as wanted.

(2) Let K =M \ V . We have

µn(V ) = 1− µn(K) ∀ n ≥ 1.

Taking lim inf, we obtain

lim inf
n→+∞

µn(V ) = 1− lim sup
n→+∞

µn(K).

Since K is a closed set in the compact metric space M , it is compact. Applying property
(1), we conclude

lim inf
n→+∞

µn(V ) = 1− lim supµn(K) ≥ 1− µ(K) = µ(V ),

as wanted.

(3) We consider the interior int(A) of A and its closure A. Each one of these sets differs
from A i the boundary of A, which has zero µ-measure. Thus

µ(int(A)) = µ(A) = µ(A).

For µn we have
µn(int(A)) ≤ µn(A) ≤ µn(A).

Applying properties (1) and (2), we obtain

µ(int(A)) ≤ lim inf
n→+∞

µn(int(A)) ≤ lim inf
n→+∞

µn(A) ≤ lim sup
n→+∞

µn(A)

13



≤ lim sup
n→+∞

µn(A) ≤ µ(A).

Since µ(int(A)) = µ(A) = µ(A), the last chain of inequalities is a chain of equalities.
Therefore, lim sup and lim inf of µn(A) coincide and are equal to µ(A). We conclude

lim
n→+∞

µn(A) = µ(A),

as wanted.

Proof. of Proposition 3.9:

Consider the following continuous real function ϕ : [0, 1] 7→ R:

ϕ(u) = −u log u if 0 < u ≤ 1, ϕ(0) = 0.

From Definition 3.1 we have

H(P , µ) =
∑
P∈P

ϕ(µ(P )), H(P , µn) =
∑
P∈P

ϕ(µn(P ))

Since µ(∂P) = 0 we can apply part (3) of Lemma 3.10 to each piece P ∈ P . Using also
the continuity of the function ϕ, we obtain

lim
n→+∞

ϕ(µn(P )) = ϕ(µ(P )) ∀ P ∈ P .

Finally we sum the above equality for all the finite number of pieces P of the partition
P , concluding that

lim
n→+∞

H(P , µn) = lim
n→+∞

∑
P∈P

ϕ(µn(P )) =
∑
P∈P

lim
n→+∞

ϕ(µn(P )) =

=
∑
P∈P

ϕ(µ(P )) = H(P , µ),

as wanted.

3.2 The metric entropy for expansive maps.

For expansive maps, Kolmogorov-Sinai Theorem (Theorem 3.12 and Corollary 3.13 in this
section) states there exists partitions that reach the supremum in Definition 3.4. In other
words, the metric entropy of f may be computed as the entropy of f with respect to a
concrete partition.

Definition 3.11. A partition P of M , is a generator (in the future) for f :M →M if the

σ-algebra generated by

{
k∨

j=0

f−jP

}
k≥0

is the Borel σ-algebra.

Recall Definitions 3.3 and 3.4 of hµ(f,P) and hµ(f).
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Theorem 3.12. (Kolmogorov-Sinai)

If the (finite measurable) partition P of M is a generator for f :M →M , then for any
f -invariant probability measure µ:

hµ(f) = hµ(f,P).

Proof. See for instance [18], Theorem 3.2.18.

Recall Definition 2.1 of expansiveness in the future of a map.

Corollary 3.13. If f :M 7→M is expansive in the future with expansivity constant α, and
P is a partition with diam(P) < α then for any f -invariant probability measure µ:

hµ(f) = h(f,P) = lim
n→+∞

H(Pn
f , µ)

n
.

Proof. Applying Theorem 3.12 it is enough to prove that P is a generator for f .

Let k ≥ 0 and for each point x ∈M consider the piece Ak(x) of the partition
∨k

i=0 f
−iP

that contains x. We denote by Bδ(x) the ball centered at x with radius δ < 0. We will first
prove the following statement:

Assertion A. For all 0 < δ < α there exists k = k(δ) such that

Ak(x) ⊂ Bδ(x) ∀ x ∈M. (3)

Suppose for a contradiction that there is δ ∈ (0, α) such that for all k ≥ 0 there exist
points xk, yk ∈M satisfying

yk ∈ Ak(xk) \Bδ(xk) ∀ k ≥ 0.

Since M is compact, there are subsequences {xkj}j and {ykj}j convergent to the points x
and y respectively. On the one hand, as yk ̸∈ Bδ(xk) we have

dist(x, y) = lim
j→+∞

dist(xkj , ykj) ≥ δ. (4)

On the other hand, as yk ∈ Ak(xk) ∈
∨k

i=0 f
−iP and diam(P) < α, we obtain

dist(f i(xkj), f
i(ykj)) < α ∀ 0 ≤ i ≤ kj.

Taking the limit in the inequality above when j → +∞ with i fixed, we deduce

dist(f i(x), f i(y)) ≤ α ∀ i ≥ 0.

Due to the expansiveness in the future of f , the inequality above implies x = y contradicting
inequality (4), and ending the proof of Assertion A.

Any open set V ⊂ M can be written as the union of open balls Bδ(x)(x) ⊂ V with
δ(x) < α. Using Assertion A, each point x of V is inside a piece Ak(x)(x) ⊂ Bδ(x) for some
k(x) ≥ 0. Therefore V is the union of a family of pieces

Ak(x)(x) ∈
⋃
k≥0

{
k∨

i=0

f−iP : k ≥ 0

}
.
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Since the family of all such pieces is countable (because they are the pieces of a countable
union of finite partitions), we deduce that the σ-algebra generated by them includes all the
open subsets of M . Thus, it includes the Borel σ-algebra. Conversely, all the pieces Ak(x)
are Borel measurable sets. Therefore, the σ-algebra generated by them is included in the
Borel σ-algebra. We conclude that both σ-algebras coincide, as wanted.

4 Proof of Theorem 1.

To prove Theorem 1, we will fix some notation:

For the C1 expanding map f :M 7→M denote

ψ(x) := − log |detDfx| < 0, ∀ x ∈M. (5)

Recall that ψ :M → R is the potential in the statement of Theorem 1.

In the space M of Borel probability measures on the manifold M , we fix the following
weak∗ metric:

dist∗(µ, ν) :=
+∞∑
i=0

1

2i

∣∣∣∣∫ ϕi dµ−
∫
ϕi dν

∣∣∣∣ , (6)

where ϕ 0 := ψ and {ϕi}i≥1 is a countable family of continuous functions that is dense in
the space C0(M, [0, 1]).

Lemma 4.1. For any µ ∈ M and any ϵ > 0 the ball B := {ν ∈ M : dist∗(µ, ν) < ϵ} is
convex.

Proof. Let ν1, ν2 ∈ B. We will prove that if λ1, λ2 ∈ [0, 1] are such that λ1 + λ2 = 1, then
λ1ν1 + λ2ν2 ∈ B.

Using the triangle inequality, we have

dist(λ1ν1 + λ2ν2, µ) =
+∞∑
i=0

1

2i

∣∣∣∣∫ ϕidµ−
∫
ϕid(λ1ν1 + λ2ν2)

∣∣∣∣
≤

+∞∑
i=0

1

2i

∣∣∣∣λ1 ∫ ϕidµ− λ1

∫
ϕidν1

∣∣∣∣+ +∞∑
i=0

1

2i

∣∣∣∣λ2 ∫ ϕidµ− λ2

∫
ϕidν2

∣∣∣∣ =
= λ1

+∞∑
i=0

1

2i

∣∣∣∣∫ ϕidµ− ϕidν1

∣∣∣∣+ λ2

+∞∑
i=0

1

2i

∣∣∣∣∫ ϕidµ− ϕidν2

∣∣∣∣ <
(λ1 + λ2)ϵ = ϵ,

as wanted.

We state and prove now a series of lemmas that we will use in the proof of Theorem 1.

Recall Definition 3.1 of the entropy H(P , µ) of a partition with respect to a probability
measure µ, and the equality (1) defining the product partition Pn

f .
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Lemma 4.2. Let µ be an f -invariant probability measure. Let P be any finite partition of
the manifold M into measurable sets. If µ(∂P) = 0, then, for all ϵ > 0, and for all q ≥ 1
there exists ϵ∗ > 0 such that ∣∣∣H(Pq

f , ρ)

q
−
H(Pq

f , µ)

q

∣∣∣ < ϵ (7)

for any probability measure ρ such that dist(ρ, µ) < ϵ∗.

Proof. Assume by contradiction that for all ϵ∗ > 0 there exists a probability measure ρ,
whose distance to µ is smaller than ϵ∗, and that does not satisfy inequality (7). Thus, in
particular for ϵ∗ = 1/m where m ∈ N, there exists ρm such that

dist(ρm, µ) <
1

m
,

∣∣∣H(Pq
f , ρm)

q
−
H(Pq

f , µ)

q

∣∣∣ ≥ ϵ ∀ m ≥ 1. (8)

We have limm→+∞ ρm = µ in the weak∗ topology and µ(∂P) = 0. Note that µ(∂Pq
f ) = 0

because µ is f -invariant. So, applying part (iii) of Lemma 3.10, limm→+∞ ρm(Y ) = µ(Y )
for any piece Y ∈ Pq

f . And, from Proposition 3.9, for fixed q ≥ 1, we have:

lim
m→+∞

H(Pq
f , ρm)

q
=
H(Pq

f , µ)

q
,

contradicting inequality (8).

Recall Definition 2.1 of expansiveness, and Proposition 2.2. Let α > 0 be an expansivity
constant for f . From Corollary 3.13 of Kolmogorov-Sinai Theorem for expansive maps, for
any f -invariant probability measure µ we have:

hµ(f) = lim
q→+∞

H(Pq
f , µ)

q
if diam(P) < α. (9)

Lemma 4.3. Let f : M 7→ M be a C1 expanding map on the compact manifold M . Let
α > 0 be an expansivity constant for f .

For all 0 < δ < α, for all ϵ > 0, and for any f -invariant measure µ, there exists a finite
partition P of M , a real number ϵ∗ > 0, and a natural number n0 ≥ 1, such that:

(i) diam(P) < δ < α,

(ii) µ(∂P) = 0,

(iii) For any sequence of non necessarily invariant probabilities νn, if µn := 1
n

∑n−1
j=0 (f

j)∗νn,
and if dist(µn, µ) < ϵ∗ ∀ n ≥ 1, then

1

n
H(Pn

f , νn) ≤ hµ(f) + ϵ ∀ n ≥ n0.
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Proof. Recall Equality (1) defining the product partition Pn
f and Definition 3.4 of the metric

entropy hµ(f) of f . For simplicity along this proof, since we will not change the map f , we
will denote hµ instead of hµ(f) and Pn instead of Pn

f .

Take any finite covering U = {Y1, . . . , Yp} of M with open balls with radia smaller
than δ/2. Denote ∂U :=

⋃p
i=1 ∂Yi. Since the family of boundaries of the balls with radius

r > 0 is non countable when changing r, but these boundaries can have positive µ-measure
only for at most a countable subfamily, the radius of each ball Yi ∈ U can be chosen such
that µ(∂Yi) = 0. Thus µ(∂U) = 0. Therefore, the partition P = {Xi}1≤i≤p defined by
X1 := Y1 ∈ U , Xi+1 := Yi+1 \ (∪i

j=1Xi), satisfies the assertions (i) and (ii).

To end the proof, for any given ϵ > 0 let us find ϵ∗ > 0 and n0 ≥ 1 such that assertion
(iii) holds.

Let us fix two integer numbers q ≥ 1 and n ≥ q. Write n = Nq + j where N, j are
integer numbers such that 0 ≤ j ≤ q − 1 Fix a (non necessarily invariant) probability ν.
Applying Propositions 3.6 and 3.7, we obtain:

H(Pn, ν) = H(PNq+j, ν) ≤
H(∨j−1

i=0f
−(Nq+i)P , ν) +H(∨N−1

i=0 f
−iqPq

, ν) ≤
j−1∑
i=0

H(f−(Nq+i)P , ν) +
N−1∑
i=0

H(f−iqPq, ν) =

j−1∑
i=0

H(P , (fNq+i)∗ν) +
N−1∑
i=0

H(Pq, (f iq)∗ν).

From the above inequality, using Proposition 3.5, and recalling that j ≤ q − 1 < q, we
obtain

H(Pn, ν) ≤ q log p+
N−1∑
i=0

H(Pq, (f iq)∗ν) ∀ q ≥ 1, n ≥ q,

where p is the number of pieces of the partition P .

The inequality above holds also for f−lP instead of P , for any l ≥ 0, because it holds
for any partition with exactly p pieces. Thus:

H(f−lPn, ν) ≤ q log p+
N−1∑
i=0

H(f−lPq, (f iq)∗ν) =

q log p+
N−1∑
i=0

H(Pq, (f iq+l)∗ν).

Adding the above inequalities for 0 ≤ l ≤ q − 1, we obtain:

q−1∑
l=0

H(f−lPn, ν) ≤ q2 log p+

q−1∑
l=0

N−1∑
i=0

H(Pq, (f iq+l)∗ν)

Therefore, on the one hand we have:

q−1∑
l=0

H(f−lPn, ν) ≤ q2 log p+

Nq−1∑
i=0

H(Pq, (f i)∗ν). (10)
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On the other hand, applying Proposition 3.6, for all 0 ≤ l ≤ q − 1 we have

H(Pn, ν) ≤ H(Pn ∨ f−nP ∨ f−(n+1)P ∨ . . . ∨ f−(n+l−1)P , ν) = H(Pn+l, ν) =

H((∨l−1
i=0f

−iP) ∨ (f−lPn)).

Therefore,

H(Pn, ν) ≤ H(Pn+l, ν) ≤
( l−1∑

i=0

H(f−iP , ν)
)
+H(f−lPn, ν).

So,
H(Pn, ν) ≤ q log p+H(f−lPn, ν).

Adding the above inequalities for 0 ≤ l ≤ q − 1 and joining with the inequality (10), we
obtain:

qH(Pn, ν) ≤ q2 log p+

q−1∑
i=0

H(f−lPn, ν) ≤ 2q2 log p+

Nq−1∑
i=0

H(Pq, (f i)∗ν).

Recall that n = Nq + j with 0 ≤ j ≤ q − 1. So n− 1 = Nq + j − 1 ≥ Nq − 1 and then

qH(Pn, ν) ≤ 2q2 log p +
n−1∑
i=0

H(Pq, (f i)∗ν)

Now we put ν = νn and divide by n. Using that µn = (1/n)
∑n−1

j=0 (f
j)

∗
νn and applying

Proposition 3.8, we obtain

q H(Pn, νn)

n
≤ 2q2 log p

n
+

1

n

n−1∑
i=0

H(Pq, (f i)∗νn) ≤
2q2 log p

n
+H(Pq, µn).

For any fixed ϵ > 0 (and the natural number q ≥ 1 still fixed), take n ≥ n(q) :=
max{q, 6 q log p/ϵ} in the inequality above. We deduce:

q

n
H(Pn, νn) ≤

qϵ

3
+H(Pq, µn) ∀ n ≥ n(q) ∀ q ≥ 1,

from where we obtain

1

n
H(Pn, νn) ≤

ϵ

3
+
H(Pq, µn)

q
∀ n ≥ n(q) ∀ q ≥ 1. (11)

The inequality above holds for for any fixed q ≥ 1 and for any n large enough, depending
on q.

By hypothesis, µ is f -invariant. So, after Equality (9), there exists q ≥ 1 such that

H(Pq, µ)

q
≤ hµ +

ϵ

3
. (12)
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Fix such a value of q. Since µ(∂(P)) = 0 due to the construction of P (depending on the
given measure µ), we can apply Lemma 4.2 to find ϵ∗ > 0 such that

H(Pq, ρ)

q
≤ H(Pq, µ)

q
+
ϵ

3
if dist(ρ, µ) < ϵ∗.

To prove assertion (iii) we assume dist(µn, µ) < ϵ∗ for all n ≥ 1. We deduce

H(Pq, µn)

q
≤ H(Pq, µ)

q
+
ϵ

3
∀ n ≥ 1.

Joining this latter assertion with inequalities (11) and (12) we obtain

1

n
H(Pn, νn) ≤ hµ + ϵ ∀ n ≥ n(q).

Thus, after denoting n0 := n(q), assertion (iii) is proved.

Notation. Recall Equality (5) defining the continuous real function ψ : M → R, which is
the potential in the statement of Theorem 1. For any real number r ≥ 0 construct

Kr := {ν ∈ Mf :

∫
ψ dν + hν ≥ −r}. (13)

(We note that, a priori, the set Kr of f -invariant probabilities may be empty.)

For any integer n ≥ 1 and for all x ∈ M recall the Definition 1.1 of the empirical
probability σn(x)), and of the pω-limit set pω(x) in the set M of Borel probabilities. We
also recall the weak∗ metric dist∗ in the space M of probability measures constructed by
equality (6).

Lemma 4.4. Let f be a C1 expanding map on M . Let m be the Lebesgue measure on M .
Fix r > 0 and let Kr be defined by Equality (13). Then, for all 0 < ϵ < r/2, and for all
µ ∈ Mf such that µ ̸∈ Kr, there exists n0 ≥ 1 and 0 < ϵ∗ ≤ ϵ/3 such that

m({x ∈M : dist(σn(x), µ) < ϵ∗}) < en(ϵ−r) < e−nr/2 ∀ n ≥ n0. (14)

Proof. As in the proof of Lemma 4.3, for simplicity along this proof we write Pn instead of
Pn

f , and hµ instead of hµ(f).

From Proposition 2.2, f is expansive in the future. Let α > 0 be a expansivity constant
for f . For the given value of ϵ > 0, fix a uniform continuity modulus 0 < δ < α for ϵ/3 of
the function ψ = − log |det(Df)|. Namely

|ψ(x)− ψ(y)| < ϵ/3 if dist(x, y) < δ. (15)

For such a value of δ, for the given measure µ ∈ Mf , and for ϵ/3 instead of ϵ, apply Lemma
4.3 to construct the partition P in M , and the numbers ϵ∗ > 0 and n0 ≥ 1, such that
assertions (i), (ii) and (iii) hold. In particular assertion (iii) states that for any sequence of
probability measures νn, if µn := 1

n

∑n−1
j=0 (f

j)∗νn, satisfies dist(µn, µ) < ϵ∗ ∀ n ≥ 1, then

1

n
H(Pn, νn) ≤ hµ +

ϵ

3
∀ n ≥ n0. (16)
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It is not restrictive to assume that
ϵ∗ ≤ ϵ/3.

Denote, for all n ≥ 1:
Cn := {x ∈M : dist(σn(x), µ) < ϵ∗}. (17)

To prove this Lemma we must prove that

m(Cn) ≤ en(ϵ−r) ∀ n ≥ n0 (to be proved) (18)

Since f is C1 expanding, its derivative Dfx is invertible for all x ∈ M . Thus, by the
local inverse map theorem, f is a local diffeomorphism. The compactness of M implies
that there exists a uniform value δ1 > 0 such that f restricted to any ball of radius δ1 is
a diffeomorphism onto its image. Therefore, if the diameter of the partition P is chosen
small enough, the restricted map fn|X : X 7→ fn(X) is a diffeomorphism for all X ∈ Pn

and for all n ≥ 1. Thus, recalling that ψ = − log |detDf |, we deduce the following equality
for all X ∈ Pn:

m(X ∩ Cn) =

∫
fn(X∩Cn)

|detDf−n| dm =

∫
fn(X∩Cn)

e
∑n−1

j=0 ψ ◦ f j

dm.

Therefore

m(Cn) =
∑
X∈Pn

∫
fn(X∩Cn)

e
∑n−1

j=0 ψ ◦ f j

dm. (19)

Either Cn = ∅, and Assertion (18) becomes trivially proved, or the finite family of pieces
{X ∈ Pn : X ∩ Cn ̸= ∅} = {X1, . . . , XN} has N = N(n) ≥ 1 pieces. In this latter case,
choose a single point yk ∈ Xk ∩ Cn for each k = 1, . . . , N . Denote by Y (n) = {y1, . . . , yN}
the collection of such points. Due to the construction of δ > 0 according to Equation (15),
and since the partition P has diameter smaller than δ (because it satifies (i) of Lemma 4.3),
we deduce:

n−1∑
j=0

ψ(f j(y)) ≤
n−1∑
j=0

(ψ(f j(yk)) + ϵ/3) ∀ y, yk ∈ Xk, ∀ k = 1, . . . , N.

Therefore, substituting in Equality (19),

m(Cn) ≤ enϵ/3
N∑
k=1

e
∑n−1

j=0 ψ(f
j(yk))m(fn(Xk ∩ Cn)).

Thus

m(Cn) ≤ enϵ/3
N∑
k=1

e
∑n−1

j=0 ψ(f
j(yk)).

Define

L :=
N∑
k=1

e
∑n−1

j=0 ψ(f
j(yk)), λk :=

1

L
e
∑n−1

j=0 ψ(f
j(yk)) ∈ (0, 1). (20)
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Then,
N∑
k=1

λk = 1

and
m(Cn) ≤ e(nϵ/3)+logL, (21)

where

logL =

(
N∑
k=1

λk

n−1∑
j=0

ψ(f j(yk))

)
−

(
N∑
k=1

λk log λk

)
. (22)

(To prove the equality above, take log in the equality at right in (20), multiply by λk and
take the sum for k = 1, . . . , N. )

Define the probability measures

νn :=
N∑
k=1

λkδyk , (23)

µn :=
1

n

n−1∑
j=0

(f j)∗(νn) =
N∑
k=1

λk
1

n

n−1∑
j=0

δfj(yk) =
N∑
k=1

λkσn(yk). (24)

(To prove the above equality at right recall Definition 1.1 of the empirical probability
measures σn(yk).)

Then,
N∑
k=1

λk

n−1∑
j=0

ψ(f j(yk)) = n

∫
ψ dµn. (25)

Recall that for any piece Xk ∈ Pn such that Cn ∩ Xk ̸= ∅ we have chosen a single point
yk ∈ Cn ∩Xk. Then νn(Xk) = λkδyk(Xk) = λk, and we deduce that

−
N∑
k=1

λk log λk = H(Pn, νn). (26)

Therefore, combining Equations (21), (22), (25) and (26), we obtain

m(Cn) ≤ exp
(nϵ
3

+ logL
)
= exp

(
n
( ϵ
3
+

∫
ψ dµn +

H(Pn, νn)

n

))
. (27)

Now, we assert that

dist(µn, µ) < ϵ∗ ≤ ϵ

3
∀ n ≥ 1. (28)

In fact, by construction yk ∈ Cn for all k = 1, . . . , N , Thus, from Equality (17), we have

dist(σn(yk), µ) < ϵ∗.

Recalling Lemma 4.1, the ball in M of center µ and radius ϵ∗ is convex. Thus, any convex
combination of the measures σn(yk) belongs to that ball. From Equality (24) at right, µn
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is a convex combination of the measures σn(yk). We deduce that µn belongs to that ball.
Hence, inequality (28) is proved. So equation (16) holds.

Combining Equations (16) and (27), we deduce that

m(Cn) ≤ exp
(
n
(2 · ϵ

3
+

∫
ψ dµn + hµ

))
∀ n ≥ n0.

Besides, from inequality (28) and the construction of the weak∗-metric dist∗ in M with
ϕ0 = ψ (recall Equality (6)), we deduce that∣∣∣∣∫ ψ dµn −

∫
ψ dµ

∣∣∣∣ < ϵ

3
,

∫
ψ dµn <

∫
ψ dµ+

ϵ

3
.

Therefore, we obtain

m(Cn) ≤ exp
(
n
(
ϵ+

∫
ψ dµ+ hµ

))
∀ n ≥ n0. (29)

Finally, by hypothesis µ ̸∈ Kr. Thus,
∫
ψ dµ+ hµ < −r. Substituting this latter inequality

in (29), we conclude (18), ending the proof.

The following lemma is a well-known elementary result in Probability Theory. We will
apply it in the particular case for which M is a compact Riemannian manifold and B is the
Borel σ-algebra of subsets of M .

Lemma 4.5. (Borel-Cantelli) Let µ be a probability measure on a measurable space
(M,B). Let {Cn}n≥1 be a sequence of measurable subsets Cn ⊂M such that

+∞∑
n=1

µ(Cn) < +∞.

Then

µ

(⋂
N≥1

⋃
n≥N

Cn

)
= 0.

Proof. The sequence
{⋃

n≥N Cn

}
N≥1

is (not necessarily strictly) decreasing with N . Then

µ

(⋂
N≥1

⋃
n≥N

Cn

)
= lim

N→+∞
µ

(⋃
n≥N

Cn

)
≤ lim

N→+∞

+∞∑
n=N

µ(Cn).

Finally, limN→+∞
∑+∞

n=N µ(Cn) = 0 because
∑+∞

n=N µ(Cn) is the tail of the convergent series∑+∞
n=1 µ(Cn).
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4.1 End of the proof of Theorem 1

Proof. We will prove that any pseudo-phisical measure µ satisfies Pesin Entropy Formula,
namely, for the C1- expanding map f , according to Proposition 1.12:

hµ(f) +

∫
ψ dµ = 0 (to be proved),

where
ψ := − log |detDf |.

For any r > 0 consider the compact set Kr ⊂ M defined by Equality (13). Since {Kr}r is
decreasing when decreasing r, we have

K0 =
⋂
r>0

Kr, where

K0 :=
{
µ ∈ Mf :

∫
ψ dµ+ hµ(f) ≥ 0

}
.

By Margulis-Ruelle’s inequality (see Theorem 1.7) and Corollary 1.11 applied to C1 ex-
panding maps, we have

hµ(f) ≤
∫

log |detDf | dµ = −
∫
ψ dµ ∀ µ ∈ Mf . (30)

Therefore, the (a-priori maybe empty) set K0 is composed by all the invariant measures µ
such that ∫

ψ dµ+ hµ(f) = 0,

or, in other words, K0 is the set of invariant measures µ that satisfy Pesin Entropy Formula.
So, to prove that any pseudo-physical measure µ satisfies Pesin Entropy Formula, we must
prove that µ ∈ Kr for all r > 0.

Assume by contradiction that there exists r > 0 such that the pseudo-physical measure
µ does not belong to Kr. From Lemma 4.4, there exists n0 ≥ 1 and ϵ∗ > 0 such that,

m
(
{x ∈M : dist∗(σn(x), µ) < ϵ∗)} ≤ e−nr/2 ∀ n ≥ n0, (31)

where m denotes the Lebesgue measure.

From Definition 1.4 of pseudo-physical measure, for any ϵ∗ > 0 the set

A = {x ∈M : dist(pω(x), µ) < ϵ∗}

has positive Lebesgue measure: m(A) > 0. For each n ≥ 1, denote

Cn := {x ∈M : dist(σn(x), µ) < ϵ∗}.

Apply Definition 1.1 of the set pω(x) in M composed by the weak∗-limits of all the con-
vergent subsequences of {σn(x)}. Therefore,

A ⊂
⋂
N≥1

⋃
n≥N

Cn,
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So, we deduce the following inequality:

m
( ⋂

N≥1

⋃
n≥N

Cn

)
≥ m(A) > 0. (32)

But inequality (31) implies that
∑∞

n=1m(Cn) < +∞; hence, applying Borel-Cantelli
Lemma (see Lemma 4.5), it follows that

m
( ⋂

N≥1

⋃
n≥N

Cn

)
= 0,

contradicting inequality (32).
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