

Universal Simulation of Textures

Gustavo Brown Rodriguez

Abstract

In this work we study the problems of texture simulation (or synthesis) and texture

mixture from an information-theoretic point of view. Our goal is to apply recently

developed notions of universal types and universal simulation, based on the Lempel and

Ziv LZ78 universal compression scheme, in a new framework for simulating textures and

texture mixtures. A simulated texture needs to meet two basic properties; it has to be

visually ‘similar’ to the input texture but at the same time it has to be different from the

input texture. In the context of universal types, the notion of `similarity’ is a statistical

one: two sequences from the same universal type are, in the limit, indistinguishable by

k-th order Markov models, for any value of k. The richness of the simulated output is

measured, in turn, in terms of its entropy or unpredictability. We seek simulation schemes

that maximize the entropy of their output given that the statistical similarity constraints

are satisfied. Thus, there is a tension or trade-off between these two defining parameters

of a simulation scheme. As we can measure the size of the universal type class, we can

calculate the size of the set of different simulated textures our algorithm can synthesize

for a given texture, and, thus, the entropy of the simulated texture, which is chosen

uniformly at random from that set. Raw application of universal simulation presents

some challenges when simulating practical continuous-tone textures. A series of

refinements of our simulation scheme allow us to deal with such problems, strengthening

our similarity criterion to produce visually better simulations. This comes at the expense

of a decrease in unpredictability, which we can quantify. We extend our approach to

multiple source textures, which allows us to simulate texture mixtures of user-defined

proportions according to a well defined formal model. As with the case with single input

textures, we give a procedure to quantify the unpredictability of the simulated texture

mixtures.

Page 2

Acknowledgements

I would like to thank Dr. Alfredo Viola, Dr. Gadiel Seroussi and Dr. Guillermo Sapiro for

their insightful help and guidance throughout this work.

Page 3

Contents

Contents ... 4

1 Introduction.. 5

2 Specific goals of the Thesis .. 10

3 Mathematical Background.. 11

3.1 Texture .. 11
3.2 Source models ... 13
3.3 Lempel-Ziv universal lossless data compression algorithms 16
3.4 Plane Filling Curves .. 22
3.5 Universal Type Classes ... 27
3.6 Wavelets decomposition and the steerable pyramid.. 33

4 Previous Work.. 35

5 Universal Simulation of Textures ... 41

5.1 Basic simulation .. 41
5.2 The ‘Context dilution’ problem: quantization and vectors.................................. 44
5.3 The ‘Loss of Context’ problem ... 49
5.4 Improving the Hilbert scan.. 57
5.5 Wavelets smoothing .. 61

6 Mixing Textures via Universal Simulation.. 65

7 Conclusions and Future Work.. 74

7.1 Results ... 74
7.2 Future Work .. 77

References.. 79

List of Figures.. 84

Page 4

1 Introduction

Understanding texture is an important problem in image processing. The goal of texture

synthesis is to produce, given an input texture, new textures which appear to be generated

by the same process, i.e., they look similar yet they are not the same. Texture synthesis

has been extensively addressed in the literature(see, e.g, [4], [15]). Among other things,

texture synthesis has been used in image/video transmission applications to save

bandwidth [14] (instead of sending the full background it can be used to send just a patch

of it and then synthesize the full background) or in image inpainting to restore damaged

photographs or replace selected areas of an image [3]. However, other texture-related

fields of image sciences, like texture characterization [47, 51], texture decomposition

[17], or texture mixture [2], are less understood, and are the subject of active research.

In this work we study texture images through an information-theoretic point of view,

using universal type classes and universal simulation.

Throughout the thesis we will use the terms “synthesis” and “simulation”

interchangeably. One of the main goals of this work is to extend the work of Seroussi [42,

43], which was primarily targeted at generic (1D) signals. We extend this approach to

specifically address 2D, continuous tone, image textures. Several models for texture have

been recently introduced. However, they are at most semi-automatic [51], requiring some

sort of user interaction to properly model the input texture (e.g. user selection of a set of

filter banks). We present an alternative model for texture characterization using universal

simulation that could be helpful to understand statistical properties of textures. One of the

most difficult problems when dealing with image textures is to define and characterize an

appropriate source information model which could have generated the image. In this

work, we investigate the application of the model of [42], as a way to provide a rigorous

characterization of the statistical aspects of the texture simulation problem.

Universal simulation based on the classical method of types [11] was first introduced

in [34]. In their setting, universality is defined in the sense that the input sequence and

every simulated sequence are statistically indistinguishable under a selected parametric

family of models of some fixed order. This notion was extended in [42], applying, in the

Page 5

limit, simultaneously to models of any order. Our goal is to apply this notion of universal

simulation in a new framework for simulating textures and texture mixtures, based on the

universal type classes of [42]. In universal simulation based on universal type classes,

two sequences that belong to the same universal type class (UTC for short) are

indistinguishable under the selected family of models for any model order. Thus, after

obtaining the UTC of an input texture image, we can simulate new images by sampling

new instances from the UTC.

A simulated texture needs to meet two basic properties. On one hand, it has to be

visually ‘similar’ to the input texture (i.e. ‘important’ features must be preserved by the

simulation). This property is in essence subjective (i.e. which features are important

depends on the application) and is generally the primary concern of the literature on

texture synthesis algorithms. Back into our framework for simulating textures, if the

statistics collected by the UTC are able to capture important features of the input texture,

the simulated textures will likely show them. On the other hand, the simulated texture has

to be different from the input. Just copying the input texture would not be considered an

acceptable simulation, although it indeed has every feature present in it. This

requirement, while intuitively assumed, has not been formalized quantitatively in

previous works in the literature, and one of the main goals of this work is to provide such

a mathematical formalization. Our aim is to describe schemes in which the

“unpredictability” of the output texture can be shown to be maximized in a well defined

mathematical sense, given that the output satisfies a certain “similarity” criterion. As we

can measure the size of the class [42], we can calculate the number of different simulated

textures our algorithm can synthesize. All of them, in principle, share the same features

the statistics have captured.

For every simulation scheme there is always a trade-off between the ability to capture

the essential features of an input texture and the richness or “unpredictability” of the

simulation. In the case of universal simulation the UTC for the input texture should be

rich enough to be able to simulate a broad set of textures. However, if the classes are too

rich, the simulation would fail to synthesize visually similar textures.

In [42] universal classes are defined in terms of the well known Lempel and Ziv (LZ)

universal compression scheme (to be more precise, the LZ78 variant [27]). The universal

Page 6

type class of a one dimensional sequence (of symbols) is defined in [42] to be the set of

sequences of the same length which span the same tree with the LZ incremental parsing

algorithm. It has been proved in [42] that for any finite order k, the variational distance

between the kth-order empirical probability distributions of two sequences of the same

universal type vanishes as n → ∞. In other words, this means that, in the limit, all the

sequences of the same universal type will share the same statistics for any model order.

To use this approach, we have to provide a way to preprocess an input texture (which

is a 2-D signal) to produce a 1-D sequence. This is carried out by traversing the input

image with a plane filling curve (e.g. Peano scan, Hilbert scan, etc). Once we have

preprocessed the image, the UTC for the resulting sequence can be computed and new

simulated sequences can be sampled from it. The main idea behind our approach is that

two images which belong to the same UTC will have ‘equivalent’ textures, in the sense

that they will share the same statistics for any order k. Thus, to simulate new images that

resemble the input texture all we have to do is to sample uniformly at random from the

UTC and then reverse back the traversal of the simulated sequence to get the new texture.

Recall that our aim is to describe a simulation scheme in which the unpredictability of the

output textures is maximized. It was shown in [42] that no simulation scheme which

preserves the statistics simultaneously for all orders k can perform much better in this

sense.

Although preservation of statistics of arbitrary order is a strong criterion of

“similarity” for textures, it does not capture all aspects of visual similarity. Therefore we

have to strengthen our criterion of “similarity” by providing additional constraints. For

the rest of this introduction we will loosely use the term UTC in the following sense: we

will not obtain the UTC directly from the input sequence, but from a sequence derived

from it which complies with our stronger criterion of “similarity”. Nevertheless, this UTC

still retains the property that the simulated sequences preserve the parsing tree of the

derived sequence, and therefore also preserves, asymptotically, the statistics of any order.

We will justify this more precisely throughout the rest of the thesis. As a consequence of

adding new similarity constraints, each UTC will be smaller and we will be able to

discriminate unrelated textures better (recall the trade-off between the richness of the

class and the ability to capture the essential features of a given texture). Another

Page 7

challenge we face is that for continuous tone images of practical sizes, statistics of high

orders gathered by the UTC might be diluted. Therefore, we apply techniques like

quantization and prediction to address this issue. As we shall see, this will come at the

expense of a reduction of entropy (i.e. the size of the UTC will be reduced, but taking

away much of the instances which would not give an acceptable degree of visual

similarity with the original texture).

We will also notice that the nature of the LZ incremental parsing algorithm often

leads to visual discontinuities in portions of the simulated textures. While the statistical

effect of these artifacts is not large, they are objectionable from a visual quality point of

view. To address this problem, we further tune our simulation scheme to avoid this

problem, again at the expense of output entropy. Furthermore we also incorporate some

tools of multi resolution analysis (MRA), specifically the use of Simoncelli’s steerable

pyramid decomposition [46] , to improve the visual quality of the simulated textures and

to prevent some visual artifacts.

After describing our texture simulation scheme, we extend our approach to multiple

source textures, allowing the simulation of texture mixtures of user-defined proportions.

Mixing textures is indeed an interesting area of research as it has not been extensively

studied in literature, mainly due to the fact that the expected output has not been formally

defined. Our framework provides a mechanism for synthesizing texture mixtures

according to a well defined formal model.

In summary, our work presents a framework, based on recent results in universal type

classes and universal simulation, for simulation and mixing of image textures, in which

the “unpredictability” of the simulation can be quantified. Our proposed method can be

combined with other classical image processing tools to allow for a flexible trade-off

between the richness of the simulation and the ability to capture the essential features of

texture.

The rest of the thesis is outlined as follows. Section 2 presents our goals and specific

objectives of this thesis. Section 3 provides some necessary mathematical background

(namely the concept of universal type classes and universal simulation, and a brief

introduction to plane filling curves and wavelet decompositions). It also presents some

definitions used in the remainder of this document. After the general overview and

Page 8

mathematical background introduced on these sections, Section 4 describes some

previous work in the field of texture synthesis and texture mixture. Section 5 presents our

first attempt at using the concept of UTCs and universal simulation for texture

simulation. Here we will describe the problems arising from the fact that images are finite

length 2-D signals, as well as problems with the scanning of the image. Afterwards, in

Section 6 we extend out interest to multiple texture sources and provide algorithms to

simulate texture mixtures. Finally, Section 7 summarizes results, gives directions for

future work and concludes the thesis.

Page 9

2 Specific goals of the Thesis

The main goals of this thesis can be summarized as follows:

Introduce a framework that connects some aspects of information theory with the study of

image textures. Use this framework to provide algorithms for simulation and mixture of

textures, showing the trade-off between the notions of “similarity to the original” and

“unpredictability” of the simulated textures.

Specific goals:

o Starting from an image that conforms (subjectively) to our definition of texture,

use universal type classes and universal simulation to synthesize new images.

This is addressed in section 5.1

o Measure the richness of our simulation scheme. Provide mathematical tools to

determine the number of different textures our scheme can simulate for a given

input texture. This is studied in section 3.5 and 5.

o Determine additional constraints the simulated textures should comply with to

improve the visual results of the simulations. Sections 5.2 through 5.5 address this

subject and introduce modifications to our basic simulation scheme accordingly.

o Evaluate the trade-off between the visual quality of our simulations and the

unpredictability of simulations. This is also covered in Section 5.

o Given two or more input textures, define a way to simulate new images that are

mixtures of them. Analyze the properties that these texture mixtures satisfy. This

is addressed in section 6.

Page 10

3 Mathematical Background

In this section we present some mathematical tools and definitions from the areas of

image processing and information theory that we use throughout our work.

3.1 Texture

There is no formal definition for texture. Nevertheless, there exists some consensus on

the perception of texture. Among the different informal definitions found in the literature,

the words ‘repetition’, ‘pattern’, ‘periodicity’ come up regularly. Therefore, we may say

that the concept of texture is somewhat subjective. To illustrate different approaches to

the problem, we present below some of the definitions found in literature.

Gonzalez and Woods [20] state that “The three principal approaches used in

image processing to describe the texture of a region are statistical, structural and

spectral. Statistical approaches yield characterizations of textures as smooth, coarse,

grainy, and so on. Structural techniques deal with the arrangement of image primitives,

such as the description of texture based on regularly spaced parallel lines. Spectral

techniques are based on the properties of the Fourier spectrum and are used primarily to

detect global periodicity in an image by identifying high energy, narrow peaks in the

spectrum”

Jain [25] asserts in his book that “The term texture generally refers to the

repetition of basic texture elements called texels. The texel contains several pixels, whose

placement could be periodic, quasi-periodic or random. Natural textures are generally

random, whereas artificial textures are often deterministic or periodic. Texture may be

coarse, fine, smooth, granulated, rippled, regular, irregular, or linear”

Efros and Leung [15] shortly define texture as “some visual pattern on an infinite

2-D plane which, at some scale, has a stationary distribution”

 Even though the definitions presented here are all due to people working in the

image processing field, the term texture is not bound exclusively to image textures. Think

for example in the chirp of a bird, the buzz of a crowded street, or the ring of a telephone.

Page 11

Those can be thought of sound textures. We might as well talk about video textures [2]

(i.e. an erupting volcano).

Figure F11 shows some examples of image textures taken from the Brodatz

texture database [5] and the Oulu texture database [36].

Figure (F1): Texture examples. The upper images were taken from the Brodatz texture database. The lower
images were taken from the Oulu texture database.

1 Figures which show algorithms will be labeled with the letter A, and figures with graphics and images will

be labeled with the letter F.

Page 12

3.2 Source models

Here we briefly describe some source models which are mentioned in this work.

We denote by the sequence where j
ix ,1 jii xxx K+ ji ≤ , and the symbols in the

sequence belong to some finite alphabet Λ of cardinality α; we sometimes omit the

subscript i in when i=1. Let’s suppose we have a string or sequence xn. A source

model Q is a probability assignment function which gives, for every possible string, a

probability of occurrence.

j
ix

() ,10, ≤≤= ppxQ n and ()
{ }

1=∑
nx

nxQ

 The entropy of a discrete random variable X of alphabet Λ is a measure of

the uncertainty of X, and is defined as [10]

()XH

() () ()∑
Λ∈

−=
x

xpxpXH log

The entropy is maximized when the probability is uniformly distributed. In other words,

() αlog≤XH and () αlog=XH if and only if () Λ∈∀= aap
α
1

When studying signals, it is useful to select a proper source model for the data

being treated, i.e. one which captures the features of interest for the application at hand.

As mentioned, textures are often characterized in terms of their local statistical properties

and stationarity. Therefore, we will focus on finite memory statistical models as a useful

(albeit not perfect) tool in the study of textures. We next define these models more

formally.

 Suppose we have an alphabet Λ of α symbols. The simplest source model is the

fully parameterized memoryless source. It is fully characterized by a vector

 of probabilities of occurrence of every symbol. In this

case, the probability assignment function is

⎭
⎬
⎫

⎩
⎨
⎧

=Θ≤≤Θ=Θ ∑
=

1where1
1

α

α
i

ii i ,,

() ()∏
=

Θ=
n

i
i

n xxQ
1

where denotes the probability of occurrence of symbol xi. ()ixΘ
Page 13

We denote the empirical distribution of xn by , defined as nxQ
∧

() ()
Λ∈=

∧

a
n

xafreqaQ
n

xn ,,

where ()nxafreq , is the number of occurrences of symbol a in xn. The empirical

distribution defines a memoryless source, which can be used to assign probabilities to

arbitrary sequences, including, in particular, xn . In fact, is the source that assigns the

highest probability to xn among all memoryless sources over Λ, and is known as the

maximum likelihood estimator of a memoryless source for xn [31]. The empirical entropy

of xn is then defined as

nxQ
∧

nxQ
∧

() ()∑
=

∧∧

−=
n

i
ix

n xQxH n

1
log

We now extend our discussion to Markov sources.

A memoryless source is a 0-order Markov source. In a first order Markov source the

probability distribution of a symbol depends on the preceding symbol. Thus,

() () nixxQxxQ ii
i

i <<= −
− 2,| 1
1

1 , and ())(11 xQxQ init= ,

where the conditional distributions ()⋅⋅Q and the initial distribution provide the

parameters defining the source. The probability assignment function for strings is

()⋅initQ

() ()∏
=

−=
n

i
iiinit

n xxQxQxQ
2

11 |)(

Finally, in a kth-order Markov source the probability of appearance of a symbol is

conditioned on the last k symbols. Thus the probability assignment function is

() () ()∏
+=

−
−=

n

ki

i
kii

k
init

n xxQxQxQ
1

1
1 .

For simplicity, we shall write () ()k
init

k xQxQ 11 = .

A stochastic process is said to be stationary when its probability distribution does

not change over time and ergodic when its time averages equal the ensemble averages

(for a more formal treatment of these properties, see, e.g. [37]). Markov sources as

defined above are ergodic, and, under an appropriate choice of the initial distribution

Page 14

)(⋅initQ , stationary. We will suppose for simplicity that the initial distribution Qinit equals

the stationary probability distribution of the source. The family of stationary ergodic

sources, however, is much richer than that of the Markov processes, although any

stationary ergodic source can be approximated, in the limit, by stationary ergodic Markov

sources of increasing order [10].

We define the kth-order conditional empirical distribution of xn, , by
()k

xnQ
∧

()
() ()

()
kk

nk

nk
k

k

x ua
xufreq
xaufrequaQ n Λ∈Λ∈= −

∧

,,
,

,
1

where ()nk xufreq , is the number of occurrences of uk in xn and initial condition

. The kth-order conditional empirical is the maximum-likelihood estimator of

a kth-order probability model for xn.

()
() 1=

∧
k

k

x xQ n

Therefore, we define the kth-order conditional empirical entropy of xn as

()
()
()∑

+=

−
−−

∧∧

−=
n

ki

i
kii

k

x
n

k xxQxH n

1

1
1log

Page 15

3.3 Lempel-Ziv universal lossless data compression algorithms

Suppose you have some data produced from an unknown source. A universal

compression scheme for some given family of source models is an algorithm which

asymptotically (in the size of the input data) compresses the input data down to the

entropy of the source without any a priori information of the source distribution (except

that the source belongs to some class). Whenever we talk about a universal compression

algorithm we have to specify for which class of sources it is universal.

Several universal compression algorithms have been developed in the last 30

years. We will focus our attention to the Lempel-Ziv and related family of algorithms,

and, in particular, the LZ78 variant [27]. From an information-theoretic point of view

these algorithms are proven to compress asymptotically to the entropy of the source [10],

for any stationary ergodic source. Detailed information about lossless data compression,

and particularly about universal compression algorithms can be found in [10], [13], and

[31].

We first give a brief description of the LZ77 algorithm. The algorithm was first made

public in 1977 [29].

The idea of the algorithm is to process the source replacing already seen

substrings (within a window of prescribed length) with pointers to their previous

occurrences.

Page 16

}
Let’s assume we have an alphabet Λ of cardinality α, and an input string

 of length n. The algorithm uses two parameters, Ls and Ln as

shown in figure F2, which define the size of the look-ahead window and the past window.

The look-ahead window is a list of Ls symbols starting at the current symbol in the input

string (i.e. it always contains the next Ls symbols to be processed). Likewise, the past

window is a list of Ln symbols which always contains the last Ln processed symbols. The

algorithm uses a working window (W) which is constructed by appending the past

window and the look-ahead window. Thus, the whole working window W covers Ls + Ln

symbols. The LZ77 algorithm processes the input string as follows. Beginning at the

{ Λ∈= in
n xxxx :L1

current symbol location xi, it will search in W for the longest prefix match. The longest

prefix match is the largest substring (possibly empty) in W which both starts in the past

window, and matches part of the input string starting at the current symbol xi in the look-

ahead window. The algorithm will then output a triplet (P,L,S) where P and L are both

integers, and S is a symbol. P will denote the pointer location in the past window for the

first matching symbol, L will indicate the length of the longest match, and S will denote

the first non-matching symbol of the source. Note that P must be a number between 0 and

Ln-1, and L between 0 and Ls, thus for every triplet we can measure the code output size.

The actual values chosen for Ln and Ls may have impact on the algorithm performance.

Greater values will allow finding longer matches, but it will also require more bits to

encode the triplets.

After outputting the triplet, the window W slides L+1 elements (i.e. the number of

processed symbols) so that the first symbol in the look-ahead window is the following

symbol to be processed (xi+L+1) . We will use L=0 in case of not finding any match in the

past symbols buffer beginning at the first symbol of the look-ahead buffer. We repeat the

same parsing rule until the entire input string is processed. Due to the fact that we work

with finite-length input strings, we may need to either know the string length in advance

or add a special symbol(marker) to denote the ‘end of string’ if we were working with

streamed data sources.

The decoding procedure is very straightforward. Let’s assume that we will output

the decoded data onto an output buffer O. Then, for every triplet (P,L,S) we will append

{ }LjO jpLni ≤<++− 0: and S to the output buffer. After that we set i=i+L+1 to readjust the

output buffer pointer. Figure F2 shows a simple example of the encoding procedure.

Page 17

Figure (F2): Lempel-Ziv(LZ77) encoding example

We will now shift our focus to the LZ78 algorithm, which provides one of the

main devices in our simulation scheme. The LZ78 incremental parsing algorithm [27] is

also very straightforward. Instead of working with a sliding window, this algorithm uses a

dictionary (usually represented by a tree) to point to previously processed substrings,

which will be called phrases. The input parameters to the LZ78 algorithm are the

alphabet size and the maximum dictionary size. As in the explanation for the LZ77

algorithm, let’s suppose that we have an input string xn of length n. The incremental

parsing algorithm will split the input string xn in p phrases such that

⎩
⎨
⎧

<∀≠
<Λ∈=

=

 somefor

 where21 irsSs
ijSSss

tsssx
rj

ji
p

n

.
,.

... Lλ

and t is a tail phrase (one that already appeared in the parsing). In this expression, λ

denotes the empty-string marker and S any symbol of the alphabet Λ. For convenience,

we denote s0= λ. Note that all phrases (except for the tail phrase) are distinct. Moreover,

for a given si, there exists one and only one sj such that si = sj.S. This fact justify the
Page 18

representation of the dictionary of phrases as a suffix tree with node si being a child of sj

following an arc labeled by S.

To encode an input string, we start the incremental parsing algorithm with an

empty dictionary (just containing an empty-string maker λ), and set the current symbol xi

at the first symbol of the input string. We look in the dictionary for the longest phrase that

matches the input string beginning at xi. We denote h to the length of that phrase. Then

we output a pair (P,S), where P is the location of the longest match and S is the first

unmatched symbol (i.e. xi+h). Next, we enlarge the dictionary adding the new phrase

consisting of the concatenation of longest match found and S, i.e. . After that we set

the current symbol to be the next unprocessed symbol in the input string and repeat the

procedure. The size of the output pairs grows due to the fact that the dictionary gets

bigger with each round of the algorithm. Some variants of the algorithm limits the size of

the dictionary (purging the oldest ones) to keep the size of the output pairs bounded.

hi
ix +

To decode the set of output pairs back to the original string, we start again with an

empty dictionary (just containing the λ empty-string marker) and process in order the

input pairs. Each pair will decode into a new substring, that will be concatenated to the

output string and a new item will be added to the dictionary.

Page 19

As stated before, the incremental parsing algorithm is extensively used in this work. For

the purpose of efficiency, we model the dictionary with an α-ary tree (α being the

alphabet size of the input string). Figure A1 describes the incremental parsing algorithm

using this data structure. Let xn be a one dimensional input sequence (string) with

alphabet Λ of cardinality α. We use a variable i to point to the current symbol (S), and t to

point to the current node. To encode the input sequence, we set t at the root (λ) of the tree

(step 1) and begin consuming data from the input string. We traverse the tree, node by

node, moving to the child node with the arc labeled with the current input symbol until

we get to a node that either has no children (step 3.a) or in which no outgoing arc matches

the current input symbol (step 3.b). At that point we create a child node labeled with the

current phrase (i.e. the phrase of the parent node plus the current symbol), and we label

the arc to the child with the current symbol. Then we set our location to the root and

continue parsing the remaining data. Every time a new leaf is added to the tree, a new

phrase labeled by the path from the root to this leaf is generated. By construction, every

new phrase is the concatenation of an already processed phrase with the last consumed

symbol. The tail depth, which is the depth of the current standing node when the

algorithm finishes (step 2 and 4), is an exception to this rule. It points to a node in the tree

which already existed; and it is due to the fact that we work with finite length input

sequences. Figure F3 is an example of the incremental parsing algorithm showing the

output pairs and the resulting parsing tree.

In this section we have presented the incremental parsing algorithm along with

some brief explanations on the encoding and decoding procedures used in the LZ77 and

LZ78 universal lossless data compression algorithms.

Input: input sequence (xn) of length n
Outputs: LZ tree(T), tail depth(d)

1. Set your location t at the root(λ) of the tree.

2. Check if there is more data from the input sequence. If there are

no more symbols (i.e. i=n) go to step 4.

3. Get the next symbol S = xi, set i = i+1. Look for all the outgoing

arcs of t to see if one is labeled with S.

a. If there is a match, set t to the child pointed by the

matching arc, and go to step 2.

b. Otherwise create a child node v labeled with the

concatenation of the phrase in t and S. Label the arc

between t and v with S. Go to step 1.

4. Return the tree (T) and the integer (d) of depth of the last node

visited by the algorithm (the tail depth)

Figure (A1): Lempel-Ziv(LZ78) incremental parsing algorithm

Page 20

Input string xn = 101101010110011

Incremental parsing:

1,0,11,01,010,110,011

Encoding output pairs:

(0,’1’) (0,’0’) (1,’1’) (2,’1’)

(4,’0’) (3,’0’) (4,’1’)

Tail: λ (tail depth=0)

λ

0 1

01 11

010 011 110

Parsing tree of xn

0

1 2

4 3

5 7 6

0

0

1

1

1

1 0

Figure (F3): Lempel-Ziv(LZ78) encoding example. The left side shows an example input string, the result
from the incremental parsing and the encoding output pairs resulting from it. The right side shows the
parsing tree derived from the input string. The numbers inside the squares at the right of each node
represent the time of appearance of each phrase in the incremental parsing.

Page 21

3.4 Plane Filling Curves

Our work makes strong use of the original Lempel and Ziv incremental parsing

algorithm, which processes one-dimensional input sequences. On the other hand, image

textures are two-dimensional data sequences. Thus, we need to find some means of

traversing the image to feed the parsing algorithm. It is interesting to note that in [28]

Lempel and Ziv already treated this problem in order to compress two-dimensional data.

The method used to visit the pixels of the image is regarded as the scan order of the

image. There are many ways of doing this, each one having its pros and cons. We will

briefly discuss some of them here.

The simplest approach, called raster scan, is to traverse the image row by row

(see left image in fig F4). This approach is very easy to implement. Its main advantage is

that it does not need to have the full image available at any time. For this reason, it is

mainly used in memory-constrained scenarios (i.e. JPEG-LS). Its main drawback with

respect to our work will be evidenced after we develop the concept of space filling

curves.

Raster Scan Raster Plane Filling Curve

Figure (F4): Raster scan and Raster plane filling curve. The left side shows the way the Raster scan
traverses the image, row by row from left to right. The right side shows a modified raster scan that
conforms with the requirements to be a plane filling curve. It traverses the image also row by row, but
interchanging the orientation of the scan after finishing a line.

Page 22

In 1890 Giuseppe Peano introduced the notion of space filling curves, which are

continuous mappings of the reals(R) onto a multidimensional unit hypercube [38].

Page 23

}
More formally [21], we denote d(.) as the regular Euclidean distance and

. A discrete m-dimensional space filling curve C of length Nm is defined

as a bijective mapping:

[] { NN ,,1L=

[] []mm NNC →: such that () ()() []111, −∈∀=+ mNiiCiCd

The special case of a second order hypercube is called a plane filling curve. The

application of a plane filling curve over an image sets a unique index (also referred as the

time variable) over each pixel in the image. The resulting mapping between the time

variable and the image coordinates is bijective (i.e. given a time index one can obtain a

pixel coordinate and the other way around). There are a number of plane filling curves

mentioned in literature, most notably the Hilbert curve, the Sierpinksi curve and the

Peano group of curves. The application of such curves to the scanning of images is

referred to as the Hilbert scan, the Sierpinksi scan and the Peano scan respectively (see

fig F5). A slight modification of the raster scan yields another plane filling curve (fig F4).

These plane filling curves usually have some constraints on the size of the image. For

example, in the Hilbert scan the image dimensions need to be equal and a power of two

on all directions. However, more complex plane filling curves can be defined which do

not suffer from these constraints (see for example [38]).

As images are often modeled as two dimensional, finite memory random

processes, we would like to use scan orders which have the property that two points close

in the scan order are also spatially close in the image. This property is indeed important

because we want to model the sequences produced by the scan of the image as finite

Markov random processes to feed the incremental parsing algorithm. Therefore we have

to focus on the metric properties of plane filling curves.

To this extent Gotsman and Lindenbaum [21] introduce the following locality

measure, ()
() ()(){ }

∑
<∈

−
=

jiNji m jCiCd
ji

CL
,.., ,0

 which is used as a foundation to prove that for

any space filling curve there will be at least two points in [N]m that are spatially close

with respect to the Euclidean distance yet they are distant along C. In spite of this, one

can build space filling curves that on average perform very well (for example, the Hilbert

curve). Moreover, we are more interested to know what happens with the converse (i.e.

up to which extent two points that are close within the curve will be spatially apart).

Figure (F5): Construction the Hilbert, Sierpinksi and Peano scans. The first and second row shows the
construction of the Hilbert and Sierpinksi scans of sizes 2nx2n, for n=1..4. The third row shows the
construction of the Peano scan of sizes 3nx3n, for n=1..4

Gotsman and Lindenbaum [21] introduced two new measures of locality and

found lower and upper bounds for them. They also proved that under these measures the

raster space filling curve performs extremely badly (for any two end points of a scan line,

both the Euclidean distance and the distance along the curve are N-1). Furthermore, they

prove that the Hilbert curve is close to optimal and dramatically outperforms the raster

space filling curve with respect to this locality measure.

Therefore, although we have tried other order scans like the raster scan, or the Sierpinksi

scan, we will mainly use the Hilbert scan.
Page 24

The Sierpinksi, Peano, and Hilbert plane filling curve all share the same principle

of construction. For any square image N2xN2 one can construct these curves recursively

using rotated forms of some more basic curves. These constructions are shown in figure

F5. The first row shows the construction of the Hilbert scan for images with sizes 2x2,

4x4, 16x16 and 64x64. For images with size 4x4, the scan is constructed by means of

copying a rotated version of the 2x2 scan. Likewise, to construct the 16x16 scan, we use

rotated versions of the 4x4 scan. This idea can be applied recursively to construct the

Hilbert scan of any image of size 2Nx2N. The Sierpinksi of size scan 2Nx2N is also

constructed by applying recursively the Sierpinksi scan 2N-1x2N-1. The Peano scan can be

constructed with the same principle, although in this case the size of the image side

should be a power of 3. This will present challenges in our work, which we will need to

address.

Lets say we have an image of size 2Nx2N, and an array []120 2 −NH L in which we

want to copy the contents of the image. We will use the Hilbert scan for this purpose.

Recall that if we traverse the image with a Hilber scan, for every pixel in the image we

have an index (the time variable t) which maps the pixel with the “time” in which the

scan passed over it. Suppose that we apply some calculations over the resulting array and

then revert back the Hilbert scan (i.e. we traverse the image again, but this time copying

the contents of H at position t to the corresponding location in the image). If the

calculations applied to H were a shift of the contents (e.g. H[i] = H[i+m]) the resulting

image after reverting back the Hilbert scan would show portions of the original image

with rotations of multiples of 90°. Furthermore, due to the recursive nature of the

construction of the Hilbert scan, these rotations may be seen at different scales depending

on the magnitude of the shift. Figure F6 illustrates this problem. The first image shows a

picture with some horizontal lines. In the remaining pictures we applied the calculations

mentioned above with some (increasing) values of m. The visual consequence of these

operations is that in some areas of the image, the horizontal lines become vertical lines.

Moreover, for some delay values the reconstructed images doesn’t even resemble lines

anymore (see for example the last image in F6). In the following sections we elaborate

more on this problem and on measures taken to alleviate its visual effects.

Page 25

Figure (F6): Examples of the issues when reverting back a Hilbert scan after applying calculations. The
top left picture shows the input image. The remaining pictures show the resulting image after applying the
calculation H[i]=H[i+m] for different values of m.

Page 26

3.5 Universal Type Classes

In this section we give an introduction to universal type classes and universal simulation.

However, we first introduce the conventional method of types [11, 12].

We consider an alphabet Λ of cardinality α and use xn=x1x2...xn to denote a

sequence of length n (). Consider a parametric family nnx Λ∈ { }Θ= PP of distributions

on Λn parametrized by a vector Θ of k real-valued parameters:

[] knP RD ⊆∈Θ→ΛΘ ,1,0:

Then, for a given sequence xn, the type class of xn with respect to P is defined as the set

[11]

() (){ }DT ∈Θ∀=Λ∈= ΘΘ
nnnnP

x xPyPyn :

Type classes will be characterized by the combinatorial structure of xn, and are related to

the notion of sufficient statistics.

For fully parametrized memoryless distributions we need to know the α-1 free

parameters that determine the probability of occurrence of every symbol of the alphabet.

For example, consider the case of binary sequences. Thus, in this case we have α=2 and a

parameter θ (0 ≤ θ ≤ 1) such that Pθ(xi = 1) = θ, i.e., this is the family of Bernoulli

processes, Bernoulli(θ).

{ } (){ } () (10,1,0 ≤≤==Λ θθBernoulliP ,) mnmnxP −−= θθθ 1 , where m is

the number of ones in xn. In this case, it is readily verified that xn and yn are of the same

type if and only if they have the same number of ones. For example, ‘1100110010’ and

‘1010101010’ are from the same type, but ‘1111000011’ is not.

The number of type classes for memoryless distributions is polynomial in n [10].

There are at most α free parameters needed to fully parameterize a memoryless

distribution with alphabet Λ of cardinality α, and each parameter can have a value among

n+1 possible values. Therefore, the number of type classes of input strings of size n ()nP

can be upper bounded by ()α1+≤ nnP . We now give bounds on the size of a type class,

which are proved in [10, 11]:

Page 27

()
() ()PnHP

x
PnH

n

n
22

1
1

≤≤
+

Tα , where ()⋅H denotes the binary entropy function

)1(log)1(log)(22 xxxxxH −−−−= . The fact that the number of classes is

subexponential is indeed useful, for example for enumerative coding [9]. In this type of

coding, every string xn belonging to a specific type class can be assigned a codeword

of length

P
xnT

() ⎡ ⎤ ⎡ ⎤P
xn

n
nxl TP 22 loglog += as follows: Use the first ⎡ ⎤nP2log bits to

describe the type class, and the remaining ⎡ ⎤P
xnT2log bits to identify xn from within the

class. Recall that for any model Q the “ideal codelength” of xn under this model is

()⎡ ⎤nxQ2log− . Therefore, l(xn) will exceed this “ideal codelength” by less than ⎡ ⎤nP2log

for each source model in the family. The proportion of excess bits with respect to l(xn)

decreases as n increases. Thus, the method of types can be used as the basis of universal

source coding for the family of fully parametrized memoryless models.

Recall from the introduction of Markov sources in section 3.2 that the probability

distribution of a symbol for a first order Markov source depends only on the preceding

symbol. For simplicity we assume that the initial distribution equals the stationary

probability distribution. Thus, for first order Markov distributions, type classes of xn are

determined by the empirical joint distribution of order 2 (i.e., there will be α(α-1)

parameters that specify the probability of occurrence of every symbol given the preceding

symbol).

More generally, for finite memory Markov distributions of a given order k, if we

assume once more that the initial distribution equals the stationary probability

distribution, the type classes are determined by the empirical joint distribution of order

k+1. As with the case of memoryless distributions, the growth rate in the number of type

classes is subexponential. We can model Markov distributions of order k with finite-state

types [11] with states, each state having α numbers with a value among n+1 possible

values. Therefore, the number of classes is upper bounded by

kα

()
k

nk

n

αα1+≤P . A lower

bound was derived in [49], () k

Cnk
n

αα 1−≤P , where C is a constant which depends on the

finite-state machine defining the class. The size of a class is approximately [11]

Page 28

()n
k

n
xHnP

x

∧

≈ 2T . As with the case of the method of types for memoryless sources, we can

use these properties for universal source coding for the family of Markov models of order

k. For a thorough review on the classical method of type, see e.g. [10, 11].

We now introduce a generalization of the method of types, introduced in [43] and

[42]. Recall from the introduction of the Lempel-Ziv universal lossless compression

schemes (section 3.3) that as a result of applying the incremental parsing algorithm

(LZ78) we get a parsing of the input string. Let { }px
sssT n ,,, L21= denote the set of

phrases of that parsing. Then, we define the universal type class (UTC) of xn as the set

[42]:

{ }nnn xy
nn

x
TTy =Λ∈= :U

There is a bijective mapping between the set Tx
n and the tree resulting from the

application of the incremental parsing algorithm defined in figure A1, thus we will refer

to it as the parsing tree of xn. Note that every sequence from the UTC has the same

parsing tree. The parsing tree of xn is an α-ary tree rooted at λ. Every node of the tree

represents one phrase of the incremental parsing, and for every phrase si which is an

extension of sj with the symbol Λ∈S added as a suffix (j>i) there will exist a branch

labeled S going from the node si to the node sj. Throughout this work we will make

extensively use of these trees and its connection with UTCs. The definition of the UTC

given in [42] states that all the sequences in a class must have the same length. Thus,

even if two sequences span the same parsing tree, they need to be of the same length(the

tail size has to be the same) to be part of the same UTC. When the tail size of xn
 is zero,

the universal type class is called the natural UTC of Tx
n.

Given the UTC defined by the sequence xn, every other sequence yn contained in

the same UTC is the concatenation of a permutation of the set of phrases spanned by the

incremental parsing algorithm over xn. On the other hand, not every permutation of the

set of phrases leads to a sequence contained in the same UTC, as for every phrase si=sj.S,

it is mandatory for sj to appear before si. In other words, a valid permutation requires that

for every phrase, the node of the parsing tree associated to it has to be reachable (i.e., all

the parent nodes already been visited) when that phrase is selected. Figure F7 shows an

example of sequences contained and not contained in the same UTC.
Page 29

xn = 101101010110011

Incremental parsing output:

1,0,11,01,010,110,011

yn = 111011001011010

Incremental parsing output:

1,11,0,110,01,011,010

zn = 110011010110110

Incremental parsing output:

1,10,0,11,01,011,0110

Page 30

Figure (F7): UTC example. The figure of the left shows three binary input sequences (xn, yn, zn) of
length=15 and the incremental parsing of each of them. xn and yn are from the same UTC while zn is not.
The right figure shows the parsing tree of xn and yn (which are the same).

Recall that in the conventional method of types any pair of sequences xn, yn
 of the

same class are assigned identical probabilities by any model in the class defining the

types. This means that they are statistically indistinguishable by any model from the

class. Lets define the variational distance () ()∑
Ω∈

−=−
w

wQwPQP
1

, where Ω denotes

the set of possible k-tuples from kΛ . In the case of the UTCs defined above, it can be

shown [42] that if , then for every integer k ≥1, the variational distance between

the kth order empirical distributions of xn and yn vanishes as

nx
ny U∈

∞→n . Thus, two sequences

of the same universal type class are also statistically indistinguishable (in the limit) by

finite memory models of any order. As with the case of conventional types, with UTCs it

is also desired that the growth rate in the number of type classes be subexponential. Using

the main result of [41], this is indeed proven in [42]. The number of universal types for

sequences of length n is
()
()

()()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

=
11

1
o

n
nH
.

log
..

nN
αα

α .

For the purpose of simulating individual sequences from a UTC, we need to develop

some means to select sequences uniformly at random over a defined UTC. When

,the simulated sequences will be statistically indistinguishable from the input ∞→n

λ

0 1

01 11

010 011 110

Parsing tree of xn and yn

sequence (the one used to define the UTC), and yet they will be taken from the broadest

pool of sequences which fulfill the statistical constraint (i.e. there will be maximum

entropy in the selection of the sequence). Such sampling algorithms are presented in [42].

The algorithm shown in figure fig A2 samples a sequence uniformly at random

from the UTC given a parsing tree of xn and a tail size. We assume that we have an α-ary

tree T (and a tail size d) built according to the Lempel-Ziv incremental parsing algorithm

depicted in figure A1. We use a variable t to point to a node of T, and denote ta to refer

the child node a of t. We also denote cp(t) to the number of nodes below t plus 1. Every

node in T is decorated with a boolean which indicates if it has been visited at least once

and an integer U(t) which contain the number of nodes below t which have never been

visited by the algorithm yet. Whenever a node t is visited, we decrement U(t) in one unit.

Inputs: LZ tree(T), tail depth(d)

Output: Randomly sampled sequence

1. Walk through all the nodes of T marking them as unused, and for each

node t set U(t) = cp(t); U(t) denotes the number of nodes below t

which have never been visited yet, and cp(t) denotes the number of

nodes below t plus 1. Mark the root (λ) of T as used and set

U(λ) = U(λ)-1.

2. Set t at the root(λ). If U(t) = 0 go to step 5.

3. If t is marked as unused output the phrase associated to t, mark t

as used, set U(t) = U(t)-1, and go to step 2

4. Draw randomly a symbol a from Λ with

distribution () ()
() Λ∈== b
tU
tbUba ,Prob , set U(t) = U(t)-1, set t = ta and

go to step 3.

5. Pick uniformly a node t of depth d from T and output it as the tail.

Figure (A2): Random sampling from universal type

The algorithm works as follows. In step 1 we initialize U(t) for the entire tree and

mark the root λ as visited. In step 2 we set t as the root and check U(λ) to see if we have

visited all the nodes of the tree. In that case we go to step 5 where we pick a node of

depth d uniformly at random, output it as the tail and finish the algorithm. Otherwise, in

Page 31

step 3 we check t to see whether it has ever been visited in which case we output the

phrase associated to t and return to step 2. If the node has already been visited, we select

a child a uniformly at random, set t = ta and return to step 2.

 This algorithm selects sequences uniformly at random, which yields the

maximum entropy as we wished. It is the base for our work in simulation of textures and

texture mixtures, and is further developed in the following sections to tailor image

textures. Figure F8 shows an example of the use of this algorithm. The left image shows a

black and white input texture. We apply the Hilbert scan (described in section 3.4) to get

an input binary sequence. Then, we compute the UTC for that sequence following the

incremental parsing algorithm shown in figure A1. The resulting parsing tree and tail size

are used as inputs to the random sampling algorithm just described to simulate two new

sequences. Reverting back the Hilbert scan gives as output the two images shown in the

center and the right figure F8.

Figure (F8): Example of the random sampling algorithm. The left figure shows the input texture. The center
and right figures show two different simulations.

Page 32

3.6 Wavelets decomposition and the steerable pyramid

In this section we describe a multi resolution analysis scheme (MRA for short) widely

used in the image processing field.

Traditional frequency analysis tools involve the use of Fourier transform (i.e.

Fast Fourier Transform, Discrete Fourier Transform, and Windowed Fourier

Transform). These methods decompose a periodic signal into a series of sines and

cosines. Thus, any periodic signal can be analyzed either in the time domain or, applying

the Fourier transform, in the frequency domain. Various approaches have extended this

idea to non-periodic signals (e.g, applying a Windowed Fourier Transform). An

important drawback of the Fourier analysis in some applications is that it is not local in

space. On the other hand, a wavelet decomposition of a signal is localized not only in the

frequency domain but also in space due to the fact that it works at different scales. This

allows us to analyze the signals both at a coarse level and at a fine grain level. For

example, if the analysis is applied to an image, it allows studying the objects that

compose it (the coarse level) and the details of each of them (in a finer scale). A brief

introduction to wavelets can be found in [22], and a thorough review in [32].

Every wavelet transform comprises the use of a kernel filter (mother wavelet) and

the application of translated and dilated versions of this kernel. Usual wavelet transforms

are not translation-invariant [46], [30], a feature that is usually desirable in image

processing. However the steerable pyramid, introduced in 1990 by Simoncelli [46] is

both translation-invariat(i.e. aliasing-free) and rotation-invariant. Due to these features, it

has been widely used for image processing. The steerable pyramid is a linear multi-

orientation image decomposition. The basis functions of the steerable pyramid are

translations, dilatations and rotations of a single kernel. For more information on the

design of this kernel see for example [18]. Figure F9 shows the analysis and synthesis

diagram of the steerable pyramid for a single scale. The left side shows the analysis step

for a single scale. The signal goes through a high pass and low pass filters. The lowpass

subband (L0) is further filtered thru n orientation bandpass filters and a lower pass

subband (L1 in the figure). This subband is decimated (by a factor of 2) and the

Page 33

procedure is repeated for the next scale. The recursive application of it yields the

pyramidal structure.

The synthesis procedure is usually referred as collapsing the pyramid. It works

backwards, upsampling the input lowpass subband (L1) and applying the inverse

transform to reconstruct L0. Applying a steerable pyramid decomposition to an image

and subsequently collapsing the pyramid does not gives a perfect reconstruction.

However, it was noted in [44] that the reconstruction errors are small enough for most

applications. As it can be seen from the figure, the high frequency subband is copied ‘as

is’. The number of scales and orientations used are arbitrarily selected to match the needs

of the application. However, it has to be taken into account that the transform is

overcomplete by a factor of 4n/3. This can be a major drawback if the steerable pyramid

were intended to use for image compression. However, for our work this issue will only

impact the run-time performance of our algorithms. Other wavelet decompositions (e.g.

orthogonal ones) do not suffer from this bloat in size, though they are generally worse for

image processing as they are neither translation-invariant nor rotation-invariant.

H0(-ω) H0(ω)

B0(-ω) B0(ω) L0(-ω) L0(ω)

B1(-ω) B1(ω)

BK(-ω) BK(ω)

2↑L1(-ω) L1(ω) 2↓

Figure (F9): Steerable pyramid analysis/synthesis. Figure taken from [44]

Page 34

4 Previous Work

Before we give a detailed description of our work, we review some of the previous work

in the literature related to texture simulation, universal simulation and texture mixture and

their relation with our work.

The reference papers in universal type classes is the work by Seroussi [42]. It shows

the analogy between UTCs and traditional types, provides formulas to obtain the size and

number of classes of a given sequence length, and develops algorithms for random

sampling from the class. As an example application they used the random sampling

algorithm to simulate sequences. They took a black and white texture image and applied a

Hilbert scan to obtain a 1-d input sequence. They obtained the UTC for that input

sequence, and sampled new sequences from it. Then, they reversed the Hilbert scan to get

back a new texture that, as is proved in their paper, has the same statistical properties as

the input texture.

We use this scheme as a starting point for our work. However, as we discuss later,

there are some drawbacks in this approach especially when applied to signals over larger

alphabets, for e.g. continuous tone images and textures. These challenges are briefly

discussed in the closing section of [42].

Heeger and Bergen [23] provide a texture synthesis algorithm aimed at the so

called “stochastic textures” (e.g. sand, grass). Their algorithm is based on histogram

matching [20] of filter outputs. Initially they take a texture input image and create a

temporary output image of the same size initially filled with uniform white noise. While

iterating the algorithm, the output image will be modified to resemble the input texture.

Their approach combines the use of histogram matching with image pyramids. In their

work they used two kinds of image pyramids, the Laplacian pyramid and the steerable

pyramid (described in section 3.6) with this last pyramid giving better results. For every

iteration of the algorithm, a wavelet decomposition of the image is performed. Then, a

histogram match is performed for each subband. A histogram match between two images

A and B is a procedure in which A modifies its pixel values so that the resulting image has

Page 35

the same histogram as B. After the histrogram match is performed, the output image

pyramid is collapsed and a new histogram matching is performed. This process

(decomposition, histogram matching, collapsing) is repeated a certain number of times,

after which the output image will start resembling the input texture. From the point of

view of a human observer, the algorithm typically converges after a few iterations.

Allowing the algorithm to run too many times might lead to artifacts in the output image

(mainly due to errors on the pyramid decomposition/reconstruction). For color images

they point out that usual images uses a color space in which each channel is not

independent of the others, so a conversion step is needed before applying the algorithm.

Their approach for these types of images is to use principal component analysis (PCA) to

work with decorrelated variables, thus allowing them to apply the algorithm

independently to each channel. Figure F10 shows some successfully synthesized textures

and also some less successful ones (taken from [16]).

Figure (F10): Heeger and Bergen’s synthesis examples. The first two columns show original textures
and the successfully synthesized ones. The last two cols show original textures and their less successful
synthesized versions

Page 36

 De Bonet and Viola [4] extend the idea of a multi-scale statistical model for

natural images by using cross-scale information. While Heeger and Bergen’s algorithm

was well suited to work with smooth textures, more structured textures (like a wall of

bricks) do not produce good results because the wavelet decompositions for these

textures are not cross-scale independent (i.e. many coefficients are needed to represent a

long edge). De Bonet and Viola’s approach to this problem was to define a vector V for

every pixel that combines the coefficient of each feature extraction filter at every scale of

the pyramid (i.e. Vi are the coefficients of the filters at the ith scale level). Note also that

the coefficients due to the top levels of the pyramid are shared by many pixels (4i
 pixels).

The joint distribution of the coefficients is then modeled by a chain, in which the

distribution of the coefficients of higher frequency is conditioned by the coefficients of

lower frequencies:

() () () () () () ()⎟
⎠
⎞

⎜
⎝
⎛××⎟

⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ →→→→→

−

→→
yxVyxVyxVpyxVyxVpyxVpyxVp MMMM ,,,,,,,, LL 101

where M is the number of levels of the pyramid.

The conditional distributions involved here are estimated from sampled vectors

taken from example images. When synthesizing a new image, they start generating the

values for the lowest frequency scale of the pyramid (VM) at every possible pixel

location, and then they proceed with the next level of the pyramid. After that the pyramid

is collapsed to obtain the new image. Figure F11 shows a comparison between Heeger

and Bergen with De Bonet and Viola’s algorithm for a structured image texture (images

taken from [4]).

Figure (F11): Comparison between Heeger and Bergen with De Bonet and Viola’s synthesis result. The
left image is the input texture, the middle is Heeger and Bergen’s and the last is De Bonet and Viola’s

Page 37

 Efros and Leung [15] provide a method for inpainting by growing texture one

pixel at a time. Their approach can also be used to synthesize new images by extending

that idea (e.g. just consider an extension to an input texture by enlarging it with the region

to synthesize). They model texture using Markov random fields (the probability

distribution of pixel values only depends on the values of the pixel’s neighborhood).

They define a parameter Lw as the side of a square window w(p) centered at pixel p. For

any given pair of pixels (p1, p2), they define a perceptual distance between the patches of

the windows w1(p1) and w2(p2). This distance is derived from the normalized sum of

squared differences of the corresponding pixels en each window, by convolving it with a

Gaussian kernel, thus giving priority on the perceptual distance to the closer-to-center

pixels of the window. Then, to derive the unknown pixel at the center of a w, they sample

from the probability distribution ()()pwpP . Of course, generally not all the pixels of w(p)

(besides p,of course) will be known, so they adjust their metric to work with holes in the

window. The resulting synthesized images are able to capture both stochastic and

structured textures. The main drawback is that the parameter Lw must be adjusted for

each texture to match the size of the biggest structure patch; and more complex images

with features in various scales will not be correctly captured. As a side note, their authors

also acknowledge the tendency of the algorithm to get locked in some area of the image

and start creating verbatim copies of some region of the image.

Another work which synthesizes images with impressive results is the framework

of Image Analogies which addresses the following problem [24]: “Given a pair of images

A and A’ being the unfiltered and filtered source images respectively, synthesize a new

filtered target image B’ given the unfiltered target image B.” In other words, the idea is to

find an image B’ that relates to B in the same way that A’ relates to A. This framework

has been applied successfully in many applications, including texture synthesis, super

resolution, texture transfer and artistic filters.

 The algorithms presented in the referenced papers can be extended to generate

texture mixtures. Just create a source image in which different regions are mapped with

different input textures. However, this approach may lead to undesired artifacts, in many

cases due to the sharp edges found between boundaries of the source textures. Other

works are especially tailored to mixing textures. The work of Bar ([1], [2]), uses
Page 38

statistical learning with tree mixing techniques to generate new texture mixtures. It is

assumed that image textures are samples from an unknown stochastic source. Thus, after

learning the underlying statistical model new textures can be sampled from it. Given the

set of input textures (s1 … sk), each texture is an observation from an unknown stochastic

source Sk. A hypothetical source Z is defined such that Z is closest to all the sources Si

simultaneously (i.e. it minimizes the Kullbak-Leibler divergence to every Si). Due to this

fact, Z is called the mutual source of Si (i=1..k). After obtaining the mutual source, new

images which are statistically similar to Si can be generated by sampling from Z. Instead

of working directly with the input images, a wavelet decomposition (steerable pyramid) is

performed to each input signal yielding k trees. Then, to sample from the mutual source,

a tree mixing technique is applied, which results in a new tree being generated. Applying

the inverse wavelet decomposition to the tree yields a new image texture which is

statistically similar to all the input sources. Thus, when the input sources si come from

different textures, the algorithm generates a texture mixture. As we shall see in section 6,

our method to simulate texture mixtures is also based on mixing trees. When applying

their algorithm to mix disparate textures, their approach tend to lock on one of the input

trees, so some adjustments to the original algorithm must be taken to alleviate this

problem. Our method does not suffer from these kind of problems due to the way we mix

the input trees. Their method not only gives good results with texture images, it is also

able to synthesize time varying textures (e.g. a crowd of people. Fire flames, etc). Figure

F12 shows two synthesis done with this methodology. In the first example, the left

picture is the input texture. To synthesize a new texture based on it, some overlapping

regions are taken from the input texture and fed to the statistical learning algorithm

giving the result shown on the second image. To generate the texture mixture shown in

the rightmost picture, the first and third images were used as input sources.

Page 39

Figure (F12): Ziv Bar’s texture synthesis example. From left to right: original texture A; sampled texture

from A; original texture B; mixed texture from A and B

To finish this section, we mention some recently works on texture

characterization. Simoncelli and Portilla presented a texture characterization via joint

statistics of wavelet coefficient magnitudes [47]. Their work is based on the fact [39] that

the features of real images usually contain large coefficients in local spatial

neighborhoods and adjacent scales and orientation. Working with a steerable pyramid

decomposition (mainly because of its properties of being translation and rotation

invariant), the characterization is given by a minimal set of statistical measurements.

Another recent work by Zhu et al [51] presents a statistical theory for texture

modeling (FRAME: Filters, Random fields, and Maximum Entropy). Their

characterization is based on the derivation of a probability distribution f(I) over an

ensemble of images I with the same texture appearances. To derive this distribution

(given a set of observed textures) they follow a two step methodology. They select a set

of feature extraction filters which are applied to the example observed textures to obtain

the filtered textures histograms. With these histograms the marginal distribution of f(I) is

estimated. Then a feature fusion step is performed which constructs a maximum entropy

distribution p(I) given the marginals distributions of f(I). After p(I) is constructed, new

images with the same texture appearances can be created by sampling directly from it. In

[19] Gimel, Van Gool and Zalesny recently pointed out that there are some major

drawbacks on the theory (e.g. how to choose the set of filters).

Page 40

5 Universal Simulation of Textures

In this section we introduce our framework for universal simulation of textures using

universal type classes. The framework developed is quite flexible, allowing us to work

either directly with the input texture or over a wavelet decomposition of the source

textures. This section addresses the problem of universal simulation of single textures;

section 6 deals with texture mixtures from multiple input textures.

5.1 Basic simulation

We begin our work by applying the scheme used in [42] for universal simulation (which

was described in section 3.5). However, we use greyscale and color textures instead of

binary images. Color images are usually encoded in some color space. For example, in

the RGB color space the image is composed of 3 channels (Red, Green and Blue).

Typical image formats like PNG or GIF use this color space. Another color space,

YCbCr, is also composed by 3 channels (a luminance channel Y, and two chrominance

channels Cb and Cr). If we re-encode an image from the RGB color space to the YCbCr

color space, the luminance channel contains information from the three RGB channels as

it is calculated from a weighed sum of them. Throughout our work, we will use the

YCbCr color space. More specifically, we will use the luminance channel for our

simulations and transfer the results to the chrominance channels, i.e., we will let the

simulation on the luminance channel determine the rearrangement of pixels in the image,

and apply the same rearrangement to the chrominance channels. More information on

color spaces can be found in [20].

Following the extension introduced by Lempel and Ziv to their incremental

parsing algorithm to deal with two-dimensional data [28], we use a plane filling curve to

map the 2D input texture onto a 1D input sequence.

Roughly speaking, we traverse the input texture with some plane filling curve. In this

traversal we copy the contents of the luminance channel at every visited pixel to create a

1D sequence. Then, to obtain the universal type class for the sequence we build the LZ-

Page 41

tree with the algorithm described in section 3.3 (Fig A1). With the resulting tree and the

tail size we generate a new sequence (simulation) following the random sampling

algorithm presented in section 3.5 (Fig A2). This is basically a mapping of the occurrence

in time of each pixel from the original image sequence to a new location in the simulated

image sequence (i.e. a permutation of phrases from the incremental parsing). Then, we

just have to revert back the scan applied to the original texture to obtain the simulated

texture. When working with color images, we have to apply the results of the simulation

also to the chrominance channels. This can be easily done using the indices of the

permutation of phrases of the incremental parsing but this time instead of reverting back

the luminance channel, we revert back the chrominance channels. In our basic simulation

the scan order chosen was the Hilbert scan, mainly due to the locality measure properties

[21] described in section 3.4.

 One of the main contributions of this work is to measure the richness of the

simulations (i.e. the size of the UTC). In other words, we would like to know how many

different textures we can produce as simulations of the input texture, all complying with

the “similarity” constraints imposed by our scheme. As shown in [42], by the properties

of the incremental parsing algorithm, all the simulated textures are statistically

indistinguishable (in the limit) by finite memory models of any order. We now elaborate

on the way to measure the richness of the class of an input texture. Recall that in step 4 of

the random sampling algorithm (fig A2) we draw the next node to visit (tv) in the tree.

We can determine the probability of selection of the chosen node by

computing ()
()tU
tvUpd = . Thus, to calculate the probability of simulating a sequence we just

have to compute . The number ps can be easily computed as we execute the

simulation algorithm, by noting (and multiplying) the probabilities of the symbols chosen

in each random draw. But the algorithm selects sequences uniformly at random,

thus

{ }
∏=

drawevery
ds pp

nx

s U
p 1

= . This gives us a method to calculate the number of different textures our

scheme can simulate for a given texture, by running one simulation instance on that

texture.

Page 42

The size of the UTC (Ux
n) is usually very big, so instead of working with such

large numbers we take logarithms. Thus, instead of calculating the probability of each

draw, we determine the contribution of entropy for these drawings by

computing ()
() ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−=

tU
tvUHd log . If we sum up these contributions we end up with the

entropy of the full simulation. Let’s take for example the texture of figure F8 shown in

page 32(a 256x256 monochrome image). After computing the UTC for this image we

calculated the size of Ux
n which is roughly 236994. Therefore we can synthesize 236994

different textures which share the same UTC.

We now test our simulation scheme with the texture shown in figure F13a which

is a photograph of a carpet (512x512 greyscale image) with a diagonal pattern (seen left-

to-right it goes up-to-down). After applying a simulation we computed the output entropy

which gave 544460 bits. Thus, the size of the UTC was 2544460. The results of the

simulation are shown on figure F13b. Clearly, the simulated image does not show what

we would expect. In the following section we analyze the reasons for these results and

improve our simulation scheme accordingly.

a) b)

Figure (F13): Basic simulation example. Figure a shows an input texture, and figure b shows a simulation
using the basic simulation scheme

Page 43

5.2 The ‘Context dilution’ problem: quantization and vectors

The Lempel Ziv incremental parsing algorithm can be seen as a context modeling tool

[26, 40]. Although it is generally described as an encoding based on a string

algorithm that does not explicitly rely on probabilities, the LZ78 scheme

can be shown to be equivalent to an encoding resulting from a probability

assignment. This point of view was first described in [26]. Under

this interpretation, each symbol in the input string xn can be seen to be

assigned a probability conditioned on the previous symbols in the current

phrase of the incremental parsing. Thus, given a phrase , the

symbol xj is assigned a probability conditioned on the empty string (i.e.,

unconditional), xj+1 is conditioned on xj, xj+2 is conditioned on

 is conditioned on , r ≤ s. The conditional probability of , for

an arbitrary symbol a, is proportional to the number of nodes of the current parsing tree in

the subtree rooted at , if such a subtree exists, or zero otherwise.

Equivalently, this number is equal to the number of prior occurrences of a

in the current context. Notice that this probability assignment is closely

related to the random sampling algorithm described in section 3.5 (figure A2).

sj
jxp +=

rj
j
j xx +
+ ,,1 L 1−+rj

jx ax rj =+

ax rj
j
+

One of the problems arisen when we use the incremental parsing as a modeling

tool applied to practical images is that of “context dilution” which will be addressed in

this section.

Since the symbol alphabet in continuous tone images is relatively large (typical

images are 8 bits per pixel per channel), there are usually very few exact context

repetitions in an image of practical size, except for very short context lengths. Therefore,

context quantization techniques have been applied in literature to help modeling tools get

more statistically significant context models for this type of images (see, e.g, [7, 8, 35,

50]). In the LZ setting, this means that phrases will tend to be quite short, and will not

capture higher order dependencies in the data. To ameliorate this problem, we employ

symbol quantization and allow “approximate matches” in the incremental parsing (i.e. we

Page 44

group nearby pixel levels together). This will allow the dictionary to collect longer

phrases that better capture image patterns. In the traditional incremental parsing, each arc

corresponds to a single symbol and each node corresponds to a phrase which is the

concatenation of the parent’s phrase with symbol associated with the arc that connects

both nodes. On the other hand, when we use quantization, the whole set symbols which

(after quantization) are clustered together, are associated with a single arc. However, we

only quantize the data for the purpose of building the parsing tree. Therefore, each node

is labeled with the exact phrase used to reach that node. This way we keep track of the

exact, unique input string that lead to the creation of the node. Afterwards, when

producing the simulated output texture, the original strings are faithfully reproduced, thus

preserving the statistics of the texture.

The quantization techniques incorporated to our simulation scheme directly affect

the trade-off between the richness of the UTC and the visual quality of the simulated

textures. As we modify our similarity constraints to allow for approximate matches, the

incremental parsing will contain longer phrases. Thus, the simulated textures will be

composed from copies of larger patches from the input texture. This, of course, comes at

the expense of some loss of entropy which will be measured at the end of this section. In

the end of this section we show, numerically, the loss of entropy of the output due to the

data processing we add to our framework.

Our simulation scheme is further refined to work with vector input data sequences

instead of one-dimensional ones. When working with vectors, a preprocessing stage is

applied to the input texture to group a set of pixels into a vector. Instead of traversing the

image pixel by pixel we take chunks of n pixels at a time. As a result, we build the

simulated texture from small patches (e.g. 4 pixels) instead of single pixels. To do this,

we define some distance measure between two vectors, and combine it with a

quantization stage. As it was noted above, this can be used in the incremental parsing

algorithm to produce longer paths in the parsing tree. For example we can define some

quantization threshold for the distance measure. Below this threshold we will say that two

vectors are close enough to be grouped together in the same LZ-tree node. This can be

regarded as an extension of the “approximate matches” discussed above.

Page 45

Further refinements to this idea are made. The quantization threshold is adaptively

set in order to achieve a certain mean length for the phrases in the LZ-tree, which can be

used as a parameter of the algorithm. We use a variable threshold in the sampling

algorithm which depends on the depth of the current standing node of the tree (we

decrease the threshold in deeper nodes of the parsing tree). Furthermore, we

automatically select the value of the threshold for each depth level using a two-stage

procedure to achieve certain properties for the tree (e.g., number of outgoing paths for

each node, or mean path length). We defined a target phrase length which indicates the

mean length of the phrases in the parsing tree. To achieve this phrase length, on a first

stage we apply the sampling algorithm controlling the quantization threshold by applying

slight modifications while building the tree. Let cp(λ) denote the number of nodes in the

parsing tree and n the number of vectors currently processed. Then our estimator ê of the

mean phrase length is computed as ()λpcnê ≡ . After adding a new node to the tree we

recalculate this value and if the result differs from the target phrase length more than a

certain threshold we modify the quantization threshold. On a second stage, we fix the

quantization threshold values for every tree depth and reapply the sampling algorithm

with these threshold values. This modification greatly improves the visual quality of the

simulated textures. However, as in the case of quantization explained above, this comes

at the expense of a reduction in the entropy of the output. However, properties of

statistical similarity are kept unaffected by these manipulations.

The framework allows for more operations over the source texture when applied

to vectored input data. As an example, we implemented a simple pixel predictor for the

pixels in the group it belongs. The pixels belonging to a vector are ordered by the scan

applied to the input texture, therefore we know from the properties of plane filling curves

that the distance between two consecutive pixels in a vector is one. Thus, for each pixel

in the vector, we use the value of the previous pixel as a predictor for current value. So,

instead of having a sequence of pixel values, we have a sequence of prediction-errors.

We applied a simulation using the quantization techniques described above to the

texture shown in figure F14a. For this simulation we also arranged the input to use

vectors of size 8 and a target sequence length of 128. The result of one simulation is

shown in figure F14c. In another simulation (using the same input image) we used a
Page 46

simple predictor together with quantization and vectorization. In this simulation the value

of the previous pixel in the Hilbert scan is used as a predictor of the next pixel.

a) b)

c) d)

Figure (F14): Simulation example across successive refinements of our simulation scheme.
Figure (a) shows the input texture. The rest of the figures show simulations using:
(b) basic scheme. (c) vectored data (size 8) and quantization. (d) vectored data (size 8), quantization and
the simple pixel predictor.

Figure F14d shows the result of a simulation using this scheme. We computed the

entropy of the output using the same formulas described in section 5.2. For the simulation

shown in figure F14c the output entropy was ~53720 bits, which is a reduction of
Page 47

~4,9*105 bits of output entropy compared to the results for the basic simulation scheme.

The visual improvement in the simulated texture is evident. While the basic simulation

scheme failed to capture the patterns of the texture, this simulation shows some patches

with the diagonal pattern shown in the input texture. Thus, while the use of quantization

removed most of the output entropy, it helped to capture in part the features of the

texture. For the simulation using the simple predictor (which is shown in figure F14c),

the output entropy was ~14300 bits which yield a reduction of ~5,3*105 bits out output

entropy again compared to the results for the basic simulation scheme. In this case, the

simulated texture seemed to capture better the patterns of the input texture, resulting in a

texture which looks sharper. The table from figure F15 shows a column with the output

entropy for these simulations and in another column the loss of entropy with respect to

the basic simulation scheme.

Simulation Scheme Input parameters Output entropy (bits) Delta output entropy

compared with Basic
simulation scheme(bits)

Basic N/A 544460 0

Quantization + Vectors Vector size: 8 53720 ~4,91*105

Quantization + Vectors

+ Predictor

Vector size: 8

Predictor: previous pixel

in the Hilbert scan

14300 ~5,30*105

Figure (F15): Number bits of output entropy for different simulation schemes. The input texture is shown in
figure F14a. The simulated textures for the Basic, Quantization+Vectors and Quantization+
Vectors+Predictor are shown in figures F14b, F14c, F14d respectively.

Page 48

5.3 The ‘Loss of Context’ problem

Another problem when using Lempel Ziv as a context modeling tool is that after one gets

to an unused node (thus outputting the related phrase) we start again from the root of the

tree, so there might be no visual coherence between two consecutive phrases. Basically

this means that after we output a phrase (which originally belong to some part of the

input texture), the next phrase we output might come from a distant place in the input

texture. There is no context preserving mechanism which gives, at some extent,

preference to select a phrase which comes “near” the last output phrase in the input

texture. We refer to this issue as the ‘Loss of context’ problem. Although the effect of this

discontinuity is statistically negligible, it is visually unpleasant.

To induce our simulation framework to output more visually coherent contiguous

phrases we extend the Lempel-Ziv incremental parsing algorithm to collect side

information while constructing the tree. We also extend the random sampling algorithm

accordingly in order to use that information to ‘restart’ in a deeper node of the tree after

we output a phrase.

The extended incremental parsing algorithm, described in figure A3, extends the

basic algorithm by collecting side information about the input data. The idea is to use the

last m symbols of each phrase processed by the algorithm to locate the context in which

the following phrases occurred. As in the case of the basic incremental parsing algorithm,

we denote by xn a one-dimensional input sequence with alphabet Λ of cardinality α. Let m

be an integer denoting the maximum path length of side information to collect. We

construct two α-ary trees: T with root λ and I with root μ. T is, as in the case of the basic

incremental parsing algorithm, the LZ-tree. On the other hand, I denotes a back reference

tree. The nodes of I represent suffixes of phrases in T and are used in an extended

sampling algorithm to preserve the context after we output a phrase. As in the case with

the parsing tree, the arcs between two nodes in I are labeled with a symbol S, and the

suffix associated with each node is the concatenation of the node’s parent suffix with S.

Page 49

Inputs: input sequence (xn) of length n, maximum side information tree
depth(m)

Outputs: LZ tree(T), tail depth(d), back reference tree(I)

1. Set j at the root(μ) of I.

2. Set t at the root(λ) of T.

3. Check if there is more data from the input sequence. If there are no

more symbols (i.e. i=n) go to step 7.

4. Get the next symbol S = xi, set i = i+1. Look for all the outgoing

arcs of t to see if one is labeled with S.

a. If there is a match, move t to the node pointed by the matching

arc and go to step 3.

b. Create a child node v labeled with the concatenation of the

phrase in t and S. Label the arc between t and v with S, and set

t=v. Add ν to the set of nodes of j. Let l be min(m, depth(t)).

Ensure the path of the last l nodes of t in T also exist in

I(starting from μ), adding the missing nodes along the paths to I

and set j to the node correspondent to t in I.

5. Go to step 2.

6. Return the trees (T, I) and the integer (d) of the depth of the last

node visited by the algorithm (the tail depth)

Figure (A3): Extended Lempel-Ziv incremental parsing

The length of a suffix is bounded by m which means that we will preserve the context of

at most m symbols. Every node i in I points to a set of nodes of T which we refer as

preferred phrases of i. In the extended sampling algorithm, the preferred phrases of a

suffix will be favored as continuations of a phrase in a simulated sequence when the

suffix matches the phrase’s suffix. The extended parsing algorithm works as follows. We

use the variable t to point to a node of T and i to point to a node of I. After adding a new

node to the LZ-tree we store, in the back reference tree, a pointer to the newly created

node. The pointer is stored in the node of I that represents the context of the previously

processed phrase. Here when we refer to the context of a phrase, we are denoting the last

m symbols of the phrase or, when the phrase is less than m symbols length, the whole

phrase. Aside from the initialization of I and step 4b, the algorithm is the same as in the

case of the basic incremental parsing. In step 4b of the algorithm, we store a pointer to the

Page 50

output phrase into the context of the previous phrase (i.e. we mark the output phrase as a

preferred for the previous phrase).

Initially each node in the back reference tree it is likely to list few nodes in the

LZ-tree. Nonetheless since the back reference tree is an m-depth tree, after some

significant amount of data is processed each node will point to many preferred phrases.

The example in figure F16 shows the initial steps in a sample sequence in which

for simplicity we chose m=2. The figure shows the two trees after a small amount of data

has been processed.

Page 51

Figure (F16): Back reference tree example

After applying the extended incremental parsing we end up with two trees. On

one hand we have the typical LZ-tree. On the other hand, we have the back reference tree

which contains information about all the preferred phrases of each phrase processed in

the incremental parsing. Thus, for each phrase p, a list of preferred phrases which comply

with the following rule is kept: every preferred phrase must have the property that the m-

suffix of the previous phrase in the incremental parsing matches the m-suffix of p (i.e.

they share the same previous context).

We use the back reference tree in the extended random sampling algorithm shown

in figure A4. For every phrase p, the list of preferred phrases associated with p will be

m = 2 Input Sequence: aaccabcbacbaca...

LZ Tree Back Reference Tree
λ μ 1

1 3

4 2 5

6

a c

b b c

b

7

a

2

3

6,75

4

a c

c b b a

favored as continuations of p, thus preserving a length-m context in the phrase transition.

In the extended random sampling algorithm, we introduce a constant c that denotes the

restarting depth of the preferred phrases. In step 1b of the initialization stage of the

algorithm, every preferred phrase contained in I is visited to check whether the phrase

depth is greater than c. In such case, we replace the phrase with the first c symbols of it.

In step 3 (which is executed at the beginning of the algorithm and then every time we

output a phrase p), the list of preferred phrases for p is revisited. For every preferred

phrase, we verify whether the node in the LZ tree associated to it is reachable (i.e. if it has

not already been visited). If there are no reachable nodes we restart from the root.

Otherwise we draw randomly the restarting node from the pool of reachable nodes. In

terms of the parsing tree, this modification causes the sampling algorithm to restart, if

possible, at depth c in the tree after outputting a phrase, rather than restarting from the

root. When no preferred phrases are reachable, the conventional restart rule is applied.

Page 52

Inputs: LZ tree(T), tail depth(d), back reference tree(I),

 context depth c

Output: Randomly sampled sequence

1. Initialization.

a. Walk through all the nodes of T marking them as unused, and for

each node t set U(t) = cp(t). Mark the root (λ) of T as used and

set U(λ) = U(λ)-1.

b. Walk thru all the nodes j of I. For every node v in the set of

nodes of j check to see if the depth(v) > c. In that case replace

v with the ancestor node v’ along the path of v with

depth(v’) = c

c. Set j at the root(μ) of I

2. Set t at the root(λ). If U(t) = 0 go to step 6.

3. Try to set a context for T. Lets define the function R(v) to be 1 if

the node v has been used and 0 otherwise, and () ()()∑ ∈
=

vsetb
bRbUU .* ,

where setj(v) denotes the set of nodes in j which are rooted at λ.

a. If no node is reachable(used), set t = λ

b. Otherwise draw randomly a node t from the set of nodes of j with

distribution () () ()
jsetb

U
bRbUbt ∈== ,

.
*Prob

4. If t is marked as unused:

a. Output the phrase associated to t, mark t as used, set U(t) =

U(t)-1.

b. Let l = min(depth(I), depth(t)). Set j = μ. Traverse j in I along

the last l symbols of the phrase associated to t

c. Go to step 2

5. Draw randomly a symbol a from Λ with

distribution () ()
() Λ∈== b
tU
tbUba ,Prob , set U(t) = U(t)-1, set t = ta and

go to step 4.

6. Pick uniformly a node t of depth d from T and output it as the tail.

Figure (A4): Random sampling from universal type with side information

Continuing with the examples given in section 5.2, we applied this simulation

scheme to the input texture shown in figure F18a. The results of the simulation using
Page 53

quantization, vectors of size 8 and side information (with m = c = 6) are shown in figure

F18c. The output entropy was 39090 bits. In figure F19c we show the result of a

simulation in which, additionally, we used the simple predictor described in section 5.2.

In this case, the output entropy was ~11400 bits. The table from figure F17 shows the

output entropy and the loss of entropy with respect to the basic simulation scheme. The

results of these simulations show an improvement over the reproduction of local features

of the texture. However, global features like the orientation of patterns are not well

preserved. The reason for this problem lays in the way the Hilbert scan performs the

traversal of an image. In the following section we propose of modification on the way we

scan the image to improve the results.

Simulation Scheme Input parameters Output entropy (bits) Delta output entropy

compared with Basic
simulation scheme(bits)

Basic N/A 544460 0

Quantization + Vectors Vector size: 8 53720 ~4,91*105

Quantization + Vectors

+ Side information

Vector size: 8

m = c = 6
39090 ~5,05*105

Quantization + Vectors

+ Predictor

Vector size: 8

Predictor: previous pixel

in the Hilbert scan

14300 ~5,30*105

Quantization + Vectors

+ Predictor + Side

information

Vector size: 8

Predictor: previous pixel

in the Hilbert scan

m = c = 6

11400 ~5,33*105

Figure (F17): Number bits of output entropy for different simulation schemes. The input texture is shown in
figure F18a and figure F19a. The simulated textures for Quantization+Vectors and for
Quantization+Vectors+Side Information are shown in figure F18b and F18c. The simulated textures for
Quantization+Vectors+Simple Predictor and for Quantization+Vectors+Simple Predictor + Side
Information are shown in figures F19b and F19c.

Page 54

a)

b) c)

Figure (F18): Simulation example with side information.
Figure a shows the input texture. Figures b shows a simulation using vectored data (size 8) and
quantization. Figure c shows a simulation using vectored data (size 8), quantization and usage of side
information with parameters m = c = 6.

Page 55

a)

b) c)

Figure (F19): Simulation example with side information.
Figure a shows the input texture. Figures b shows a simulation using vectored data (size 8), quantization
and the simple pixel predictor. Figure c shows a simulation using and vectored data (size 8), quantization,
the simple pixel predictor and usage of side information with parameters m = c = 6.

Page 56

5.4 Improving the Hilbert scan

The simulation schemes we have introduced present some challenges in the way we scan

the image to get a 1D sequence, as it was noted in the previous section. The following

example will show these problems more evidently. The input texture shown in figure F20

consists of a set of horizontal lines. The texture from the right is a simulated texture using

our basic scheme. The result of the simulation is not what we have expected. The

problem lays in the way the usual Hilbert curve performs the scan. It was shown in

section 3.4 that if we shift in time some part of the sequence the resulting image when we

revert back de Hilbert scan shows portions of the original image with rotations in

multiples of 90°. Now recall that the result of a simulation is a permutation of the phrases

from the incremental parsing of the input sequence. Thus the simulated image will show

patches of the original image but with different orientations. Note that this problem arises

on other plane filling curves (i.e. Peano, Sierpinksi) as well. Simpler scan orders like a

raster scan are also of no use mainly due to their poor locality properties.

Figure (F20): Example of problems with the Hilbert scan. The left image shows an input texture with
horizontal lines. The right image shows a simulated image using the basic simulation scheme.

Figure F21b show the result of applying the original Hilbert scan for the example

we have been working with in the previous section using the simulation scheme presented

in section 5.3 (using vectors of size 8, the simple pixel predictor and m = c = 6). The
Page 57

input texture shows a diagonal pattern, (seen left-to-right it goes up-to-down). As it was

noted before, the simulated image failed to capture some of the global features

(orientation) of the input texture. It can be seen that in some regions the pattern is now

inverted (i.e. it goes left-to-right, down-to-up). This is a direct consequence of the

problem described above.

a)

b) c)

Figure (F21): Problems with the Hilbert scan in simulated images. Figure a shows the input texture. Figure
b shows the simulated image using vectored data (size 8), quantization, the simple pixel predictor, and side
information with parameters m = c = 6. Figure c shows the simulated image with the modified Hilbert scan
and using the same parameters as figure b.

To avoid this problem we consider two possible scenarios. One would be to not

map the 2D input image texture onto a 1D input sequence (i.e. don’t use a plane filling

curve at all). This would require to use some other two-dimensional extension to the

incremental parsing algorithm for two dimension (other than the one presented by [28]

which uses the Hilbert scan). Such extensions have been considered in [48], although

Page 58

they have not become popular in image compression. They would also require

reformulating the notion of UTC and the sampling algorithm. This approach presents

interesting open problems for future work.

An alternative scenario would be to adjust the way the scan order works in such a

way that a shift in time does not lead to rotations in the reconstructed image. This is the

solution we have adopted in the current work. We have modified the plane filling scan

algorithm as follows. For the sake of concreteness we assume we are working with the

Hilbert scan, though this modification is applicable to any plane filling curve. We use a

cursor C with coordinates (Cx, Cy) to traverse the image. Initially the cursor starts in one

of the image’s corners. As we pass through the image following the Hilbert curve we

move the cursor accordingly. We use Di to indicate the direction (up, down, left or right)

in which the cursor moves at time index i. Thus, after applying the scan we end up with a

1-d input sequence S (just like the usual scan) and with another 1-d sequence D

containing the direction the cursor moved at any instant of time. Then, to reconstruct a

sequence back onto the image we apply the direction information to move across the

image instead of the usual traversal made by the Hilbert scan. We start by locating the

cursor C in the corner of the image. Then, as we consume the sequence Si over the time

index i, we put back the pixel’s information in the location pointed by C. After that, we

move the cursor in the direction pointed by Di (instead of moving in the direction the

Hilbert scan would go), and repeat again the process for the next element of the sequence

(i.e. i = i+1).

When we apply the basic or the extended random sampling algorithm to get the

permutation of the original sequence we also permute the sequence of Di. Thus, the curve

used when applying the reconstruction algorithm is different from the curve used when

scanning the input image. Also, there won’t be any rotations of the subsequences (i.e. the

relative position of two pixels from the same subsequence when located in the image will

remain unchanged). However, this algorithm has an important drawback. The curve used

to reconstruct the simulated texture is no longer guaranteed to be plane-filling; some

image coordinates will be visited more than once (we refer to this as collisions) whereas

others might never be visited. To alleviate this problem to some extent we feed the

incremental parsing algorithm with the input texture more than once. Then, following the

Page 59

ideas from the universal delay-limited simulation [33], when we reconstruct the image we

use as much of the simulated sequence as needed to fill the output image (though, in

practice, we ‘consume’ the full simulated sequence). Figure F21c show the output of a

simulation from the input texture shown in figures F21a using the modified Hilbert scan

with the extended simulation scheme with vector data of size 8, quantization, simple pixel

predictor and side information with parameters m = c = 6. We can see in this simulation

that the orientation of the output textures is now correct.

We would like to measure the number of different textures we can simulate using

this modified Hilbert scan. The main challenge we face is that when we reverse the scan,

a location in the image may be visited more than once. Thus, part of a previous outputted

phrase may be occluded by new phrases. Although at this moment we have not been able

to calculate with precision the number of different textures this scheme can simulate, we

can at least give an upper bound. Assume we have an input texture and we apply a

Hilbert scan obtaining a sequence xn. Then we concatenate this sequence r times and

denote this new sequence , i.e. (r times). If we feed the incremental

parsing algorithm with we can calculate the size of the UTC of using the

formulas described in section 5.2. Let’s denote

rny nnnrn xxxy L=

rny rny

()nxL the size of the UTC of xn. Therefore

the sampling algorithm can produce ()rnyL different sequences for the UTC of . After

reversing the Hilbert scan with our modified procedure, the output texture will have the

same size as the input image and, as we described above, some phrases will be

overwritten by later phrases in the sampling algorithm. Therefore we suggest that the

number of different textures our simulation scheme using the modified Hilbert scan can

produce is upper-bounded by

rny

()rnyL . Obtaining more accurate results is a matter of future

work.

Page 60

5.5 Wavelets smoothing

The left and center columns of Figure F23 show, respectively, some input textures and

the result of the simulation scheme presented in section 5.3 with the modified Hilbert

scan. As it can be clearly seen, there are noticeable artifacts (“false contours”) mostly in

the interface between the different patches. This is due to the fact that two patches which

are ‘together’ in the simulated image may come from different places from the input

texture. While the context preservation techniques presented in previous sections helped

to preserve the context between phrases, this is clearly are not enough since the context

preservation is inherently local. Moreover, due to the way the Hilbert scan traverses the

image (making 90° turns), the snippets taken from the input texture tend to have sharp

edges. Another important characteristic of textures is that they have features in different

scales. For example, the texture in figure F22a shows wall of bricks. However if we look

at a finer scale we can see the texture within each brick. Figure F22b shows a

magnification of the patch inside the blue rectangle of figure F22a. The introduction of

multi-scale analysis techniques would help us to capture the features of textures that are

at different scales.

a) b)

Figure (F22): Example of textures seen at different scales. Figure a show a picture of a wall. Figure b show
the region of the wall contained inside the blue rectangle, where the features of texture within each brick
can be seen.

Page 61

Figure (F23): Simulation results with/without wavelets smoothing. The left column contains the source

textures (LakeTahoe, Pasta006), the center and right columns contains the simulated image without and with
wavelets smoothing respectively.

In order to help reduce the false contours described above, we used the smoothing

scheme described in figure A5. For the wavelet decomposition we used Simoncelli’s

steerable pyramid ([45, 46]) which was introduced in section 3.6.
Page 62

Inputs: Source image texture

Outputs: Simulated image texture

1. Obtain the universal type class for the source image texture.

2. Randomly sample a new sequence from the universal type. This will be regarded

as the permutation p over the original sequence.

3. Reconstruct the simulated texture. Obtain the wavelet decomposition for the

simulated texture (steerable pyramid A)

4. Obtain the wavelet decomposition for the original texture (steerable pyramid B)

5. Traverse every band in the highest frequency scale (and the high frequency

residue) of the steerable pyramid B to get the one-dimensional sequence of that

band. Apply the permutation p over it, and insert the result back into the steerable

pyramid A.

6. Collapse the steerable pyramid A to get the smoothed simulated texture.
Figure (A5): Texture simulation with wavelets smoothing

The algorithm in figure A5 works as follows. We first obtain the universal type

class for the source texture (step 1) and get a simulated sequence as we would usually do

(step 2). Let denote p to the index permutation of the incremental parsing (i.e. we are

referring the index mappings that are taken in the permutation, this being independent of

the actual values of the sequence). In steps 3 and 4 we obtain the wavelet decomposition

of the simulated texture and the original texture. These are the steerable pyramid A and B

respectively. Then in step 5, we start by applying a Hilbert scan over every band of the

highest scale of the steerable pyramid B. Recall from the introduction of the steerable

pyramid (in section 3.6) that the size of the highest scale bands is the same as the size of

the input image. Therefore, the corresponding the sequences will be the same as the size

of the input texture’s sequence. Then, we apply the index permutation p to these

sequences and revert back the Hilbert scan onto the corresponding band and scale of the

steerable pyramid A. We apply the same procedure to the high frequency residue (which

again has the same size as the input image). Upon finishing step 5, steerable pyramid A

still has the coarser levels of the simulated texture’s steerable pyramid but the band in the

highest scale (and the high frequency residue) contains the data from the processed

Page 63

pyramid B. We finish the procedure in step 6 by collapsing the resulting “hybrid”

steerable pyramid to obtain a new simulated texture. This visually improved image

removes most of the artifacts mentioned earlier. The right column of figure F23 shows

the results of the application our simulation scheme with the wavelets smoothing

algorithm. Figure F24 shows more examples of simulations using wavelets smoothing.

Figure (F24): Simulated texture mixtures. The left column shows input textures. The right column shows simulated
textures using wavelets smoothing

Page 64

6 Mixing Textures via Universal Simulation

In this section we address the problem of simulation of mixtures of two or more input

textures. As it was described in previous sections, it is possible to use an algorithm for

texture synthesis to build texture mixtures the following way: First generate an

intermediate texture by copying all input textures one after the other in some fixed way.

This intermediate texture has the features of all the source images. Then use the synthesis

algorithm using the intermediate texture as input to generate new textures. Although this

technique is very straightforward it generally gives bad results, especially when mixing

textures with disparate features. Moreover, when mixing textures in this way, we have

absolutely no control over the spatial distribution of each input texture over the simulated

image because the synthesis algorithm has no knowledge about the fact that it is really

working with a set of input textures. In other words, the algorithm still uses a single input

texture and the fact that this input was generated by some preprocessing stage using many

textures is unknown to it.

Therefore, we extend our framework to work with many input texture images. This

way the algorithm has prior knowledge that what we want to simulate is a texture mixture

so we can use this information to give better results. We assume to have N input textures,

and a set of target mixture ratios. The set of target mixture ratios is a set { }NRR ,,L1 with

 where Ri denotes the desired proportion of the corresponding input texture in

the output texture mixture. The simulation scheme, which is an extension of the algorithm

A4 described in section 5.3, will generate a simulated texture mixture in which the kth

order statistics (for all k), approaches the weighed mixture of the kth order statistics of

each individual texture used in the mix. As in the case of previous sections, we are

referring to the statistics of the individual textures using vectored data and quantization.

1
1

=∑
=

n

i
iR

As with the simulation of single textures presented in the previous section, we can

divide the process in two steps. We denote Bi the ith input texture, and mi the number of
Page 65

pixels that Bi has. The first step consists in building the parsing tree for each of the N

input sequences using the extended incremental parsing algorithm described in section

5.3. However, instead of using the whole image to feed the incremental parsing, we take a

patch of Rimi pixels from it. The patch we use from Bi is the one conformed by the first

Rimi pixels visited when we apply a Hilbert scan to Bi. In other words, to obtain the 1D

sequence associated to Bi we stop the traversal of the texture when we have visited Rimi

pixels. After feeding the incremental parsing algorithm with the resulting sequences, we

get N parsing trees (T1,…,TN), each one corresponding to their respective input texture.

The second step (the mixture random sampling) is described in figure A6 and works as

follows. We start with a set { }NTT ,,L1 of input parsing trees, a set { }NRR ,,L1 of target

mixture ratios mixture proportions, a back reference tree I and an the total input sequence

length n, . The back reference tree is a combination of all the back reference

trees resulting from the extended incremental parsing of the input textures. For the

purpose of achieving the ratio of every texture we will use a set

∑
=

=
N

i
iimRn

1

{ }NCC ,,L1 of auxiliary

counters which denotes the amount of data the algorithm has taken from every tree, and

the current output sequence length L. Step 1 of the algorithm initializes the variables that

we use. In step 2 we select randomly the tree that will be used to output the next phrase

with a distribution that leads to the desired mixture ratio. Then, in step 3 we try to set a

context for the selected tree using the side information collected in the extended

incremental parsing. We traverse the tree choosing the next arcs in the same way we did

in the basic sampling algorithm. Step 4 checks to see if an unused node has been reached.

In that case, in step 4a we check to see if we have fully visited the selected tree. In that

case we select a node at random that will give exactly the desired ratio for the selected

tree (i.e. we output a tail phrase). In step 4b we output the phrase associated with the

selected node. Then in step 4c we update Ci and L and if we have outputted the prescribed

output sequence length n we finish the algorithm. At the end of this process, we obtain

the simulated texture mixture with the prescribed input proportions.

Page 66

Inputs: Set {Ti, 1≤i≤N} of LZ trees, set {Ri, 1≤i≤N} of target mixture
ratios, back reference tree I,context depth c, total input sequence
length n.
Output: Randomly sampled mixed sequence
1. Initialization

a. Walk thru all the nodes of every tree {Ti, 1≤i≤N} marking them as
unused, and for each node t set U(t) = cp(t). Mark the root (λi)
of Ti as used and set U(λi) = U(λi)-1.

b. Walk thru all the nodes j of I. For every node ν in the set of
nodes of j check to see if the depth(ν) > c. In that case
replace v with the ancestor node v’ along the path of v with
depth(v’) = c

c. Set j at the root(μ) of I.
2. Select randomly an index tree h with distribution

() Nk
Ln
CnRkh kk ≤≤

−
−

== 1Prob , , and set t = λi.

3. Try to set a context for Ti. Lets define the function R(v) to be 1 if
the node v has been used and 0 otherwise, and () ()()∑ ∈

=
vsetb

bRbUU .* ,

where set (v) denotes the set of nodes in i which are rooted at λi. i

a. If no node is reachable(used), set t = λi
b. Otherwise draw randomly a node t from the set of nodes of i with

distribution () () ())(,.Prob * isetb
U

bRbUbt ∈==

4. If t is marked as unused or if U(λ)=0: i

a. If U(λi)=0, pick uniformly at random a node v of depth nRi-Ci from
Ti, and set t = v.

b. Output the phrase associated to t, mark t as used, set U(t) =
U(t)-1, set Ci=Ci+depth(t).

c. Let l = min(depth(I), depth(t)). Set j = μ. Traverse j in I along
the last l symbols of the phrase associated to t.

d. Set L = L + depth(t). If L ≥ n finish the algorithm.
e. Otherwise go to step 2

5. Draw randomly a symbol a from Λ with

distribution () ()
() Λ∈== b
tU
tbUba ,Prob , set U(t) = U(t)-1, set t = ta and

go to step 4.
Figure (A6): Mixture random sampling from multiple universal type classes

We now give a procedure to measure the richness of the simulations of our

scheme to simulate texture mixtures. The procedure, which is an extension of the one

described in section 5.1, works as follows. In step 2 of the sampling algorithm described

in figure A6 we select the parsing tree we will use to output the next phrase. The

probability that the jth parsing tree is selected in the draw is
Ln
CnR

p jj
t −

−
= . Once we have

selected a parsing tree and we select the restarting node inside that tree, the algorithm

continues to traverse the tree until it reaches a node which has not been visited before.
Page 67

Now recall that in step 5 of the algorithm we draw the next node to visit (tv) in the tree in

which the probability of selection of the chosen node is determined by ()
()tU
tvUpd = . Thus,

after outputting a phrase q, the probability of selection of that phrase is

. Finally, we can calculate the probability of the output sequence ps

by multiplying the probabilities of selection of all the phrases. Thus, . It

can be shown that the proof of uniformity of the output distribution from [42] extends to

the algorithm of figure A6. In [42], when traversing the parsing tree, we select a branch

from the current node at random with probability proportional to the number of phrases

remaining unused in the subtree rooted at the target of the branch. Here, the same

argument applies, as the random selection in step 2 chooses one of the texture trees with

probability proportional to the number of its phrases that remain unused, and the rest of

the random selection steps proceed as in [42]. Consequently

∏
⎭⎬
⎫

⎩⎨
⎧

=
q

dtq ppp
select out to carried

 draw nodeevery

{ }
∏=

phraseevery
qs pp

L
ps

1
= where L is the

number of different sequences our simulation scheme can produce. This number is

usually very big, so we take logarithms of the probabilities we compute and sum the

contributions of entropy for every draw. At the end we get the entropy of the full

simulation.

The false contours described in section 5.5 also appear in these mixtures. Hence

we extend the wavelets smoothing algorithm to work with multiple input textures. In this

case though, we have to perform the permutation over the higher scales of the steerable

pyramid of every input texture, and mix them accordingly onto the output steerable

pyramid. We also use the modified Hilbert scan described in section 5.4 to deal with the

orientation issues described there. Figures F26-F28 shows some texture mixture

examples. The simulation was done using quantization, vectors of size 6 and side

information (with m = c = 6), and we applied the wavelet smoothing to the resulting

textures. In the examples, we start from a single input texture, and progressively decrease

its proportion over a second input texture. The table from figure F25 shows the output

entropy for the simulation of the mixture of the input images shown in figure F26

Page 68

(BarleyRice009 and BarleyRice010) with the proportions ranging [0.1i, 1-0.1i] using

quantization, vectors of size 8, target sequence length of 192 and side information (with

m = c = 6), without the modified Hilbert scan.

Figure F29 shows the simulation texture mixtures from three input textures, using

the same parameters for the simulation scheme. In this simulations we mixed three

textures from the Oulu texture database (pasta001, pasta005, pasta006) [36] in a variety

of different proportions. More examples of texture mixture simulations can be found in

[6]. In some of them, two input textures were mixed in proportions [0.025i, 0.025(40-i)]

for 0 ≤ i ≤ 40. The resulting frames were combined into video clips showing the mixture

progression.

Input proportions: [A, B]

Texture A: BarleyRice009
Texture B: BarleyRice010

Output entropy (bits)

[100, 0] 13060

[90, 10] 12880

[80, 20] 11400

[70, 30] 11640

[60, 40] 8400

[50, 50] 9050

[40, 60] 9770

[30, 70] 10440

[20, 80] 13080

[10, 90] 13570

[0, 100] 14180

Figure (F25): Number bits of output entropy for different proportions of texture mixture. The input textures
are shown in the first image of figure F26 (BarleyRice009) and in the image of figure F28 (BarleyRice010).
The left column shows the proportions of each input texture in the mixture. The right column shows the
output entropy of the simulation. For these We used the simulation scheme for texture mixtures, using
quantization, vectors of size 8, the simple predictor and side information with m=c=6, without the modified
Hilbert scan.

Page 69

Figure (F26): Simulated texture mixtures. The top row contains the input textures (BarleyRice009,
BarleyRice010). In the bottom row at the left: a simulated texture of BarleyRice009, and at the right: a

simulated texture mixture (proportions 10-90).

Page 70

Figure (F27): Simulated texture mixtures. The top row at the left: proportions 30-70; at the right:
proportions 50-50. The bottom row at the left: proportions 70-30; at the right: proportions 90-10.

Page 71

Figure (F28): Simulated texture mixtures. A simulated texture of BarleyRice010.

Page 72

Figure (F29): Simulated texture mixtures. The top row shows the input textures. The proportions for the
simulations shown in the remaining rows have, from left to right and top to bottom, 100-0-0, 0-100-0, 0-0-100,
10-30-60, 25-25-50, 33-33-33, 25-50-25, 30-60-10, and 60-10-30, respectively.

Page 73

7 Conclusions and Future Work

In this section we summarize the results obtained in this work and propose several

directions for future research.

7.1 Results

We have introduced the use of universal type classes [42] based on the incremental

parsing of Ziv and Lempel [27] in texture simulation and mixing. We believe that these

information-theoretic tools add great value to these applications, as they provide a formal

approach to the problem of texture simulation. These tools provide a way to measure the

“unpredictability” of the simulated output texture, or, equivalently, the number of

possible output textures that comply with a given notion of “similarity”. Thus, a trade-off

is established between similarity and output entropy, which we highlight in various

examples in this work. Previous works in our direction ([33, 42]) settled the mathematical

background and addressed mainly the case of one-dimensional input sequences and

studied image texture simulation in a basic form. However, for continuous-tone images of

practical sizes, the basic approach does not give satisfactory results, due to the issues

discussed in section 5. We have shown how some of these issues can be addressed, by

means of various modifications to the basic scheme, which result in schemes along the

similarity-entropy trade-off mentioned above. Clearly, further refinements and

improvements are possible along that trade-off, but we believe that the initial results

shown in this work show the promise of the approach.

 We began our work using the simulation scheme described in [42]. With this

simulation scheme, two textures are said to be “similar” if the sequences resulting from

the Hilbert scan belong to the same UTC. In other words, we say they are similar if they

are statistically indistinguishable (in the limit) by finite memory models of any order. The

universal simulation does a faithful job at capturing the constraints of the implicit

statistical model used, and delivers results that shows how the chosen model ‘sees’ the

Page 74

texture. In a first approach we tried to see if those statistics were enough to capture the

essential features of the input texture. For every simulation scheme there is always a

trade-off between the ability to capture the essential features of an input texture and the

richness or “unpredictability” of the simulation. In section 5.1 we gave a procedure to

measure the number of different textures this simulation scheme can synthesize for a

given input texture, therefore giving a numerical value for the trade-off described above.

The results of this scheme applied to continuous-tone textures gave poor results. This

suggested that our similarity criterion had to be strengthened. In section 5.2 we discussed

the ‘context dilution problem’, which is one of the problems of using the Lempel-Ziv

incremental parsing algorithm as a context modeling tool. To solve this problem, we

introduced the use of quantization and use of small vectors (typically patches of 4 or 8

pixels). As a consequence our simulation scheme was able to capture better the features

of the texture, and at the same time reduced the unpredictability of the simulations. In

section 5.3 we discussed another problem of using the incremental parsing algorithm as a

context modeling tool, the loss of context occurring at phrase boundaries. We extended

our simulation scheme to collect side information in an incremental parsing algorithm,

and used that information as an aid to preserve context in an extended sampling

algorithm. This gave more visually coherent simulations again at the expense of a

decrease in the entropy in the output. In section 5.4 we addressed an issue with the

Hilbert scan used to get a 1D sequence from an input texture that had the side-effect of

giving simulated images with patches with wrong orientation. The simulated images

produced by the simulation schemes described in sections 5.1-5.4 contain visual artifacts

like blocking and false contours that distinguishes them from the original textures. To

improve the visual quality of the simulated textures and to prevent some of these artifacts

we extended our simulation scheme with the use of the steerable pyramid decomposition.

 We evaluated the trade-off between the unpredictability and the visual quality of

our simulations. This can be seen in the tables which show the output entropy and the

figures that illustrate the results of our simulation schemes after the additional constraints

added to narrow our ‘similarity’ criterions were introduced.

 Synthesis of single source input textures has been widely addressed with success

in literature. However, creating texture mixtures by applying a synthesis procedure to

Page 75

several input images has not been as extensively studied. The second part of this work

extends the techniques and formalism developed for simulation to the problem of texture

mixtures. According to our setting, the kth order statistics of a mixture show approach,

asymptotically, the weighed mixture of the kth order statistics of each individual texture

used in the mixing. It is of practical interest to create mixtures with prescribed

proportions of the input textures. Therefore, in section 6 we modified our simulation

scheme to work with several input textures and to synthesize texture mixtures with the

desired proportions. Output textures created with our simulation schemes can be seen in

section 6 of this thesis and in the web page set up for this purpose [6].

Page 76

7.2 Future Work

To end this work, we propose several directions for future research.

• Extend the universal simulation scheme to work natively with 2D sequences.

 In section 5.4 we dealt with a problem with the way the plane filling curves scan an

input image. The use of the classic Hilbert scan (and related plane filling curves) in

our simulation schemes, which at this point is needed to convert the 2D sequence into

a 1D input sequence, produced simulated textures that had patches of the original

image with different orientations. We partially solved that problem by modifying the

usual scan procedure with a directional version. We would like to extend the

universal simulation scheme to work natively with the 2-d sequences provided by the

input textures.

• Integrate more thoroughly the use of multi-resolution analysis tools.

In this work we have used the steerable pyramid wavelets decomposition as an aid to

resolve the false contours visible in the simulated textures. We would like to

incorporate more thoroughly these techniques to capture the features of a given

texture at different orientations/scales. Here we might extend our use of vectors to

form them with the coefficients from many bands/scales of a wavelets decomposition.

• Study other models of universal type classes

Throughout this work we have used universal type classes based on the Lempel and

Ziv incremental parsing algorithm. However, we can define a model for universal

type classes based on other universal compression algorithms (e.g. prediction by

partial matching, context trees). These kinds of models for UTC have not been

studied yet, and are a matter of further investigation.

• Improve the simulation of texture mixtures

As we have mentioned in section 6, we created a series of texture mixtures of two

input textures with proportions ranging from 0 to 100% within each input texture.

Page 77

With the resulting set of output textures we created a small video to show how the

mixture slides from one input texture to the other. However, no temporal constraints

were taken on these mixtures which lead to discontinuities between each frame and

the next. A possible future work might involve the creation of time varying textures

([1], [2]).

Page 78

References

[1] Z. Bar-Joseph, "Statistical Learning of Multi-Dimensional Textures," The Hebrew

University of Jerusalem, MSc. thesis. 1999.

[2] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman, "Texture Mixing and

Texture Movie Synthesis using Statistical Learning," in Proc. IEEE Transactions

on Visualization and Computer Graphics 2001, pp. 120–135.

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, "Image inpainting," in

Proc. of the 27th Annual Conference on Computer Graphics and interactive

Techniques, New Orleans, Louisiana, 2000, pp. 417-424.

[4] J. S. D. Bonet and P. Viola, "A Non-parametric Multi-Scale Statistical Model for

Natural Images," in Proc. 1997 conference on Advances in neural information

processing systems, Denver, Colorado, 1997, pp. 773-779.

[5] P. Brodatz, "Textures: A Photographic Album for Artists and Designers," Dover,

New York 1996. Electronic resource. Available [online] at

[6] G. Brown, "Thesis examples web page," 2005. Electronic resource. Available

[online] at http://www.fing.edu.uy/~gbrown/universal-simulation.html.

[7] B. Carpentieri, M. J. Weinberger, and G. Seroussi, "Lossless compression of

continuous-tone images," Proceedings of the IEEE, vol. 88, no. 11, pp. 1797-

1809, Nov. 2000.

[8] B. Carpentieri, M. J. Weinberger, and G. Seroussi, "Lossless compression of

continuous-tone images," Proceedings of the IEEE, vol. 88, no. 11, pp. 1797-

1809, 2000.

[9] T. M. Cover, "Enumerative source coding," IEEE Transactions on Information

Theory, vol. 19, no. 1, pp. 73-77, Jan. 1973.

[10] T. M. Cover and J.A.Thomas, Elements of Information Theory. New York: John

Wiley & Sons, Inc., 1991.

[11] I. Csiszár, "The Method of Types," IEEE Transactions on Information Theory,

vol. 44, no. 6, pp. 2505-2523, Oct. 1998.

Page 79

http://www.fing.edu.uy/%7Egbrown/universal-simulation.html

[12] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete

Memoryless Systems. New York: Academic, 1981.

[13] S. Deorowicz, "Universal lossless data compression algorithms," Silesian

University of Technology, Phd. thesis. 2003.

[14] A. Dumitras and B. G. Haskell, "An encoder-decoder texture replacement method

with application to content-based movie coding," IEEE Trans. on Circuits and

Systems for Video Technology, vol. 14, no. 6, pp. 825-840, Jun. 2004.

[15] A. A. Efros and T. K. Leung, "Texture Synthesis by Non-parametric Sampling,"

in Proc. IEEE International Conference on Computer Vision, Corfu, Greece, Sep.

1999, pp. 1033.

[16] T. F. El-Maraghi, "An Implementation of Heeger and Bergen’s Texture

Analysis/Synthesis Algorithm," Dept. of CS, University of Toronto, Toronto,

Ontario, Canada, Sep. 1997. Available [online] at

http://www3.cc.gatech.edu/classes/AY2004/cs4495_fall/Materials/Texture_El_Ma

raghi.pdf.

[17] J. M. Francos, A. Z. Meiri, and B. Porat, "A unified texture model based on a 2-D

Wold like decomposition," IEEE Transactions on Signal Processing, vol. 41, no.

8, pp. 2665-2678, Aug. 1993.

[18] W. T. Freeman and E. H. Adelson, "The Design and Use of Steerable Filters,"

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 9,

pp. 891-906, 1991.

[19] G.Gimel’farb, L. V. Gool, and A.Zalesny, "To FRAME or not to FRAME in

Probabilistic Texture Modelling," in Proc. 17th International Conference on

Pattern Recognition (ICPR'04), Aug. 2004, pp. 707-711.

[20] R. C. Gonzales and R. E. Woods, Digital Image Processing, 2nd ed. New Jersey:

Prentice Hall, 2002.

[21] C. Gotsman and M.Lindenbaum, "On the Metric Properties of Discrete Space-

Filling Curves," IEEE Transactions on Image Processing, vol. 5, no. 5, pp. 794-

797, 1996.

[22] A. Graps, "An Introduction to Wavelets," IEEE Computational Science and

Engineering, vol. 2, no. 2, pp. 50-61, 1995.

Page 80

http://www3.cc.gatech.edu/classes/AY2004/cs4495_fall/Materials/Texture_El_Maraghi.pdf
http://www3.cc.gatech.edu/classes/AY2004/cs4495_fall/Materials/Texture_El_Maraghi.pdf

[23] D. J. Heeger and J. R. Bergen, "Pyramid-Based Texture Analysis/Synthesis," in

Proc. SIGGRAPH ’95, 1995, pp. 229-238.

[24] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image

Analogies," in Proc. the 28th International Conference on Computer Graphics

and Interactive Techniques, Los Angeles, CA, 2001, pp. 327-340.

[25] A. K. Jain, Fundamentals of Digital Image Processing. New Jersey: Prentice Hall,

1989.

[26] G. G. Langdon, "A Note on the Ziv-Lempel Model for Compressing Individual

Sequences," IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 284-

287, Mar. 1983.

[27] A. Lempel and J. Ziv, "Compression of individual sequences via variable-rate

coding," IEEE Transactions on Information Theory, vol. 24, pp. 530-536, 1978.

[28] A. Lempel and J. Ziv, "Compression of Two-Dimensional Data," IEEE

Transactions on Information Theory, vol. 32, no. 1, 1986.

[29] A. Lempel and J. Ziv, "A Universal Algorithm for Sequential Data Compression,"

IEEE Transactions on Information Theory, vol. 23, no. 3, 1977.

[30] S. Li and J. Shawe-Taylor, "Comparison and Fusion of Multiresolution Features

for Texture Classification," University of Southhampton, UK, 2004.

[31] D. MacKay, Information Theory, Inference, and Learning Algorithms: Cambridge

University Press, 2003.

[32] S. Mallat, A Wavelet Tour of Signal Processing: Academic Press, 1998.

[33] N. Merhav, G. Seroussi, and M. J. Weinberger, "Universal Delay-Limited

Simulation," in Proc. ISIT05, 2005.

[34] N. Merhav and M. J. Weiberger, "On universal simulation of information sources

using training data," IEEE Transactions on Information Theory, vol. 50, no. 1, pp.

5-20, 2004.

[35] G. Motta, E. Ordentlich, I. Ramirez, G. Seroussi, and M. J. Weinberger, "The

DUDE framework for continuous tone image denoising," in Proc. IEEE

International Conference on Image Processing, Genova, Italy, Sep. 2005, pp.

345-348.

Page 81

[36] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertol, J. Kyllönen, and S. Huovinen,

"Outex - New framework for empirical evaluation of texture analysis algorithms,"

in Proc. 16th International Conference on Pattern Recognition, Quebec, Canada,

2002, pp. 701-706, Available [online] at http://www.outex.oulu.fi.

[37] P. Peebles, Probability, Random Variables and Random Signal Principles, 4th ed.

Boston: McGraw-Hill Inc, 2001.

[38] A. Perez, S. Kamanta, and E. Kawaguchi, "Peano Scanning of Arbitrary Size

Images," in Proc. IEEE International Conference of Pattern Recognition, 1992,

pp. 565-568.

[39] J. Portilla and E. Simoncelli, "A Parametric Texture Model Based on Joint

Statistics of Complex Wavelet Coefficients," International Journal of Computer

Vision vol. 40, pp. 49-70, 2000.

[40] J. Rissanen, "A universal data compression system," IEEE Transactions on

Information Theory, vol. 29, no. 5, pp. 656-664, Sep. 1983.

[41] G. Seroussi, "On the number of t-ary trees with a given path length," Hewlett-

Packard Laboratories Technical Report HPL-2004-127, July 2004. Available

[online] at http://arxiv.org/abs/cs.DM/509046. To be published in Algorithmica.

[42] G. Seroussi, "On Universal Types," IEEE Transactions on Information Theory,

vol. 52, no. 1, pp. 171-189, Jan. 2006.

[43] G. Seroussi, "On Universal Types and Simulation of Individual Sequences," in

Theoretical Informatics: 6th Latin American Symposium, Lecture Notes in

Computer Science, M. Farach-Colton, Ed. Berlin: Springer-Verlag, 2004, pp.

2976.

[44] E. Simoncelli, "The steerable pyramid." Electronic resource. Available [online] at

http://www.cns.nyu.edu/~eero/steerpyr/.

[45] E. Simoncelli and W. Freeman, "The steerable pyramid: a flexible architecture for

multi-scale derivative computation," in Proc. IEEE International Conference on

Image Processing, 1995, pp. 444-447.

[46] E. Simoncelli, W. Freeman, E. Adelson, and D. Heeger, "Shiftable multiscale

transforms," IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 587-

607, 1992.

Page 82

http://www.outex.oulu.fi/
http://arxiv.org/abs/cs.DM/509046
http://www.cns.nyu.edu/%7Eeero/steerpyr/

[47] E. Simoncelli and J. Portilla, "Texture characterization via joint statistics of

wavelet coefficient magnitudes," in Proc. 5th IEEE International Conference on

Image Processing, 1998.

[48] J. A. Storer, "Lossless Image Compression using Generalized LZ1-Type

Methods," in Proc. 1996 Data Compression Conference, Snowbird, Utah, Mar.

1996, pp. 290-299.

[49] M. J. Weinberger, N. Merhav, and M. Feder, "Optimal Sequential Probability

Assignment for Individual Sequences," IEEE Transactions on Information

Theory, vol. 40, no. 2, pp. 384-396, Mar. 1994.

[50] M. J. Weinberger, G. Seroussi, and G. Sapiro, "The LOCO-I lossless image

compression algorithm: principles and standardization into JPEG-LS," IEEE

Transactions on Image Processing, vol. 9, no. 8, pp. 1309-1324, Aug. 2000.

[51] S. C. Zhu, Y. N. Wu, and D. Mumford, "FRAME: Filters, random field and

maximum entropy: Towards a unified theory for texture modeling," International

Journal of Computer Vision vol. 27, no. 2, pp. 107-126, Mar. 1998.

Page 83

List of Figures

Figure (F1): Texture examples .. 12

Figure (F2): Lempel-Ziv(LZ77) encoding example ... 18

Figure (A1): Lempel-Ziv(LZ78) incremental parsing algorithm 20

Figure (F3): Lempel-Ziv(LZ78) encoding example. .. 21

Figure (F4): Raster scan and Raster plane filling curve. .. 22

Figure (F5): Construction the Hilbert, Sierpinksi and Peano scans. 24

Figure (F6): Examples of the issues when reverting back a Hilbert scan.................. 26

Figure (F7): UTC example ... 30

Figure (A2): Random sampling from universal type... 31

Figure (F8): Example of the random sampling algorithm.. 32

Figure (F9): Steerable pyramid analysis/synthesis. ... 34

Figure (F10): Heeger and Bergen’s synthesis examples.. 36

Figure (F11): Comparison between Heeger and Bergen with De Bonet and Viola’s

synthesis result .. 37

Figure (F12): Ziv Bar’s texture synthesis example. ... 40

Figure (F13): Basic simulation example ... 43

Figure (F14): Simulation example across successive refinements of our simulation

scheme. ... 47

Figure (F15): Number bits of output entropy for different simulation schemes 48

Figure (A3): Extended Lempel-Ziv incremental parsing.. 50

Figure (F16): Back reference tree example .. 51

Figure (A4): Random sampling from universal type with side information............. 53

Figure (F17): Number bits of output entropy for different simulation schemes 54

Figure (F18): Simulation example with side information. .. 55

Figure (F19): Simulation example with side information. .. 56

Figure (F20): Example of problems with the Hilbert scan ... 57

Figure (F21): Problems with the Hilbert scan in simulated images........................... 58

Figure (F22): Example of textures seen at different scales ... 61

Page 84

Figure (F23): Simulation results with/without wavelets smoothing........................... 62

Figure (A5): Texture simulation with wavelets smoothing ... 63

Figure (F24): Simulated texture mixtures. ... 64

Figure (A6): Mixture random sampling from multiple universal type classes 67

Figure (F25): Number bits of output entropy for different proportions of texture

mixture ... 69

Figure (F26): Simulated texture mixtures. ... 70

Figure (F27): Simulated texture mixtures. ... 71

Figure (F28): Simulated texture mixtures. ... 72

Figure (F29): Simulated texture mixtures .. 73

Page 85

	Contents
	
	1 Introduction
	2 Specific goals of the Thesis
	3 Mathematical Background
	3.1 Texture
	3.2 Source models
	3.3 Lempel-Ziv universal lossless data compression algorithms
	3.4 Plane Filling Curves
	3.5 Universal Type Classes
	3.6 Wavelets decomposition and the steerable pyramid
	4 Previous Work
	5 Universal Simulation of Textures
	5.1 Basic simulation
	5.2 The ‘Context dilution’ problem: quantization and vectors
	5.3 The ‘Loss of Context’ problem
	5.4 Improving the Hilbert scan
	5.5 Wavelets smoothing

	6 Mixing Textures via Universal Simulation
	7 Conclusions and Future Work
	7.1 Results
	7.2 Future Work

	 References
	 List of Figures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

