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Abstract

In this paper we present the function type in C5.
C5 is a superset of the C programming language. The main difference

between C and C5 is that the type system of C5 supports the definition of
types of dependent pairs, i.e., the type of the second member of the pair
depends on the value of the first member (which is a type).

Another C5 extension is the type initialization expression which is a
list of dependent pairs that can be attached to type expressions in a type
declaration.

These extensions provide C5 with dynamic type inspection at run time
and attribute type definition. The result is a powerful framework for
generic programming.

The version 0.98 (September, 2006) of the C5 compiler includes the
function type extending the power and expressiveness of the language.

The paper introduces C5 function types, the functions C5 fapply and
C5 compil, and a collection of examples.

Keywords: dynamic type; dependent pair type ; generic programming ; function
type
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1 Introduction

Polymorphic functions are a well known tool for developing generic programs.
For example, the function pop of the Stack ADT

pop : ∀ T. Stack of T → Stack of T

has a single algorithm that will perform the same task for any stack regardless
of the type of its elements. In this case, we say that the pop algorithm is similar
for different instantiations of T .

A more complex and powerful way to express generic programs are the func-
tions with dependent type arguments (i.e., the type of an argument may depend
on the value of another) that perform different tasks depending on the argument
type. These functions may inspect the type of the arguments at run time to
select the specific task to be performed.

The C printf and scanf functions are two widely used examples of this kind
of generic programs that are defined for a finite number of argument types. As
we will see later, the type of these useful functions cannot be determined at
compile time by a standard C compiler.

Even more powerful generic programs are achieved when we extend the finite
number of argument types to the entire type system. This class of generic
functions can perform different tasks depending on the argument type extending
its expression power to include generic programs like parser generators (a top
paradigm in generic programming).

C5 is a superset of the C programming language. The extensions intro-
duced in C5 are the notion of Dependent Pair Type (DPT) and that of a Type
Initialization Expression (TIE).

These extensions provide C5 with dynamic type inspection at run time and
attribute type definition.

C5 is a minimal C extension that express a wide class of generic programs
where the functions C5 fapply and C5 compil presented in this paper are rep-
resentative examples.

1.1 The type of printf

The C creators [11] warn about the consequences of the absence of type checking
in the printf arguments:

” ... printf, the most common C function with a variable number
of arguments, uses information from the first argument to determine
how many other arguments are present and what their types are. It
fails badly if the caller does not supply enough arguments or if the
types are not what the first argument says.”

Let us see through the simple example in Figure 1 how printf works. The
first argument of printf, called the format string, determines the type of the
other two: the expressions 4s and 6.2f indicate that the type of the second
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main(){
double n=42.56;
char st[10]="coef";
printf("%4s %6.2f",st,n);
}

Figure 1: A simple C printf example.

argument is an array of characters while the third argument is a floating point
notation number.

In the case of printf and scanf, the types declared in the format string are
restricted to atomic, array of character and character pointer types. There is
also some numeric information together with the type declaration (4 and 6.2
in our example) that defines the printing format of the second and third argu-
ments. These numeric expressions (attributes) will be called Type Initialization
Expressions (TIEs) in C5.

A standard C compiler cannot type check statically the second and third
arguments of the example presented in figure 1 because their types depend on
the value of the first one (the format string).

In functions like printf and scanf, expressiveness is achieved at a high cost:
type errors are not detected and, as a consequence unsafe code is produced.

However, some C compilers (e.g. the -Wformat option in gcc [7]) can check
the consistence of the format string with the type of the arguments of printf
and scanf. In this case, the format argument is a constant string (readable at
compile time) and the C syntax is extended with the format string syntax.

This is not an acceptable solution of the problem because the syntax of the
format string is specific for the functions printf and scanf.

A better solution can be found in Cyclone [15], a safe dialect of C. In this case,
the type of the arguments of printf and scanf is a tagged union containing all
of the possible types of arguments for printf or scanf. These tagged unions are
constructed by the compiler (automatic tag injection) and the functions printf
and scanf include the code to check at run time the type of the arguments
against the format string.

Similar results can be obtained with other polymorphic disciplines in stati-
cally typed programming languages such as finite disjoint unions (e,g, Algol 68)
or function overloading (e.g. C++).

This kind of solution of the printf typing problem has the following restric-
tions:

• The consistency of the format string and the type of the arguments is
checked at run time and

• the set of possible types of the arguments of printf and scanf is finite
and included in the declaration (program) of the functions.
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However, the concept of object with dynamic types or dynamics for short,
introduced by Cardelli [4] [1] provides an elegant and general solution for the
printf typing problem.

A dynamics is a pair of an object and its type. Cardelli also proposed
the introduction in a statically typed language of a new datatype (Dynamic)
whose values are such pairs and language constructs for creating a dynamic pair
(dynamic) and inspecting at run time its type tag (typecase).

Figure 2 shows a functional program using the typecase statement where dv
is a variable of type Dynamics constructed with dynamic, Nat (natural numbers)
and X * Y (the set of pairs of type X and Y) are types to be matched against
the type tag of dv, ++ is a concatenation operator, and fst amd snd return the
first and second member of a pair.

typetostring(dv:Dynamics): Dynamics -> String
typecase dv of

(v: Nat) " Nat "
(v: X * Y) typetostring(dynamic fst(v):X)

++ " * "
++ typetostring(dynamic snd(v):Y)

else "??"
end

Figure 2: The statement typecase

Tagged unions or finite disjoint unions can be thought of as finite versions
of Dynamics: they allow values of different types to be manipulated uniformly
as elements of a tagged variant type, with the restriction that the set of variants
must be fixed in advance.

C5 offers a way to embed dynamics within the C language that follows the
concepts proposed by Cardelli.

The goal of the C5 language is to experiment with generic programs based
on functions with dependent arguments under the following conditions:

• the type dependency of the arguments is checked at compile time and

• the functions accept (and are defined for) arguments of any type.

2 The C5 extensions

Dynamics has been implemented in C5 as an abstract data type called Depen-
dent Pair Type (DPT). Instead of the statement typecase there are a set of
functions that construct DPTs, inspect the type tag and read or assign values.

Since the use of DPTs is limited to a special class of generic functions, there
is a C5 statement called DT typedef to declare valid type definitions for the
DPT library.
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The major difference of the DPT library with Cardelli’s Dynamics is con-
cerned with the communication between the static and the dynamic universes:

• In the case of dynamics, there is a pair constructor (dynamic) for pass-
ing a static object to the dynamic universe. The inverse operation –the
typecase statement– is a selector that retrieves the dynamic object to the
static universe if it matches with a given static type.

• In the case of the DPT library, the constructor DT pair is the dynamic
counterpart, but nothing equivalent to typecase can be found in C5. The
only way to inspect a DPT object is by using a generic object selector
(C5 gos) that encodes the static C selectors into the dynamic universe. In
other words, it is easy to transfer a static object to the dynamic universe
but the inverse is limited to atomic types. In compensation, it is possible
to do some object processing within the dynamic universe.

This difference allows C5 to construct new dynamic objects at run-time without
the Dynamics type checking requirements.

2.1 Dependent pairs in C5

For the sake of readability, we will simplify the C type system to int, double,
char , struct , union, array, pointer, defined and function types.

The following is a brief introduction to the most important functions of the
DPT library:

• DPT DT pair( C Type t, t object)
The function returns a dependent pair where the type tag is the dynamic
representation of the first argument t and the object member is a reference
to the second argument object. The C5 compiler assures that DPTs are
well formed by checking that the second argument is a variable whose type
is the value of the first which is a DT typedef type definition.

• DPT C5 gos(DPT dp, int i)
The function is a universal selector for DPT pairs. If the type tag of dp
is a struct or a union, then C5 gos yields a DPT pair with the type and
value of the ith field. If dp is an array, then C5 gos returns a DPT pair
with the type of the array elements and the ith element of the array. If dp
is a pointer or DT typedef DPT, then C5 gos(dp,1) yields a DPT pair
constructed from the type of the referenced object and the object itself
respectively. If i is out of range, an dynamic pair with error information
is returned.

C5 gos is not defined for atomic or function types.

• int C5 gtype(DPT)
The DPT library is defined for the following type classes:

1. INT
The int type in C.
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2. CHAR
The char type in C.

3. DOUBLE
The double type in C.

4. STRUCT
The set of struct types.

5. UNION
The set of union types.

6. ARRAY
The set of type[cexpr] types.

7. POINTER
The set of ∗type types.

8. TYPEDEF
The set of type definitions with DT typedef.

9. FUNCTION
The set of function types.

Note that the C types register, unsigned, short long, float, void,
and enum are not included.

The function C5 gtype yields the type class of the dynamic pair argument.

• int C5 isDUnion) DPT )

C Unions are not interesting for the DPT Library because there is no way
to know the current field of an union at run time. For example, C5 gos
cannot be defined for C unions.

Instead of this kind of union , DPT functions recognizes discriminated
unions as a special case of the struct type.

A struct with two fields where the first is an union and the second an
integer is matched as a C5 Discriminated Union. In this case, the integer
field is supposed to keep the information about the current field of the
union.

The function C5 isDUnion returns 1 when the type of a dynamic pair is
a Discriminated Union. Otherwise returns 0.

• int C5 isFunction(DPT)
In the C language, the declaration of function types cannot be directly
expressed. Instead, we declare the type of function pointer.

The function C5 isFunction returns 1 if the type of the argument is a
function pointer. Otherwise returns 0.

• int C5 gsize(DPT)
If the type tag of the argument is a struct, union or function the function
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returns respectively the field quantity, the size or the arguments number.
If the tagged type is an atomic type C5 size returns 0, and in case of
pointers or defined types the function returns 1.

• char * C5 gname(DPT)
The function yields a string equal to the current type or field name of the
type tag of the dynamic pair.

• int C5 gpin(DPT)
The function returns the C5 pin number of the type member of the pair.
Each C5 type has a unique pin number.

• int C5 gint(DPT, int)
double C5 gdouble(DPT, double)
char C5 gchar(DPT, char)
char *C5 gstr(DPT, char *)
These functions return the value of the pair if the type tag is respectively
int, double, char and char pointer or array of char, In case of type
mismatch the second argument is returned.

• int C5 int ass(DPT dp, int v)
int C5 double ass(DPT dp, double v)
int C5 char ass(DPT dp, char v)
int C5 str ass(DPT dp, char *v)
If the type tag of dp matches, these functions assign the value of the
second argument to the second member of the first argument pair and the
returned value is 1.

In case of type mismatch no assigning is performed and the functions
return 0.

The equivalence of the DPT library with Dynamics is showed in the following
program which is a C5 version of the example presented in Figure 2:

void typetostring(DPT dv){
switch(C5_gtype(dv)){

case INT: printf(" Int ");
break;"

case STRUCT: if(C5_gsize(dv)==2){
typetostring(C5_gos(dv,1));
printf(" * ");
typetostring(C5_gos(dv,2));
}

else printf(" ?? ");
break;

default: printf(" ?? ");
}

}
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We will use DPTs to express the C5 version of printf with the form:

void C5 printf(DPT )

where the format string of the C printf function is expressed by the dynamic
type of the pair argument. Notice that in this version the type dependency of the
argument is checked at compile time while the possible types of the argument
are not fixed.

The program below is a first C5 approach to the C printf example presented
in figure 1:

DT_typedef char String[5];
DT_typedef float Fnr;
main(){

String st="coef";
Fnr n=42.56;
c5_printf(DT_pair(String,st));
c5_printf(DT_pair(Fnr,n));
}

Note that the declared types String and Fnr are the arguments of the function
DT pair.

Note that this is not a complete version of printf because the numeric
information of the format argument is absent.

2.2 DPT list and atomic DPT constructors.

The DPT library includes an ADT of DPT list and a set of atomic DPT con-
structors to simplify the use of DPTs:

• DPT list dpnil()
The null list constructor.

• DPT list dpcons(DPT, DPT list)
The inductive list constructor.

• int dpempty(DPT list)
Returns 1 if the argument is a null list.

• DPT dphd(DPT list)
It returns the head of the list. If the argument is the null list, the function
returns the null DPT.

• DPT list dptl(DPT list)
It returns the tail of the list. If the list is empty returns the null list.

• int dplen(DPT list)
It returns the length of the list.

8



• DPT list dpappend(DPT ,DPT list)
It appends the DPT argument to the end of the list.

• DPT dp In(int)
DPT dp Ch(char)
DPT dp Do(double)
DPT dp St(char * )
The functions construct dynamic pairs using predefined types and the
value of the argument. For example, dpIn(124) is equivalent to the fol-
lowing C5 code:

DT_typedef int IntType;
...
IntType vn=124;
DT_pair(IntType,vn);

The next example presents a DPT list constructed with elements of different
types:

dpcons( dp_Ch(’A’), dpcons( dp_Do(0.57),
dpcons( dp_St("Hello"), dpnil())));

2.3 The Type Initialization Expression (TIE)

A TIE is a DPT list attached to a C5 type.
The syntax of a TIE is a comma-separated sequence of DPTs enclosed by

brackets.
Constant expressions of atomic types do not need DPT constructors in a

TIE declaration.
For example, the TIE { ’A’, 0.57, "Hello" } is correct and is translated

by the C5 compiler to

dpcons(dp_Ch(’A’),dpcons(dp_Do(0.57),dpcons(dp_St("Hello"),dpnil())));

This TIE declaration is equivalent to the TIE { dp Ch(’A’), dp Do(0.57),
dp St("Hello") }.

There is a simple syntactical rule for inserting TIEs into a type declaration:
a TIE is placed on the right of the related type.
The next example shows two type definitions with TIEs:

DT_typedef int{1} Numbers[10]{2} [20]{3};
DT_typedef struct{

Numbers{4} nrs;
char{5} *{6} String_ptr;
}{7} Rcrd;

In the first type definition, the TIE {1} is attached to an int type and the TIEs
{2} and {3} are attached to a double array. In the second definition, the TIEs
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{4}, {5}, {6} and {7} are attached to the types Numbers, char, pointer of char
and struct respectively.

TIEs can be inspected at run time using the following functions of the DPT
library:

• DPT list C5 gtie(DTP)
It returns the DPT list in order to be directly manipulated. If the dynamic
pair has no TIE, the null DPT list is returned.

• int C5 gTIE length(DPT)
the function returns the size of the TIE of the type tag of the dependent
pair argument. If the TIE does not exist, the function returns 0.

• int C5 gTIE type(DPT, int idx)
the function applies C5 gtype to the TIE element indexed by idx. If the
TIE does not exist, the function returns 0.

• int C5 gTIE int(DPT, int, int)
double C5 gTIE double(DPT, int, double)
char C5 gTIE char(DPT, int, char)
The functions yield the value of the TIE element indexed by the second
argument. If the TIE element to be read does not exist, the function
returns the third argument. In case of type mismatch a warning message
is printed.

• int C5 TIE ass(DPT dp, int, DPT tieval)
The function assigns the value of tieval to the TIE of dp indexed by the
second argument. If the assignment is successful the returned value is 1.
If the TIE does not exist or the index is out of range or in case of type
mismatch a warning message is printed.

After the introduction of TIEs, the C printf example presented in figure 1
can be completely expressed in C5 as follows:

DT_typedef char String[5] {4};
DT_typedef float {6,2} Fnr;
main(){

String st="coef";
Fnr n=42.56;
c5_printf(DT_pair(String,st));
c5_printf(DT_pair(Fnr,n));
}

The TIEs {4} and {6,2} are respectively attached to the array and float
types. Notice that TIE declarations are optional: in this program, for example,
the char type of the first type definition has no TIE.
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2.4 C5 Type equality.

In most cases, C5 functions (e.g. C5 fapply) require structural type equality.
In the next type definitions, the types T1 and T2 are not equally defined.

DT_typedef struct AT {
int nr1, nr2;
struct{ char *String; struct AT *link; } ST;
} * T1;

DT_typedef int Integer;
DT_typedef struct BT {

Integer cod;
int age;

struct{ char * name; struct BT * next; } ns;
} * T2;

However, they are structurally equal ( struct{int,int, struct{char ptr,
rec ptr}}ptr). This is the kind of equality used by C5 functions.

The structural equality of C5 types is checked by the C5 type seq function.
It returns 1 if the types of two dynamic pairs are at least structurally equal:
Other wise, the function returns 0.

int C5_type_seq(DPT d1, DPT d2){

if(C5_gpin(d1)==C5_gpin(d2)) return(1);/* identical types */

/* skip typedefs */

if(C5_gtype(d1)==VTYPEDEF)

return(C5_type_seq(C5_gos(t1,1),t2));

if(C5_gtype(d2)==VTYPEDEF)

return(C5_type_seq(t1,C5_gos(t2,1)));

if(C5_gtype(d1)==C5_gtype(d2))a /* same type class */

switch(C5_gtype(d1)){

case INT: case CHAR: case DOUBLE: return(1);

case STRUCT: case UNION:

if(C5_gsize(d1)==C5_gsize(d2)){

int i;

for(i=1;i<=C5_gsize(d1);i++)

if(C5_type_seq(C5_gos(t1,i),

C5_gos(t2,i))==0) return(0);

return(1);

}

return(0);

case VARRAY:

if(C5_gsize(d1)==C5_gsize(d2))

return(C5_type_seq(C5_gos(t1,0),

C5_gos(t2,0)));

return(0);

case POINTER:

if(C5_rec_ptr(t1) && C5_rec_ptr(t2)){

int p1=
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is_ptr_checked(C5_gpin(t1),ptr_table);

int p2=

is_ptr_checked(C5_gpin(t2),ptr_table);

if(p1==NChk || p2==NChk) /* not checked */

return(C5_type_seq(V_gfield(t1,1),

V_gfield(t2,1)));

if(p1==Chkd && p2==Chkd) /*both checked*/

return(1);

}

else if(!C5_rec_ptr(t1) && !C5_rec_ptr(t2))

return(C5_type_seq(C5_gos(t1,1),

C5_gos(t2,1)));

return(0);

default:return(0);

}

return(0);

}

Note that in the case of pointers, the function avoids infinite loops by using
a table to assure that recursive pointers are checked once.

3 The function type.

Functions are not first class members in the C language. It is not possible to
declare a variable of a function type or assign a function to variables. Instead,
the C language accepts function pointers and this is the way functions are
handled as objects in a C program.

Function types are also declared through type definition of function pointers.
The C program presented in Figure 3 is a C program including the definition

and construction of a function variable.

typedef int (* FunctionType)( int , char );

int my_func(int n, char c){
if(c==’0’) return(0); else return(n);
}

main(){
FunctionType mf;

mf= &my_func;
printf("%d", &mf(123, ’5’));

}

Figure 3: A function type in C.
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3.1 Function DPTs

The version 0.98 (September, 2006) of the C5 compiler includes function pointers
definitions for DPT construction and we can express in C5 the C presented in
Figure 3:

DT_typedef int (* FunctionType)( int , char );

int my_func(int n, char c){
if(c==’0’) return(0); else return(n);
}

main(){
DPT fdp;
FunctionType mf;

mf= & my_func;
fdp= DT_pair(FunctionType, mf);
C5_printf(C5_fapply(fdp,

dpcons(dp_In(123),dpcons(dp_Ch(’5’),
dpnil()))));

}

Note the use of the function C5 fapply). This is the only way to use (destroy)
a function DPT.

3.1.1 C5 fapply

The function C5 fapply performs functional application in C5:

C5 fapply : DPT × DPT List → DPT List

If the first argument is a function pointer, C5 fapply type checks (C5 type seq)
the function against the argument list contained in the second argument of
C5 fapply.

If type checking is successful, C5 fapply applies the function of the first ar-
gument to the n arguments and returns a DPT with the result value. Otherwise,
the return DPT includes error information.

3.1.2 dp Fn

However, when the name of a function starts with c5, it is possible to construct
function DPTs avoiding the DT typedef declaration. In this case the C5 con-
structor dp Fn takes the type of the function from their signature and constructs
a DPT.

The constructor dp Fn allows a compact C5 version of the C program pre-
sented in Figure 3:
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int c5_my_func(int n, char c){
if(c==’0’) return(0); else return(n);
}

main(){
C5_printf(C5_fapply(dp_Fn(c5_my_func),
dpcons(dp_In(123),dpcons(dp_Ch(’5’),

dpnil()))));
}

3.2 C5 compil

The function C5 compil is a good example about the use of C5 fapply in generic
programs.

C5 compil : DPT → DPT

The function is a generic translation program where the translation rules are
included in the TIEs of the argument of C5 compil.

If the type of a dynamic pair is atomic ( int, char,double, char * or array
of char) or its type name starts with ”Token”, C5 compil returns its argument
without evaluation. Otherwise, the dynamic pair is evaluated as follows:

1. If the type member of the pair has a TIE, then C5 compil evaluates the
TIE as follows:

(a) the elements of the TIE are evaluated (in sequence, from the first to
the last) and C5 compil returns the result of the first one.

(b) if the first element of the TIE is a function, the remaining elements
are supposed to be the arguments of the function and the output of
C5 fapply is returned.

(c) if a member of a TIE attached to a struct is a string (char *) then
C5 compil compares the string with the field names of the structure.
If the string matches, a evaluation of the matched field is performed.
Otherwise, the result pair is the original string.

(d) if a member of a TIE attached to an array is a integer with a value
within the bounds of the array, C5 compil evaluates the indexed
element. Otherwise, the result pair is the original integer.

2. In case of a pair of struct or array type without TIE, the result of the
evaluation is the pair itself.

3. In case of disjoint unions, pointers or definitions with no TIEs the result of
the evaluation is the respective evaluation of the valid field, the referenced
value or or the defined object..

4. In case of Disjoint Unions with no TIEs, the result is the evaluation of the
selected member of the union.
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5. pairs of function type are returned without changes.

The next C5 program is a simplified version of C5 compil.

DPT C5_compil(DPT dp){

int i;

if(!strncmp("Token",C5_gname(dp),5)) return(dp);

switch(C5_gtype(dp)){

case CHAR: case DOUBLE: case INT: return(dp);

case STRUCT:

if(isDUnion(dp)){ /* Disjoint Union */

if (C5_TIE_length(dp)==0) /* No TIE */

return(C5_compil(C5_gos(C5_gos(dp,1),

C5_gint(C5_gos(dp,2),0)+1 )));

else return(C5_scanfActions(dp));

}

else{

if (C5_TIE_length(dp)==0) return(dp);

else return(C5_scanfActions(dp));

}

case ARRAY:

if (C5_TIE_length(dp)==0 ||

C5_gtype(C5_gos(dp,0))==CHAR) return(dp);

else return(C5_scanfActions(fp,dp));

case POINTER:

if(C5_is_ptr_nul(dp) ||

C5_gtype(C5_gos(dp,1))==CHAR) return(dp);

case TYPEDEF:

if (C5_TIE_length(dp)>0) return(C5_scanfActions(dp));

else return(C5_compil(C5_gos(dp,1)));

case FUNCTION: return(dp);

default: fprintf(fp,"Unknown type %s.\n",C5_gname(dp)); return(dp);

}

}

DPT C5_scanfActions(DPT dp){ /* */

DPT tie1= dphd(C5_gtie(dp)); /* first element of the TIE */

if(C5_isFunction(tie1)) /* function application */

return(C5_fapply(tie1, C5_map_tie(fp,dp, dptl(C5_gtie(dp)))));

else return(dphd(C5_map_tie(fp,dp,C5_gtie(dp))));

}

DPT_list C5_map_tie(DPT dp, DPT_list tie_ls){

if(tie_ls==NULL) return(NULL);

else{

DPT auxdp= C5_compil(C5_gPtrdp(dp,dphd(tie_ls)));

return(dpcons(C5_map_tie(dp, dptl(tie_ls))));

}

}
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DPT C5_gPtrdp(DPT dp, DPT tie){

DPT out; int i;

char *st;

if(C5_gtype(dp)==ARRAY && C5_gtype(tie)==INT){

int tie_idx=C5_gint(tie,-1);

if(tie_idx<0 || tie_idx>=C5_gsize(dp)) return(dp);

else return(C5_gos(dp,tie_idx));

}

if(C5_gtype(dp)==STRUCT && !isDUnion(dp) && C5_isString(tie)){

char *str= C5_gstr(tie, "C5_gPtrdp error");

for(i=1;i<=C5_gcant(dp);i++)

if(!strcmp(str,C5_gname(C5_gos(dp,i))))

return(C5_gos(dp,i));

return(tie); /* no match */

}

return(tie); /* no string */

}

3.3 Examples

The examples presented below show the use of C5 compil and C5 functions.

3.3.1 Field selector

The following example shows how C5 compil is used to select a certain value of
a data structure. The TIE id selects the second field of the structure and the
TIE {1} selects the second element of the array.

DT_typedef struct{
char {’<’} l;
char *id;
char {’>’} g;
} {"id"} IdExp[2] {1};

main(){
IdExp ie;
C5_printf(C5_compil(C5_scanf(DT_pair(IdExp,ie))));
}

The program returns "two" for the input < one > < two >.

3.3.2 The sum of a integer list.

The next example shows how C5 compil uses a c5 function:

int c5_add(int number, int recProd){ return(number + recProd);}

DT_typedef struct IntL{
int number;
struct{
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union{
emptyProd {0} nil;
struct IntL *next;
} UU;

int discriminator;
} recProd;

} {dp_Fn(c5_add),"number","recProd"} *Word_List;
main(){

Int_List nrls;
C5_printf(C5_compil(C5_scanf(DT_pair(Int_List,nrls))));
}

Note that the functional dynamic pair is constructed with dp Fn and the ar-
guments of the function are the fields number and recProd of the structure
Int List.

C5 printf is the C5 generic print function and C5 scanf is a scanner that
interprets the dynamic type of the argument as the grammar for parsing the
standard input and, if the parsing is successful, the object member of the argu-
ment pair is constructed accordingly to the input.

C5 scanf constructs a list of integers, C5 compil computes the sum of the
list which is printed by C5 printf. For example, he input 11 22 33 produces
the output 66.

3.3.3 Word count.

The following example changes the type of the linked list of the previous example
to word and the first argument of c5 add to the constant 1. .

int c5_add(int one, int recProd){ return(one + recProd); }

DT_typedef struct WordL{
char * word;
struct{

union{
emptyProd {0} nil;
struct WordL *next;
} UU;

int discriminator;
} recProd;

} {dp_Fn(c5_add), 1 ,"recProd"} *Word_List;
main(){

Word_List wls;
C5_printf(C5_compil(C5_scanf(DT_pair(Word_List,wls))));
}

For example, if the input of this program is one two three, it returns 3.
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3.3.4 The reverse function.

The next example applies the simple c5 reverse function to the input list to
print it in reverse order.

char * c5_reverse(char *word, char *recProd){
printf("%s ",word);
return(recProd);
}

DT_typedef struct WordL{
char *word;
struct{

union{
emptyProd {""} nil;
struct WordL *next;
} UU;

int discriminator;
} recProd;

} {dp_Fn(c5_reverse),"word","recProd"} *Word_List;
main(){

Word_List wls;
C5_compil(C5_scanf(DT_pair(Word_List,wls)));
}

For example, if the input of this program is one two three, it prints three
two one.

4 About the C5 compiler.

The C5 compiler has been developed in 1999 at the Instituto de Computación
(InCo) in Montevideo, Uruguay. The prototype translates C5 programs into C
code.

The C5 parser is a extended C parser with few grammatical modifications.
The compiler consists on about 3500 lines where 500 of them are the actual type
checker. The compiler parses C5, does type checking of DPT construction and
translates the resulting code into C.

Since the language keeps types during run-time, the compiler generates three
C files:

1. C5 defs.h
Type definitions.

2. C5 out.c
It includes the functions C5 gos and C5 fapply, and the type database
required by the DPT library.
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3. C5 prog.c
The translated C5 source program.

The C5 type checker is trivial: for every DT pair invocation C5 checks stat-
ically if the first argument is a DT typedef type definition and if the second is
a variable of the same type than the value of the first argument.

The current implementation of C5 (Version 0.98, September 2006) with a
sample of C5 programs can be found on the Web at

http://www.fing.edu.uy/~jcabezas/c5

5 Related work

The statically typed programming languages Amber [4] and Modula-3 [5] include
notions of a dynamic type and a typecase statement. This idea can also be seen
in functional programming [12] [14] [6] and in type-safe C dialects like Ccured
[13] where dynamics are used for converting C in a type safe language.

Although C5 may assign accurate types to untyped C programs like printf,
it is not a type-safe C dialect but rather a C-based framework for experimenting
with generic programming methodologies. In our knowledge, C5 is the first C
extension with dynamics developed for generic programming.

The extension of functional languages with dependent types is another in-
teresting alternative for generic programming: Cayenne [2] –a Haskell-like [9]
language with dependent types– is powerful enough to encode predicate logic
at the type level and thus express generic functions like printf without restric-
tions.

In a close research line to dependent types, the Generic Programming com-
munity [3][8]. is developing another approach. PolyP [10] is an example of this
work that achieves an expressive power similar to that of dependent types by
parameterizing function definitions with respect to data type signatures.

6 Conclusions

The generic functions C5 printf and C5 compil show that a static typed lan-
guage extended with DPTs (dynamics) and TIEs can be powerful enough to
express a wide class of generic functions in a straightforward, compact and safe
way.

TIEs seem to be an useful way of providing parameters for generic functions
without affecting the static C type system. In the case of C5 compil, the use
of TIEs with C5 functions allows C5 to express a generic function in a very
compact and readable way.

Finally, we will remark that even though the communication between static
and dynamic types is restricted to avoid typing conflicts, we have not detected
practical limitations when implementing generic functions like C5 compil.
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