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Abstract

We present in this paper the results of a experiment with a proto-
type implementation of a constructive page-description language. The
language is based on the concept of Typed Windows.

Typed Windows generalizes Computer Graphics standard concept of
window, associating graphic representation rules with types of a typed
programming language.

The graphic representation rules are inspired by the “Constructive
Universalism” of the Uruguayan painter Joaqúın Torres Garćıa and the
type system theoretical framework is Per Martin-Löf’s Type Theory.

In this paper, we present an informal introduction to the concepts of
typed window, view and oriented port and a description of the graphic
representation rules.

Finally, the results of a prototype implementation of Typed Windows
are discused including the experimentation with a collection of examples
and compared performance with other page-description language.

1 Introduction

The art of describing in a computer programming language the appearance of
graphical shapes, text and sampled images on a page is a complex task.

We usually describe these two-dimensional graphic objects expressing their
geometry trough a Cartesian coordinate system. This fact implies that page-
description programs are often composed of an important amount of numer-
ical information and non trivial algorithms, producing a poor readability and
reusability of this kind of software. The use of large graphics libraries with func-
tions including a multitude of parameters does not help to modify the situation.

It can be argued that, in most cases, page-description programs are auto-
matically produced by graphics editors or other software pieces, so that pro-
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grammers do not need to deal with this low-level coding. From this point of
view, the page-description ’assemblers’ could be an acceptable solution.

We think that the existence of high level page-description languages is a
necessary condition for the developing of high-quality and low-cost graphics
software.

A good example supporting this assertion is the concept of window. This
concept –a mapping of a rectangular region of a world-coordinate system onto
the page coordinates– is an important methodological tool for obtaining a better
programming environment. A remarkable property of programs produced with
this methodology is that they can be page-coordinate independent or, in other
words, device independent.

The main goal of the Typed Windows Project is the developing and ex-
perimentation of new methodologies for the construction of page-description
programs, based on the concept of Typed Windows. This concept is a general-
ization of the standard window concept.

In this paper, we present an informal introduction to the concepts of typed
window, view and oriented port and a description of the graphic representation
rules. Finally, the results of a prototype implementation of Typed Windows are
discused including the experimentation with a collection of examples.

1.1 The standard concept of window.

Computer graphics programs are usually constructed based on the concepts of
window and port.

These concepts can be explained as follows:

• “ ... specifying a window in the world-coordinate space surrounding the in-
formation we wish displayed.” [1]

• “In addition to the window, we can define a port (or viewport), a rectangle
on the screen where we would like the windows contents displayed.” [1]

• “We use the window to define what we want to display; we use the port to
specify where on the screen to put it”. [1]

The screen –or page in our case– is a m×n rectangular array of dots, called
pixels (picture elements).

Pixels are individually addressed by pairs of a Cartesian coordinate system
of natural subranges according to the array sizes. We will suppose the existence
of a procedure for setting the color of a pixel. A screen (page) including such
procedure is called a pixel machine.

A port is a rectangular region of the screen defined by the address of two
pixels.

Windows are rectangular regions defined by two points of the world-coordinate
space, usually a real (floating point notation) Cartesian coordinate system.
When a window is associated with a port, a mapping between the world-
coordinate space and a page region can be defined. By this way an abstraction
of the page (the graphics hardware) is obtained.
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1.2 Typed Windows.

However, the type of the graphic objets is limited to a Cartesian product of
reals or integers. This limitation may conduce to an unaceptable increment of
the programming complexity when graphic objects of other types are required.
In this case, it is necessary to reduce (translate) them to (lists of) pairs of reals
or integers, before they can be printed through a certain window.

From a methodological point of view, it would be desirable that for every
object a of a certain type A in the graphic universe , there exists a window of
type A that accepts the object a for printing.

A window system with these properties called Typed Windows was first
presented in [3]. The paper described a generalization of the traditional concept
of window by means of associating graphic representation rules with the types
of a small functional programming language.

The resulting programming language is a constructive page-description lan-
guage, that is, a language capable of describing the appearance of text, graphical
shapes and sampled images on a page. As a reference, Postcript [4] can be con-
sidered the best-known page-description language. PostCript is a trademark of
Adobe Inc.

Typed Windows introduces an original programming concept for page-description
languages:

• To define a window is equivalent to define the type of the graphic objects
to be printed on that window, extended with some visibility information.

• A graphic object is an expression (program) of the programming language
where Typed Windows has been defined, and a program (in such pro-
gramming language) is a graphic object in Typed Windows.

1.3 The theoretical background.

Typed Windows takes as theoretical framework the Type Theory of the Swedish
mathematician Per Martin-Löf.

This theory is a formalization of the constructive mathematics with concepts
and properties interesting for Computing Science.

In this theory, the idea of specification and program can be associated with
the idea of type and element respectively. The theory allows to express both
using the same language and formally verify the correctness of a program to its
specification.

These ground ideas of Martin-Löfs Type Theory are introduced in [7] as
follows:

“The judgement a ∈ A in type theory can be read in at least the following ways:

• a is an element in the set A.

• a is a proof object for the proposition A.

• a is a program satisfying the specification A.
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• a is a solution to the problem A.

The reason for this is that the concepts set, proposition, specification and prob-
lem can be explained in the same way.”

The window concept can be explained in the same way too and therefore we
extend the list introduced above with:

• a is an object that can be printed in the window A.

As a consequence, this extension makes possible to use this theory in the
Computer Graphics area (figure 1).

Figure 1: Window - Graphic Object relation.

1.4 Torres Garćıa’s art conception.

In Typed Windows, the task of printing an object through a window of type A
is determined by the graphic rules inferenced from the type A.

These graphic representation rules will be expressed in terms of a certain
abstract graphic machine that is constructed accordingly to a certain imaging
model.

Traditional graphic machines are often based on the painting model:

”In PostCript the imaging model is based on the notion of painting with opaque
paint on a plane. The paint is applied by a pen or brush of a user-specified width...”
[2]

As a consequence, the main instructions of such graphic machine are:

• select a pen (color, width).

• move the pen to a certain point of the plane.

• paint a line or a circle or write a letter or ...
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This idealized machine –too close to the pixel machine– is inadequate to
express the graphic representation rules in a simple and easy to understand
way.

Instead of this painting model, Typed Windows has a constructive graphic
machine based on the color plane concept of the Uruguayan painter Joaqúın
Torres Garćıa (1874-1949).

At the same time, the graphic representation rules were designed inspired
by the Constructive Universalism of the Uruguayan painter.

Torres Garćıa has proposed an art conception that stands out for understand
the constructive painting like a symbols structure. [6]

He produced an art movement based on two concepts:

Structure : in order to give a unity to the construction (“Color planes and lines
combined with art, will build a real structure.”[5]).

Abstraction : since he withdrew form imitation of nature, he defined ideograms
to represent things and simple ideas in order to use universal representa-
tions (“The painter is not interested in the object, he is interested in the color
plane and the geometry of its structure.”[5]).

Torres Garćıa created a constructive painting based on a composition (struc-
ture) of rectangles (color planes) and ideograms.

A constructive imaging model, following Torres Garćıa ideas, can be pre-
sented in this way:

• construct the color planes of the page.

• construct a rectangle structure representing the image structure.

• for every ractangle of the structure, stamp an ideogram or construct a
structure representing the rectangle image ...

Continue this structuring process until the desired image is obtained.

This imaging conception –taking color rectangle structures as basic graphic
objects– unifies the foreground-background duality; the classical duality of the
painting model:

“In the unity of the composition, the idea of thing and background should
disappear. ... Then, there are not the thing and the background, all is thing
and all is background.”[5].

And when this duality disappear, the duality point-plane of the graphic
machine disappear too, producing an important change: it is possible to design
abstract graphic machines with independence of the pixel machine.

Torres Garćıa’s concept of color plane has inspired the graphic machine of
Typed Windows : the oriented port machine.

This concept of port is a generalization (unification) of the traditional con-
cepts of port and pixel in Computer Graphics.
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In Torres Garćıa’s paintings we can find structures, ideograms and color
planes. In Typed Windows these concepts are implemented by windows (and
views), graphic objects (programs) and oriented ports.

2 Ports, Windows and Views.

In this section, the concepts of oriented port, window and view, and the graphic
representation rules are informally introduced.

2.1 Oriented Port

A port is an oriented rectangular region of the page including color information.
There is four different orientations: Up,Right,Down and Left.

Notice that it is possible to define four different ports with the same color
information and rectangular region on the page.

Figure 2:

There are seven port constructors:

1. page port(cl) : construct a port from the page rectangle, Right oriented
and with a color list cl representing the color planes of the port. The
actual color plane of the port is represented by the head of the list cl. If
cl is a null list, the color plane of the port is white.

2. null port() : construct a null port. Printing a null port produces no
changes on the page.

3. rot orient(p) : construct a port rotating the orientation clockwise. The
rectangular region and color information are taken from p.

4. intersection(pa, pb) : construct a port representing the intersection of the
rectangular regions of pa and pb and with the color and orientation of port
pa. If the intersection is a line, a point or empty, a null port is constructed.
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5. sel split(n, i, p) : If i ≤ n and i > 0 split the port p in n sub-rectangles
and construct a port from the ith rectangle. Otherwise, construct a null
port. The orientation and color information are taken from p. Figure 3
shows the four different results of sel split depending of the four possible
orientations of p.

Figure 3: sel split example for n = 5 and i = 2.

6. partition(r, p) : If 0 < r < 1 then split the port p in two rectangles
proportionally to the real number r and construct a port from the first
rectangle. Otherwise, construct a null port if r ≤ 0 and a p equall port
if r ≥ 1. The orientation and color information are taken from port p.
Figure 4 shows the four different results of partition depending of the four
possible orientations of p (r = 0.75).

7. next color(p) : Construct a port with the tail of the color list of p. The
rectangular region and orientation are taken from p.

Figure 4: Partition example for r = 0.75
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2.1.1 Ports equality.

Let us suposse that port eq is defined so that ports p1 and p2 are equall ports if
they represent the same rectangle on the page and have equall orientation and
color list.

2.1.2 The oriented port machine.

We call the following set of functions the oriented port machine (opm):
Let n, i : Nat; r : Real; lc : List(Color); lp, lp1, lp2 : List(Port); in

opm page(cl) = page port(cl) : []

opm rot(0, lp) = lp

opm rot(succ(n), lp) = opm rot(n, map rot orient lp)

opm intersection([], lp) = []

opm inters(a.lp1, lp2) = map λx.intersection(a, x) lp2

= + + opm inters(lp1, lp2)

opm selsplit(n, i, lp) = map λx.sel split(n, i, x) lp

opm partition(r, lp) = map λx.partition(r, x) lp

opm next color(lp) = map λx.next color(x) lp

2.2 Windows

The types defined for this Typed Windows version are enumerations, natural
and real numbers, cartesian product, disjoint union , lists and functions.

A window is a type expression. In the case of natural and real numbers and
lists the type expression will be extended with visibility information.

In the case of natural numbers the visibility information is a subrange of
natural numbers. The following example

Nat(2..4)

defines a window that accepts natural numbers but only the numbers 2,3 and 4
will be visible through this window.

Real number windows includes visibility information as a real number sub-
range:

Real(−1.0..1.0)

defines a window that accepts real numbers but only the numbers greater or
equall than −1.0 or less or equall than 1.0 will be visible through this window.

In the case of lists, visibility information is a pair of the enumeration rot0, rot1, rot2, rot3
and a subrange of natural numbers. The second member of the pair determines
which elements of a list will be visible, and the first gives the relative orientation
that the elements are visualized. :
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list((rot1, 2..4), A)

is a window that accepts lists of type A but only the second, third and fourth
element of the lists will be visible with rotated orientation ( rot1 ).

Examples of window expressions are:

Bool ×Nat(5..11) → list((rot0, 1..100), Bool)
Nat(1..56)× list((rot3, 1..4), T + Real(0.5..9.0))

2.3 Views

A view is an ordered pair of type

Wdw × List(Port)

where the first member is a window and the second a port list. We call this
notation restricted views (Rviews). When a more general way for constructing
views is required, the Venum, Vnat, Vreal, Vprod, Vunion, Vlist and Vfunction
constructors can be used. We call these expressions general views (Gviews).

The following is a brief description of the Gviews primitives:
Let m,n : Nat; r, s : Real; rot : rot0, rot1, rot2, rot3; VA, VB : V iew where VA

and VB accept objects of type A and B respectively; lp : List(Port) in

1. V enum({a0, .., an}, lp): construct a view that will accept an object of type
{a0, .., an} for printing on port list lp.

2. V nat((m,n), lp) : construct a view that will accept an object of type Nat
for printing on port list lp with visibility range (m,n).

3. V real((r, s), lp) : construct a view that will accept an object of type Real
for printing on port list lp with visibility range (r, s).

4. V prod(VA, VB) : construct a view that will accept an object of type A×B
for printing.

5. V union(VA, VB) : construct a view that will accept an object of type
A + B for printing.

6. V list((rot, (m,n)), VA): construct a view that will accept an object of
type List(A) for printing with visibility range (m,n) and relative rotated
orientation rot.

7. V function(VA, VB): construct a view that will accept an object of type
A → B for printing.

While Rviews are mainly intend to define (specify) ideograms, Gviews ex-
pressions support the design of graphic structures.

Since Rviews is a Gviews subset, it is possible to translate Rviews expressions
into Gviews expressions:
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Let m,n : Nat; r, s : Real; rot : rot0, rot1, rot2, rot3; A,B : Wdw; lp :
List(Port) in

Gv(< {a0, .., an}, lp >) = V enum({a0, .., an}, lp)

Gv(< Nat(m..n), lp >) = V nat((m, n), lp)

Gv(< Real(r..s), lp >) = V real((r, s), lp)

Gv(< A×B, lp >) = V prod(Gv(< A, maprot orient(lp) >), Gv < B, lp >)

Gv(< A + B, lp >) = V union(Gv(< A, lp >), Gv(< B, opm next color(lp) >))

Gv(< list((rot, m..n), A), lp >) = V list((rot, (m, n)), Gv(< A, lp >))

Gv(< list((rot, m..), A), lp >) = V list((rot, (m, 0)), Gv(< A, lp >))

Gv(< A → B, lp >) = V function(Gv(< A, lp >), Gv(< B, lp >))

2.4 The Graphic Representation Rules.

In Typed Windows, images are represented by port list expressions constructed
by the oriented port machine .

The function gr rep constructs the image of a graphic object applying to
a port list expression the graphic representation rules inferenced from a view
expression:

gr rep : V iew ×Obj → List(Port)

where V iew is a view and Dbj is a graphic object (a program).

Let m,n, i : Nat and m < n; lp : List(Port); a0, .., ai, .., an : Id ; VA, VB : V iew
; c : A×B; [e0, .., em, .., en, ..], a.l : List(A) ; u : A + B; f : A → B; in

gr rep(V enum({a0, .., an}, lp), ai) = opm sel split(n, i, lp)

gr rep(V nat((m, n), lp), i) = opm sel split(n−m, i−m, lp)

gr rep(V real((r, s), lp), i) = opm partition(i− r/s− r, lp)

gr rep(V prod(VA, VB), c) = opm inters(gr rep(VA, fst(c)),

gr rep(VB , snd(c)))

gr rep(V udisj(VA, VB), u) = when(u, λa.gr rep(VA, a),

λb.gr rep(VB , b))

gr rep(V list((rot, (m, n)), Gv(A, lp))

, [e0, .., em, .., en, ..]) = gr rep(Gv(A, opm rot(rot, gr rep(

(Nat(m, n), lp), m))), em)

+ + gr rep(Gv(A, opm rot(rot, gr rep(

(Nat(m, n), lp), m + 1))), em+1)
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+ + .........

+ + gr rep(Gv(A, opm rot(rot, gr rep(

(Nat(m, n), lp), n))), en)

gr rep(V list((rot, (n, m)), Gv(A, lp)), []) = []

gr rep(V list((rot, (n, m)), Gv(A, lp)), a.l) = gr rep(Gv(A, opm rot(rot, lp)), a)

+ + gr rep(V list((rot, (n, m)), Gv(A, lp))), l)

gr rep(V func(VA, VB), f) = null port() : []

In order to give a better understanding of the rules, figures 5, 6 and 7 show
the graphic representation of simple examples.

Figure 5:

Figure 6:

2.5 Some interesting properties.

• Recursive graphic design.
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Figure 7:

In Typed Windows, the recursive graphic design is an easy to use design
methodology.

The following example

gr rep((WA, gr rep((WA, lp), a)), a)

is the graphic representation of the object a on a port list that is the
graphic representation of the object a on the port list lp.

• Cartesian coordinate compatibility.

There are some wellknown traditional conventions for the graphic repre-
sentation of Cartesian coordinate systems.

These conventions are naturally followed by the window

Nat(a..b)×Nat(c..d) where a, b, c, d : Nat

• Equality of figures.

In Typed Windows, a figure can be represented by the pair

<< WA, pl >, a >

where WA is a window of type A , lp a port list and a : A a graphic object.

The equality of figures can be defined if the equality of windows, ports and
graphic objects is defined. Ports equality has been introduced previously
in this paper and windows and graphic objects equality can be defined in
the same way that types and elements equality is defined in Martin Löf’s
Type Theory [7]. However, in the case of windows an extra condition must
be added: two windows are equal if the type expressions and the visibility
information are equal.
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3 Experimenting with Typed Windows

Although the theoretical properties of Typed Windows look interesting, there
are questions that only practice can answer:

• Has Typed Windows enough programming power to express in an accept-
able way shapes, text and sampled images?

• Is it possible to program in Typed Windows complex figures using ideogram
libraries instead of function libraries? How necessary are function libraries
in this kind of page-description languages ?

• Are these programs easy to read and reuse compared with other page-
description languages? And what about the amount of numerical infor-
mation in such programs?

Pablo Queirolo has made a prototype implementation for testing the prac-
tical performance of Typed Windows [8].

In order to give an overview of this experiment, we have selected eight ex-
amples covering most of the tested performance of Typed Windows .

3.1 Example 1: Hello World

The first example is the classic text printing of Hello World where Typed Win-
dows shows its ability for recursive graphic design, displaying the word “HELLO”
on ports where the word “WORLD” has been programmed.

Figure 8: Example 1: Hello World.

Figure 8 shows the resulting page of the following program.
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-- Including character fonts from an ideagram library.

-- "char_window" is the font window type of the library.

-- char_window= List((0,1..),Integer(0..13) * Integer(0..6));

#include "TyWin_LIBRARY/char.5.12.all";

-- defining a five char text window type

text_window = List((1,1..5),char_window);

-- defining a port list

lport = opm_page([Black]);

-- the graphic objects

HELLO = [ ch_H, ch_E, ch_L, ch_L, ch_O ];

WORLD = [ ch_W, ch_O, ch_R, ch_L, ch_D ];

-- constructing and printing the image

HELLO_ports = gr_rep(Gv(text_window, lport), HELLO);

showpage(gr_rep(Gv(text_window, HELLO_ports), WORLD));

Notice that the font (ideogram) library file char.5.12.all is included in the
first line of the program. An ideogram library is a file including a window type
declaration and graphic objects of that type. In the case of fonts, the window
type is identified with the name char window and the fonts with ch followed
by the selected character.

It is important to remark that both words HELLO and WORLD use the
same library. The rest six lines of the program construct the graphic structure
by means of windows, views and ports showing the resulting page.

3.2 Example 2: Function visualization

This example presents a five lines program that visualizes the sin function.
The program includes the types disjoint union, real numbers and one element
enumeration.

Figure 9 shows the resulting page of the following program:

-- defining a two color port list

sin_lp = opm_page([SkyBlue, Red]);

-- defining the window type

-- "T" is the one element enumeration {tt}.

sin_window = List((0,1..),(T + List((3,1..100),Real(-1.0..1.0)));

-- constructing the graphic object . pi=3.1415...

sin_obj = [inl(tt), inr(map sin [0.0,pi/50..pi*2])];

-- constructing and printing the image

showpage(gr_rep(Gv(sin_window,sin_lp),sin_obj);
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Figure 9: Example 2: Function visualization.

The union list sin window is used to obtain two color planes (SkyBlue and
Red) on the same rectangle.

3.3 Example 3: Ancient frieze.

The example presents the construction of a frieze in two steps:

• Construct the frieze structure: an 8 × 8 rectangular array of three color
planes rectangles (mosaics).

• stamp the frieze pattern on these rectangles.

Figure 10 shows the resulting page of the program:

-- constructing the frieze port list.
frieze_lpt = opm_page([LightYellow,White,Black]);

-- Constructing an 8 element list of 8 element "tt" list.
ls_8x8= [[tt|x<-[1..8]]|x<-[1..8]];

-- constructing the frieze structure (an 8 x 8 matrix of ports)
frieze_struct= gr_rep(Gv(List((1,1..8),List((1,1..8),T)),

light_lpt), ls_8x8);

-- defining the frieze pattern window
wdw16x16= Integer(1..16) * Integer(1..16);
frieze_wdw= List((0,1..),wdw16x16);
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Figure 10: Example 3: Ancient frieze.
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-- constructing the frieze pattern (graphic object)
hor_lines= (map \x->(1,x) [1..13])++(map \x->(1,x) [14..15])

++(map \x->(5,x) [3..9])++(map \x->x.(9,x) [7..10])
++(map \x->(13,x) [7..15]);

ver_lines= (map \x->(2,x) [2..13])++(map \x->(6,x) [6..8])
++(map \x->(10,x) [10..11])++(map \x->(14,x) [6..15]);

frieze_obj= [inl(tt),inr(inl(hor_lines)),inr(inr(inl(hor_lines))),
inr(inr(inr(inl(ver_lines)))),inr(inr(inr(inr(ver_lines))))];

-- constructing and printing the frieze
showpage(gr_rep(Vlist((1,0),Vunion(Gv(T,frieze_struct),

Vunion(Gv(pattern_wdw,opm_next_color(frieze_struct)),
Vunion(Gv(pattern_wdw,opm_rot(1,opm_next_color(frieze_struct))),
Vunion(Gv(pattern_wdw,opm_rot(2,

opm_next_color(opm_next_color(frieze_struct)))),
Gv(pattern_wdw,opm_rot(3,opm_next_color(

opm_next_color(frieze_struct)))))))),
frieze_obj));

Notice that the General View constructor V union is used instead of the
disjoint union window (the + type) in order to obtain enough power to deal
with the three color graphic structure and frieze pattern rotations.

3.4 Example 4: Text handling

The example shows the word TyWin printed in three different modes:

• Monospaced text. The direct and simple way of printing text from a font
library.

• Multispaced (variable pitch) text. In this case, the use of a font library is
combined with a simple text processing function library.

• Rotated multispaced text. In this case, the use of a font library is combined
with a simple text processing and a simple 2D graphic function library.

Figure 11 presents the resulting page of the program:

-- constructing the port list.
text_lp = opm_rot(3,opm_page([LemonChiffon,MidnightBlue]));

-- defining the page places for the 3 text examples
3x5 = Integer(1..5) * Integer(1..3);
example1_lp = opm_rot(1,gr_rep(Gv(5x3,text_lp),(4,2)));
example2_lp = opm_rot(1,gr_rep(Gv(5x3,text_lp),(3,2)));
example3_lp = gr_rep(Gv(5x3,text_lp),(2,2));
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Figure 11: Example 4: Standard, proportional and rotated text.
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-- Including the character font library
#include "$TW_LIBRARY/fonts/lucida";

-- Example 1 "TyWin" in fixed pitch text format
text_window1 = List((4,1..5),char_window);
tywin1 = [ ch_T , ch_y , ch_W , ch_i , ch_n ];

-- Example 2 "TyWin" in variable pitch text format
text_window2 = List((0,1..),Integer(0..95) * Integer(0..35));
-- "TyWin" space information
TyWin_sp= [ sp_T , sp_y , sp_W , sp_i , sp_n ];
TyWin2= multispaced(TyWin1,TyWin_sp));

-- Example 3 rotated "TyWin" in variable pitch text
text_window3 = List((0,1..),Integer(20..110)*Integer(0..80));
TyWin3 = map_rot (pi/4) din_str(TyWin2));

-- constructing and printing the page
text123_obj= [inl(tt),inr(inl(tywin1)),inr(inr(inl(tywin2))),

inr(inr(inr(TyWin3)))];
showpage(gr_rep(Vlist((1,0),Vunion(Gv(T,text_lp),

Vunion(Gv(text_window1,opm_next_color(example1_lp)),
Vunion(Gv(text_window2,opm_next_color(example2_lp)),
Vunion(Gv(text_window3,opm_next_color(example3_lp))))),
text123_obj)));

The multispaced function constructs a pair list representing the text in
multisapaced format:

mapsum n [] = []
mapsum n a.l = (n + a):(mapsum (n + a) l)
map_chs offs [] = []
map_chs offs c.chs=(map \x->(((hd offs)+(fst x)),(snd x)) c)++

(map_chs (tl offs) chs)
multispaced chls spls = (map_chs 0:(mapsum 0 spls) chls)

The maprot function applies a rotation matrix to a vector list:

srot (a,b) sina cosa = (round ((a*cosa)+(b*sina)),
round((-a*sina)+(b*cosa)))

maprot angle pairls = map (\x->srot x (sin angle)
(cos angle)) pairls

3.5 Torres Garćıa’s paintings.

The following figures shows three examples of designs where Torres Garćıa’s
paintings were taken as models. In order to test the expressivity power of Typed
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Figure 12: Ex.5:“Constructivo con ancla y barco - Anphy” (1932 - 12× 9.cm.).

Windows, the examples do not use funtion libraries. Just only ideogram libraries
were allowed.

Figure 13: Example 6:“Estructura a cinco tonos con dos formas intercaladas”
(1948 - 52× 50 cm.).

In figure 12 (” Constructive with anchor and ship - Anphy ”), the program-
mer constructs a simple structure and stamps the ideograms (man , ship, key,
etc.) from a library.

The same constructive methodology, but with increasing complexity, is ap-
plied in figures 13 (” Five tones structure with two intercalated shapes. ”) and
14 (” Construction ”).

20



Figure 14: Example 7:“Construcción” (1944 - 54× 82 cm.).

3.6 Example 8: Computer screen.

Figure 15 shows a possible screen on a user graphic interface. The lady has
been translated to Typed Windows from a raster format file. Function libraries
were not used in this example.

3.7 The size of the programs.

Example Hello Func Frieze Text Anphy 5Tones Constr Screen
Nr. 1 2 3 4 5 6 7 8

Typed Windows programs sizes
Wdw decl. 42 67 108 206 457 130 534 455
Digits (chars) 6 16 74 71 990 800 1049 520
Total (chars) 301 203 1088 1036 9774 9576 10050 10349

Ideogram library sizes
Ideogram cant. 0 0 0 0 13 1 11 3
Digits (chars) 0 0 0 0 11509 650 9830 2384
Total (chars) 0 0 0 0 55411 15621 86929 66782

Table 1: Typed Windows program and ideogram library sizes.

Table 1 shows the program size of the eight examples. We will point some
interesting results extracted from the table:
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Figure 15: Example 8: Screen Design.

1. The size of window (type) declarations is in the same order than the
numerical information of the programs, and together are less than 30% of
the total size of the programs (except example 2).

2. The size of the programs is not directly dependent of the complexity of
the images. However, the size of ideogram libraries is clearly dependent
of the image complexity.

Notice that font libraries are not included in the tables. We suposse that
font libraries are standard in page-description languages.

3.8 Numerical information in page-description programs.

Table 2 shows the amount of numerical information of the eight examples in
Typed Windows and PostCript . The size of PostCript programs must be
considered just a relative reference. We are not expert PostCript programmers
and it is possible that the eight examples can be programmed in a more efficient
way.
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Typed Windows PostCript
Example Prog. Size Digits Prog. Size Digits

Name Nr. Chars Chars % Chars Chars %
Hello World 1 301 6 2 3051 581 19
Func.Visual. 2 203 16 8 3101 934 30
Ancient Fri. 3 1088 108 10 2930 1342 45
Text 4 1036 206 20 234 17 7
Anphy 5 65185 12499 19 30571 17954 59
Five tones.. 6 25197 1450 6 13306 8413 63
Construction 7 96979 10879 11 28560 16098 56
Comp.Screen 8 77131 2904 4 71519 46013 64

Table 2: Numerical information in page-decription programs.

Even accepting the previous consideration, we detect some results that ap-
pear to be independent of the programmer’s expertise:

1. The numerical information size in a Typed Windows program is less or
equal than 20% of the program size in all cases. We cannot detect a
relationship between this size and the image complexity.

2. In most cases, the numerical information size in a PostCript program is
around the half of the program size and grows with the image complexity.
There are two examples where the size is less than 20%. Both are simple
images based on font libraries.

3. In most cases (five), PostCript programs are smaller than Typed Windows
programs.

4. In most cases (seven), the numerical information of Typed Windows pro-
grams is smaller than PostCript numerical information.

3.9 The results of the experiment.

• About the programming power.

The examples show that Typed Windows is power enough to express
complex images (see examples 7 and 8).

• About function and ideogram libraries.

The language do not require large function libraries to reach an acceptable
expressivity power.

During the experiment, ideogram libraries were constructed, used and
reused in an easy way, However, in some cases (see example 4) the pro-
gramming task is strongly simplified using function libraries.

• About the readibility.

23



The examples show that Typed Windows programs have a low level of nu-
merical information compared with page-description languages supporting
the standard concept of window (see PostCript in Table 2 ).

This fact and the window declarations (see Table 1) -a specification of
the graphic objects- conduce to an important improvement of program
readability.

• About the reusability.

Graphic objects in Typed Windows are not a special class (or classes)
of objects. This property of the language makes very easy the reuse of
graphic objects in a program or trough ideogram libraries.

4 Related work

Beside the related works referenced in the introduction of this paper, we want
to point some interesting connections between Typed Windows and the art con-
ception of the Dutch painter Piet Mondrian, the Constructive Solid Geometry
, the Functional Geometry and the printf function.

• Piet Mondrian.

Avoiding the traditional primitives of the painting model like lineto ,
polyline or curve, Typed Windows has only one primitive geometric ob-
ject: the normal rectangle, that is, a rectangle with vertical and horizontal
sides.

The preference for this geometric object is typical for most constructivist
painters, but the Dutch painter Piet Mondrian (1872-1944) with his aus-
tere art of black lines and colored rectangles placed against white back-
grounds conceived the normal rectangle as the unique geometric object
[15].

In his perception, vertical and horizontal lines joined at right angles -the
angle of perfect equilibrium- were the ’primitives’ to express an universal,
spiritual, and harmonious art conception.

Following Mondrian ideas, the oriented port concept in Typed Windows
was developed taken the colored normal rectangle as the primitive graphic
object.

• Constructive Solid Geometry.

Constructive methodologies are not new in Computer Graphics. Construc-
tive Solid Geometry (CSG) has been widely used in 3D Solid Modeling.
The main idea in CSG is to describe a solid object as a composition of
primitive objects (cylinders, spheres, cubes) combined with Boolean set
operators such as union, intersection and difference. An objet is stored as
a tree with operators at the internal nodes and simple primitives at the
leaves [9] [10] .
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Although CSG is a simple and compact way of representing solids that
induces to a constructive thinking when defining a 3D object, it is neither a
constructive programming language nor a formal system with well-known
properties.

The function intersection introduced in the second chapter of this paper
is inspired on the CSG concepts.

• Functional geometry.

There are several approaches to express pictures with structured datatypes
and functional programming producing low-cost prototypes that are easy-
to-use for non expert graphics programmers [11] [12] [13].

In most cases the primitive drawing elements of these packages are empir-
ically selected taken the line segment as the basic geometric element.

These approaches are an interesting innovation from the programming
methodologies side but the lackness of a coherent imaging or page-description
model reduced them to a friendly interface of standard graphics packages
or page-description languages like PostCript.

However, these experiences convinced us about the convenience of using
functional programming when prototyping. The first Typed Windows pro-
totype was implemented in a functional programming environment.

• The printf function.

The gr rep function introduced previously in this paper is strong influ-
enced by printf , the most common C language function that uses infor-
mation from the first argument to determine the type and visibility (print
format) of the others [14]. The types accepted by the printf function are
limited to the atomic types: int, float and char.

In the case of gr rep the first argument accepts a type expression with no
limitattions. From this point of view, it would be possible to understand
gr rep like a generalization of the printf function.

5 Conclusions and future work

In this paper, we have presented in detail the results of a experiment with a
prototype implementation of a page-description language which is based on the
Typed Windows concept.

The results of our experiment indicates that

• Typed Windows is power enough to express complex images.

• The language do not require large function libraries to reach an acceptable
expressivity power.

• the readability and reusability of the language is better compared with
other page-description languages supporting the standard concept of win-
dow.

25



Although the implementation and experimental studies look promising, at least
two questions remain to be answered:

• How efficient can be Typed Windows when requiring memory and processor
resources? This kind of efficience aspects were not considered in the actual
implementation.

• Is it possible to extend procedural programming languages like Pascal, C
or C++ with Typed Windows? The actual implementation is based on a
small functional language.
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