
An Approach to Typed Windows

Juan José Cabezas∗

Instituto de Computación Facultad de Ingenieŕia
Montevideo URUGUAY

email: jcabezas@incouy.edu.uy

June, 1991.

abstract

The concept of window in Computer Graphics has been increasing its im-
portance during the lasts years.

From a methodological point of view, it would be desirable that for every
object of a certain type in the ”graphics” universe, there exists a window of
a certain type that accepts that object for displaying. A window system with
those properties can inprove the quality of the programming environment in
Computer Graphics, extending to the graphics area, the power of type systems
in recent programming languages.

In this paper, three possible strategies for obtaining such window environ-
ment are evaluated and a simple typed window system is presented.

1 The Window Model

The ideas supporting the concept of window are simple and easy to understand:

• ” ... specifying a window in the world-coordinate space surrounding the information
we wish displayed.” [Spr83]

• ”In addition to the window, we can define a viewport, a rectangle on the screen
where we would like the windows contents displayed.” [Spr83]

• ”We use the window to define what we want to display ; we use the viewport to
specify where on the screen to put it”. [Spr83]

The window (the world-coordinate space and the viewport associated with it) may
be seen as an abstraction of the screen and the pixel (the graphics hardware). This
window model [Spr83] is a powerful tool that allows a better programming methodology
in Computer Graphics.

∗The author is partially supported by a PEDECIBA-Informática grant.

1

However, the type of the objets of a certain window is usually limited to a cartesian
product of subranges of reals or integers. As a consequence, when programming with
graphic objects of different types, it is necessary to reduce (translate) them to a list of
objects of the window type, before they could be displayed.

From a methodological point of view, it would be desirable that for every object of
a certain type in the ”graphics” universe, there exists a window of a certain type that
accepts that object for displaying. A window system with those properties can increase
the quality of the programming environment in Computer Graphics, extending to the
graphics area, the power of type systems in recent programming languages.

This approach implies a more abstract concept of window presenting some theoretical
questions:

• which types have a graphical meaning and therefore could be accepted by a window?

• what is the concept of clipping for such windows?

• what does it means type checking between objects and windows?

2 Three possible strategies

In this section, three possible strategies for obtaining a typed window environment are
evaluated.

2.1 Function oriented windows

A possible strategy for obtaining more power and simplicity is to associate a set of windows
with different functions in the graphic domain. These windows could include a library for
the specified task. Some examples of these types of windows could be:

Type of the window use
2D W = 2DWindow(h1,..,hn) display(2D W,Translate(ob1:2D),p1,..,pn)
3D W = 3DWindow(h1,..,hn) display(3D W,Rotate(ob2:3D),p1,...,pn)
Me W = MenuWdw(h1,..,hn) select(Me W,ob3:Menu,p1,..,pn)
Fn W = FuncWindow(h1..,hn) funPlot(Fn W,ob4:Function,p1,..,pn)

where p1,..,pn and h1,...,hn could be understand as other parameters. In this case, we
have four window types (2DWindow, 3DWindow, MenuWdw and FuncWindow) including
one graphic library each, supporting a high level graphics functionality.

The basic idea of this strategy is to make an abstraction of the window by means of
specialization, obtaining a finite set of powerful window types.

This strategy may be applied when the window types are predefined since the pro-
grammer is not able to construct new window types from them. It can be considered
as a refinement of a graphic library but not a window type system. In some cases this
limitation is not desirable.

2

2.2 The Infinite Window

This design strategy , by means of abstraction of the concept of window, tries to obtain
with no compromise, the most simple programming environment. As we will see later,
the basic power of the window concept is lost.

Only one function, the function view is available for the programmer. view has two
parameters, the first is the object to be displayed in the screen and the second contains
the information needed to define the viewport on the screen.

Let a be an object of type A and p defining a viewport.

view(a, p) [a ∈ A p ∈ V port inf]

we say that the object a will be displayed in the viewport defined by p and will be seen
through a window of type A. The type A is obtained by a type inference algorithm from
a.

Example: if a =< tuesday, sun > so that a ∈ A and A is the cartecian product of
the enumerated sets Week ×Weather

Week = {sunday, monday, tuesday, wednesday, thursday, friday, saturday}
and
Weather = {sun, cloud, rain}

then view(< tuesday, sun >, p) will display the object < tuesday, sun > on the viewport
p through a window of type (Week×Weather). The reader can easily imagine a possible
graphic representation of this window type.

But, which representation could be accepted for the following example?
If a = 4 and A ≡ N then view(4, p) will display the object 4 on the viewport p

through a window of type natural numbers. Natural numbers is an infinite set. What is
the graphical meaning of such a window?

In this case, the concept of window is lost. Informally, a window could be represented
by a finite subset of a certain set (the window universe), but not the entire universe when
it is infinite.

In conclusion, this strategy has two important limitations:

• the concept of window is lost if infinite sets are considered.

• Although this strategy offers to the programmer the possibility of construct different
types of windows, the programmer is not able to define different windows for an
object of a certain type because the window is automatically defined by the type of
the object to be displayed.

2.3 Typed Windows

The third design strategy , by means of abstraction of the concept of window, tries to
obtain a friendly programming environment and, at the same time, includes the possibility
of defining different types of windows in a certain universe.

For every object a of type A it is possible to define a window w of type WA, where
WA is a restriction of A.

3

Example: if the type of a is A ≡ (N ×N) then the type WA of the window w could
be WA ≡ ({10..20} × {5..40}).

The objects < 1, 100 > and < 15, 10 > are of type A, but only the second is of type
WA. In this case, the window w accepts both objects, but only the second is displayed.
So, a window can be constructed if we know the type WA representing the restrictions
over the type of the objects to be displayed. The basic types considered in this paper
are: enumerated sets, natural numbers subranges of natural numbers, cartesian product,
disjoint union, lists and functions. Subranges of natural numbers are specially impor-
tant when defining window types (type WA). Notice that this set of types is the set of
predefined types in most programming languages.

Some examples of different types of windows and objects:

Window type Object type (deduced from WA)
({1..10} × {4..90}) + list(Bool) (N ×N) + list(Bool)
list({1..600} → {0..400}) list(N → N)
({a1, a2} × {b1, b2})× list({0..4}) ({a1, a2} × {b1, b2})× list(N)

3 The function view.

In this section, a simple typed window system based on the third strategy, is proposed.
Accordingly to this type system, the function view is programmed in Martin-Löf’s

Type Theory.
Martin-Löf’s Type Theory is a formalism for program construction developed by the

swedish mathematicien Per Martin-Löf. It is well suited as a theory for program con-
struction since it is possible to express both specifications and programs within the same
formalism.([NPS89])

3.1 Function oriented windows

3.2 Views and Types

In Computer Graphics the concept of view can be introduced in the following way:

1. define a window w of a certain universe (usually a cartesian product of real or integer
subranges).

2. define a viewport vp.

3. define a function chgcoor so that, chgcoor(w, vp, < x, y >) where x and y are the
coordinates of a point in [1], gives the coordinates of a pixel < a, b > in the viewport
defined in [2].

We call view a procedure consisting of the above three steps:

view < WA, p > (a) [a ∈ A; WA is a restriction of A]

so that when view < WA, p > (view applied to a window type WA and a viewport defined
by p) applies to an object a of type A, yields the list of pixels to be modified on the screen.

V iew, the type of view, is defined as follows::

4

V iew ≡ (∀ wp ∈ (Wdw type× V p coor)) Obj type(fst(wp)) → list(V port(snd(wp)))
where

Wdw type ≡ U (U is the set of small types. [NPS89])
V p coor ≡ list(Screen× Screen)
Screen ≡ {0..Mx} × {0..My}
Obj type(t) ≡ obj(set(t)) (obj is defined in [3.2])
V port(m) ≡ {ffst(hd(m))..fsnd(hd(m))} × {sfst(m))..ssnd(m)} [m ∈ V p coor]

so that if < A, p >∈ (Wdw types×V p coor) and there exists a function view ∈ V iew
then view < A, p > yields a view vw (a function) of the type

vw ≡ view(< A, p >) vw ∈ Obj type(A) → list(V port(p))

and if a ∈ Obj type(A) (where A ∈ Wdw type) then vw(a) yields a list lp of pairs
< m,n > of type list(vport(p)). lp is the list of pixels to be modified or, in other words,
we say that the object a will be displayed through a window of type A on the viewport
defined by p.

3.3 A graphics semantic for view

A possible definition of view is the following:

view < A, p >≡ λm.coorchg(code(A, m), gen(A, m), subwin < A, p > (a))
where

coorchg ∈ Base Wcoor × list(Base Wcoor)× V p coor → V p coor
code ∈ (∀t ∈ Wdw type)Objtype(t) → Base Wcoor
Base Wcoor ≡ (N ×N)× (N ×N)
gen ∈ (∀t ∈ Wdw type)Objtype(t) → list(Base Wcoor)
subwin ∈ V iew

The functions code, gen, subwin and obj are defined for the predefined types:

1. Subranges

Subranges are denoted {a..b} where a ≤ b and a, b ∈ N

code({a..b}) = λn. << a, succ(b) >,< a, succ(b) >>
gen({a..b}) = λn. << n, n >, < succ(n), succ(n) >> .nil
subwin < {a..b}, p >= λn.p
obj({a..b}) = N

2. Enumerations

Enumerations are denoted {i1, .., in} where ik is an identifier.

code({a1, .., an}) = λe.code({0..n})
gen{a1, .., an} = λe. < case(e, 0, 1, .., n), case(e, 0, 1, .., n) >,

< succ(case(e, 1, .., n)), succ(case(e, 1, ..., n)) > .nil
subwin < {a1, .., an}, p >= λe.p
obj({a1, .., an}) = {a1, .., an}

5

3. Cartesian Product

code(A×B) = λm. < fst(code(A)), snd(code(B)) >
gen(A×B) = λm.pairs(map(fst, genA(fst(m))), map(snd, genB(snd(m))))
subwin < A×B, p >= λm.case(cl(A, B),

view < snd(code(A))× fst(code(B)), p >
< snd(genA(fst(m))), fst(genB(snd(m))) >,
view < snd(code(A))× fst(code(T)), p >< snd(genA(fst(m))), tt >,
view < snd(code(T))× fst(code(B)), p >< tt, fst(genB(snd(m))) >,
p)

obj(A×B) = obj(A)× obj(B)

4. Disjoint Union

code(A + B) = λu.when(u, λa.code(A), λb.code(B))
gen(A + B) = λu.when(u, gen(A), gen(B))
subwin < A + B, p >= λu.when(u, subwin < A, p >, subwin < B, p >)
obj(A + B) = obj(A) + obj(B)

5. Lists

code(list(A)) = λl.code(A)
gen(list(A)) = λe.listrec(e, nil, λxyz.concat(genA(x), z))
subwin < list(A), p >= λe.listrec(e, nil, λxyz.concat(subwin < A, p > (x), z))
obj(list(A)) = list(obj(A))

6. A → B

code(A → B) = λs.code(list(A×B))
gen(A → B) = λf.gen(list(A×B), pairmap(f, explode(A)))
subwin < A → B, p >= λf.subwin < list(A×B), p > pairmap(f, explode(A)))
obj(A → B) = obj(A) → obj(B)

7. Natural numbers

Since N has no meaning when defining window types, it will be considered as the
subrange {1..0}.

code(N) = code({0..1} gen(N) = gen{0..1}
subwin < N, p >= λn.p obj(N) = N

4 Examples

4.1 Bar graph

Window type:
Bars ≡ list(Bar × {1..16})

6

where
Bar ≡ list(T × {1..8})
T ≡ {tt}

Object to be displayed:
bar graph ≡ pairs(bars, [2; 4; 6; 8; 10; 12; 14])
where
bars ≡ map(λn.bar(n), [4, 2, 3, 6, 5, 2, 4])
bar(n) ≡ map(λx.pair(tt, x), [1..n])

We can now display the object bar graph on the viewport defined by p through a
window of type Bars:

view < Bars, p > (bar graph)

8------------------

7| |

6| I |

5| I I |

4| I I I I |

3| I I I I I |

2| I I I I I I I |

1| I I I I I I I |

1 16

4.2 Function plotting

Window type:
2P fun ≡ {1..4} × {1..3} → {1..16}

Object to be displayed:
ft1 ≡ λxy.(x ∗ y + 1)

The function ft1 will be displayed on the viewport defined by p through a window of type
2P fun:

view < 2P fun, p > (ft1)

4| * |

x 3| * |

2| * (y=3)|

1|...*............|

4| * |

x 3| * |

2| * (y=2)|

1|..*.............|

4| * |

7

x 3| * |

2| * (y=1)|

1|_*______________|

1 16

ft1(x,y)

4.3 The text window

Suppose we have defined fonts for graphic respresentation of characters and the function
chr to font:

Font = {0..10}x{0..10}
charfonts = [font A; font B; font C;; font z]

chr to font ∈ Char × list(Font) → Font
f. e. chr to font(′B′, charfonts) = font B

We define now the funcion str fts :
str fts ∈ list(Char)× list(Font) → list(Font)
str fts(st, fonts) = map(λc.chr to font(c, fonts), st)

Window type:
Wtext(n, m) ≡ {1..n} × String(m)
String(m) ≡ list(Font× {0..m})

Object to be displayed:
hello ≡< 4, str(”Helloworld”, 11) >
where str(st, n) = pairs(str fts(st, charfonts), [0..n])

view < Wtext(4, 20), p > (hello)

4|Hello world |

| |

| |

1| |

0 20

4.4 A composed window

Suppose we want to compose the following window

|text1 .C |

| . text2 |

| . |

| example[4.2]|

8

| . |

| . example[4.1] |

|A .B |

so that example[4.2] and text1 will be displayed on the rectangle A, example[4.1] on the
rectangle B and the text2 on C.

text1 = ”Function ft1”
text2=”Bar Graph”

Window type:
Wcomp ≡ list(((Wtext(12, 20) + Bargraph)×Bool)+

((Wtext(3, 20) + 2P fun)× (Bool ×Bool))
where Bool = {false, true}

Object to be displayed:
comp obj ≡ [obj1; obj2; obj3; obj4]
where
obj1 ≡ inl(inl(<< 6, str(”BarGraph”, 9) >, false >))
obj2 ≡ inl(inr(< bargraph, false >))
obj3 ≡ inr(inl(<< 1, str(”Functionft1”, 12) >,< true, true >>)
obj4 ≡ inr(inr(< ft1, < false, true >>)

Finally, the composed object is displayed:

view < Wcomp, p > (comp obj)

|Function ft1* . |

| * . |

| * . |

|...*............ |

| * .Bar graph |

| *|

| * . I |

|..*............. I I |

| * . I I I I |

| * . I I I I I |

| * . I I I I I I I |

|_*_______________I_I_I_I_I_I_I_|

References

[NPS89] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin
Lof’s Type Theory. Programming Methodology Group - Department of Com-
puter Sciences - University of Gothembourg / Chalmers - S-412 96 Gothembourg,
Sweden, 1989.

9

[Spr83] William M. Newman Robert F. Sprouil. Principles of Interactive Computer
Graphics. Mc Graw Hill, 1983.

10

