

Qbox-Services:

Towards a Service-Oriented Quality Platform

September 2008 – January 2009

Laura González
Internship Report

Laboratoire PRiSM

Université de Versailles Saint-Quentin-en-Yvelines

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 2 -

This report summarizes the work I did during my internship at the Laboratorie PRiSM (Université de
Versailles Saint-Quentin-en-Yvelines) from September 2008 to January 2009.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 3 -

Content:
1 INTRODUCTION ... 4

2 QBOX FOUNDATION OVERVIEW .. 5

2.1 GENERAL DESCRIPTION ... 5
2.2 QBOX-FOUNDATION LIMITATIONS .. 6

3 DATA QUALITY TOOLS ... 7

3.1 DATACLEANER PROJECT ... 7
3.2 AGGREGATE PROFILER .. 8
3.3 OPEN DATA QUALITY PROJECT ... 9
3.4 TALEND OPEN PROFILER ... 10
3.5 POWER MATCHMAKER ... 11
3.6 SUMMARY ... 11

4 SOA AND WEB SERVICES .. 13

4.1 SERVICE ORIENTED ARCHITECTURES .. 13
4.2 WEB SERVICES .. 14

4.3 IMPLEMENTING A SOA WITH WEB SERVICES .. 15

5 QBOX-SERVICES PLATFORM .. 16

5.1 GENERAL DESCRIPTION ... 16
5.2 MEDIATION OF QUALITY SERVICES ... 17

6 QBOX-SERVICES PROTOTYPE .. 19

6.1 QUALITY SERVICES ... 19
6.2 SERVICES REGISTRY .. 21
6.3 QBOX SERVICES CORE .. 22

7 CONCLUSIONS AND FUTURE WORK ... 24

8 REFERENCES .. 25

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 4 -

1 Introduction
QBox-Foundation [4] is a quality management platform which consists in a generic meta-model that
allows users to define their quality goals, quality metrics and a set of appropriate measurement
methods. However, some experiments revealed some limitations in this platform: incompleteness of
quality methods and lack of connectivity to integrate functionalities of existing tools.

In addition, a large amount of tools has been implemented in order to deal with data quality in
information systems. They support many types of data sources (relational databases, XML files, text
files, etc) and provide different kinds of functionalities (measurement, analysis, improvement, etc).
Datacleaner [5] and Talend Open Profiler [10] are some examples of such tools.

Service-oriented architecture (SOA) presents an approach for building distributed systems that deliver
application functionality as services. SOAs provide many benefits to organizations like allowing them
to leverage existing assets and composing new services out of existing ones. In this way SOAs help
organizations to reduce cost and increase reuse.

In this report, a new approach for the QBox platform is presented which, taking advantage of service-
oriented mechanisms, addresses the limitations of the QBox-Foundation platform.

The remaining of this report is organized as follows: section 2 presents an overview of Qbox-
Foundation. In section 3 various open source data quality tools are described and compared. Section 4
describes service-oriented architecture and the Web Services technology as a way to implement it.
Section 5 introduces the new service-oriented approach for the QBox platform. Section 6 presents the
development of a prototype for this new approach. Finally, Section 7 presents conclusions and future
work.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 5 -

2 QBox Foundation Overview
Qbox-Foundation [4] is a metadata platform for quality assessment based on the Goal-Question-Metric
(GQM) paradigm [1]. It proposes analyzing quality at three abstraction levels: (i) at conceptual level,
identifying high-level quality goals, (ii) at operational level, enouncing a set of questions that
characterize the way to assess each goal, and (iii) at quantitative level, defining a set of quality
measures that quantify the way to answer to each question and a set of measurement methods for
computing them.

2.1 General Description
The heart of Qbox-Foundation is a quality assessment meta-model, which allows understanding and
reasoning with quality concepts. It is the result of successive refinements of the GQM paradigm, done
in DWQ [2] and Quadris [3] projects. Figure 1gives a synthesized picture of this meta-model.

Figure 1 - Quality Assessment Metamodel

The central bloc of this quality meta-model (bloc 2) deals with quality goals following the GQM
approach. Quality goals represent high-level quality needs (e.g. “reducing the number of returns in
customer mails”). Quality questions represent the refinement/decomposition of a goal, reaching an
operational form (an example of question for the previous goal is “which is the amount of syntactic
errors in customer addresses?”). The answer to a quality question is defined by choosing and
specializing a quality factor which best characterizes the question (e.g. syntactic correctness), a set of
quality metrics which are appropriate to measure this factor (e.g. the percentage of data satisfying a
syntax rule) and a set of methods of measurement of this metric. Quality factors, metrics and methods
are chosen from a library of generic quality concepts (bloc 1 of the meta-model) and adapted to goal
characteristics (e.g. checking for specific syntactic errors that commonly appear in address data).

The first bloc of the meta-model constitutes an extensible library of abstract data types which will be
used to characterize specific quality goals. The main abstractions are: quality dimensions which
capture a high-level facet of data quality, quality factors which represent particular aspects of quality
dimensions, quality metrics which are the instruments used to measure quality factors and quality
methods which are processes that implements a quality metric.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 6 -

The third bloc of the meta-model refers to the information system (IS) model and to the processes
which operate on the instances of this model. Each object type, being either a datum or a process, is
called a measurable object if it is subject to a qualitative evaluation within a quality goal.

The fourth bloc of the meta-model deals with quality measurements. Given the definition of a quality
goal, at any moment there will be a need to evaluate the quality questions and to analyze the obtained
values in order to improve the quality of the measured objects. Measurement values represents the
result of executing a measurement method (for evaluating a quality goal), for a measurable object, at a
given instant or during a period of time. Results of successive quality measurements serve to analyze
behaviors and trends of the measured objects. Generally, improvement actions are taken based on this
analysis. A deeper description of the meta-model can be found in [4].

Qbox-Foundation was implemented as a Java web application, with user interfaces for managing the
different entities of the meta-model and executing measurement methods. Its main functionalities
include: management of an extensible catalog of quality concepts (dimensions, factors, metrics),
management of an extensible library of methods (descriptions and code), definition and storage of
user’s quality goals and questions, association of quality goals to IS objects, selection and
specialization of quality factors, selection and specialization of quality metrics, selection and binding
of measurement methods, execution of measurement methods and visualization of measurement
results.

2.2 QBox-Foundation Limitations
Even though various experiments have shown the relevance and the usefulness of the QBox-
Foundation, they have also revealed some limitations of this first version of the QBox: incompleteness
of quality methods and lack of connectivity to integrate functionalities of existing tools. These
limitations can be seen as a problem of scalability, given that developing quality methods is time and
money consuming, and although many tools in the market provide generic quality methods, they do
not interoperate with each other and they do not share a common quality model.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 7 -

3 Data Quality Tools
A large amount of tools has been implemented in order to deal with data quality problems in
information systems. In this section, various open source data quality tools are described and
compared according to, among others, the functionalities they provide and the data source types they
support.

3.1 DataCleaner Project
DataCleaner [5] is an open source project, concerned with creating a data quality solution for business
and organizations wishing to measure and increase the quality of their data. DataCleaner provides
functionalities for profiling, validating and comparing data. Figure 2 shows the main user interface of
the DataCleaner tool.

Figure 2 - DataCleaner User Interface

The profiling functionalities are grouped in profiles. Some examples of the built-in profiles and its
functionalities are: standard measures profile (highest and lowest values, number of null values, row
count), string analysis profile (word count, percentage of lowercase and uppercase chars, percentage of
non letter chars) and number analysis profile (mean, geometric mean, standard deviation, sum,
variance). Regarding validation, DataCleaner provides functionalities to perform validations based on
dictionaries, regular expressions, range of values and JavaScript programs. It is important to note that
although the tool provides a build-in number of functionalities, it also gives the mechanisms to
incorporate new functionalities in the form of new profiles and validation rules. Figure 3 shows the
results of running the standard measures profile in some columns of a table named “CUSTOMERS”.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 8 -

Figure 3 - Standard Measures Results

The DataCleaner solution is structured in three main modules. The DataCleaner Core module is the
core library of DataCleaner and includes classes and methods that provide a framework for data
quality. The DataCleaner Gui module is a Swing based standalone desktop application which relies on
the DataCleaner Core module to offer user oriented functionalities. Finally, the DataCleaner Monitor
module, still in an early stage, is a Web based application for monitoring and scheduling continuous
data quality efforts based on rules created in the desktop application. Additionally DataCleaner
depends heavily on a component named MetaModel, which provides a common domain model for
structures and querying of data stores.

Finally, in a more technical aspect, the DataCleaner tool is implemented with the Java programming
language, so it is platform independent and can run on almost any operating system with a Java
Runtime Environment (JRE). The tool supports many types of data sources like files in different
formats (csv, xml, txt) and relational databases via JDBC. Table 1 presents a summary of the main
DataCleaner characteristics.

Functionalities Data Sources License
Programming

Language
Last version -
Release Date

Calculus
JDBC, CSV, Excel,
OpenOffice DBs, XML

Open Source –
Apache License

Java 1.4 - 21/09/2008

Table 1 - Summary of DataCleaner characteristics

3.2 Aggregate Profiler
Aggregate Profiler [6] is an open source Data Quality and Data Profiling tool, which supports RDBMS
(oracle, MySQL, MS Access and SQL Server), Flat Files, XML and XLS file formats for analysis.
This tool can be used for profiling of data, quality check (and correction), and analysis of data
(statistical analysis, charts). Additionally, it can perform cardinality checks between different tables
within one data source. Finally, Aggregate Profiler can also be used for random generation of data,
populating database values, looking into database metadata, fetching and storing data from/to
databases.

Figure 4 shows the main user interface of the Aggregate Profiler tool and Table 2 presents a summary
of its main characteristics.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 9 -

Figure 4 - Aggregate Profiler User Interface

Functionalities Data Sources License
Programming

Language
Last version -
Release Date

Calculus and
Correction

Oracle, Access, MySQL
and MS SQL (via ODBC)

Open Source -
(GNU or LGPL)

Java 4.10 - 18/07/2008

Table 2 - Summary of Aggregate Profiler characteristics

3.3 Open Data Quality Project
The Open Data Quality [7] project is a Sub-component of Mural [8] community that provides an
alternative to closed-source data management products. The project provides the capability to match,
standardize, analyze, and cleanse data from various sources. It supports pluggable rules and
standardization algorithms to allow support for new locales and vertical market applications.
Additionally it supports pluggable matching algorithms for customized match logic and a high degree
of flexibility through configuration. Figure 5 shows the main user interface of the Open Data Quality
tool.

Figure 5 - Open Data Quality User Interface

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 10 -

Table 3 presents a summary of the main Open Data Quality tool characteristics.

Functionalities Data Sources License
Programming

Language
Last version -
Release Date

Code Generation
(calculus and
correction)

Various through Open
Data Integrator Project [9]

Open Source -
CDDL

Java (NetBeans
plugins), Code
generation in Java

r6u1 – 12/12/2008

Table 3 - Summary of Open Data Quality characteristics

3.4 Talend Open Profiler
Talend Open Profiler [10] is a data profiler that allows business users or data management staff to
define a set of indicators for each data element that needs to be analyzed or monitored. The indicators
that can be set with Talend Open Profiler include:

• Simple statistics
They provide statistics on the number of records falling in certain categories, including the
number of rows, the number of null values, the number distinct and unique values, the number
of duplicates, or the number of blank fields.

• Text statistics
They analyze the characteristics of text fields, including minimum, maximum and average
length.

• Summary statistics
They perform statistical analysis on numeric data, including the computation of the mean, the
average, the inner quartile range, and the definition of ranges.

• Advanced statistics
They determine the mode and builds frequency tables.

Additionally, Talend Open Profiler provides a user interface which presents a series of tables and
graphs that display the results of the profiling for each data element and each indicator selected. Figure
6 shows and example of a Talend Open Profiler Graph and Table 4 presents a summary of the main
Talend Open Profiler characteristics.

Figure 6 – Example of a Talend Open Profiler Graph

Functionalities Data Sources License Programming
Language

Last version -
Release Date

Calculus
DB2, MySQL, Oracle,
PostgreSQL, SQLServer.
Probably more via JDBC.

Open Source -
GPL

Java (Eclipse
plugins)

1.1.4 –
27/02/2009

Table 4 - Summary of Talend Open Profiler characteristics

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 11 -

3.5 Power MatchMaker
Power Matchmaker is a tool created by data warehouse designers which contains many features geared
for anyone dealing with information systems. For example, it provides functionalities to transform and
cleanse data, validate and correct address information, accepts user-defined data matching criteria,
merge duplicate records and their related data, builds cross-reference tables to link source systems'
identifiers (Primary Keys) to the target database identifiers. Additionally, it provides an intuitive
interface for match verification, which allows user confirmation of duplicates through the online
verification facility. It also allows the Backup of impacted records prior to data merging and runs
against the entire database to perform initial data cleanup, or incorporated into the data load process.
Finally, the Power MatchMaker tool works with most database platforms.

Figure 7 - Power MatchMaker User Interface

Functionalities Data Sources License Programming
Language

Last version -
Release Date

Calculus and
Correction

JDBC
Open Source -
GPL

Java
0.9.4 –
08/08/2008

Table 5 - Summary of Power MatchMaker characteristics

3.6 Summary
Table 6 presents a summary of the characteristics of the tools reviewed in the previous sub-sections.

Tool Functionalities Data Sources License
Programming

Language

Last version
- Release

Date

Data
Cleaner

Calculus
JDBC, CSV, Excel,

OpenOffice DBs, XML

Open Source –
Apache
License

Java
1.4 -

21/09/2008

Aggregate
Profiler

Calculus and
Correction

Oracle, Access, MySQL and
MS SQL (via ODBC)

Open Source -
(GNU or
LGPL)

Java
4.10 -

18/07/2008

Open Data
Quality

Code Generation
(calculus and
correction)

Various through Open Data
Integrator Project [9]

Open Source -
CDDL

Java (NetBeans
plugins), Code

generation in Java

r6u1 –
12/12/2008

Talend
Open

Profiler
Calculus

DB2, MySQL, Oracle,
PostgreSQL, SQLServer.
Probably more via JDBC.

Open Source -
GPL

Java (Eclipse
plugins)

1.1.4 –
27/02/2009

Power
Match
Maker

Calculus and
Correction

JDBC
Open Source -

GPL
Java

0.9.4 –
08/08/2008

Table 6 - Summary of Data Quality Tools Characteristics

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 12 -

Although, there are nowadays many other commercial and open source data quality tools, the previous
sections show that considering only a small amount of them, many heterogeneities arise. For example,
the tools differ among each other in the types of data sources they support and the kinds of
functionalities they provide. Additionally each of these tools is generally a stand-alone and user
oriented application, which does not provide interoperation mechanisms with other tools. Furthermore,
they manage different quality concepts, at different abstraction levels, expressed with ad-hoc
terminology. These heterogeneities constitute a problem for the quality analyst who may require using
functionalities provided by more than one tool according to specific needs.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 13 -

4 SOA and Web Services
Service-oriented architecture (SOA) presents an approach for building distributed systems that deliver
application functionality as services. Nowadays, Web Services constitute a well suitable technology
for implementing a SOA. In this section, the SOA approach and the Web Service technology are
described [12][13][14].

4.1 Service Oriented Architectures
SOA presents an approach for building distributed systems that deliver application functionality as
services to either end-user applications or other services. The collaborations in a service-oriented
architecture follow the “find, bind and invoke” paradigm where a service consumer performs dynamic
service location by querying the service registry, according to specific requirements. If the service is
found, the registry provides the consumer with the interface contract and the endpoint address for the
service. Figure 8 presents the collaborations among the entities in a service-oriented architecture.

Figure 8 - Collaborations in a SOA

A service consumer is an application, a software module or another service that requires a service. It
initiates the enquiry of the service in the registry, binds to the service over a transport, and executes
the service function. The service consumer executes the service according to the interface contract. A
service provider is a network-addressable entity that accepts and executes requests from consumers. It
publishes its services and interface contract to the service registry so that the service consumer can
discover and access the service. Finally, a service registry is the enabler for service discovery. It
contains a repository of available services and allows for the lookup of service provider interfaces to
interested service consumers.

In a SOA, services map to business functions. Each service has a well-defined interface that allows it
to be published, discovered and invoked. An enterprise can choose to publish its services externally to
business partners or internally within the organization. A service can also be composed from other
services. Services are self-contained, modular and support interoperability. Additionally, they are
loosely coupled and location-transparent.

SOAs can provide several benefits to help organizations to deal with their current two fundamental
concerns: the ability to change quickly and the need to reduce costs.

First, SOAs allow organizations to leverage existing assets providing a layer of abstraction that
enables an organization to continue leveraging its investment in IT by wrapping these existing assets
as services that provide business functions. Within a SOA, the integration point is the service
specification and not the implementation, providing in this way implementation transparency and
minimizing the impact when infrastructure and implementation changes occur.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 14 -

Additionally, SOAs provides a more responsive and faster time-to-market. The ability to compose new
services out of existing ones provides a distinct advantage to an organization that has to be agile to
respond to demanding business needs. This leads to rapid development of new business services and
allows an organization to respond quickly to changes and reduce the time-to-market.

SOAs also help to reduce cost and increase reuse, given that with core business services exposed in a
loosely coupled manner, they can be more easily used and combined based on business needs. This
clearly means less duplication of resources, more potential for reuse, and lower costs.

4.2 Web Services
The W3C’s Web Services Architecture Working Group [21] defines a Web service as a software
application identified by a URI, whose interfaces and bindings are capable of being defined, described,
and discovered as XML artifacts. A Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols. Basic Web services
combine the power of two ubiquitous technologies: XML, the universal data description language; and
the HTTP transport protocol widely supported by browser and Web servers.

The Web Service technology is based on three fundamental standards: Simple Object Access Protocol
(SOAP) [15], Web Service Description Language (WSDL) [16] and Universal Description Discovery
and Integration (UDDI) [17]. Other Web service standards are built on these basic standards to provide
higher-level functions and quality of service. Examples of these standards are WS-Security [18], WS-
ReliableMessaging [19] and WS-AtomicTransaction [20].

The following sub-sections briefly describe the three basic Web Services standards.

4.2.1 SOAP
SOAP is an XML-based format for constructing messages in a transport independent way and a
standard on how the message should be handled. SOAP messages consist of an envelope containing a
header and a body. This format also defines a mechanism, known as SOAP faults, for indicating and
communicating problems that occurred while processing the message.

The headers section of a SOAP message is extensible and can contain many different headers defined
by different schemas. The extra headers can be used to modify the behavior of the middleware
infrastructure. For example, the headers can include information about transactions that can be used to
ensure that actions performed by the service consumer and service provider are coordinated.

The body section contains the content of the SOAP message. This data is specified in the WSDL
describing the Web service. It is common to talk about SOAP in combination with the transport
protocol used to communicate the SOAP message. For example, SOAP being transported using HTTP
is referred to as SOAP over HTTP.

4.2.2 WSDL
WSDL is an XML-based interface definition language that separates function from implementation
and enables design by contract as recommended by SOA. WSDL descriptions contain a port type (the
functional and data description of the operations that are available in a Web service), a binding
(providing instructions for interacting with the Web service through specific protocols, such as SOAP
over HTTP), and a port (providing a specific address through which a Web service can be invoked
using a specific protocol binding). It is common for these three aspects to be defined in three separate
WSDL files, each importing the others.

The value of WSDL is that it enables development tools and middleware for any platform and
language to understand service operations and invocation mechanisms. As with SOAP, the WSDL
specification is extensible and provides for additional aspects of service interactions to be specified,
such as security and transactions.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 15 -

4.2.3 UDDI
UDDI is a standard for registering and searching web services within directories. First, a service
provider uses UDDI to store the publisher, service description, location of the service, and the
interfaces to access the service. Using these elements (as well as registry-specific service
categorizations) consumers of web services can search for services. Then a consumer can use UDDI to
locate an appropriate service. Finally, the consumer can connect to and use the service.

The UDDI standard defines interfaces to a directory that are themselves web services described by a
WSDL. The original UDDI classification was based on a U.S. government taxonomy of businesses.
However, recent versions of the UDDI specification have added support for custom taxonomies.

4.3 Implementing a SOA with Web Services
Web services are a technology that is well suited for implementing a SOA. As described in the
previous section, Web services are self-describing and modular applications that expose business logic
as services that can be published, discovered, and invoked over the Internet. Based on XML standards,
Web services can be developed as loosely coupled application components using any programming
language, any protocol, or any platform. This facilitates the delivery of business applications as a
service accessible to anyone, anytime, at any location, and using any platform.

However, it is important to point out that Web services are not the only technology that can be used to
implement a SOA. Additionally, Web services have been used to implement architectures that are not
necessarily service-oriented.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 16 -

5 QBox-Services Platform
As described in section 2, the QBox Foundation platform has some scalability problems:
incompleteness of quality methods and lack of connectivity to integrate functionalities of existing
tools. In this section, a new approach for the QBox platform is presented which, taking advantage of
service-oriented mechanisms, addresses these problems.

5.1 General Description
The new Qbox-Services platform conserves all the functionalities of QBox-Foundation, except the
measurement methods which have been externalized as services, as shown in Figure 9. This allows
reusability of existing quality tools, making QBox-Services open to the integration of any user-defined
or market-supplied tool.

Figure 9 - Quality Assessment Meta-Model

The platform consists of three main components called Qbox-Foundation, QMediator and
QManagement. These components, and other important concepts involved in the architecture, are
sketched in Figure 10.

QManagement

QBox-Foundation

Service Registry

General
Quality

Meta-Model

Personalized
Quality
Model

Information
Systems

Meta-Model

QMediator

PersonalizationBinding

Quality Tool 1

Quality Tool n

Adapter m

Adapter 1

Find

Delegate

Quality Query
Measurements

Quality
Service

references

Invoke

Invoke

PQM

Quality
Requirements

S
to

re

G
et

Description

Description

Figure 10 - QBox Service Architecture

The QBox-Foundation component inherits the functionalities to define quality goals and refine and
specialize quality metrics according to these goals. Through these functionalities a quality expert can
derive, from the generic quality meta-model, a Personalized Quality Model (PQM), i.e. a refined set of
quality factors and metrics that correspond to specific quality goals and refer to specific IS objects.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 17 -

As a result, a PQM embeds specific quality requirements that can be answered by executing
appropriate quality services. Quality services may be of three types: measurement services that
compute quality metrics; analysis services that analyze a set of measures and calculate complex
indicators and improvement services that perform data updates in order to improve quality. Examples
of those types of services are the calculation of the percentage of null values, the analysis of
growing/decreasing tendencies in data freshness and the elimination of duplicate tuples, respectively.

The QMediator component provides functionalities for finding appropriate services for these
requirements, enabling their execution and returning their results. To this end, it accesses a service
registry that contains abstract service descriptions and access patterns of available quality services. A
set of adapters implement these access patterns and invoke the quality services encapsulating
technological details. QMediator acts as a mediator between quality requirements expressed in the
PQM (e.g. the need to assess the metrics of a given goal) and the available quality services (especially
those calculating such metrics).

The QManagement component executes required quality services for specific goals and provides an
interface for analyzing results. Quality services may be periodically executed, may be punctually
invoked by a user or may be triggered by another service (e.g. an analysis service that needs
comparing some non-available measures). Result analysis is carried out by evaluating quality queries,
called Qolap queries, defined over the PQM. QManagement includes a decision-support interface that
allows browsing in the star-like quality model and posing quality queries. If some of the necessary
measures are not available, the corresponding services may be executed in order to obtain them.

5.2 Mediation of Quality Services
QMediator acts as a mediator between quality requirements expressed in terms of the PQM and
quality services listed in a service registry. The functionalities of quality tools are described as abstract
quality services and a delegation mechanism binds an abstract quality service to a specific
implementation in a given external quality tool.

A quality service as an implementation of a quality functionality that can be either custom
implemented within an organization, or provided by external quality tools. An abstract quality service
is the description of the quality functionality provided by a quality service. This description includes
the quality concepts it addresses (dimensions, factors and metrics), the type of functionality it provides
(measurement, analysis or improvement) and the supported IS object type (tables, XML files, etc).

An access pattern specifies the interface of an abstract quality service, that is, the way the service is
invoked, its input and output parameters as well as its exception handling. An adapter implements an
access pattern for a given quality service, providing the means for invoking a quality service and
making transparent tool-specific technological details.

The service registry provides the mechanisms for the publication and discovery of abstract quality
services according to specific quality requirements. For each abstract quality service, it also stores its
access patterns and the way to invoke the adapters, providing access to the functionalities of quality
tools.

The main responsibility of QMediator is, given some quality requirements, find and execute the
quality services that best match these requirements. To this end, QMediator has to find in the registry
the abstract quality services which declare fulfilling the given quality requirements, select the abstract
quality services to use, get the corresponding access patterns from the service registry, delegate the
invocation of the quality services to the adapters components, and finally consolidate the result of
quality services invocations in a unified result. Figure 11shows a simplified sequence diagram of this
process.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 18 -

Figure 11 - Execution of a Quality Requirement

In this way, the library of measurement methods, that used to belong to the Qbox-Foundation
component, is replaced by a collection of quality services that may be provided by external quality
tools.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 19 -

6 QBox-Services Prototype
This section describes the development of a prototype which implements the QBox-Services
architecture. The prototype is composed of two main modules: QBox Services Core and Quality
Services. Additionally, it relies on the QBox Foundation API, Apache juddi [22] and JBoss WS
components [23]. Figure 12 shows a deployment diagram of the implemented prototype.

Application Server (JBoss AS)

Application Server (JBoss AS)

JBossWS

juddi

QboxFoundation API

QualityServices

QboxServices

Figure 12 - QBox-Services Deployment Diagram

In the following sub-sections the prototype main modules are described.

6.1 Quality Services
The prototype includes quality services provided by the DataCleaner Project. Additionally, it
integrates custom-developed quality services that, leveraging the DataCleaner quality services,
implemented the calculus of some quality metrics.

6.1.1 DataCleaner Quality Services
As described in section 3.1, the DataCleaner Project provides methods for profiling and validating data
taken from various types of data sources. In order to integrate the DataCleaner methods in the
prototype, adapters were implemented in the Java programming language and exposed via the Web
Service technology. As shown in Figure 13, given the modular design of the DataCleaner tool, the
developed adapters rely on the logic implemented in the DataCleaner Core module, in the same way
the DataCleaner Gui module does.

DataCleaner Core

DataCleaner Gui DataCleaner Adapter

Figure 13 - Adapters accessing DataCleaner Logic

The adapters were implemented using the Java programming language, exposed via the Web Services
technology using the JAX-WS [25] implementation provided by the JBoss Web Service (JBossWS)
component, and deployed in a JBoss Application Server [24].

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 20 -

Although the DataCleaner projects supports a wide range of data sources, the methods included in the
prototype works over relational databases accessed via JDBC Therefore, these methods need to
receive, as input parameters, all the required data to allow DataCleaner to connect to databases
through JDBC [26]. Table 7 presents and describes the JDBC required parameters.

Parameter Name Description Example
driver Full qualified name of the jdbc driver org.postgresql.Driver
connectionstring Connection string to access the database jdbc:postgresql://localhost:5432/myDB
schema Schema public
username Username to access the database postgres
password Password associated to the username postgres

Table 7 - JDBC Parameters

Table 8 presents the description and required parameters for one of the DataCleaner quality service,
and Table 9 presents a summary of the DataCleaner methods included in the prototype.

Name getEmptyValues Description It returns the number of empty values in the specified column.

Parameters
Name Type Direction Description

JDBC_PARAMETERS N/A IN JDBC parameters as specified in Table 7.
tablename String IN Table name
columnname String IN Column name
emptyvalues Long OUT Number of empty values in the specified column

Table 8 - getEmptyValues Quality Service

DataCleaner Categorization Name

Standard Measures

getEmptyValues
getHighestValue
getLowestValue
getNullValues
getRowCount

Number Analysis

getGeometricMean
getHighestValue
getLowestValue
getMean
getStandardDeviation
getSum
getVariance

String Analysis

getCharCount
getLowercaseChars
getMaxChars
getMaxWords
getMinChars
getMinWords
getNonLetterChars
getUppercaseChars
getWordCount

Validation

getDictionaryValidation
getJavascriptValidation
getNotNullValidation
getRangeValidation
getRegularExpressionValidation

Table 9 - Summary of DataCleaner Methods included in the prototype

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 21 -

6.1.2 Custom Quality Services
In order to include in the prototype quality services which implemented some specific metrics, a
number of custom quality services were developed. The custom quality services were implemented
using the Java programming language and leveraging the functionality provided by the Datacleaner
quality services. They were also exposed via the Web Services technology using the JAX-WS
implementation provided by the JBossWS component, and deployed in a JBoss Application Server.

As an example, Table 10 presents the description and required parameters for one of the custom
quality services.

Name getEmptyValues Description
It returns a value between 0 and 1, which represent the percentage
of syntactically correct values in the column according to the
specified dictionary.

Parameters
Name Type Direction Description

JDBC_PARAMETERS N/A IN JDBC parameters as specified in Table 1.
Tablename String IN Table name
Columnname String IN Column name
Dictionarypath String IN Dictionary path
syntacticcorrectnessratio Double OUT Value between 0 and 1, representing the percentage

of syntactically correct values in the column
according to the specified dictionary.

Table 10 - getSyntacticCorrectnessRatioDictionary Quality Service

Table 11 presents a summary of the Custom Quality Services included in the prototype and the metric
they implement.

Metric Name

SyntacticCorrectnessRatio
getSyntacticCorrectnessRatioDictionary
getSyntacticCorrectnessRatioRegexp

DensityRatio getDensityRatio
RelationIntegrityRatio getRelationIntegrityRatio

Table 11 - Summary of Custom Quality Services

6.2 Services Registry
The prototype leverages the Apache juddi project as the implementation of a UDDI registry. In order
to run the prototype some data have to be included in the UDDI registry.

First, as shown in Table 12, two service providers were published in the UDDI registry: Datacleaner
and QBoxFoundation.

Name Description

DataCleaner
DataCleaner is an Open Source application for profiling, validating and
comparing data.

QBoxFoundation
QboxFoundation is a metadata platform for quality assessment based on the
Goal-Question-Metric (GQM) paradigm.

Table 12 - Registered Services Providers

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 22 -

Additionally, in order to classify and describe the published services in the registry, according to the
functionality they provide, three taxonomies were published. Table 13 presents and describes these
taxonomies.

Name Description

qbox-org:quality:indicator Taxonomy to represent quality indicators.

qbox-org:quality:operation Taxonomy to represent quality operations.

qbox-org:object:type Taxonomy to represent measurable object types.

Table 13 - Registered Taxonomies for Categorizing Quality Services

Finally, some of the quality services described in previous sections were published in the registry.
Table 14 presents these quality services along with its classification according to the taxonomies that
were published in the registry.

Provider Name Indicator Operation Object Type

QBox Foundation

SyntacticCorrectnessRatioDic
tionary

SyntacticCorrectn
essRatio

calculus column

SyntacticCorrectnessRatioRe
gexp

SyntacticCorrectn
essRatio

calculus column

DensityRatio DensityRatio calculus column
RelationIntegrityRatio DensityRatio calculus column

DataCleaner

NullValues calculus column
RowCount calculus table
DictionaryValidation calculus column
JavascriptValidation calculus column
RegularExpressionValidation calculus column

Table 14 - Registered Quality Services and its Categorization

6.3 QBox Services Core
The main component developed for the QBox-Services prototype is the QBox-Service component
which in turn is split in a set of more specific components. These sub-components are presented in
Figure 14 along with the dependency relationships among them.

Figure 14 - QBox Services Components

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 23 -

The Registry Service component encapsulates the access to a services registry; specifically the UDDI
Service Registry component implements the access to the juddi service registry.

The Quality Mediator component provides an interface for finding appropriate services for specific
quality requirements. This component relies on the Registry Service component to find the quality
services which fulfill these requirements, and the access pattern and adapters to access these services.
The Quality Mediator component delegates to the adapters the invocation of the quality services.

The Quality Management component receives quality requirements in terms of the PQM and, relying
on the QBox Foundation API and the Quality Mediator components, transforms these personalized
requirements in specific quality requirements.

Finally, the QBox Web component is a Java Web Application which, relying in the Quality Mediator
component and in the Quality Manager component, allows the search and invocation of quality
services registered in the service registry.

Figure 15 presents the QBox Web user interface which provides functionalities for searching, viewing
the details and invoking services in the registry according to specific calculus requirements.

Figure 15 - QBox Web User Interface

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 24 -

7 Conclusions and Future Work
Although QBox-Foundation constitutes a relevant and useful platform to deal with data quality in
information systems, some experiments revealed limitations which lead to scalability problems. In this
report, a new approach for the QBox platform is presented which, taking advantage of service oriented
mechanisms, addresses the scalability problems and allows the reuse of existing quality tools. This
new approach also allows interoperation between user-defined quality methods and external quality
tools, giving the user the possibility to access a larger set of quality functionalities and reducing
implementation efforts.

The new platform conserves the facilities for defining and personalizing a quality model according to
user quality goals and the underlying IS. The Qbox-Foundation component was modified for
decoupling methods management functionalities, directing its focus to the management of the
personalized quality model. A new QMediator component was developed which, using Web Service
technologies, manages a dynamic library of quality tools (catalogued in a service registry) and
provides functionalities for finding quality services according to quality requirements. Adapters for
several tools were also developed and registered in the service registry. Finally, a QManagement
component was also developed which receives quality requirements in terms of the PQM and, relying
on the QBox Foundation and the Quality Mediator components, transforms these personalized
requirements in specific quality requirements.

Further work can focus on the formalism for expressing quality queries and experimentation in various
application domains.

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 25 -

8 References
[1] Basili, V., G. Caldiera and H.D. Rombach (1994). The Goal Question Metric Approach. Encyclopedia of Software

Engineering, 528-532, John Wiley & Sons, Inc.

[2] Vassiliadis, P., M. Bouzeghoub and C. Quix (2000): Towards Quality-oriented Data Warehouse Usage and Evolution.
Information Systems, 25(2): 89-115.

[3] Akoka, J., L. Berti-Equille, O. Boucelma, M. Bouzeghoub, I. Comyn-Wattiau, M. Cosquer, V. Goasdoué-Thion, Z.

Kedad, S. Nugier, V. Peralta and S. Sisaid-Cherfi (2007). A Framework for Quality Evaluation in Data Integration
Systems. 9th International Conference on Enterprise Information Systems (ICEIS’2007), Funchal, Portugal.

[4] Etcheverry, L., V. Peralta, V. and M. Bouzeghoub (2008). Qbox-Foundation: a Metadata Platform for Quality

Measurement. 4ème Atelier Qualité des données et des Connaisances (QDC’2008), Nice, France.

[5] DataCleaner Project

http://datacleaner.eobjects.org/ – March 2009

[6] Aggregate Profiler

http://sourceforge.net/projects/dataquality/ – March 2009

[7] Open Data Quality

https://open-dm-dq.dev.java.net/ – March 2009

[8] Mural

https://mural.dev.java.net/ – March 2009

[9] Data Integrator

https://open-dm-di.dev.java.net/ – March 2009

[10] Talend Open Profiler

http://www.talend.com/products-data-quality/talend-open-profiler.php – March 2009

[11] Power MatchMaker

http://www.sqlpower.ca/page/MatchMaker – March 2009

[12] James MCGovern, Oliver Sims, Ashish Jain, Mark Little. Enterprise Service Oriented Architectures: Concepts,
Challenges, Recomendations. Springer. 2006. ISBN: 978-1-4020-3704-7

[13] Martin Keen, Jonathan Bond, Jerry M Denman, Stuart Foster, Stepan Husek, Ben Thompson, Helen Wylie. Patterns:

Integrating Enterprise Service Buses in a Service-Oriented Architecture. IBM RedBooks 2005. ISBN 0738492930.
http://www.redbooks.ibm.com/abstracts/sg246773.html – March 2009

[14] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, POEI Krogdahi, Dr Min Luo, Tony Newling.

Patterns: Service-Oriented Architecture and Web Services. IBM RedBooks 2004. ISBN 073845317X.
http://www.redbooks.ibm.com/abstracts/sg246303.html – March 2009

[15] SOAP – Simple Object Access Protocol

http://www.w3.org/TR/soap/ – March 2009

[16] Web Service Definition Language (WSDL)

http://www.w3.org/TR/wsdl – March 2009

[17] Universal Description Discovery and Integration (UDDI)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec – March 2009

[18] Web Services Security

http://www.oasis-open.org/committees/wss/ – March 2009

Laura González – Qbox-Services Laboratorie PRiSM – 09/2008 to 01/2009

- 26 -

[19] Web Services Reliable Messaging

http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html – March 2009

[20] Web Services Atomic Transaction

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec/wstx-wsat-1.1-spec.html – March 2009

[21] Web Services Architecture Working Group

http://www.w3.org/2002/ws/arch/ – March 2009

[22] Apache juddi

http://ws.apache.org/juddi/ – March 2009

[23] JBoss Web Services

http://www.jboss.org/jbossws – March 2009

[24] JBoss Application Server

http://www.jboss.org/jbossas – March 2009

[25] JavaTM API for XML-Based Web Services

http://jcp.org/en/jsr/detail?id=224 – March 2009

[26] JDBC Overview

http://java.sun.com/products/jdbc/overview.html – March 2009

