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Abstract—Computer and network systems are consistently
exposed to security threats, making their management even
more complex. The management of known vulnerabilities plays a
crucial role for ensuring their safe configurations and preventing
security attacks. However, this activity should not generate new
vulnerable states. In this paper we present a novel approach
for autonomously assessing and remediating vulnerabilities. We
describe a detailed mathematical model that supports this activity
and we formalize the remediation decision process as a SAT
problem. We present a framework that is able to assess OVAL
vulnerability descriptions and perform corrective actions by using
XCCDF-based descriptions of future machine states and the
NETCONF protocol. We also provide details of our implemen-
tation and evaluate its feasibility through a comprehensive set of
experiments.

I. INTRODUCTION

The growing development of computer systems as well as
convoluted and heterogeneous networks dramatically increases
the complexity of their management. Autonomic computing
contributes to address the growing complexity of network
management by defining a strong basis for automated systems
to manage themselves in an autonomous manner [1]. In that
context, it is critical to ensure their correct and secure config-
urations. Vulnerability management, defined as the practice of
(I) identifying, (II) classifying, (III) remediating and mitigating
vulnerabilities, is a key activity to achieve at this point [2].
Several factors can create a vulnerable system such as software
errors, contradictory autonomic functions and improper human
administration activities. In this paper, we aim at providing an
autonomic approach for identifying and remediating vulnera-
bilities based on high-level policies. These policies describe
vulnerable machine states and potential corrective activities to
ensure safe configurations and prevent security attacks.

The vulnerability remediation activity constitutes itself as
a hard and challenging task. From a proactive perspective,
it should be able to decide which potential states could be
dangerous for the security of the system. In the same manner,
but under a reactive perspective, effective vulnerable states
should be rapidly eradicated to avoid potential attacks that
could compromise the system. Finding those changes that can
ensure the security of the system is also a complex activity.
One single change may impact or activate other vulnerable
states that were not present before the change. The same effect
could occur over other system policies, in this work however,

we only deal with security configuration vulnerabilities. In that
context, looking for correct changes that together can provide
a safe system configuration is an explosive combinatorial
activity classified as an NP-complete problem [3].

We propose in this paper a novel approach for autonomously
securing and remediating known vulnerabilities, formaliz-
ing the change decision problem as a satisfiability or SAT
problem [4]. Given a boolean expression, the SAT problem
consists of finding an assignment for variables such that the
formula evaluates to true. By specifying our vulnerability
knowledge source as a propositional logical formula, we fix
those system properties that we cannot change and free those
variables for which changes are available. We use a SAT
solving engine to determine which changes have to be made to
secure the system. In order to provide proactive and reactive
solutions, we propose the concept of a future state. This
describes how a system will look after applying a specific
change. These descriptions can be used for analyzing the
security impact of changes without actually changing the
system. When this information is not available, we use the
NETCONF protocol [5] and its notion of candidate state where
changes can be applied, analyzed and rolled back if necessary.

Our main contributions are: (1) a complete mathematical
model for describing vulnerability assessment and corrective
activities, (2) extensions to the XCCDF1 and OVAL2 standard
languages to specify remediation actions and future states,
(3) a robust architecture as well as a detailed vulnerability
management strategy for autonomously assessing and remedi-
ating computer system vulnerabilities, and (4) a comprehen-
sive experimental analysis of the SAT solving problem, tech-
nical representations and behavioral aspects of the NETCONF
protocol over IOS Cisco devices.

The remainder of this paper is organized as follows.
Section II describes existing work and their limits. Section III
presents the mathematical model for analyzing and remediat-
ing vulnerabilities. Section IV depicts the use and extension
of languages for specifying future states. Section V illustrates
our framework describing its architecture and the strategy for
performing assessment and remediation activities. Section VI
describes our implementation prototype as well as an exten-
sive set of experiments performed to validate our solution.
Section VII presents conclusions and points out future work.

1eXtensible Configuration Checklist Description Format [6]
2Open Vulnerability and Assessment Language [7]978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



II. RELATED WORK

Managing large-scale networks is a complex task. Both
humans and automated entities make errors when configur-
ing them, potentially increasing their own security exposure.
Under this perspective, vulnerability management constitutes
a crucial activity. The CVE3 language [8], introduced by the
MITRE Corporation [9], is an effort for standardizing the
enumeration of known information security vulnerabilities.
Nevertheless, it only provides means for informing about their
existence and not for their assessment. In order to cope with
these problems, MITRE has developed the OVAL language [7]
as an effort to standardize the process by which the state of
a computer system can be assessed and reported. OVAL is
an XML-based language that allows the expression of specific
machine states such as vulnerabilities, configuration settings,
patch states. Real analysis is performed by OVAL interpreters
such as Ovaldi [7] and XOvaldi [10]. In order to provide
an automated and comprehensive security model, NIST [11]
has introduced the SCAP4 protocol [12]. The SCAP protocol
includes the OVAL specification but also XCCDF [6] and
CVSS5 [13]. XCCDF is a language conceived as a means for
bringing a system into compliance through the remediation
of identified vulnerabilities or misconfigurations. CVSS on
the other hand provides an open and standardized method for
rating IT vulnerabilities.

These technologies have already been used for measuring
network security risks [14]. The OVAL language has been
utilized for performing vulnerability assessment activities in
large scale networks [15], [16]. However, the vulnerability
management process also involves remediation activities when
vulnerabilities are found. Therefore, change management tech-
niques are also required for ensuring coherent automated
security processes [17], [18]. In this paper, we do not deal
with attack graphs and multi-step attacks. However, insightful
research work on network security assessment and remediation
techniques using attack graphs has been previously reported
in [19], [20]. Bayesian attack graphs have been also used for
assisting administrators on mitigation plans [21]. Our approach
is indeed complementary. While attack graphs represent all
paths that allow an attacker to compromise a system, our work
deals with finding corrective actions that take a system to a
non-vulnerable state.

Under an autonomic perspective, automated techniques for
assessing change associated risks as proposed in [22] and [23]
are important because they provide a key support for the
change management process, particularly for taking decisions
about effective change implementations. Even though their
analysis are usually focused on the operational impact rather
than security concerns, such previous works highlight key
challenges that must be taken into account when vulnerability
management activities are performed.

3Common Vulnerabilities and Exposures
4Security Content Automation Protocol
5Common Vulnerability Scoring System

In order to deal with network management operations and
changes, IETF [24] has developed NETCONF [5], a network
configuration protocol that provides mechanisms to install,
manipulate and delete the configuration of network devices.
The NETCONF protocol specification is a standard, though
its deployment, as well as complete vendors implementations,
seem to be still in an early stage. However, very interesting
works have already been presented showing evaluations of its
maturity as well as diverse technical aspects [25], [26]. To the
best of our knowledge, the integration of change management
techniques into the vulnerability management plane constitutes
a novel approach that may positively contribute to the overall
security of current and future computer systems.

III. VULNERABILITY AND REMEDIATION MODELING

In this section we detail our mathematical model for per-
forming vulnerability assessment and remediation activities.
We also discuss the exponential nature of finding appropriate
changes for securing a vulnerable system and we propose a
SAT-based approach for dealing with this issue.

A. Describing vulnerabilities

Each time a security analysis is made, vulnerability de-
scriptions are analyzed in order to detect security weaknesses
on target devices. In this work, we use the OVAL standard
language for describing vulnerabilities. Vulnerabilities are rep-
resented by OVAL definitions. Each OVAL definition logically
combines OVAL tests that represent atomic property checks
or evaluations over the target device. Each OVAL test can be
referenced by different OVAL definitions. Each test contains
an OVAL object that describes the component to be analyzed,
and an OVAL state that describes the properties expected to
be observed on the specified component. The test result will
be true if the component actually exhibits the specified state,
and false otherwise. These concepts are formally represented
by the following definitions:

• H = {h1,h2, . . . } denotes the set of devices or systems
in the network (e.g. hosts, routers).

• P = {p1, p2, . . . } denotes the set of device properties
in the form of unary predicates pi(h),h ∈ H . Such
predicates are used for both specifying required properties
to be observed for a vulnerability to be present as well
as properties the device already possesses.

• S = {s1, s2, . . . } denotes the set of device states where
a state si is used for describing in a compact manner a
set of properties required to be observed over a network
device as well as for describing existing specific network
devices states. The set S is inductively defined as follows:

i if pi ∈ P , then pi ∈ S (i ∈ N)
ii if α,β ∈ S, then (α � β) ∈ S � ∈ {∧,∨}

iii if α ∈ S, then (¬α) ∈ S.
• state : H → S ≡ function that takes a device h ∈ H as

input and returns its current state s ∈ S.
In the OVAL context, an OVAL definition representing a
vulnerability v is actually a specific machine state s ∈ S



where the involved properties pi ∈ P are evaluated by
OVAL tests. We therefore consider the set of known vul-
nerability descriptions constituting our knowledge source as
V = {v1, v2, . . . , vm}. As each vulnerability vi ∈ V can
be specified as a logical formula, we can describe the whole
vulnerability dataset as a disjunction of formulas as follows:

φ = v1 ∨ v2 . . . ∨ vm =
∨

(vi) vi ∈ V (1)

Considering this definition, we specify an evaluation function
Φ : S → Boolean that classifies a system h ∈ H as vulnerable
under V if and only if the assessment of φ over the state of
h is true, i.e., Φ(state(h)) = true. From a logical point of
view, φ is a logical consequence of those formulas constituting
the state of the device h, i.e., state(h) � φ.

B. Specifying corrective changes

In order to remediate configuration vulnerabilities, cor-
rective changes must be performed on the target system.
However, a change aimed at solving a specific vulnerability
may introduce or activate other vulnerabilities. If this effect
is not properly managed, this process would still expose the
system to security threats. A system could be re-assessed after
a change is made, and undo such modification if other vulner-
abilities arise. Nevertheless, this approach does not take the
big picture into account. Introduced vulnerabilities may also
have potential fixes that would lead the system into a secure
state. In that context, we consider the available information
about known vulnerabilities and corrective tasks, as a whole.
This potentially allows us to find a sequence of changes or
fixes such that the final machine state is secure. Even though
intermediate states in the sequence are vulnerable.

During the search of such sequence, changes could be
applied on the target system and immediately assessed in a
backtracking fashion. However, the ability to project the conse-
quences of a vulnerability fix or change, i.e., how the affected
part of the system will look after applying such change, allows
us to analyze change sequences without actually changing the
target system. This is one of the cornerstones of our approach.
In order to formalize this concept, our remediation model
involves the following definitions:

• C = {c1, c2, . . . } denotes the set of changes or corrective
actions applicable over network devices.

• change : H × C → H ≡ function that takes
a device h ∈ H as input and returns the same de-
vice h after performing a change c ∈ C that pro-
duces an observable change on its state. The following
property holds in the considered model: state(h) 6=
state(change(h, c)), ∀h ∈ H,∀c ∈ C.

• future : C → S ≡ function that takes a change c ∈ C as
input and returns a state s ∈ S that projects the affected
characteristics of a system after applying the change c.

• Π : S × S → S ≡ function that takes a projected system
state s1 ∈ S and a machine system state s2 ∈ S as input
and returns s2 updated with the properties of s1.

In order to analyze the impact of a change ci over a
system h, the future and projection Π functions are combined

with the Φ formula to check present vulnerabilities as follows:

Φ(Π(future(ci), state(h)) ci ∈ C,h ∈ H (2)

From a technical point of view, the future function can be
intuitively understood as observing the resulting state of a
change over a rollback-capable system. However, this can be
also achieved by considering a specification mechanism for
describing those system properties that will be modified once
the change is applied. Our approach considers both techniques,
which are discussed in the following sections. In light of these
definitions, we define a sequence of changes ω as follows:

ω = c1 ◦ c2 ◦ . . . ◦ cn ci ∈ C (3)

We say that ω constitutes a secure sequence of changes for a
system h ∈ H if and only if Φ(ω(h)) = false. Finding such
a sequence for different system states and contexts constitutes
an NP-complete problem that we aim at tackling in this paper.

C. Addressing complexity of change sequence analysis

Each time a single change is made to fix a specific vulnera-
bility, some system properties are naturally modified and there-
fore, the state for the next corrective change in the sequence
is modified. In that context, the order and the combination of
distinct changes for each vulnerability induce several different
possible combinations. This issue falls into a family of prob-
lems called NP-complete where no solution in polynomial time
is known. Within our approach, we have encoded this change
decision problem as a boolean satisfiability problem (SAT),
which is known to be an NP-complete problem [3]. Indeed,
each vulnerability is represented as a boolean formula that is
directly taken from OVAL XML descriptions. The translation
from XML into SAT is therefore linear. Vulnerability formulas
are combined with ORs and hence, the system is vulnerable if
there exists an assignment such that makes the whole formula
true. Negated, it expresses that the system is secured (with
respect to the known-vulnerability database). Then, we reduce
the boolean formula to those properties for which change
actions exist, and use a SAT solver to find an assignment. In
this section, we first present an illustrative example that shows
the exponential nature of finding a suitable change sequence ω
and then we formalize our approach as a SAT problem.

Let h ∈ H be a target device where s ∈ S constitutes
its current state as follows: s = state(h) = {p1, p2, p3, p4},
meaning that properties p1, p2, p3 and p4 are present on the
system. Let us also consider a vulnerability database V and a
vulnerability fix database CV as follows:

V ≡ {v1 = p1 ∧ p2 ∧ p3, v2 = (¬p1 ∨ ¬p2) ∧ p4,

v3 = ¬p1 ∧ p3 ∧ ¬p4} pi ∈ P , vi ∈ V
(4)

CV ≡ {c1a � ¬p1, c1b � ¬p2, c2 � ¬p4}
pi ∈ P , ci ∈ C

(5)

This example is based on three real Cisco IOS vulnerabili-
ties identified by CVE-2008-3812, CVE-2008-3798 and CVE-
2008-3821 respectively [27]. Within our model, properties are
mapped to the following propositions:



� p1 ≡ IOS firewall is enabled.
� p2 ≡ Deep Packet Inspection (DPI) is enabled.
� p3 ≡ HTTP server is enabled.
� p4 ≡ SSL/TLS is enabled.

As explained before, vulnerabilities are represented as spe-
cific machine states that are specified by logical formulas.
For instance, vulnerability v1 requires p1, p2 and p3 to
be active for the vulnerability to be present. Within the
set of available changes CV , c1a and c1b are alternatives
changes for fixing vulnerability v1 while c2 constitutes the
only remediation action for vulnerability v2. No fix action
is available for vulnerability v3. In this scenario, it can be
observed that the vulnerability v1 is a semantic consequence
of the properties present in the system, which are compactly
represented as s. This means that v1 is logically true under
these hypothesis. This fact is represented by a node labeled v1
in the graph illustrated in Fig. 1. Beginning at this node,
a search for a secure change sequence is launched. Two
alternative changes are available for fixing the vulnerability v1.
Change c1a deactivates the property p1, changing the system
state to s = {¬p1, p2, p3, p4}. Under these conditions, v2 be-
comes present in the system. However, a fix for v2 exists so the
change c2 is applied. Such modification brings the state of the
system to s = {¬p1, p2, p3,¬p4} activating the vulnerability
v3. As no remediation action is available for v3, this change se-
quence is considered as invalid. Backtracking to the beginning,
fix c1b is applied activating again the vulnerability v2. Once
again, change c2 is applied but this time, the combination of re-
mediation actions leaves the system as s = {p1,¬p2, p3,¬p4}
successfully eradicating all vulnerabilities.

This example aims at showing the combinatorial nature
of the problem, which leads to find other solutions rather
than classic ones such as backtracking. Naive approaches for
assessing all possible combinations cannot provide solutions in
polynomial time. It is important to highlight that even though
the whole process is described in sequence, we are actually
interested in the set of detected applicable changes at the
end of such process. SAT solutions indicate changes to be
performed at once.

This problem constitutes a decision problem that relies on
changes being applied to ensure a secure system state. In our
model, we have a boolean expression φ that indicates the
vulnerable nature of a system when it is evaluated as true.
Considering ψ = ¬φ, we can say that a target system h
is secure, or not vulnerable, when ψ is true. Our problem
therefore consists of finding such a propositional assignment
that makes the ψ formula true. In computational complexity
theory, this is known as a satisfiability or SAT problem. Given
the current state of a target system, ψ can be instantiated
and evaluated, and changes can be understood as actions that
can assign a specific value to the properties involved in the
formula. Considering the proposed example, the ψ formula
states that none of the known vulnerabilities in V can occur:

ψ = ¬(p1∧p2∧p3)∧¬((¬p1∨¬p2)∧p4)∧¬(¬p1∧p3∧¬p4)
(6)

Fig. 1: Change sequence search example

Because we usually only know a small set of actions to
remediate vulnerabilities, not every property is likely to be
changed. In that context, we need to find solutions for ψ
respecting those property values that are not changeable, i.e.,
there are no available actions for modifying their states. This in
turn reduces the search space. Within our example, property p3
is not changeable, and therefore, it must take its current system
value, true, giving the following expression:

ψ = p1 ∧ ¬p2 ∧ ¬p4 (7)

The solution in this case is trivial. It states that our target
system can be classified as secure only if those properties
not matching the current state are changed, i.e., p2 and p4.
Therefore, changes c1b and c2 must be applied, deactivating
or updating the DPI engine as well as the SSL/TLS service.
In the worst case, these changes could consist in deactivating
or uninstalling the services themselves, nevertheless, the idea
is that changes might generally patch or update to newer
versions that do not present the characteristics involved in
the vulnerabilities. The proposed example constitutes a simple
scenario aimed at showing the insight of our general approach.
However, versions can also be modeled as properties, thus
enriching the expressiveness of our vulnerability descriptions
and the accuracy of our solutions.

IV. THE X2CCDF SPECIFICATION LANGUAGE

We have introduced the X2CCDF language, built on top of
the XCCDF language [6], in order to express the future state of
target systems after applying vulnerability remediation actions.
In this section we present the core building blocks of X2CCDF
and explain its use in the context of change analysis.

Specifying corrective changes for remediating known vul-
nerabilities in such a way machines can interpret them is
crucial to achieve higher levels of security automation. The
XCCDF language provides great support for this point by
allowing referenced vulnerability descriptions expressed with
the OVAL language and linking them to rules that can be
applied to correct the specified security weaknesses. Never-
theless, applying changes blindly, without actually analyzing
the impact of such changes, does not ensure a secure corrective
process. In that context, we introduce the idea of future or post-
action states. Future states are intended to describe how the
system will look like after applying a specific change. They



do not describe the entire system but only the components
affected by changes. In light of this and being designed
for describing computer machine states, the OVAL language
suitably fits for representing future machine states. Its inter-
pretation however changes, i.e., in the general case, data is
usually collected and compared against OVAL vulnerability
descriptions [7]. Within our approach, collected data is mixed
with OVAL-based future states descriptions and compared
against OVAL vulnerability descriptions.

The ability to express this concept in a machine-readable
manner provides new capabilities for analyzing different ways
of modifying and correcting computer systems without actu-
ally changing them. The main objective in describing future
states within X2CCDF is to complement management pro-
tocols such as NETCONF [5] by allowing the projection of
changes using the current system state combined with future
states of known remediation actions. While XCCDF provides
means for specifying remediation actions when specific states
are detected, X2CCDF extends its capabilities by specifying
also the consequences of such actions when performed by
means of the OVAL language.

Listing 1 presents an illustrative example where X2CCDF
is used for specifying the two alternative actions for
vulnerability v1 as described in Section III-C. For the sake
of clarity, we have omitted some XCCDF components
that should be present in valid instances. Within this ex-
ample, only one XCCDF group of management rules is
defined (lines 3-5). The only referenced rule v1-treatment is
declared below (lines 6-14). X2CCDF extends XCCDF by
considering a new building block named complex-Rule under
the x2ccdf namespace. This extension, structurally similar to
the one proposed in [28] but semantically different, permits
the specification of a boolean expression involving alternative

1 . <cdf :Benchmark i d =”X2CCDF−t e s t−1” x m l n s : x 2 c c d f =” . . . ” x m l n s : c d f =” . . . ” . . .>

2 . <c d f : t i t l e> X2CCDF example </ c d f : t i t l e>
3 . <c d f : G r o u p i d =” v u l n e r a b i l i t y−treatment−with−future−s t a t e ” s e l e c t e d =”1”>
4 . <c d f : r e q u i r e s i d r e f =”v1−t reatment ” />
5 . </ c d f : G r o u p>

6 . <x2ccd f : complex−Rule i d =”v1−t reatment ” s e l e c t e d =”1” check =”1”>
7 . <x 2 c c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>
8 . <x 2 c c d f : c h e c k−c o n t e n t−r e f h r e f =” i o s D e f n s . xml” name=” o v a l : m i t r e : d e f : 5 3 0 2 ”

/>
9 . </ x 2 c c d f : c h e c k>

1 0 . <x 2 c c d f : c r i t e r i a o p e r a t o r =”OR”>
1 1 . <x 2 c c d f : c r i t e r i o n i d r e f =”v1−f i x−1a” check =”1” />
1 2 . <x 2 c c d f : c r i t e r i o n i d r e f =”v1−f i x−1b” check =”1” />
1 3 . </ x 2 c c d f : c r i t e r i a>
1 4 . </ x2ccd f : complex−Rule>

1 5 . <c d f : R u l e i d =”v1−f i x−1a” s e l e c t e d =”1”>
1 6 . <c d f : f i x> . / d i s a b l e F i r e w a l l . sh </ c d f : f i x>
1 7 . <x 2 c c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>
1 8 . <x 2 c c d f : f u t u r e−c o n t e n t−r e f h r e f =” i o s F u t u r e . xml” name=” x 2 c c d f : i n r i a : d e f : 1

” />
1 9 . </ x 2 c c d f : c h e c k>
2 0 . </ c d f : R u l e>

2 1 . <c d f : R u l e i d =”v1−f i x−1b” s e l e c t e d =”1”>
2 2 . <c d f : f i x> . / d i s a b l e D P I E n g i n e . sh </ c d f : f i x>
2 3 . <x 2 c c d f : c h e c k sys tem =” h t t p : / / ova l . mitre . org / XMLSchema / ova l ”>
2 4 . <x 2 c c d f : f u t u r e−c o n t e n t−r e f h r e f =” i o s F u t u r e . xml” name=” x 2 c c d f : i n r i a : d e f : 2

” />
2 5 . </ x 2 c c d f : c h e c k>
2 6 . </ c d f : R u l e>

2 7 . </ cd f :Benchmark>

Listing 1: X2CCDF example

actions (lines 10-13) that can change different properties of a
specific vulnerability (lines 7-9). Corrective changes from the
model, c1a (lines 15-20) and c1b (lines 21-26), are described
using standard XCCDF rules. However, the semantics of these
rules express the future or post-action state of each change.
While the particular actions to perform are specified inside the
fix tag (lines 16 and 22 respectively), the check tag under the
x2ccdf namespace serves as a semantic indicator for automated
interpreters. It is a common practice to use scripts in XCCDF.
It should be noticed that the example in Section III-C only
deals with atomic changes and that is why the OR opera-
tor appears in Listing 1. However, the logical composition
of changes constitutes an important issue to address that
X2CCDF already supports using the AND, OR and NOT oper-
ators. This point has been already scheduled for future work.

In order to describe future or post-action states, we also
use the OVAL language. However, its interpretation is dif-
ferent since we are comparing OVAL states against OVAL
states, and not specific collected information (OVAL system
characteristics) against OVAL states. The main idea is as
follows. Each change is represented as a pair of OVAL object
and OVAL state. The OVAL object represents the component
over which the specific change is applied. The OVAL state
represents the characteristics the object will present after
applying this specific change. Finally, the impact of a change
can be analyzed by looking for vulnerabilities which involve
OVAL tests using the same OVAL object as the specified
change. Affected OVAL tests are evaluated by comparing their
OVAL states against the future OVAL-based state involved
in the change. Other OVAL tests involved in the affected
vulnerabilities are evaluated following the standard process,
i.e., OVAL system characteristics against OVAL states.

While specifying the modifications that a change will have
on a target system, the attributes inside an OVAL state are
used to express the characteristics that the OVAL object will
present. For instance, if a change is designed to change the
version of a Cisco IOS system, the OVAL object will be
the version object while the version state will contain the
new version value, e.g., 12.4. Comparing instances of OVAL
simple datatypes, such as integers and booleans, does not
present difficulties. This can be done in the same way OVAL
characteristics are compared against OVAL states. However, in
future states, regular expressions can be utilized for specifying
certain values inside information blocks that are a priori
unknown. An example of this could be to look for a particular
configuration line inside the running configuration file of a
Cisco device. In that case, we need to potentially compare a
regular expression against another regular expressions within
OVAL states. According to the principles established in au-
tomata theory, the intersection of two regular languages e1 and
e2 is a regular language e3 [29]. Therefore, we can compute
whether e1 ⊆ e2 by verifying if e1 = e1∩e2. By operating over
these regular expressions, we can say if a projected state might
match the expressions present in the vulnerability descriptions.
Within our experiments, we have used the Greenery tool to
support these operations on regular expressions [30].



V. VMANS, AN AUTONOMOUS VULNERABILITY
MANAGEMENT FRAMEWORK

VMANS is an autonomous framework designed for assess-
ing and remediating configuration vulnerabilities over com-
puter systems. In this section we explain its architecture as
well as the underlying strategy in charge of orchestrating the
overall vulnerability management process.

A. Architecture overview

The proposed architecture, illustrated in Fig. 2, comprises
two independent processes, namely, one process for main-
taining logical representations of OVAL vulnerabilities de-
scriptions up-to-date, and a second process for performing
vulnerability management activities. The first process is in
charge of monitoring the OVAL vulnerability descriptions
database (step I) and converting new vulnerability descriptions
into equivalent boolean expressions when they become avail-
able (step II). Independently, a second process is in charge
of dealing with vulnerabilities, which is orchestrated by the
vulnerability manager component. At step 1, it communicates
with the OVAL analyzer in order to launch the assessment
process. The analyzer consumes OVAL vulnerability descrip-
tions from the repository at step 2 and collects the required
data from those devices under control at step 3. Once the
assessment is performed, the analyzer sends the results back
to the vulnerability manager. If the system is found to be
vulnerable, the vulnerability manager analyzes the available
remediation descriptions at step 4 and correlates them with
the properties that can be changed in the target system. Con-
sidering the current system state and the available changeable
properties, the SAT solver engine is used at step 5 to decide

Fig. 2: VMANS high-level architecture

which changes must be applied in order to secure the system.
At step 6, the SAT solver uses a logical representation ψ,
such as the one illustrated in Eq. 7, specifying that none
of the vulnerabilities can occur. A solution provided by the
SAT solver indicates which properties must be changed in the
system to present a secure state. The vulnerability manager
interprets this information and sends specific directives to
the NETCONF-based change manager subsystem at step 7
in order to effectuate these changes. Finally, the NETCONF
protocol is used at step 8 to communicate and perform the
specified changes on the target system.

B. Vulnerability management strategy

In order to autonomously deal with vulnerabilities, the
proposed strategy illustrated in Fig. 3 is a closed control loop
where three classes of events may potentially trigger vul-
nerability management activities. These activities can happen
when new vulnerability or remediation descriptions become
available and when the system presents changes that may
compromise its security. In that context, an event monitoring
component is in charge of observing these events and trigger-
ing the vulnerability management process when required. Once
this process has been launched, vulnerabilities affected by the
event that has triggered the process are computed (step 1).
Depending on the case, these vulnerabilities can be recently
added vulnerability descriptions, or vulnerabilities referenced
by new remediation descriptions, or known vulnerabilities
involving components that have been changed on the tar-
get system. Afterwards, these vulnerability descriptions are
evaluated on the system (steps 2-4). If the system is not
found to be vulnerable, the process ends and returns to the
initial monitoring state. If it is vulnerable, then available
remediation descriptions are consumed (step 5). If no reme-
diation is available for treating the security issues, then a
system warning is produced (step 6) and an analysis report is
created and stored (step 7) ending the process and returning
to the initial state. Otherwise, remediation descriptions are
analyzed (step 8). In the case every remediation description
provides a specification of the future state after applying
the involved changes, the process continues with the change
selection process (step 9). Considering the current properties
present in the target system and the properties that can po-
tentially change by applying the available vulnerability treat-
ments, a SAT solver is used to provide a logical assignment
of every property related to any vulnerability to ensure a
secure system state. Once the changes have been identified,
they are applied within a NETCONF session (steps 10-13)
and an analysis report is generated (step 7) going back to
the initial state. When a remediation description does not
specify a future state, its impact is empirically evaluated by
applying the involved changes on a candidate state of the target
system (steps 14-19). To do so, the candidate state feature in-
cluded in the NETCONF specification is considered. For each
remediation description under these circumstances, involved
changes are applied (step 17), modified properties are col-



Fig. 3: VMANS control loop

lected and stored (step 18) and finally modifications are rolled
back (step 19). When the loop is finished, the NETCONF
session is closed (step 20) and the process continues normally
with the change selection stage (step 9) as described before.

VI. PERFORMANCE EVALUATION

In order to provide a computable infrastructure to the
proposed approach, we have developed an implementation
prototype that integrates the building blocks presented in
the VMANS framework. We have also performed a deep
behavioral analysis using the Cisco IOS platform as a case
study. In this section we detail the implementation prototype,
the experiments and the obtained results.

All the architectural components described in Fig. 2 have
been implemented in Java 1.6 SE. The OVAL analyzer is
an extension of XOvaldi [10] for Cisco IOS. The model of
Cisco routers used is c3725 with IOS version 12.4. They have
been emulated using GNS3 [31] over a regular laptop (2 Ghz
Intel Core i7 with 8GB RAM). OVAL vulnerability descrip-
tions have been taken from the public OVAL repository [7].
We have used the SAT solver engine provided by the Aima
project [32]. Operations between regular expressions for ana-
lyzing future states are performed with the Greenery tool [30].

We have used and slightly modified the Netconf4J project
library [33] to communicate with Cisco routers via NETCONF.

In order to analyze the scalability of our framework, we
have performed several experiments involving vulnerability
representations as boolean expressions, SAT solving analysis
time and behavioral aspects of the NETCONF protocol over
Cisco. Our first experiment, illustrated in Fig. 4, shows the
behavior of VMANS while dealing with vulnerability logical
representations. In the general case, SAT solvers consume
boolean expressions in conjunctive normal form (CNF). If
the input formula is not in CNF, SAT solvers transform it
internally. In that context, we have measured the time required
to load standard logical representations into memory (red solid
line) as well as their transformation to CNF (blue dashed line).
We have repeated this measurement while varying the amount
of vulnerability descriptions. When all the OVAL descriptions
for IOS are considered (around 140), their representations are
loaded in 53 milliseconds while their transformation to CNF
takes 7.5 seconds approximately. We have observed a stable
behavior for both activities in the general case as shown by
the first derivatives depicted in the inner graph of the figure.

One of the critical points in the vulnerability remediation
process is the change selection activity. We have analyzed the
SAT solving time for different scenarios as shown in Fig. 5.
We have evaluated the same system with one, three, five and
ten active vulnerabilities each time, while varying the amount
of vulnerability descriptions in the database. In addition, a
set of available changes has been provided to the framework
to detect which corrective actions must be performed. In all
cases, we have observed a linear behavior as illustrated in the
inner graph of the figure, taking around 2 seconds in average
to provide the answers for the whole dataset. Often, the SAT
solving time depends on the nature of the equations being
solved. The observed behavior is partially supported by the
fact that the sets of properties (OVAL tests) involved in the
IOS vulnerability descriptions are mostly disjoint. Thus, the
SAT process is faster because each part of the formula does not
impact on the other clauses. In addition, we have observed two
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interesting phenomena. The first one is that the SAT solving
time (around 2 seconds), which includes a CNF transformation
process, is faster than the CNF transformation time depicted in
Fig. 4 (around 7.5 seconds). After investigating this behavior,
we have realized that only changeable properties participate
actively in the SAT solving process. The remaining properties
take their truth values from the system, so they are fixed and
ignored, making the internal CNF transformation faster. The
second phenomenon is that the curve depicting the system with
ten present vulnerabilities (violet dashed lines with rounded
points) has lower values that the one with five vulnerabilities
(red dashed line with square points). Sometimes, more avail-
able changes facilitates the search of the SAT solver though
this fact also leaves more free assignable variables increasing
the search space. Even though this depends on the mechanisms
used by the SAT solver, the general behavior for remediating
IOS vulnerabilities has been observed to be linearly stable.

Finally, we also have measured the time required to query
and perform atomic changes over Cisco IOS via NETCONF.
A complete NETCONF session for getting the current con-
figuration in our scenario, including network delays, takes
around 2 seconds in average (blue dashed line). NETCONF
also allows us to perform a set of various changes in one
single session. We have varied the size of this change set from
1 to 300 as shown in Fig. 6 (red bars). We have observed
that the time grows linearly, as shown in the inner graph,
and that it only requires about 2.5 seconds for performing
300 changes. Considering the overall behavior, these sets
of experiments have shown the scalability of the proposed
strategy in our context, in terms of representation conversion
time, SAT solving time and NETCONF performance.

VII. CONCLUSIONS AND FUTURE WORK

Vulnerability management constitutes a key activity for
ensuring safe configurations and preventing security attacks.
This activity should be self-corrective, i.e., it should not
generate new vulnerable states. In this paper we have proposed
a novel approach for dealing with vulnerability management
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activities in an autonomous manner. We perform vulnerability
assessment activities taking advantage of the OVAL language.
In order to detect which corrective actions must be performed
to secure vulnerable systems, we consider the change decision
process as a boolean satisfiability (SAT) problem. We have
proposed the X2CCDF language, built on top of XCCDF and
OVAL, that allows us to express the impact of these changes
over target systems. Based on these descriptions, we use a
SAT solving engine to successfully identify which changes
must be applied. We have proposed an autonomous framework
called VMANS that consolidates these activities using the
NETCONF protocol. Finally, we have conducted several ex-
periments over the Cisco IOS platform whose results validate
the feasibility and scalability of the proposed approach.

In this work, we have considered remediation actions as
atomic changes. However, some corrective activities may con-
sider several changes at once to eradicate vulnerabilities. For
future work, we plan to further analyze SAT solving techniques
as well as sophisticated mechanisms for considering interac-
tions, coherence and consistency between corrective changes
in an unified manner. SAT solving techniques are also affected
by the nature of the logical formulas they have to solve. In that
context, we aim at investigating other computing platforms as
well as distributed vulnerabilities involving multiple devices
at once to further validate our approach. Finally, protocols
such as NETCONF are able to manage changes in a try-
rollback manner by using candidate configurations. However,
they are not yet widely deployed and standardized. Even
though some equipments implement NETCONF agents such
as some versions of Cisco IOS, most of them do not cover
the complete specification. In light of this we have planned
to analyze diverse mechanisms to tackle this technical reality
in order to provide more robust strategies for assessing and
remediating vulnerabilities.
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