
Towards machine-assisted formal procedures for the
collection of digital evidence

Martı́n Barrère, Gustavo Betarte and Marcelo Rodrı́guez
Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República

J. Herrera y Reissig 565, 5to.piso, CP 11300, Montevideo, Uruguay
Email: {mbarrere,gustun,marcelor}@fing.edu.uy

Abstract—The nature of computer crimes has systematically
evolved with the progress of computer technologies. Due to the
complexity of forensic investigations, the design of new techniques
and tools for speeding up and automating tasks required by
digital forensic processes has become a challenging task. In
particular, the collection of (live) digital evidence is a delicate
work that requires special care and proved investigator skills.
This work presents a framework for the specification of collection
procedures based on an extension of the OVAL language and
describes a tool that has been implemented to automate the
execution of those procedures.

I. INTRODUCTION AND BACKGROUND

Computer crimes occur on a daily basis and almost every
technology used with some valuable purpose has been, or
is a candidate to be, the object of some kind of attack. In
most cases, successful computer attacks are not matter of luck
or just coincidence; attackers dedicate time to their planning
and deployment. However, in the presence of a security
incident, like an attack against a corporative network, system
administrators do not have neither time nor calm to analyze
the incident, they have to act quickly, securing the area and
returning systems and services to their normal state. Within
these scenarios, forensic investigations must be performed in
order to understand how an attack took place on a system.
The more detailed and precise the results obtained, the more
accurate shall be the strategy to seal security breaches.

In [8] it was proposed a classification and characterization of
the general procedures embodied by digital forensic investiga-
tions. The model provides practitioners a better understanding
of the procedures involved as well as the candidate methods
and techniques. In this context, evidence collection is a crucial
and delicate task that requires wide experience from who
carries out the activity. Security tools such as Sleuth Kit &
Autopsy have been integrated into powerful forensic distri-
butions ([2], [1]) with the purpose of softening investigators
activities and speed up data collection processes. However, the
development of a forensic investigation using these tools still
requires a high degree of involvement from and interaction
with the expert who is conducting the investigation.

For years organizations have developed structured proce-
dures and protocols to face security incidents. Nevertheless,
most of the required tasks are typically human-dependent,
they are not given a precise specification and are usually
very time-consuming. Digital investigators must be aware of
several technical aspects and comply to best practices when

performing digital evidence collection, such as, for instance,
preserving the integrity of the evidence and clearly defining the
order in which the evidence should be collected. As stated in
[13], proper standard operating procedures (SOPs) are essen-
tial for digital forensic practitioners to perform investigations
that ensure the validity, legitimacy and reliability of digital
evidence. Furthermore, such procedures should be flexible
enough to evolve with digital forensic environments dynamics.
In addition to expert management of appropriate tools, deep
knowledge and fast reaction are also required skills for the
individuals in charge of this task. Automation mechanisms are
deeply needed. They should provide non-ambiguous means
for specifying standard forensic procedures thus fostering
forensic knowledge exchange, and at the same time, automatic
machine-based tools capable of interpreting and executing the
specified directives in a reproducible manner. In this paper
we put forward a framework for the definition and execution
of forensic procedures which meets these requirements. In
particular this framework can be used for the collection of live
digital evidence and is based on three fundamental blocks.

The first one concerns the formal and machine-readable
specification of forensic procedures. This has been addressed
by developing a mechanism, called XOval, to define exten-
sions of the language OVAL (Open Vulnerability and Assess-
ment Language) [6]. OVAL’s main target are system vulner-
ability descriptions. In [12] it is used for gathering computer
systems properties and characteristics for further analysis,
whereas in [11] it is extended to describe the capabilities
gained by an attacker when a certain vulnerability is exploited.
XOval allows us, for instance, to specify data to be collected
from a target system that could not be expressed in terms of
pre-defined OVAL objects. We also exploit the ability of the
language to express, in a declarative way, what has to be done
to collect the desired data. The second block of the framework
concerns the automation of collection of digital objects. We
have designed and implemented a tool, called XOvaldi, which
is an OVAL-based interpreter which can be easily extended
to run forensic primitives defined using XOval. The third
block is a first, and very initial step, concerning the process
of identifying and precisely specifying the forensic primitives
required for investigating a particular scenario. We have exper-
imented, using XOval and XOvaldi, with the methodological
approach described in [10] to conduct a computer forensic
investigation of a system. In this paper we just provide some
insights concerning the way the formal procedures described

978-1-4577-0584-7/11/$26.00©2011 IEEE

2011 Ninth Annual International Conference on Privacy, Security and Trust

in that work can be given an automated treatment using our
framework. Space constraints prevent us from including a
more detailed discussion of the results obtained from the
experiments that have been conducted. By the time the work
presented here was under development, a similar approach
for automating live forensic procedures, called the XLIVE
framework, was reported in [9]. That framework, however, has
been designed to work only on Windows-based desktop PCs
and relies on the use of a non standard XML-based language
to specify data gathering.

The rest of this paper is organized as follows. Section II
describes a methodological proposal for the specification and
automated collection of (live) digital evidence. In Section III
is presented XOvaldi, a live forensic multiplatform and ex-
tensible OVAL-based tool for digital evidence collection. Sec-
tion IV describes further work and concludes.

II. A PROPOSAL FOR AUTOMATED LIVE DIGITAL
EVIDENCE COLLECTION

In what follows we motivate the use of the OVAL language
as the formal setting for specifying formal forensic procedures,
and put forward an OVAL-based framework for the automation
of digital data gathering.

A. OVAL overview

The OVAL language, developed by MITRE Corporation [5],
is an information security community effort to standardize
how to assess and report upon the machine state of computer
systems. OVAL is an XML-based language that provides
means for uniformly describing vulnerabilities, analyzing and
detecting them, and exchanging security related information.
It covers a wide range of computer platforms and provides
support for assessing several types of system components such
as, for instance, running processes, open network connections
and files with a specific content. While OVAL is a specification
language allowing to express specific machine states like
vulnerabilities or specific configuration settings, real analysis
is performed by OVAL interpreters.

The OVAL language provides a framework to specify and
conduct the three main steps of a system assessment process:
(1) precise description of the configuration information of the
system to be inspected; (2) analysis of the target for detection
of a particular state of the system, like a vulnerability, specific
configuration or patch state; (3) reporting of the assessment
results. From a digital collection perspective, one might apply
the first step of the assessment to specify the data that must
be collected, the second step to actually perform the data
gathering, and the third step to present the collected evidence.

When an OVAL process is performed, a report is generated
that includes a detailed list of the gathered system components
and their characteristics required to perform the analysis stage.
If one think of such report as a document containing each
collected object required to be analyzed within a forensic
investigation, the initial OVAL document may be grasped as
a precise specification of the procedure the investigator must
follow during the evidence collection stage. Under this per-
spective, we propose to use OVAL definitions for expressing

digital evidence to be collected within a forensic investigation
and to use the OVAL report mechanism for presenting the
collected digital evidence. In this way, OVAL documents
constitute a standard means for expressing forensic knowledge.
Because OVAL is an XML-based language, it inherits all
XML features such as platform independence, interoperability,
transportability and readability. Another interesting feature of
OVAL is that the language provides a declarative way to
express what have to be done during a collection process.
Functional issues such as how the process steps are actually
interpreted are clearly separated and they are considered as an
implementation problem as described in Section III.

B. XOval, an extension of the OVAL language

As technology and forensic techniques evolve, new types
of evidence arise as important pieces of digital investigations.
Despite the wide spectrum of digital components which are
pre-defined in the OVAL language, it does naturally not cover
every type of data that might be of interest in a forensic
scenario. While experimenting with the system we rapidly got
into cases where data to be collected to perform a particular
analysis, like logged users on a system, could not be expressed
using the primitive constructions of the language. Therefore
we developed a mechanism to define extensions of OVAL,
which we call XOval (eXtended Oval). With the definition of
this mechanism we aimed at providing a uniform and simple
way to incrementally leverage the expressive power of the
language, thus allowing to describe new digital components.
The OVAL language presents a hierarchical structure based
on XSD files (XML Schemas) where each schema inherits
common attributes from the core schema. The OVAL tests are
located on different schemas depending on the software they
describe, typically associated to the platform they belong. In
order to extend the language to support further data gathering
in a platform, we propose to create new schemas which specify
the characteristics of the data to be collected that is not
currently supported by the OVAL language. The separation
between the original schemas and the new ones, allows us to
perform an upgrade of the whole OVAL specification without
requiring a rewriting of existing extensions. If a class of
digital evidence is required by a digital investigation but it is
not supported by OVAL, the language can be monotonically
extended so as to cover one such type of system data source.

C. Automating evidence collection with XOval-based proce-
dures

XOval has been developed as a conceptual, and formal,
mechanism to leverage OVAL definitions so as to fit new
forensic requirements. Our proposal for automating formally
specified evidence collection involves, in addition, two further
requirements: (1) a methodological guide to identify and
precisely specify the forensic primitives required for investi-
gating a particular scenario; (2) an automated tool capable of
interpreting and running over the target system those forensic
primitives. Concerning the second requirement, the solution
has been to design and implement a tool, called XOvaldi,
which is presented in Section III.

As to the first requirement, we have experimented with
the methodological approach described in [10]. To conduct
a computer forensic investigation of a system in response
to the suspicion or actual occurrence of an attack on that
system, the author proposes a formal model for analyzing and
constructing forensic procedures. In that model, an attack ai

is specified as the set Ci = {ch, ..., ck}, Ci ⊆ C, of affected
components by the attack, where C = {c, ..., cn} denotes the
set of all components on all operating systems. In order to
detect an attack ai, the model defines a forensic procedure
Fi = {fh, ..., fk}, Fi ⊆ F , where each entry denotes a foren-
sic primitive fj that focuses on the investigation of exactly
one component; F denotes the set of all forensic primitives.

The main objective of our methodological experiment was
to explore the feasibility of defining formal specifications of
collection procedures exploiting the conceptual constructions
defined in Leigland’s model and providing an interpretation
of those formal structures in terms of a standard security
language. The approach we have followed is to identify and
give a precise characterization of the conceptual mapping that
relates the abstract constructs defined in Leigland’s model with
OVAL main building blocks. This is illustrated in Figure 1.

Fig. 1: Specifying forensic primitives using (X)OVAL

Thus, if a forensic investigation must be carried out on an
operating system O, an (X)OVAL document should be pro-
duced that precisely describes the digital components required
by the forensic process. The metadata section identifies the
target (operating) system of the investigation. Each affected
system component ci required to be analyzed can be specified
using (X)OVAL objects. Such (X)OVAL constructs permit to
describe the characteristics of the digital components that must
be collected. The second row in the figure shows the specifi-
cation of an hypothetical component ci where the attribute
name is available to be specified. As stated in Leigland’s
model, each forensic primitive is connected with only one
digital component. A forensic primitive then is represented
by an (X)OVAL Test which makes reference to an (X)OVAL
Object, the one it is intended to inspect. In the third row
it is introduced the representation of a forensic primitive fj

as an (X)OVAL Test with id ”oval:tst:1”, and shows how
the test is connected to the (X)OVAL Object ”oval:obj:1”
that it must assess. A forensic procedure then is formalized
as an (X)OVAL Definition which is formulated as a logical
combination of a set of forensic primitives. The fourth row in
the figure shows how a forensic procedure Fi is described as
an (X)OVAL Definition with id ”oval:def:1”, assuming that
N (X)OVAL tests must be performed. It makes it clear what
system components must be collected for further analysis.

Under this perspective, the problem of defining and au-
tomating the execution of a collection procedure reduces (1) to
provide an XOval Test of each forensic primitive, as just
explained, and (2) to associate each primitive to a piece of
software capable of executing the actions needed to investigate
the specified component. Concerning the implementation of
the forensic primitives, the architecture of the XOvaldi tool,
which is discussed in the next section, has been designed so
as each one of these software pieces can be implemented as a
single plugin that can be fetched and invoked by the tool out
of plugin repositories.

III. AN XOVAL INTERPRETER

XOvaldi is a multiplatform and extensible OVAL-based
tool for (live) digital evidence collection1. XOvaldi has been
designed and implemented as a conservative extension of
Ovaldi [7], which is a free OVAL interpreter maintained
by MITRE [5] as a reference implementation for evaluating
OVAL definitions. The current release of Ovaldi covers a wide,
but not complete, part of OVAL’s specification. The design
of XOvaldi, which has been conceived as an extension of
Ovaldi, is motivated by the need to count with an OVAL-
based interpreter which could be easily extended so as to be
able to provide an implementation of the forensic primitives
defined using XOval.

A. Forensic primitives in XOvaldi

The methodological approach for the definition and execu-
tion of forensic primitives proposed in section II identifies a
set of requirements, mainly extensions to the core components
of the framework, that can be achieved following a sequence
of restructuring steps. In what follows we present and explain
solutions to those requirements which are based in the use of
the functionalities provided by XOvaldi.

• XOval extension. The XOval language specification is
based on XML Schema files; new digital objects to collect
have to be specified within an appropriate existing XML
schema –from a platform viewpoint– or in a new XML
schema representing a new family of components.

• XOvaldi model regeneration. In order to support lan-
guage extensions, XOvaldi’s logical data model has to
be regenerated to fit the language constructions. Our
implementation relies on the JAXB technology [4], a
Java architecture for XML binding, that provides auto-
matic mechanisms for generating Java classes from XML

1Readers interested in experimenting with the tool please contact the authors

Schema specifications. Therefore, XOval model regener-
ation is automatically done. Moreover, JAXB provides
automatic means for parsing and writing XML documents
enabling seamless code upgrade over underlying language
extensions with almost no cost.

• Plugins codification. Once the interpreter is able to
manage the new types of digital components, functional
extensions are required to perform the evidence collec-
tion. XOvaldi’s architecture easily allows to extend func-
tionality of the interpreter by simply adding new plugins
on the plugins repository. XOvaldi loads on demand the
required plugins in order to perform the newly defined
procedures.

As we stated in II-C, each plugin is connected to one
specific forensic primitive. Moreover, XOvaldi implementation
follows the OVAL philosophy concerning the way the lan-
guage is organized. XOvaldi plugins repository is composed
by families of plugins according to the platform they belong.

B. Characteristics of XOvaldi

We highlight some of its relevant characteristics:
• Extensibility. Forensic scenarios are dynamic and they

are always changing, so there is a need for adaptable tools
capable of evolving with environment changes. XOvaldi
meets this requirement by design, enabling functional
extensibility through a plugin-based architecture.

• Portability. XOvaldi’s core has been purely developed
using Java-based technologies [3]. An XOvaldi release
contains every needed dependency, including its own Java
Runtime Environment. Then, it does not relies on any
software component within the target device. This allows
XOvaldi to be run from any removable media, including
read-only media, making it appropriate to be used as a
live-response oriented tool.

• Distributed. XOvaldi can be used in two different modes:
standalone mode or client-server mode. The former is
the standard or local mode, where requested activities
are performed on the local context and their results are
also stored within an accessible local path. When client-
server or distributed mode is used, two XOvaldi running
instances can communicate each other in order to perform
remote evidence collection or remote evidence storage.
Based on a client-server model, the approach works on a
request-response basis.

IV. CONCLUSIONS AND FUTURE WORK

In this work we have presented a framework for collecting
digital forensic evidence, a key stage in a forensic inves-
tigation, based on the use of OVAL, a standard security
content XML-based language. It has also been explained the
mechanism that makes it possible to extend OVAL definitions
to define new forensic primitives and it has been presented
a multi-platform and extensible tool (XOvaldi) that provides
support for performing automated evidence collection based
on extended (X)OVAL specifications. The framework incor-
porates mechanisms that (1) promote tasks modularization
within forensic investigations, and that (2) make it possible

to elaborate a specification of a forensic procedure indepen-
dently of the technology used to its implementation. This
enables the integration of knowledge provided by experts from
different areas within the information technology field. Such
knowledge, represented as a combination of forensic proce-
dures, might be exploited when performing digital evidence
collection. Furthermore, the one in charge of executing these
procedures does not strictly need to know every detail about
how the collection is carried out. The framework also provides
support for defining atomic forensic primitives that can be
later combined for building forensic procedures. Each forensic
primitive in turn can be reused within multiple procedures.
XOvaldi’s architecture has been designed to support that ap-
proach by providing a mechanism for implementing a forensic
primitive as a plugin of the tool. The reutilization of an
implemented forensic procedure consists basically in invoking
that plugin out of an XOvaldi repository.

Forensic investigations comprise several stages that in turn
involve multiple tasks. As further work, we plan to analyze to
which extent our proposal for the specification and automation
of collection procedures might also apply to other tasks of a
forensic investigation process. This analysis shall be carried
out from a technical perspective, considering, for instance,
forensic stages linkage and from a legal perspective, consid-
ering issues related to evidence integrity, reliability and trace-
ability. It is also of our interest to explore alternative solutions
concerning the design of a secure centralized infrastructure for
performing forensic activities, with a special focus on digital
evidence collection.

REFERENCES

[1] BackTrack, a Linux-based penetration testing toolkit. http://www.
backtrack-linux.org/. Last visited on May 28, 2011.

[2] Helix 3, an incident response tool. http://www.e-fense.com/. Last visited
on May 28, 2011.

[3] Java technology. http://www.oracle.com/us/technologies/java/. Last
visited on May 28, 2011.

[4] JAXB, Java Architecture for XML Binding. http://www.oracle.com/
technetwork/articles/javase/index-140168.html. Last visited on May 28,
2011.

[5] MITRE Corporation. http://www.mitre.org/. Last visited on May 28,
2011.

[6] OVAL Language. http://oval.mitre.org/. Last visited on May 28, 2011.
[7] Ovaldi, the OVAL Interpreter reference implementation. http://oval.

mitre.org/language/interpreter.html. Last visited on May 28, 2011.
[8] A road map for digital forensic research. http://www.dfrws.org/2001/

dfrws-rm-final.pdf, August 2001. Last visited on May 28, 2011.
[9] Seokhee Lee, Antonio Savoldi, Kyoung Soo Lim, Jong Hyuk Park,

and Sangjin Lee. A proposal for automating investigations in live
forensics. Computer Standards & Interfaces, 32(5-6):246 – 255, 2010.
Information and communications security, privacy and trust: Standards
and Regulations.

[10] Ryan Leigland and Axel Krings. A Formalization of Digital Forensics.
International Journal of Digital Evidence, 3(2), 2004.

[11] Paolo Maggi, Davide Pozza, and Riccardo Sisto. Vulnerability Mod-
elling for the Analysis of Network Attacks. 2008 Third Interna-
tional Conference on Dependability of Computer Systems DepCoS-
RELCOMEX, pages 15–22, June 2008.

[12] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mulval:
a logic-based network security analyzer. In Proceedings of the 14th
conference on USENIX Security Symposium - Volume 14, 2005.

[13] Jill Slay, Yi-chi Lin, Benjamin Turnbull, Jason Beckett, and Paul Lin.
Chapter 3 Towards a Formalization of Digital Forensics. Ifip Interna-
tional Federation For Information Processing, pages 37–47, 2009.

