
Département de formation doctorale en informatique École doctorale IAEM

UFR STMIA Université de Lorraine, France

Vulnerability Management for Safe
Configurations in Autonomic Networks

and Systems

DISSERTATION

(Extended abstract)

publicly presented on June 12, 2014

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Information and Computer Science

by

Mart́ın BARRÈRE CAMBRÚN

Dissertation committee:

President: Le président

Reviewers : Dr. Michelle SIBILLA. Professor at Université Toulouse III Paul Sabatier, France.
Dr. Raouf BOUTABA. Professor at University of Waterloo, Canada.

Examiners : Dr. Emil LUPU. Reader at Imperial College London, U.K.
Dr. Nacer BOUDJLIDA. Professor at Université de Lorraine, France.
Dr. Rémi BADONNEL. Associate Professor at Université de Lorraine, France.
Dr. Olivier FESTOR. Professor at Université de Lorraine, France.

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

Table of Contents

Chapter 1 General introduction 1

1.1 The context . 1

1.2 The problem . 2

1.3 Organization of the document . 2

Chapter 2 Autonomic environments and vulnerability management 3

2.1 Introduction . 3

2.2 Autonomic computing overview . 3

2.3 Vulnerability management in autonomic environments 4

2.4 Synthesis . 7

Chapter 3 Contributions 9

3.1 Introduction . 9

3.2 An autonomic platform for managing configuration vulnerabilities 10

3.2.1 Autonomous vulnerability awareness . 10

3.2.2 Extension to distributed vulnerabilities . 12

3.2.3 Detecting past hidden vulnerable states 14

3.2.4 Increasing mobile security . 15

3.2.5 Remediating configuration vulnerabilities 17

3.3 Implementation prototypes . 20

3.4 Synthesis . 20

Chapter 4 General conclusion 21

4.1 Contributions summary . 21

4.1.1 Autonomic vulnerability management . 21

4.1.2 Implementation prototypes . 22

4.2 Perspectives . 23

4.2.1 Proactive autonomic defense by anticipating future vulnerable states . . . 23

4.2.2 Unified autonomic management platform 23

4.2.3 Autonomic security for current and emerging technologies 23

4.3 List of publications . 24

Bibliography 27

i

Table of Contents

ii

Résumé / Abstract

Le déploiement d’équipements informatiques à large échelle, sur les multiples infrastructures
interconnectées de l’Internet, a eu un impact considérable sur la complexité de la tâche de gestion.
L’informatique autonome permet de faire face à cet enjeu en spécifiant des objectifs de haut
niveau et en déléguant autant que possible les activités de gestion aux réseaux et systèmes eux-
mêmes. Cependant, lorsque des changements sont opérés par les administrateurs ou directement
par les équipements autonomes, des configurations vulnérables peuvent être involontairement
introduites, même si celles-ci sont correctes d’un point de vue opérationnel. Ces vulnérabilités
offrent un point d’entrée pour des attaques de sécurité. Les environnements autonomes doivent
être capables de se protéger pour éviter leur compromission et la perte de leur autonomie. À cet
égard, les mécanismes de gestion des vulnérabilités sont essentiels pour assurer une configuration
sûre de ces environnements.

Cette thèse porte sur la conception et le développement de nouvelles méthodes et techniques
pour la gestion des vulnérabilités dans les réseaux et systèmes autonomes, afin de leur permettre
de détecter, d’évaluer et de corriger leurs propres expositions aux failles de sécurité. Nous présen-
terons tout d’abord un état de l’art sur l’informatique autonome et la gestion de vulnérabilités, en
mettant en relief les défis importants qui doivent être relevés dans ce cadre. Nous décrirons ensuite
notre approche d’intégration du processus de gestion des vulnérabilités dans ces environnements,
et en détaillerons les différentes facettes, notamment : extension de l’approche dans le cas de
vulnérabilités distribuées, prise en compte du facteur temps en considérant une historisation des
paramètres de configuration, et application en environnements contraints en utilisant des tech-
niques probabilistes. Nous présenterons également les prototypes et les résultats expérimentaux
qui ont permis d’évaluer ces différentes contributions.

Mots clés: sécurité, gestion de réseaux, informatique autonome, gestion de vulnérabilités.

Over the last years, the massive deployment of computing devices over disparate intercon-
nected infrastructures has dramatically increased the complexity of network management. Au-
tonomic computing has emerged as a novel paradigm to cope with this challenging reality. By
specifying high-level objectives, autonomic computing aims at delegating management activi-
ties to the networks themselves. However, when changes are performed by administrators and
self-governed entities, vulnerable configurations may be unknowingly introduced. Vulnerabili-
ties constitute the main entry point for security attacks. Hence, self-governed entities unable to
protect themselves will eventually get compromised and consequently, they will lose their own
autonomic nature. In that context, vulnerability management mechanisms are vital to ensure
safe configurations, and with them, the survivability of any autonomic environment.

This thesis targets the design and development of novel autonomous mechanisms for dealing
with vulnerabilities, in order to increase the security of autonomic networks and systems. We
first present a comprehensive state of the art in autonomic computing and vulnerability mana-
gement, and point out important challenges that should be faced in order to fully integrate the
vulnerability management process into the autonomic management plane. Afterwards, we present
our contributions which include autonomic assessment strategies for device-based vulnerabilities
and extensions in several dimensions, namely, distributed vulnerabilities (spatial), past hidden
vulnerable states (temporal), and mobile security assessment (technological). In addition, we
present vulnerability remediation approaches able to autonomously bring networks and systems
into secure states. The scientific approaches presented in this thesis have been largely validated
by an extensive set of experiments which are also discussed in this manuscript.

Keywords: security, network management, autonomic computing, vulnerability management.

iii

iv

Chapter 1

General introduction

Contents
1.1 The context . 1
1.2 The problem . 2
1.3 Organization of the document . 2

1.1 The context

Over the last years, the massive deployment of computer devices over interconnected hete-
rogeneous infrastructures has dramatically changed the perspective of network management. In
particular, the Internet has played a fundamental role providing a platform for thousands of
mixed technologies which currently constitute our globalized digital world. Nowadays, almost
any network including the Internet itself, is expanding as a response to many factors. As end-
users become more connected with computing technologies, or maybe technology becomes more
friendly with end-users, a growing demand for useful digital advances goes along with the pro-
cess. These new requirements appear in different forms, which directly impact in the mechanisms
and resources used to meet them. In the other way around, technology can be also observed as
a proactive stream, which shapes end-users’ behavior to some extent. This symbiosis between
technology and end-users makes a vehicle for their evolution.

This evolution however, is not without dangers. Constructive approaches tend to test the
boundaries of current technologies. Since networks became the key platform for exchanging in-
formation and providing all kind of services on top of them, their management rapidly shifted
into higher levels of complexity. These scenarios in turn are dynamic, which challenges their
limits even more. In that context, the autonomic computing approach has been conceived as a
response to this problem. What if specific administration tasks to adapt our networks to each
concrete service are not needed anymore ? What if we can express what we need from networks,
and just tell the underlying infrastructure to manage it for us ? From a high-level viewpoint,
these sentences may provide the intuition and spirit of autonomic computing. Indeed, autonomic
computing aims at freeing administrators from the burden of heavy and error-prone management
tasks. The main idea is to specify what networks have to do by means of high-level objectives,
and delegate the responsibility of accomplishing these specific goals to the networks themselves.

Under this perspective, self-governed networks and systems can positively tackle the manage-
ment of the overwhelming technological development we are witnessing today. However, in order
to make this approach work, security is essential. The ability of being autonomous implies self-

1

Chapter 1. General introduction

protection. If this requirement is not met, autonomous entities might get compromised, not only
affecting their own behavior but the surrounding environment as well. For this reason, the abi-
lity of autonomic networks and systems to manage vulnerabilities and handle their
own exposure is a critical factor for their survivability. This matter constitutes the heart
of our work. This thesis aims at providing novel autonomous mechanisms for dealing
with vulnerabilities, in order to increase the security of self-governed networks and
systems.

1.2 The problem

In computer security, vulnerabilities are flaws or weaknesses in the design, implementation,
or configuration of a system that may allow an attacker to exploit them in order to bypass the
security policies of such system. Vulnerabilities constitute the key entry point for breaking into
computer systems and gaining unauthorized access to assets within these systems. Therefore,
the ability to manage vulnerabilities is crucial for any computer system. Autonomic networks
and systems are not an exception, although their autonomous nature challenges the vulnerability
management process at higher levels. As a matter of fact, related tasks usually performed by
human administrators over regular systems, must now be performed by self-governed entities on
their own. The vulnerability management process basically involves the detection and remediation
of vulnerabilities. Nevertheless, conceiving autonomic networks and systems featuring this process
poses hard challenges. How can we provide autonomic environments with mechanisms
for increasing their vulnerability awareness ? What methods should be employed
for identifying security weaknesses in an autonomous manner ? How should they
proceed to mitigate and eradicate detected vulnerabilities while maintaining the
system operative and safe ? These and other questions constitute the issues that this thesis
aims at dealing with.

Autonomic computing has opened new horizons for addressing problems where traditional
methods seem to fail. Particularly, mechanisms able to properly scale with evolving dynamic
networks and capable of reasonably tackling their increasing management complexity are simply,
essential. Autonomic computing perfectly fits with these requirements. However, if autonomic
infrastructures do not develop mechanisms and techniques to protect themselves from security
threats, their real power and utility will eventually come apart. The focus of this thesis is to
contribute in this direction, by providing a state of the art in autonomic computing and vulnera-
bility management, and filling out missing scientific issues required to harden the foundations and
security of autonomic computing. In the next section we present the structure of this document.

1.3 Organization of the document

This document is intended to provide a summarized overview of the content presented in
this thesis. Fully detailed information about our research and contributions can be found in
the main manuscript of this thesis. The present document is organized as follows. Chapter 2
presents key concepts of autonomic computing and vulnerability management, and the connection
between both worlds. Chapter 3 presents the contributions of this thesis as well as implementation
prototypes developed to validate our approaches. Chapter 4 ends this document with general
conclusions and describes promising perspectives of this work.

2

Chapter 2

Autonomic environments and
vulnerability management

Contents
2.1 Introduction . 3
2.2 Autonomic computing overview . 3
2.3 Vulnerability management in autonomic environments 4
2.4 Synthesis . 7

2.1 Introduction

The growing development of networks and the multiplication of the services offered over
them have dramatically increased the complexity of network management. The paradigm of
autonomic computing has been introduced to address this complexity through the design of
networks and services which are responsible for their own management. In this chapter, we first
present essential concepts about autonomic computing and vulnerability management. Then, we
explain why vulnerability management constitutes a critical activity to ensure real autonomy,
and provide an overview of the approach taken in this thesis to achieve this goal.

2.2 Autonomic computing overview

The autonomic computing paradigm was proposed in 2001 by IBM [9], as a response to cope
with the arising complexity of managing computing systems [14, 6]. The vision of autonomic
computing is strongly inspired on the autonomous nervous system. Indeed, every time we breath,
we do not do it conscientiously, we do not think about it. However, it is still a vital function
that actually follows a high-level human law, being alive. Similarly, autonomic computing aims at
providing an infrastructure where networks can be managed by establishing high level-objectives.
The underlying networking components will then perform in accordance to these rules and the
changing environment, without explicit human intervention. Indeed, autonomic solutions aim at
emulating human behavior during the process, by reasoning and taking decisions for the successful
operation of the system. This perspective aims at providing strong foundations for developing
scalable and flexible infrastructures able to support a demanding and changing technological
reality [21], [8]. In this thesis, we consider the following definition for an autonomic system.

3

Chapter 2. Autonomic environments and vulnerability management

Definition 1 (Autonomic system). An autonomic system is a self-governed entity, able to ma-
nage itself without any type of external control, and to perform required tasks without human
intervention in order to accomplish the goals it was created for. While the purpose of the auto-
nomic system is defined by high-level objectives, the achievement of this purpose is delegated to
the system itself. The internal activities performed by the autonomic system may include envi-
ronment perception, analysis, reasoning, decision making, planning and execution of actions that
must ensure the successful operation of the system.

Considering the previous definition, it is important to highlight that the fact of being governed
by policies or high-level objectives is what makes the key difference between autonomic and
automated solutions. Usually, autonomic solutions are composed of smaller components called
autonomic entities. Autonomic entities are designed to serve a specific purpose such as monitoring
a network device or providing routing services. These entities can then be combined to construct
more complex autonomic solutions. In order to organize their self-governing nature, autonomic
systems involve a set of functional areas called self-* properties, defined as follows [16]:

– self-configuration, providing mechanisms and techniques for automatically configuring
components and services,

– self-optimization, covering methods for monitoring and adapting parameters in order to
achieve an optimal operation according to the laws that govern the system,

– self-healing, for automatically detecting, diagnosing and repairing localized software and
hardware problems, and

– self-protection, supporting activities for identifying and defending the system against
potential threats.

Self-* properties are intended to autonomously solve high-level requirements, however, their
implementation is complex and poses hard challenges. Along with administration tasks done
by humans, changes performed by autonomic entities may inadvertently generate vulnerable
states when following high-level objectives. Even though these changes can operationally improve
the environment, insecure configurations may be produced increasing the exposure to security
threats. As happens in the real world, autonomic elements coexist within dynamic environ-
ments, interacting with other autonomic and non-autonomic elements. If an autonomic element
is compromised, its functions and abilities become untrustworthy and eventually disabled ; thus
autonomic elements that use services of the former become compromised as well. This inevitably
leads to distrust and failure of the autonomic environment. Autonomic systems must be able to
manage their own state and perform required activities to achieve secure configurations. Auto-
nomic elements unable to support this capability will age with time, becoming more vulnerable,
insecure and useless. Real automation can be possible only if autonomic networks and systems
fully integrate vulnerability management mechanisms for ensuring safe configurations. This is
the target of this thesis, which is discussed in the next section.

2.3 Vulnerability management in autonomic environments

Autonomic systems must act on their own, taking any necessary decision to obey the rules that
govern their behavior and to achieve their goals. As such, these systems must deal with security
aspects, ensuring a proper functionality and guaranteeing their results. Therefore, vulnerability
management, briefly assessing and remediating vulnerabilities, is essential. In this thesis, the
concept of vulnerability in computing security is described by considering the following definition.

4

2.3. Vulnerability management in autonomic environments

Figure 2.1 – Positioning of vulnerability management with respect to self-management activities

Definition 2 (Vulnerability). A vulnerability can be understood as a flaw or weakness in system
security procedures, design, implementation, or internal controls that could be exercised (acci-
dentally triggered or intentionally exploited) and result in a security breach or a violation of the
system’s security policy [17], [11].

Our objective is to provide autonomous and consistent mechanisms for assessing and remedia-
ting vulnerabilities, in order to ensure safe configurations within autonomic environments. Under
this perspective, vulnerability management is a cross-cutting concern strongly related but not
limited to self-configuration and self-protection activities of autonomic networks. This process is
depicted in Figure 2.1 where a control loop enables the assessment and remediation of potential
vulnerable states generated by both administrators tasks and self-management activities, thus
securing the environment. The main idea is that actions and changes performed in the system
are constantly monitored and analyzed looking for vulnerabilities. When vulnerable states are
detected, corrective actions are performed until the environment is secured. The vulnerability
management control loop remains active during the whole lifetime period of the autonomic en-
vironment under surveillance. In that context, the establishment of a secure process for dealing
with vulnerabilities requires the specification of a policy defining the desired system state, and
a well-known secure initial state to identify vulnerabilities and policy compliance [23].

The main activities performed during the lifecycle of the vulnerability management process
can be mapped to the same activity line present in autonomic components. Figure 2.2 describes
the general lifecycle of an autonomic component where the main activities done for dealing with
vulnerabilities have been mapped to the task loop performed during the autonomic manager
lifecycle [10]. As it can be observed, vulnerability identification activities take place in the moni-

Figure 2.2 – Mapping of the vulnerability management activity into the autonomic lifecycle

5

Chapter 2. Autonomic environments and vulnerability management

toring phase where tasks for assessing and analyzing vulnerable states are performed (I) taking
advantage of the available security knowledge. When a security problem is found, it is classified
(II) and changes for correcting the situation must be performed. Therefore, vulnerability counter-
measures are planned based on several factors such as importance, risks and impact. Finally, a
change plan is generated and remediation tasks are executed (III) in order to maintain safe confi-
gurations and to be compliant with the current policy. Figure 2.2 illustrates the overall approach
taken in this thesis for integrating vulnerability management activities into the autonomic plane.
Actual existing methods and techniques for dealing with vulnerabilities within autonomic and
non-autonomic systems are widely discussed in the main manuscript of this thesis.

Within our contributions, we have exploited the benefits of the Security Content Automa-
tion Protocol (SCAP) [2]. SCAP is a suite of specifications that standardize the format and
nomenclature by which security software communicate information about publicly known soft-
ware flaws and security configurations. These advisories are annotated with common identifiers
and embedded in XML. In particular, we have heavily used the Open Vulnerability and As-
sessment Language (OVAL) [18] and the eXtensible Configuration Checklist Description Format
(XCCDF) [25]. OVAL, supported by MITRE Corporation [15], standardizes how to assess and re-
port upon the machine state of computer systems. XCCDF, supported by the National Institute
of Standards and Technology (NIST) [17], provides support for authoring security benchmarks
and reporting checklist evaluation results. Together, they not only allow to specify vulnerabilities
but also to bring systems into compliance through the remediation of identified vulnerabilities
or misconfigurations.

Within the OVAL language, a specific vulnerability is described using an OVAL definition.
An OVAL definition specifies a criteria that logically combines a set of OVAL tests. Each OVAL
test in turn represents the process by which a specific condition or property is assessed on the

Figure 2.3 – OVAL example over Cisco IOS

6

2.4. Synthesis

target system. Each OVAL test examines an OVAL object looking for a specific OVAL state,
thus an OVAL test will be true if the referred OVAL object matches the specified OVAL state.
The overall result for the criteria specified in the OVAL definition will be built using the results
of each referenced OVAL test.

As an example, we consider the situation illustrated in Figure 2.3 where a vulnerability for the
Cisco IOS [12] has just been disclosed. For this vulnerability to be present, two conditions must
hold simultaneously: (I) the version of the platform must be 12.4 and (II) the service ip finger
must be enabled. Such vulnerability can be expressed within an OVAL document by defining an
OVAL definition that arranges two OVAL tests as a logical conjunction. One test is in charge of
assessing the system version and the other one must check the service status. The OVAL objects
used in these tests will be an object that represents the version of the system and other object
that represents the running configuration, respectively. Finally, the OVAL states, one for the
version and one for the service, will express the states expected to be observed on each object for
the tests to be true and hence, defining the truth or falsehood of the OVAL definition. Once the
OVAL document has been specified, the actual assessment can be resumed in three main steps.
At step 1, the document is consumed by an OVAL interpreter. At step 2, the target system is
analyzed looking for present vulnerabilities. The OVAL analysis involves two parts, namely, the
collection of required OVAL objects to be analyzed, and the comparison of collected OVAL items
against the specified OVAL states. Finally, a report is produced at step 3 indicating the results
of the assessment process. In this particular example, it is expected to observe the value 12.4 as
the version of the system, and the running configuration file must have a line starting with the
directive ip finger. If these two properties are observed, then the vulnerability is present on the
target system.

The use of standard languages such as OVAL is essential for increasing the vulnerability
awareness of autonomic environments. In addition, languages such as XCCDF highly contribute
to address remediation activities in an autonomic manner. Autonomic networks and systems
should be able to capitalize the knowledge provided by these security advisories in order to
increase their ability to deal with vulnerabilities. In this thesis, we have pursued this goal as
explained in the next chapter.

2.4 Synthesis

The overwhelming advent of new technologies featuring more power, ubiquity and usability
in disparate contexts, requires novel techniques and methodologies for managing the underlying
networks that support them. The technological landscape changes fast and users collaborate to
mold its future as well. Therefore, it is important to leverage clean and adaptive approaches to
face this evolving reality. Autonomic computing provides robust foundations that may encompass
this evolution and can help to address several current network management challenges. However,
autonomic systems must ensure safe configurations if we want to trust autonomic solutions. In
that context, the aim of this thesis is to provide novel autonomous mechanisms for dealing with
vulnerabilities, in order to increase the security of self-governed networks and systems. In the
next chapter, we present a summary of our scientific contributions as well as implementation
prototypes developed to validate our approaches.

7

Chapter 2. Autonomic environments and vulnerability management

8

Chapter 3

Contributions

Contents
3.1 Introduction . 9

3.2 An autonomic platform for managing configuration vulnerabilities . 10

3.2.1 Autonomous vulnerability awareness . 10

3.2.2 Extension to distributed vulnerabilities 12

3.2.3 Detecting past hidden vulnerable states 14

3.2.4 Increasing mobile security . 15

3.2.5 Remediating configuration vulnerabilities 17

3.3 Implementation prototypes . 20

3.4 Synthesis . 20

3.1 Introduction

Nowadays, computing technologies spread fast, the number of end-users increases rapidly,
and there is a constant demand for more and better services. Underneath, computer networks
constitute the platform of this convoluted digital world. This accelerated evolution has tested
the boundaries of traditional network management approaches, which do not scale properly with
today’s network requirements. Autonomic computing has emerged as a response to tackle this
challenging issue by delegating management tasks to the network themselves. However, when
changes are performed by administrators and self-governed entities, vulnerable configurations
may be unknowingly introduced. Vulnerabilities constitute the main entry point for security
attacks. Hence, self-governed entities unable to protect themselves will eventually get compromi-
sed and consequently, they will lose their own autonomic nature. In that context, vulnerability
management mechanisms are vital to ensure safe configurations, and with them, the surviva-
bility of any autonomic environment. This thesis targets the design and development of novel
approaches for managing vulnerabilities in autonomic networks and systems. In this chapter, we
briefly describe in Section 3.2 our scientific contributions for autonomously managing configu-
ration vulnerabilities, and our implementation prototypes in Section 3.3. Section 3.4 presents a
synthesis which concludes this chapter.

9

Chapter 3. Contributions

3.2 An autonomic platform for managing configuration vulnera-
bilities

This section presents the contributions of this thesis. According to the vulnerability manage-
ment process, we classify our contributions in two main categories, vulnerability assessment and
vulnerability remediation. Figure 3.1 depicts our research work organized into different sections
where dashed lines illustrate the main reading flow across them.

Figure 3.1 – Organization of contributions

The first contribution, presented in Section 3.2.1, consists of a device-based approach for
autonomic vulnerability assessment. From here, three dimensions represented with solid lines ex-
tend the vulnerability assessment activity to novel scenarios considering spatial, temporal, and
technological perspectives. Section 3.2.2 extends the concept of device-based vulnerabilities to
composed vulnerabilities distributed across the network. We denominate this spatial extension,
distributed vulnerabilities. Section 3.2.3 involves the second dimension which considers time.
This approach allows to increase the present security of computer devices by analyzing hidden
vulnerable states in the past. Section 3.2.4 captures the technological dimension, where we have
investigated novel approaches for assessing vulnerabilities in constrained environments such as
mobile networks. All these chapters, from 3.2.1 to 3.2.4, fall into the vulnerability assessment cate-
gory. Section 3.2.5 closes the vulnerability management process by considering our contributions
on vulnerability remediation activities. These contributions are divided in two parts, namely,
remediation of device-based vulnerabilities, and distributed ones, both located in Section 3.2.5.

3.2.1 Autonomous vulnerability awareness

Changes that are operated by autonomic networks and systems may generate vulnerabilities
and increase their exposure to security attacks. Our objective is to enable autonomic networks to
take advantage of the knowledge provided by vulnerability descriptions in order to maintain safe
configurations. In that context, our first contribution introduces an autonomous approach for
assessing device-based vulnerabilities. To this end, we have integrated vulnerability descriptions
into the management plane of autonomic systems. We have particularly chosen the Cisco IOS
platform as a proof of concept [12]. By automatically translating these security advisories into

10

3.2. An autonomic platform for managing configuration vulnerabilities

policy rules that are interpretable by an autonomic configuration system, autonomic agents
distributed across the network become able to assess their own exposure. We have used the
OVAL language [18] as a means for specifying vulnerability descriptions, and Cfengine [3] as
the autonomic component of our solution. This approach, illustrated in Figure 3.2, provides an
autonomous mechanism for increasing the vulnerability awareness of self-governed environments.

Figure 3.2 – High-level architecture

The proposed architecture involves an OVAL repository where the descriptions of known
vulnerabilities are stored. Such descriptions are intended to be translated and introduced within
a distributed Cfengine configuration. To do so, a translation module is placed between the OVAL
repository and the Cfengine server. This module, further explained in Section 3.3, consumes
available OVAL vulnerability descriptions from the repository and produces Cfengine policy rules
that allow Cfengine agents to be aware of these security weaknesses. The Cfengine architecture
is based on a client-server model. The server keeps these generated policies on its own and
autonomous agents will pull these new policies from the server when convenient. In this manner,
generated policies are deployed by the Cfengine server into its several Cfengine agents (points
in the cloud). These autonomous agents are in charge of managing the devices present in the
target network, in order to detect and prevent vulnerable configurations when self-management
activities are performed. When a vulnerability is found on a specific monitored device, Cfengine
agents are capable of generating specific alerts and shall be able to perform correction operations.
Our approach has been validated through an extensive set of experiments whose results indicate
its feasibility in terms of functionality and integration into the Cfengine autonomic maintenance
tool. Even though we are focused on the Cfengine tool, currently used in millions of managed
devices, our general approach could be applied to other policy-based configuration tools such as
Puppet [20] or Chef [4].

Supporting vulnerability awareness constitutes the first step towards secure self-managed
infrastructures capable of detecting and remediating potential security breaches. However, as-
sessing vulnerabilities over individual network elements may not provide a global view of how
vulnerable a network can be. This concept as well as our related contribution are explained in
the next section.

11

Chapter 3. Contributions

3.2.2 Extension to distributed vulnerabilities

Vulnerability assessment activities are traditionally performed over individual network de-
vices, independently of each other. Sometimes however, two or more devices combined together
may produce a vulnerable network state that host-based approaches are not able to detect. We
refer to these security weaknesses as distributed vulnerabilities, which constitute our extension
within the spatial dimension. Distributed vulnerabilities must be assessed with a consolidated
view of the network in order to detect vulnerable states that may simultaneously involve two or
more network devices. In this thesis, we present a novel approach for describing and assessing
distributed vulnerabilities in autonomic environments. No previous work has formally defined the
concept of a distributed vulnerability. Therefore, we emphasize a mathematical construction to
formally specify distributed vulnerabilities as well as a machine-readable language for describing
them. We also present an autonomous framework for assessing distributed vulnerabilities that
takes advantage of the knowledge provided by such descriptions. Hence, our strategy permits to
increase the vulnerability awareness of both individual devices and the network as a whole.

Figure 3.3 – Distributed vulnerability scenario

In order to explain the concept of a distributed vulnerability, we consider the example des-
cribed in [24] and depicted in Figure 3.3. This scenario involves two related hosts, a SIP (Session
Initiation Protocol) server and a DNS (Domain Name System) server. Each one has specific pro-
perties, however, they constitute together a potential exploitable network vulnerability. Indeed,
a denial of service (DoS) attack over the SIP server can be performed by flooding it with unresol-
vable domain names that must be solved by a local DNS server. The local DNS server in turn, is
configured for requesting the resolution of unknown domains to external servers, increasing the
number of waiting requests and therefore the response time for each SIP request. Under these
configuration states, flooding a SIP server with such type of messages will prevent it to respond
to legitimate requests. It is important to highlight that both servers and the relationship between
them are required conditions for the distributed vulnerability to be present. If the DNS server is
not present or if it is not compliant with the required specific conditions, the SIP server would
immediately respond to a SIP client that its SIP request has failed. Even in such a situation,
thousands of SIP requests may collapse the SIP server anyway, though it is a slightly different
scenario that could be specified using standard OVAL definitions. On the other hand, if there is
no SIP server, it is quite clear that the distributed vulnerability has no place in this environment.

Formally, we define a distributed vulnerability as the compliant projection of a pattern in-
volving specific host states (roles) and relationships between them over a target network as
illustrated in Figure 3.4. We have designed the DOVAL language (Distributed OVAL), built on
top of OVAL, as a means for describing distributed vulnerabilities in a machine-readable manner.
Due to the size and dynamics of current networks, the assessment and detection of vulnerable

12

3.2. An autonomic platform for managing configuration vulnerabilities

Figure 3.4 – Distributed vulnerability matching process

distributed states is not a trivial task. Therefore, we partition the problem into several steps,
namely, (1) generation of a minimized loop-free topology of the underlying network, (2) collection
of hosts and network information, and (3) assessment of DOVAL specifications over the gathered
data. Figure 3.5 illustrates the steps and the architecture of the proposed approach.

Within this architecture, distributed vulnerabilities are specified using the DOVAL language
and stored in a database. A Cfengine server is fed with such knowledge and translated as Cfengine
policy rules, in the same way we have done before for host-based vulnerabilities. Our approach
considers a deployment of Cfengine agents across the network, where each agent is in charge of
controlling one network device. In order to evaluate the existence of a distributed vulnerability,
a spanning tree is built on top of the target network to minimize paths and avoid network loops.
The DOVAL specification is then transmitted across the tree and the required information is

Figure 3.5 – Distributed vulnerability assessment process

13

Chapter 3. Contributions

gathered by performing an aggregation algorithm over the nodes. Each Cfengine agent assesses
the device it controls in order to discover which roles such device can play within the distributed
vulnerability specification. This information is returned back until all the information is stored
at the root node of the spanning tree. Finally, the specification of the distributed vulnerability
is projected over the information gathered from the network, and a DOVAL report is generated
informing about distributed vulnerable states across the network. By using a parallel computing
approach for assessing distributed vulnerabilities, our experiments have shown a linear behavior
with respect to the size of the network, thus ensuring the scalability of our approach.

Distributed vulnerabilities constitute our extension within the spatial dimension which is
essential to increase the overall security of autonomic networks. However, the ability to unders-
tand the state of autonomic elements in the past and therefore, potential hidden vulnerabilities,
might provide robust support for enhancing security mechanisms in the present. This perspective
is presented in the next section.

3.2.3 Detecting past hidden vulnerable states

Vulnerability assessment activities usually analyze new security advisories only over current
running systems. However, a system compromised in the past by a vulnerability unknown at that
moment may still constitute a potential security threat in the present. Indeed, a backdoor instal-
led by an attacker for instance, may remain in the system even though the original vulnerability
that gave room to such attack has been eradicated. Accordingly, past unknown system exposures
must be taken into account. Our extension in the temporal dimension aims at increasing the
overall security of computing systems by taking advantage of new security advisories in order to
identify past hidden vulnerable states. In that context, we put forward a modeling for detecting
unknown past system exposures, and an OVAL-based distributed framework for autonomously
gathering network devices information and automatically analyzing their past security exposure.

The proposed framework considers two independent cyclical processes, namely, one process for
imaging systems in an autonomous manner and the second one for actually detecting past security
exposures. Figure 3.6 illustrates the proposed architecture identifying the main components as
well as the communication processes between them.

Figure 3.6 – High-level imaging and exposure detection process

14

3.2. An autonomic platform for managing configuration vulnerabilities

The sequence denoted by steps I, II and III constitutes the image generation process. At
step I, the exposure analyzer provides directives for data collection that will be used for building
XML-based system images. These directives are specified by means of OVAL documents that are
automatically translated to Cfengine policy rules. The ability to express OVAL objects without
actually expecting any particular state allows us to use OVAL documents as the inventory of
required objects to be collected. At step II the generated Cfengine policy rules are transmitted
to the autonomic agents distributed in the network. These agents are in charge of controlling
network devices and they will perform data collection activities in order to build their system
images. Finally, these images are automatically stored in a SVN-based revision repository [22]
at step III. The image generation process constitutes an autonomic activity and it is performed
independently from the past exposure detection process. The latter, in charge of outsourcing
vulnerability assessment activities, is composed of two steps. First at step 1, the exposure analy-
zer monitors the knowledge source on a regular basis checking for new vulnerability definitions.
When a new definition becomes available, it analyzes at step 2 those system images stored in
the revision repository which have been created after the public disclosure of the corresponding
exploit. In this manner, our assessment strategy is able to autonomously identify periods of time
in which network devices have been exposed to security threats, and therefore permitting to
increase security efforts on specific devices that may still constitute an entry point for attackers
in the present.

The ability to outsource vulnerability assessment activities provides a strong support to
achieve autonomic features, specially on equipment with scarce resources such as mobile devices.
Being focused on vulnerability management and autonomic environments, we decided to inves-
tigate to what extent autonomic computing may increase the security of mobile devices. Our
investigation is presented in the next section.

3.2.4 Increasing mobile security

The development of mobile technologies and services has contributed to the large-scale de-
ployment of smartphones and tablets. These environments are exposed to a wide range of security
attacks and may contain critical information about users such as contact directories and phone
calls. Assessing configuration vulnerabilities is a key challenge for maintaining their security,
but this activity should be performed in a lightweight manner in order to minimize the impact
on their scarce resources. In this thesis, we have conceived two complimentary approaches for
assessing configuration vulnerabilities in mobile devices, which constitute our extension within
the technological dimension. The first approach considers a self-assessment strategy which allows
mobile devices to assess their own exposure. In order to reduce the workload on the mobile side
even more, we also propose a probabilistic cost-efficient strategy integrated into a client-server
architecture. Both approaches target the Android platform [1] as a proof of concept, though these
approaches could be adapted to other mobile platforms as well.

Vulnerability self-assessment

Our first approach considers a self-assessment perspective where mobile devices are in charge
of assessing their own security exposure. To that end, we have developed a mathematical model
that supports efficient vulnerability assessment activities on resource-constrained devices. The
overall architecture of our approach is shown in Figure 3.7, which considers a distributed infra-
structure composed of three main building blocks: (1) a knowledge source that provides existing
security advisories, (2) Android-based devices running a self-assessment service and (3) a repor-

15

Chapter 3. Contributions

Figure 3.7 – OVAL-based vulnerability self-assessment architecture for the Android platform

ting system for storing analysis results and performing further analysis. The overall process is
defined as follows. Firstly at step 1, the Android device periodically monitors and queries for
new vulnerability descriptions updates. This is achieved by using a web service provided by the
security advisory provider. At step 2, the provider examines its database and sends back new
found entries. The updater tool running inside the Android device synchronizes then its security
advisories. When new information is available or configuration changes occur within the system,
a self-assessment service is launched in order to analyze the device at step 3. At step 4, the
report containing the collected data and the results of the analyzed vulnerabilities is sent to a
reporting system by means of a web service request. At step 5, the obtained results are stored in
the external database. This information could be used later for different purposes such as forensic
activities or statistical analysis.

Probabilistic vulnerability assessment

Delegating vulnerability assessment activities to mobile devices provides higher levels of au-
tonomy. However, when these activities are performed, there is still a resource consuming process
in the mobile side that must control the overall behavior of the analysis. We have realized that
the externalization of this control may still provide autonomicity and decrease the workload on
mobile devices. In that context, our second approach consists in centralizing main logistic vul-
nerability assessment aspects as a service. Mobile clients only need to provide the server with
required data to analyze known vulnerabilities described with the OVAL language. By confi-
guring the analysis frequency and the percentage of vulnerabilities to evaluate at each security
assessment, our framework permits to bound client resource allocation and also to outsource the
assessment process. Our strategy consists in distributing evaluation activities across time thus
alleviating the workload on mobile devices, and simultaneously ensuring a complete and accu-
rate coverage of the vulnerability dataset. This technique results in a faster assessment process,
typically done in the cloud, and considerably reduces the resource allocation on the client side.

The proposed framework, named Ovaldroid, is described in Figure 3.8. Ovaldroid is compo-
sed of two main building blocks, namely, a server that manages the whole assessment process
and clients located on the mobile network that use the vulnerability assessment service. Mobile
clients periodically communicate with the Ovaldroid server (Hello message) in order to inform
about their assessment availability. Based on the historical evaluation registry, the vulnerabi-
lity manager subsystem located on the server side decides whether it is necessary to perform a
new vulnerability assessment based on the pre-established assessment frequency. If it does, the
probability-based test analyzer starts a process in which a sequence of OVAL tests is executed

16

3.2. An autonomic platform for managing configuration vulnerabilities

Figure 3.8 – Probabilistic vulnerability assessment for the Android platform

until the specified percentage of vulnerabilities to be evaluated is reached. OVAL tests are statis-
tically selected according to their participation within the remaining vulnerabilities to evaluate
as well as the impact of such vulnerabilities (step 1). The probabilistic component also considers
the last time these tests have been evaluated in order to avoid test starvation. Our strategy inte-
grates a cache for collected objects and tests results, which decreases the workload on the mobile
side even more (step 2a). If the required data is not available in the cache, it is collected from
the mobile device (steps 2b-3) and analyzed afterwards (step 4). Collected objects and obtained
results are then stored in the server (steps 5-6). The process continues over steps 1 to 6 until the
percentage of vulnerability coverage specified by the administrator is reached. Our experiments
have shown promising results, indicating considerable workload reductions on the mobile side.

Vulnerability assessment activities play an essential role within the vulnerability management
process. However, real autonomy can only be achieved if this process can be completed in a loop,
permitting network devices to detect and also remediate security exposures by themselves. In the
next section, we present our approach for remediating host-based and distributed vulnerabilities
from an autonomic perspective.

3.2.5 Remediating configuration vulnerabilities

Once a vulnerability has been detected, remediation activities to eradicate such security
weakness are essential. Indeed, the management of known vulnerabilities plays a crucial role for
ensuring safe configurations and preventing security attacks. However, this activity should not
generate new vulnerable states. In this section, we present two remediation approaches targeted
on device-based and distributed vulnerabilities respectively. Our first approach formalizes the
remediation decision process of device-based vulnerabilities as a SAT problem [5, 19]. In that
context, we present an autonomous framework that is able to assess OVAL vulnerability descrip-
tions and perform corrective actions by using XCCDF-based descriptions [25] of future machine
states and the NETCONF protocol [7]. The second approach targets distributed vulnerabilities.
There, we propose an autonomous strategy where network elements collaborate to remediate the
vulnerabilities they are involved in.

Remediation of device-based vulnerabilities

The vulnerability remediation activity constitutes itself as a hard and challenging task. One
single change may impact or activate other vulnerable states that were not present before the
change. The same effect could occur over other system policies, in this work however, we only

17

Chapter 3. Contributions

deal with security configuration vulnerabilities. In that context, looking for correct changes that
together can provide a safe system configuration becomes an explosive combinatorial activity.
This is indeed a decision problem classified as an NP-complete problem [5]. In order to cope with
this problem, we propose to formalize the change decision problem as a satisfiability or SAT
problem [19]. Given a boolean expression, the SAT problem consists of finding an assignment
for variables such that the formula evaluates to true. By specifying our vulnerability knowledge
source as a propositional logical formula, we fix those system properties that we cannot change
and free those variables for which changes are available. We use a SAT solving engine to determine
which changes have to be made to secure the system. In order to provide proactive and reactive
solutions, we propose the concept of a future state. This describes how a system will look after
applying a specific change. These descriptions can be used for analyzing the security impact of
changes without actually changing the system. When this information is not available, we use the
NETCONF protocol [7] and its notion of candidate state where changes can be applied, analyzed
and rolled back if necessary.

Figure 3.9 – SAT-based autonomous vulnerability management approach

Our SAT-based approach, illustrated in Figure 3.9, comprises two independent processes,
namely, one process for maintaining logical representations of OVAL vulnerabilities descriptions
up-to-date, and a second process for performing vulnerability management activities. The first
process is in charge of monitoring the OVAL vulnerability descriptions database (step I) and
converting new vulnerability descriptions into equivalent boolean expressions when they become
available (step II). Independently, a second process is in charge of dealing with vulnerabilities,
which is orchestrated by the vulnerability manager component. At step 1, it communicates with
the OVAL analyzer in order to launch the assessment process. The analyzer consumes OVAL
vulnerability descriptions from the repository at step 2 and collects the required data from those
devices under control at step 3. Once the assessment is performed, the analyzer sends the results
back to the vulnerability manager. If the system is found to be vulnerable, the vulnerability

18

3.2. An autonomic platform for managing configuration vulnerabilities

manager analyzes the available remediation descriptions at step 4 and correlates them with the
properties that can be changed in the target system. Considering the current system state and
the available changeable properties, the SAT solver engine is used at step 5 to decide which
changes must be applied in order to secure the system. At step 6, the SAT solver uses a logical
representation ψ specifying that none of the vulnerabilities can occur. A solution provided by
the SAT solver indicates which properties must be changed in the system to present a secure
state. The vulnerability manager interprets this information and sends specific directives to the
NETCONF-based change manager subsystem at step 7 in order to effectuate these changes. At
step 8, the NETCONF protocol is used to communicate and perform the specified changes on
the target system. Finally, the obtained results are sent to the reporting system at step 9. We
have performed several experiments over the Cisco IOS platform to evaluate the feasibility of
our approach, obtaining a stable linear behavior in terms of time and workload.

Towards the remediation of distributed vulnerabilities

The remediation of distributed vulnerabilities may involve several tasks to be performed on
different devices. In order to specify remediation tasks in a machine-readable manner, we have
designed DXCCDF, an XML-based language built on top of XCCDF. In this manner, we use
DOVAL for specifying distributed vulnerabilities and DXCCDF for describing treatments. During
the analysis of distributed vulnerabilities, some of the involved devices may present particular
states that do not allow them or make it more expensive to perform specific corrective actions
than other involved devices. Factors such as availability, capability, or even policy consistency
must be considered during the remediation process. We refer to this spectrum of factors as the
cost of the node for performing a corrective task. Potential mechanisms for actually computing
task costs are beyond the scope of this work and they may involve several activities such as risk
assessment and change management techniques.

The main process for detecting and remediating distributed vulnerabilities considers these
costs as illustrated in Figure 3.10. Repositories of vulnerability descriptions as well as treatments
specifications constitute the knowledge source of the network. At Step 1, a vulnerability descrip-
tion is consumed and assessed over the network as shown in Section 3.2.2. If there is one or more
pattern matching instances over the network, a treatment analysis is launched at Step 2.1 and
its corresponding distributed treatment is consumed from the treatments repository at Step 2.2.

Figure 3.10 – Collaborative treatment for distributed vulnerabilities

19

Chapter 3. Contributions

Based on the available tasks for correcting the security vulnerability, devices are analyzed across
the network in order to find a node for performing a remediation task. Once the treatment execu-
tion has been done and the network has been secured at Step 3, a treatment report is generated
at Step 4. This report includes the vulnerability description, the treatment description used for
remediating the vulnerability, and the information gathered from the network used to perform
the corrective activity. Generated reports are stored in a historical database providing the ability
to consider past experiences in future treatments.

3.3 Implementation prototypes

In order to evaluate the feasibility and scalability of the proposed approaches, we have de-
veloped different implementation prototypes that serve as the computable infrastructure for our
experiments. We now provide a brief description of each one of them, though further documen-
tation can be found in the main manuscript of this thesis. Our first prototype, called Ovalyzer,
is an OVAL to Cfengine translation system written in Java [13], which permits the integration of
OVAL vulnerability descriptions into the autonomic management plane. Ovalyzer takes up the
role of the translation module depicted in Section 3.2.1, generating Cfengine policy rules that re-
present OVAL security advisories. Then, generated Cfengine policies are consumed by autonomic
agents deployed in the network, thus becoming able to assess their own security exposure.

Our second implementation prototype aims at dealing with past unknown security exposures.
Reusing the idea behind Ovalyzer, this prototype is able to autonomously generate XML-based
snapshots of the state of the systems under surveillance, by following Cfengine policy rules.
These images are then efficiently stored in an SVN-based repository. When new vulnerability
descriptions become available, an exposure analyzer automatically assess stored images in order
to identify past unknown security exposures.

Our third prototype, called Ovaldroid, targets vulnerability assessment activities on the An-
droid platform. Indeed, we have implemented both approaches presented in Section 3.2.4. First,
we have developed a lightweight self-assessment service able to monitor an external provider for
new vulnerability definitions and assess its own exposure. Afterwards, we have built our proba-
bilistic extension where the assessment activities are controlled and performed by an external
server, thus reducing even more the workload on the client side.

A comprehensive set of experiments has been performed using these prototypes in their
respective scenarios. Even though these prototypes are in an early development stage, and they
can be clearly enhanced and further extended, they have provided a strong support to prove the
scientific approaches presented in the previous sections, indicating promising results as well.

3.4 Synthesis

The aim of this thesis is to provide novel autonomous mechanisms for dealing with vulnerabi-
lities, in order to increase the security of self-governed networks and systems. In this chapter, we
have briefly presented our contributions. Particularly, we have presented an autonomous approach
for increasing the vulnerability awareness of self-governed environments. We have extended this
perspective by also considering distributed vulnerabilities (spatial dimension), past hidden vul-
nerable states (temporal dimension), and mobile devices (technological dimension). In addition,
we have presented our approach for remediating both host-based and distributed vulnerabilities.
The prototypes used for validating the scientific approaches presented in this thesis have been
also discussed at the end of this chapter.

20

Chapter 4

General conclusion

Contents
4.1 Contributions summary . 21

4.1.1 Autonomic vulnerability management 21
4.1.2 Implementation prototypes . 22

4.2 Perspectives . 23
4.2.1 Proactive autonomic defense by anticipating future vulnerable states . . 23
4.2.2 Unified autonomic management platform 23
4.2.3 Autonomic security for current and emerging technologies 23

4.3 List of publications . 24

4.1 Contributions summary

The large-scale deployment of disparate computing devices over evolving dynamic networks
has profusely augmented the complexity of network management. Autonomic computing has
become a very important research field within the scientific community, featuring strong founda-
tions and promising perspectives to tackle this challenging problem. However, two main points
require special attention. First, security issues have been poorly discussed in autonomic environ-
ments, particularly, vulnerability management mechanisms. Second, the expertise obtained from
autonomic approaches has been barely experimented in non-autonomic environments. In this
thesis, we have pursued both goals ; to investigate and develop novel vulnerability management
approaches for autonomic environments, and to transfer autonomic principles to non-autonomic
scenarios. In this chapter, we provide general conclusions about our research work as well as our
technical implementations. Finally, we present research perspectives and further work.

4.1.1 Autonomic vulnerability management

Our contributions can be classified in two main categories according to the vulnerability
management process, namely, vulnerability assessment and vulnerability remediation.

Vulnerability assessment is an essential activity that enables computer systems to increase
their awareness about security threats. In this thesis, we have presented several approaches for
autonomously assessing vulnerabilities in different scenarios. First, we have proposed an approach
that integrates OVAL vulnerability descriptions (for Cisco IOS) into the autonomic management

21

Chapter 4. General conclusion

plane. By translating these security advisories into Cfengine policy rules, autonomic agents de-
ployed across the network become able to analyze their own security exposure. We have extended
this approach to capture distributed vulnerabilities (spatial dimension). This concept consi-
ders situations where two or more network devices may present safe states, but when combined
together, a vulnerable state arises. We also have proposed an approach for autonomously in-
creasing the security of present computer systems by analyzing past hidden vulnerable states
(temporal dimension). Our approach is able to identify periods of security exposure due to
unknown vulnerabilities at that time, where malicious activities may have taken place. This fea-
ture may allow forensic activities to be performed in order to identify current security breaches.
Additionally, we have presented an approach for autonomously assessing vulnerabilities in mo-
bile environments (technological dimension). Indeed, we have proposed two complimentary
approaches that aim at dealing with the assessment activity over resource-constrained devices.
First, we have introduced a lightweight autonomous vulnerability assessment service that per-
mits Android devices to assess their own exposure. Then, we have extended this approach by
considering a probabilistic framework where assessment activities are outsourced to an external
server which controls the overall assessment process, thus decreasing the workload of mobile
clients even more.

In order to close the vulnerability management control loop, we have proposed two autonomic
vulnerability remediation approaches focused on device-based and distributed vulnerabilities res-
pectively. The first one considers the set of all known vulnerability descriptions as a conjunction
of propositional logical formulas. Then, the problem is encoded as a SAT problem and a SAT
solver is used to find safe configurations. Our experiments using the NETCONF protocol over
the Cisco IOS platform confirm the feasibility of our approach. Our second approach proposes
a collaborative mechanism for describing and remediating distributed vulnerabilities. This ap-
proach also considers correction advisories that are taken into account by Cfengine agents in the
network. The remediation process involves a distributed algorithm which collects and analyze
the information of network devices and selects a node to apply corrective actions based on the
reported costs. Even though there is not a complete prototype implementation of our second
approach, we have performed an analytical evaluation of its performance, obtaining successful
linear costs when it is integrated into the vulnerability management process.

4.1.2 Implementation prototypes

With the objective of technically proving the feasibility of our previous contributions, we
have developed three implementation prototypes which correspond to three different vulnerabi-
lity assessment scenarios. First, we have developed Ovalyzer, an OVAL to Cfengine translation
system. Ovalyzer generates Cfengine policy rules that represent OVAL vulnerability descriptions,
enabling autonomic agents to perform self-assessment activities. Second, we have implemented a
prototype for identifying past unknown security exposures. We have reused the idea behind Ova-
lyzer, but this time for autonomously generating XML-based images of the states of the systems
being monitored. When new vulnerability descriptions become available, our prototype is able to
analyze the history of system images looking for vulnerable periods according to this new informa-
tion. Finally, we have developed Ovaldroid, an OVAL-based vulnerability assessment framework
for Android, which runs as a lightweight self-assessment service inside the mobile device. In order
to further reduce the load on the mobile side, we have implemented our probabilistic approach
that free mobile devices from performing assessment activities themselves. These activities are
outsourced in the server and then notified to mobile clients. All these prototypes have served as
a computable infrastructure to prove the feasibility and scalability of our autonomic approaches.

22

4.2. Perspectives

4.2 Perspectives

4.2.1 Proactive autonomic defense by anticipating future vulnerable states

In this thesis we have proposed approaches for analyzing vulnerabilities in the present and the
past, which in turn are complemented with vulnerability remediation approaches. This schema
could be completed by anticipating the trajectory of a system in order to avoid changes that
lead the system to known vulnerable spaces. Indeed, we have shown how vulnerabilities and
system states can be characterized by the properties they present. Considering that we have n
properties we can model, a target system could be graphically located on a single point of an
n-dimensional space. Known vulnerabilities would have their corresponding points in such space,
and similar vulnerabilities would probably conform clusters or vulnerable subspaces. The idea is
that observing the movement of a target system, its trend could be monitored and determined
on this space. If such a trajectory indicates high closeness levels to vulnerable states, it could be
deviated by averting changes that may get the system closer or even fall into these vulnerable
subspaces. This approach could provide a continuous metric of vulnerability awareness, thus
enabling autonomic systems to anticipate and avoid vulnerable configuration states.

4.2.2 Unified autonomic management platform

The approaches proposed in this work reinforce the security of a network from different pers-
pectives, making it more reliable and stronger. However, these approaches need to be unified,
over a common and consistent platform, able to provide all these features in a seamless manner.
Changes that can lead a system to secure states may contradict existing operational requirements.
Therefore, a main challenge is to provide mechanisms able to coexist with other policy-based
systems, maintaining coherency at all levels, including operational and security perspectives. Ad-
ditionally, our approach for managing distributed vulnerabilities requires more technical work, as
well as further investigation on the metrics required to collaboratively perform forensic and reme-
diation tasks. Therefore, the construction of a standard model and a system able to contemplate
all these aspects under a single view, would be extremely useful for the community of autonomic
computing, as a basis for autonomously managing vulnerabilities.

4.2.3 Autonomic security for current and emerging technologies

The security enhancement of current paradigms such as cloud computing, and emerging
models like software-defined networks (SDN) and Internet of Things (IoT), is also extremely
challenging. Briefly, cloud computing tackles availability and processing power by decoupling ser-
vices from the underlying hardware. More recently, SDNs also separate the management (control
plane) from the hardware that actually implement network functionalities (data plane). Both
approaches aim at providing reliable and scalable services while decreasing the complexity of
their management and accomplishment. This is where the autonomic perspective can be extre-
mely helpful. By providing self-configuration and self-protection mechanisms, these operational
management models can also become scalable and resilient in the security plane, which is es-
sential to achieve reliability. IoT on the other hand, gives rise to a tremendous and vertiginous
growth of disparate interconnected devices. This trend clearly states a need for scalable and
adaptive management mechanisms, where their security must be also as much autonomous as
these mechanisms will be. In that context, autonomic security solutions might be a key element
in the evolution of this new challenging landscape.

23

Chapter 4. General conclusion

4.3 List of publications

International peer-reviewed journals

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Vulnerability Assessment in Auto-
nomic Networks and Services: a Survey. IEEE Communications Surveys & Tutorials,
16(2):988-1004, May 2014. (Impact factor at acceptance date: 6.311).

Book chapters

– Martín Barrère, Gaëtan Hurel, Rémi Badonnel, and Olivier Festor. Increasing Android
Security using a Lightweight OVAL-based Vulnerability Assessment Framework. In Auto-
mated Security Management, E. Al-Shaer et al, Eds. Springer International Publishing,
2013, ch. 3, pp. 41-58, ISBN: 978-3-319-01432-6. Book chapter based on our paper selec-
ted from the 5th International Symposium on Configuration Analytics and Automation
(SafeConfig’12), October 3-4, 2012, Baltimore, USA.

International peer-reviewed conferences

– Martín Barrère, Rémi Badonnel, and Olivier Festor. A SAT-based Autonomous Stra-
tegy for Security Vulnerability Management. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS’14), Mini-Conference, May 5-9, 2014,
Krakow, Poland.

– Martín Barrère, Gaëtan Hurel, Rémi Badonnel, and Olivier Festor. A Probabilistic Cost-
efficient Approach for Mobile Security Assessment. In Proceedings of the 9th IEEE Inter-
national Conference on Network and Service Management (CNSM’13), October 14-18,
2013, Zürich, Switzerland. (Acceptance rate 18.1%, 21 out of 116 papers).

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Improving Present Security through
the Detection of Past Hidden Vulnerable States. In Proceedings of the IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM’13), Mini-Conference, May
27-31, 2013, Ghent, Belgium.

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Collaborative Remediation of Confi-
guration Vulnerabilities in Autonomic Networks and Systems. In Proceedings of the 8th
IEEE International Conference on Network and Service Management (CNSM’12), Mini-
Conference, October 22-26, 2012, Las Vegas, USA.

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Towards the Assessment of Distribu-
ted Vulnerabilities in Autonomic Networks and Systems. In Proceedings of the IEEE/IFIP
International Network Operations and Management Symposium (NOMS’12), April 16-20,
2012, Maui, Hawaii, USA. (Acceptance rate 26.2%, 55 out of 210 papers).

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Supporting Vulnerability Awareness
in Autonomic Networks and Systems with OVAL. In Proceedings of the 7th IEEE Inter-
national Conference on Network and Service Management (CNSM’11), October 24-28,
2011, Paris, France. (Acceptance rate 14.6%, 24 out of 164 papers).

24

4.3. List of publications

– Martín Barrère, Gustavo Betarte, and Marcelo Rodríguez. Towards Machine-assisted
Formal Procedures for the Collection of Digital Evidence. In Proceedings of the 9th IEEE
Annual International Conference on Privacy, Security and Trust (PST’11), July 19-21,
2011, Montreal, Canada.

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Towards Vulnerability Prevention
in Autonomic Networks and Systems. In Proceedings of the 5th International Conference
on Autonomous Infrastructure, Management and Security (AIMS’11), Ph.D. Symposium,
Springer, June 13-17, 2011, Nancy, France.

Demonstrations and seminars

– Martín Barrère, Gaëtan Hurel, Rémi Badonnel, and Olivier Festor. Ovaldroid: an OVAL-
based Vulnerability Assessment Framework for Android. Demonstration Sessions of the
IFIP/IEEE International Symposium on Integrated Network Management (IM’13), May
27-31, 2013, Ghent, Belgium.

– Martín Barrère. Vulnerability Management for Safe Configurations in Autonomic Net-
works and Systems. Ph.D. Seminar, NSS Department of Loria, March 28, 2013, Nancy,
France.

– Martín Barrère, Rémi Badonnel, and Olivier Festor. Ovalyzer: an OVAL to Cfengine
Translator. Ph.D. Student Demo Contest of the IEEE/IFIP International Network Opera-
tions and Management Symposium (NOMS’12), April 16-20, 2012, Maui, Hawaii, USA.

25

Chapter 4. General conclusion

26

Bibliography

[1] Android. http://www.android.com/. Last visited on November, 2013.
[2] J. Banghart and C. Johnson. The Technical Specification for the Security Content Automa-

tion Protocol (SCAP). Nist Special Publication. http://scap.nist.gov/revision/,
2011. Last visited on January, 2013.

[3] Cfengine. http://www.cfengine.com/. Last visited on November, 2013.
[4] Chef. http://www.getchef.com/chef/. Last visited on November, 2013.
[5] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the Third

Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York,
NY, USA, 1971. ACM.

[6] S. Dobson, F. Zambonelli, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, and N. Schmidt. A Survey of Autonomic Communications. ACM
Transactions on Autonomous and Adaptive Systems, 1(2):223–259, December 2006.

[7] R. Enns, M. Bjorklund, J. Schönwälder, and A. Bierman. RFC 6241, Network Configuration
Protocol (NETCONF). http://tools.ietf.org/html/rfc6241, June 2011.

[8] M. C. Huebscher and J. A. McCann. A Survey of Autonomic Computing–Degrees, Models,
and Applications. ACM Comput. Surv., 40:7:1–7:28, August 2008.

[9] IBM. http://www.ibm.com/. Last visited on November, 2013.
[10] IBM. An Architectural Blueprint for Autonomic Computing. IBM White Paper, 2006.
[11] V. Igure and R. Williams. Taxonomies of Attacks and Vulnerabilities in Computer Systems.

IEEE Communications Surveys & Tutorials, 10(1):6–19, January 2008.
[12] Cisco IOS. http://www.cisco.com/. Last visited on November, 2013.
[13] Java technology. http://www.oracle.com/technetwork/java/. Last visited on

November, 2013.
[14] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer, 36(1):41–

50, January 2003.
[15] MITRE Corporation. http://www.mitre.org/. Last visited on November, 2013.
[16] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle. A Survey of Autonomic Network Ar-

chitectures and Evaluation Criteria. IEEE Communications Surveys & Tutorials, PP:1–27,
May 2011.

[17] NIST, National Institute of Standards and Technology. http://www.nist.gov/. Last
visited on November, 2013.

[18] The OVAL Language. http://oval.mitre.org/. Last visited on November, 2013.
[19] M.R. Prasad, A. Biere, and A. Gupta. A Survey of Recent Advances in SAT-Based Formal

Verification. STTT, 7(2):156–173, 2005.

27

http://www.android.com/
http://scap.nist.gov/revision/
http://www.cfengine.com/
http://www.getchef.com/chef/
http://tools.ietf.org/html/rfc6241
http://www.ibm.com/
http://www.cisco.com/
http://www.oracle.com/technetwork/java/
http://www.mitre.org/
http://www.nist.gov/
http://oval.mitre.org/

Bibliography

[20] Puppet. http://www.puppetlabs.com/. Last visited on November, 2013.

[21] N. Samaan and A. Karmouch. Towards Autonomic Network Management: an Analysis
of Current and Future Research Directions. IEEE Communications Surveys & Tutorials,
11(3):22–36, July 2009.

[22] Apache Subversion. http://subversion.apache.org/. Last visited on November,
2013.

[23] A. Williams and M. Nicolett. Improve IT Security with Vulnerability Management. http:
//www.gartner.com/id=480703, 2005. Last visited on November, 2013.

[24] G. Zhang, S. Ehlert, T. Magedanz, and D. Sisalem. Denial of Service Attack and Pre-
vention on SIP VoIP Infrastructures using DNS Flooding. In Proceedings of the 1st In-
ternational Conference on Principles, Systems and Applications of IP Telecommunications
(IPTComm’07), pages 57–66, New York, NY, USA, 2007. ACM.

[25] N. Ziring and S. D. Quinn. Specification for the Extensible Configuration Checklist
Description Format (XCCDF). NIST (National Institute of Standards and Technology).
http://scap.nist.gov/specifications/xccdf/. Last visited on January, 2013.

28

http://www.puppetlabs.com/
http://subversion.apache.org/
http://www.gartner.com/id=480703
http://www.gartner.com/id=480703
http://scap.nist.gov/specifications/xccdf/

	General introduction
	The context
	The problem
	Organization of the document

	Autonomic environments and vulnerability management
	Introduction
	Autonomic computing overview
	Vulnerability management in autonomic environments
	Synthesis

	Contributions
	Introduction
	An autonomic platform for managing configuration vulnerabilities
	Autonomous vulnerability awareness
	Extension to distributed vulnerabilities
	Detecting past hidden vulnerable states
	Increasing mobile security
	Remediating configuration vulnerabilities

	Implementation prototypes
	Synthesis

	General conclusion
	Contributions summary
	Autonomic vulnerability management
	Implementation prototypes

	Perspectives
	Proactive autonomic defense by anticipating future vulnerable states
	Unified autonomic management platform
	Autonomic security for current and emerging technologies

	List of publications

	Bibliography

