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Segmentation and polyp detection
in virtual colonoscopy: a complete

system for computer aided diagnosis

Marcelo Fiori
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Resumen

El cáncer colorectal es una de las mayores causas de muerte por cáncer en el mundo. La
detección temprana de pólipos es fundamental para su tratamiento, permitiendo alcan-
zar tasas del 90% de curabilidad. La técnica habitual para la detección de pólipos, debido
a su elevada performance, es la colonoscoṕıa óptica (técnica invasiva y extremadamente
cara). A mediados de los ’90 surge la técnica denominada colonoscoṕıa virtual. Esta
técnica consiste en la reconstrucción 3D del colon a partir de cortes de tomograf́ıa com-
putada. Es por ende una técnica no invasiva, y relativamente barata, pero la cantidad
de falsos positivos y falsos negativos producida por éstos métodos está muy por encima
de los máximos aceptados en la práctica médica. Los avances recientes en las técnicas de
imagenoloǵıa pareceŕıan hacer posible la reducción de estas tasas. Como consecuencia
de esto, estamos asistiendo a un nuevo interés por la colonoscoṕıa virtual.

En este trabajo se presenta un sistema completo de diagnóstico asistido por computa-
dora. La primer etapa del sistema es la segmentación, que consiste en la reconstrucción
3D de la superficie del colon a partir del volumen tomográfico. El aporte principal en
este paso es el suavizado de la imagen. A partir de la superficie, se detectan aquel-
las zonas candidatas de ser pólipos mediante una estrategia multi-escala que permite
delinear con precisión la zona. Luego para cada candidato se extraen caracteŕısticas
geométricas y de textura, que son calculadas también en el tejido que rodea la zona a
efectos de compararlas. Finalmente las zonas candidatas se clasifican utilizando SVM.
Los resultados obtenidos son prometedores, permitiendo detectar un 100% de los pólipos
mayores a 6mm de diámetro con menos de un falso positivo por caso. Por otro lado, el
sistema es capaz de detectar el 100% de los pólipos mayores a 3mm de diámetro con 2.2
falsos positivos por caso.

Esta versión incluye cambios y agregados propuestos por los integrantes del tribunal,
a quienes agradezco la lectura dedicada y los valiosos aportes y comentarios.



Abstract

Colorectal cancer is the second leading cause of cancer-related death in the United
States, and the third cause worldwide. The early detection of polyps is fundamental,
allowing to reduce mortality rates up to 90%. Nowadays, optical colonoscopy is the
most used detection method due in part to its relative high performance.

Virtual Colonoscopy is a promising alternative technique that emerged in the 90’s.
It uses volumetric Computed Tomographic data of the cleansed and air-distended colon,
and the examination is made by a specialist from the images in a computer. Therefore,
this technique is less invasive and less expensive than optical colonoscopy, but up to now
the false positive and false negative rates are above the accepted medical limits. Recent
advances in imaging techniques have the potential to reduce these rates; consequently,
we are currently re-experiencing an increasing interest in Virtual Colonoscopy.

In this work we propose a complete pipeline for a Computer-Aided Detection algo-
rithm. The system starts with a novel and simple segmentation step. We then introduce
geometrical and textural features that take into account not only the candidate polyp
region, but the surrounding area at multiple scales as well. This way, our proposed CAD
algorithm is able to accurately detect candidate polyps by measuring local variations of
these features. Candidate patches are then classified using SVM. The whole algorithm is
completely automatic and produces state-of-the-art results, achieving 100% sensitivity
for polyps greater than 6mm in size with less than one false positive per case, and 100%
sensitivity for polyps greater than 3mm in size with 2.2 false positives per case.
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Chapter 1

Introduction

1.1 The importance of being screened

Colorectal cancer is the second leading cause of cancer-related deaths in the United
States (only surpassed by lung cancer), and the third cause worldwide [75]. The early
detection of polyps is fundamental, allowing to reduce mortality rates up to 90% [2].
Nowadays, optical colonoscopy (OC) is the most used detection method due in part to
its relative high performance. Optical Colonoscopy is the examination of the colon, usu-
ally with a fiber optic camera attached to a flexible tube (endoscope). The preparation
process for this examination is very similar to the preparation for Virtual Colonoscopy
described in this chapter. After the sedation and that the pain reliever is given, the
endoscope is introduced through the anus, and the doctor carefully examines the colon
through the video images. A typical image of an optical colonoscopy video is shown in
Figure 1.1. OC has the ability to perform therapeutic interventions during the examina-
tion. However, this technique is invasive, very expensive, and still prone to miss polyps
(in particular small or flat ones), making it hard to use in large screening campaigns.

Computer Tomographic Colonography (CTC), or Virtual Colonoscopy (VC), is a
promising alternative technique that emerged in the 90’s [71]. It uses volumetric Com-
puted Tomographic data of the cleansed and air-distended colon, and the examination is
made by a specialist from the images in a computer. The most common approach is to
reconstruct the colon wall and visualize the 3D surface with a “fly through” (visualizing
the inside of the colon as if performing an optical colonoscopy), see Figure 1.2.

This technique is less invasive and less expensive than optical colonoscopy, and as
a consequence, much more suitable for screening campaigns once its performance is
demonstrated. CTC also has the potential to outperform OC, in particular for small or
flat polyps, or those polyps in regions of the colon where OC has been shown to perform
poorly. In addition, regarding optical colonoscopy, only around 70% of the colon is
explored visually. Incomplete studies due to obstructing colorectal lesions, colon twists,
or anatomical variations are not rare (5% to 15% [6]), and there is the additional risk of
perforating the colon. In a large study by Kim et al. [35], where about 3000 patients went
through OC and another 3000 through VC, seven perforations occurred in the OC while

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot of typical optical colonoscopy video.

Figure 1.2: Screenshot of typical virtual colonoscopy image.

none were recorded in the VC. The image acquisition process is short, and no recovery
period is required, so the patient is able to continue with normal life immediately.

Nevertheless, it takes more than 20 minutes for a trained radiologist to complete a
CTC study, and the performance of the overall optical colonoscopy is still considered
better. In this regard, polyp Computer-Aided Detection (CAD) algorithms can play
a key role, assisting the expert to both reduce the procedure time and improve its
accuracy. The aim of these CAD algorithms is not to substitute the radiologists but to
help them to achieve higher sensitivities. In this regard, there are three ways to interact
with a CAD technique. In the first one, called “first reader”, the expert reviews the
results of the flagging algorithm, but does not examine the entire colon. The second one
is referred as “concurrent reader”, and here the doctor is able to see the flags during
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the entire examination. In the third one, called “second reader”, the radiologist makes
the whole examination blind to the results of the CAD algorithm, and then reviews
the flags produced by the CAD method. Each one of these options has advantages and
disadvantages in terms of time or sensitivity. In any case, the false positives produced
by the CAD algorithms tend to be easily discarded by the expert [67].

Colon lesions can be classified according to their size, measured in diameter, and
according to their morphology, into pedunculated polyps (attached to the colon wall by
a stalk), sessile polyps (grow directly from the wall), or flat lesions. See Figures 1.3
and 1.4. Flat lesions are of special interest because they are an important source of
false negatives in CTC, and they are around 10 times more likely to contain high-grade
epithelial dysplasia1 [24, 23, 74].

Figure 1.3: Examples of colon polyps as seen on OC: sessile, pedunculated and flat.

Figure 1.4: Examples of colon polyps as seen on VC: sessile, pedunculated and flat.

There are numerous discussions regarding the potential risks of the polyps according
to their size. Even though some authors consider that “small” polyps may not represent
risk, the majority of gastroenterologists disagree [3]. Summers claims that one of the
major challenges in the field is in increasing sensitivity for smaller polyps [63]. At
the same time, Bond [8] declares that the major disadvantage of VC is its current low
performance for flat lesions.

1An abnormality of development in cells that may become cancer in situ or invasive cancer.
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The goal of the work here presented is to exploit VC precisely to automatically flag
colon regions with high probability of being polyps, with special attention to results
in challenging small and flat polyps. Toward this aim, we propose a complete pipeline
that starts with a novel and simple segmentation step. We then introduce geometrical
and textural features that take into account not only the candidate polyp region, but
the surrounding area at multiple scales as well. This way, our proposed CAD algorithm
is able to accurately detect candidate polyps by measuring local variations of these
features. The whole algorithm is completely automatic and produces state-of-the-art
results. Preliminary classification results were published in [25]. A paper with the
complete work is available in [26].

1.2 Patient preparation and examination procedure

In order to obtain high quality CT images, the colon should be well-cleansed and well-
distended. The cleansing is very similar to the preparation for optical colonoscopy. The
patient is asked to maintain a clear liquid diet starting 24hs or 48hs before the study and
to ingest a cathartic or laxative the night before the examination. This is the process
that patients find more unpleasant.

The colon distention is carried out by placing a thin tube into the rectum, and
performing the colon insufflation with room air.

A well-cleansed and well-distended colon is ideal for the quality of the study, but it is
uncomfortable for the patient, as commented above. A trade-off solution is to combine
a laxative or cathartic with fecal tagging, which is a method to tag fecal residues by
means of a contrast agent, orally administered. Figure 1.5 shows a physically-cleansed
and well-distended colon and a fecal tagging CTC image. Due to the gravitational effect,
tagged fluid appears as a liquid pool at the bottom of the colon, with a flat horizontal
interface with the air region. These latter are the kind of images we worked with, so
this presence of liquid is object of discussion in Chapter 3.

Depending on the patient position, some sections of the colon might appear more or
less distended, and some sections might have residual material. Therefore, the patient is
scanned in two positions, supine and prone, in order to get a good representation of the
whole colon. Each scan takes about 20 seconds (depending on the used CT equipment),
and during the scan the patient is asked to hold the breath.

The output images are then two sets, each one of them composed by slices of 512×512
pixels. Usually the separation between the slices is around 1mm, so each CT volume is
about 512× 512× 400 voxels.

Different tissues have different radiodensity (the property of relative transparency to
the passage of x-rays). The intensity of the voxels in the CT image is proportional to the
attenuation of the tissue on the Hounsfield scale (+3071 to −1024, where 0 corresponds
to water and −1000 corresponds to air2).

We used a publicly available database of studies described in the last chapter. During

2In some cases, the scale is shifted by 1000.
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Figure 1.5: Different patient preparations. Left: a physically-cleansed and well-
distended colon. Right: a fecal tagging CTC image.

the first months, while working in the feature extraction and classification part, we used
the segmentation gently provided by Sergio Aguirre from Echopixel, which we refer to
as the “previously provided segmentation”. We then developed our own segmentation
algorithm.

1.3 Document Organization

The rest of this manuscript is organized as follows.
Finishing this chapter, in Section 1.4 we describe the pipeline of the proposed algo-

rithm for polyp Computer-Aided Detection and in Section 1.5 we briefly review prior
related work.

In Chapter 2 we lay the theoretical foundations for the rest of the thesis. We first
recall some differential geometry definitions and results, with special focus on shapes and
curvatures of surfaces. Then, we introduce some classical image processing ideas and
techniques, including the representation of an image through its level sets, some basic
Partial Differential Equations problems, the Level Set Method [48], motion of surfaces
by curvatures and active-contour segmentation techniques.

In Chapter 3 we tackle the colon segmentation problem. The chapter starts with an
introduction to the difficulties this problem presents, and the desirable properties of the
results. We present a preprocessing stage to deal with the air-liquid composition of the
inside of the colon, and then the smoothing step, with special attention to the defor-
mation of the polyp-like structures. The chapter ends with the colon surface extraction
from the processed and smoothed volume.

Chapter 4 is devoted to the classification. The multi-scale candidate detection stage
is described first, followed by the (geometrical and texture) feature extraction. These
features take into account the local information around each candidate region, leading to
a higher classification performance. The class imbalance problem is presented with some



6 CHAPTER 1. INTRODUCTION

approaches to deal with it. Finally, we describe the tested classifiers (SVM, classifier
trees).

Chapter 5 is the last one; it includes a description of the used database, the evaluation
scheme and the numerical results, which we compare with the state-of-the-art results.
Then, a discussion is given, and the chapter ends with some lines of future work and
conclusions.

1.4 Overview of the Proposed System

The main goal we are addressing in this work is to highlight/flag all the candidate
polyps, so the radiologist can quickly check them. It is crucial to minimize the false
negatives (missed polyps), keeping a reasonable false positives number. We achieve this
by a four-steps process, Figure 1.6, which is completely automatic and constitutes the
entire end-to-end algorithm, from data to candidate polyps flagging.

Figure 1.6: Basic pipeline of the proposed polyp flagging system.

The input of the system is, of course, the CT volume data. In the first step, the colon
segmentation, this CT data is processed in order to extract a surface that corresponds
to the colon wall. One of the main difficulties in this stage is the presence of liquid, so
first we classify the voxels as “exterior” and “interior” voxels of the colon. Then we use
this classification (and a smoothing process) to extract the surface that represents the
colon wall. The output is a 3D mesh of this surface.

This mesh contains about a million points, so we have to determine those regions
that are candidates of being polyps. This is done in the second step, where from the
segmented mesh we perform a multi-scale search of candidates in order to capture the
appropriate polyp size. The result is a set of candidate patches, which we have to classify
(or flag) as polyps or non-polyps.

The CT volume data, the segmented colon surface, and the candidate patches are
the input to the third step, where we compute geometrical and texture features. The ge-
ometrical features, computed directly from the surface, are strongly based on curvatures
and other measures of the local shape. The texture features, computed from the CT
volume, quantify the homogeneity properties of the region, in terms of the gray level.
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Both the geometrical and texture features take into account the information around the
candidate region, with the spirit of looking for differences between the candidate patch
and the normal tissue around it.

The final step consists of a machine learning algorithm that classifies polyps and
non-polyps patches from the computed features.

In the following chapters we describe each of these steps in detail.

1.5 Virtual Colonoscopy CAD Review

Automatic polyp detection is a very challenging problem, not only because the polyps
can have different shapes and sizes, but also because they can be located in very different
surroundings. Most of the previous work on CAD of colonic polyps is based on geometric
features, some using additional CT image density information, but none of them takes
into account the (geometric and texture) information of the tissues surrounding the
polyp. This is a crucial issue since it is well known that the tissue properties of the
colon may vary with location. This local and adaptive differential analysis is part of the
contributions of this work.

Early work on CAD methods by Vining et al. [70], is based on the detection of
abnormal wall thickness. Summers et al. [64], detect polyps greater than 10mm by
computing mean curvatures, average principal curvatures and sphericity ratio, and then
classifying with a committee of SVMs. They present results over a large screening
patient population, but the amount of polyps is comparable with the rest of the works.
Yoshida et al. [76], use the shape index (defined later in this thesis) and curvedness
as geometric features, applying fuzzy clustering and then using directional gradient
concentration to reduce false positives. Paik et al. [49], also use geometrical features,
computing the Surface Normal Overlap (SNO) instead of calculating curvatures. Wang
et al. [73], compute a global curvature, extract an ellipsoid, and analyze morphological
and texture features on this ellipsoid. They reach 100% sensitivity with a relative
low false positives (FP) rate, using heuristic thresholds and texture features. Hong
et al. [32], map the 3D surface to a rectangle, use 2D clustering, and reduce false
positives with shape and texture features. Sundaram et al. [65], compute curvatures
via the Smoothed Shape Operators method, and use principal curvatures and Gaussian
curvatures to detect polyps. Götkürk et al. [29], propose a technique to reduce the false
positives based on features calculated from three random orthogonal sections, and then
classifying with SVM, but as it is presented as a FP reduction scheme, no false positive
per patient result is reported. All these described techniques based on local geometric
computations suffer from a high dependence on the regularity of the polyp shape itself,
ignoring how pronounced it is with respect to the surrounding area. Using geometry
alone is also very sensitive to small differences in the colon segmentation, always prone
to be present.

More recently, van Wijk et al. [69] proposed a PDE motion that flattens mainly the
polyp-like shapes, and then they consider the difference between the original and the
processed images. The main drawback of this approach is that the resulting flattened
polyps look like a flat lesion, therefore the algorithm does not detect flat lesions. Suzuki
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et al. [66] use artificial neural networks to reduce the false positive number of the
previous algorithm by Yoshida et al. described above [76]. Although there were no
polyps submerged in fluid in the database, the results are very promising, achieving
96.4% sensitivity (over 28 polyps) with 1.1 FP per case. However, the sensitivity is
not perfect, an evaluation with small lesions and polyps submerged in liquid should
be performed, and the FP number can be further improved. Konukoglu et al. [38]
introduced a preprocessing stage that enhances the polyps via a PDE evolution based
on the heat equation, and showed how it improves the CAD performance. Proprietary
algorithms [7, 67], have been reported as well, but with no better results than the
methods mentioned above. Although the comparison of the experimental results is
delicate since different databases were used, all these approaches can be improved as
here demonstrated, either detecting a more general class of lesions or directly on the
classification performance.

Technique # Polyps Size Sensit. FP p/study Validation
Summers et al. [64] ≈ 30 > 10mm 89.3% 2.1 T+T
Summers et al. [64] ≈ 120 > 6mm 60% 8
Yoshida et al. [76] 12 > 5mm 100% 2 LOO
Paik et al. [49] 7 > 10mm 100% 7 LOO
Wang et al. [73] 61 > 4mm 100% 2.68 LOPO
Hong et al. [32] ≈ 120 > 5mm 100% 3 T+T
Sundaram et al. [65] 20 > 10mm 100% 18 Test (Unsup)
Sundaram et al. [65] 122 > 2mm 80% 24
van Wijk et al. [69] 57 > 6mm 95% 5 LOPO
van Wijk et al. [69] 32 > 10mm 95% 4
Suzuki et al. [66] 28 > 5mm 100% 1.1 T+T
Bogoni et al. [7] 21 > 5mm 90% > 3 LOPO and T+T
Taylor et al. [67] 32 > 6mm 81% 13
Nappi it et al. [45] 12 > 5mm 100% 2.4 LOPO

Table 1.1: Numerical comparison of the reviewed methods.

The results reported by the algorithms presented above correspond to databases
containing polyps greater than 6mm in size (or greater than 10mm in some databases).
Table 1.1 summarizes the numerical results of the presented algorithms, adding re-
sults for smaller polyps when reported by the authors. The validation method is also
listed, where LOO, LOPO and T+T stands for Leave-one-out, Leave-one-patient-out
and disjoint Training/Testing datasets respectively. The method by Sundaram et al. is
unsupervised so the whole dataset is used for testing. Note that the majority of the
reviewed works use a cross-validation technique. To the best of our knowledge, no algo-
rithm reported in the literature can detect small polyps properly. On the other hand,
for polyps larger than 6mm in size, no algorithm can achieve 100% sensitivity with less
than one false positive per study. Therefore, it is important to keep improving these
techniques.



Chapter 2

Geometric curve and surface
evolution

Since the main idea is to reconstruct the colon surface from the CT images and detect
polyps based on some geometric features among others, several notions of differential
geometry and basic image processing are used both in the segmentation and feature
extraction stages. In this chapter we present the definitions and results that support
the algorithms in the following chapters.

First we introduce the definitions of surface, its classical curvatures and the curvature
measures used along this work. Then we discuss the representation of an image through
its level sets and we study some evolutions governed by Partial Differential Equations
(PDEs). The chapter ends with a very brief description of some segmentation techniques
based on energy minimization and solved using PDEs.

2.1 Differential Geometry of Surfaces

2.1.1 Classical definitions

Most of the concepts and computations handled in this thesis need a basic understanding
of differential geometry, in particular of the notion of surfaces curvatures. In this section
we briefly recall these concepts, which were mostly developed and formalized by Gauss
in his 1827 work Disquisitiones generales circa superficies curvas1. An excellent and
very enjoyable treatment of the subject can be found in the classic book by Do Carmo
[19], or in the second one of the great volumes by Spivak [62].

The object of study in this section are regular surfaces. These are, in a way, two-
dimensional subsets of R3: they can be covered with pieces of a plane by deforming and
arranging them. Locally, a surface can be well approximated by a plane.

Definition 2.1.1. (Regular Surface) A regular surface is a subset S ⊂ R3 such that
for each point p ∈ S there exist an open set U ⊂ R2, a neighborhood V ⊂ R3 and

1A translation of this work can be found in [62].

9
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a homeomorphism ϕ : U → V ∩ S differentiable, and for each q ∈ U the differential
dϕq : R2 → R3 is one-to-one.

These conditions guarantee the existence of a tangent plane at each point, and avoid
self-intersections, which allows to speak about the tangent plane at a point. The map
ϕ(u, v) is called a parameterization and its partial derivatives are denoted by ϕu and
ϕv.

The tangent plane to S at p, denoted by Tp(S), is the vector subspace dhp(R2), it
is the plane that best fits the surface at p. Alternatively, the tangent plane Tp(S) can
be characterizated as the set of the tangent vectors α′(0) of differentiable parameterized
curves α : (−ε, ε) → S such that α(0) = p. The proof that these definitions are
equivalent is straightforward.

As each tangent plane is a subspace of R3, the inner product of R3 induces an
inner product on each tangent plane Tp(S). This leads to the definition of the First
fundamental form Ip : Tp(S) → R as the inner product of the vector ~w with itself:
Ip(~w) = 〈~w, ~w〉 = |~w|2.

Although the first fundamental form is one of the most important concepts and it
allows us to compute length of curves, angles between tangent vectors or areas of regions,
we will focus on the second order derivatives, which shed some light on the notion of
shape. This concept of shape given in this chapter is a characterization in terms of the
curvatures and it is profusely used during the thesis.

Given a parameterization ϕ : U → V ∩ S around p with the corresponding tangent
plane Tp(S), an orientation of the plane Tp(S) (counter-clockwise for example) induces
a local orientation of the surface near the tangent plane, ϕ(U) (see Figure 2.1). We say
that a surface is orientable if these local orientations can be made in such a way that
at any intersection of neighborhoods the corresponding orientations coincide. Formally,
that is: given two parameterizations ϕ1 : U1 → S and ϕ2 : U2 → S such that W =
ϕ1(U1) ∩ ϕ2(U2) 6= φ, let f = ϕ−1

2 ◦ ϕ1|ϕ−1(W ), then det(dqf) > 0 ∀q ∈ ϕ−1
1 (W ).

Figure 2.1: Surface with its tangent plane at p, and the orientation induced by Tp(S).

An alternative definition can be given by means of the surface normals. Given a



2.1. DIFFERENTIAL GEOMETRY OF SURFACES 11

parameterization ϕ, we can choose a unit normal vector at each point q by

~N =
ϕu(q) ∧ ϕv(q)
||ϕu(q) ∧ ϕv(q)||

if the surface is orientable, then it admits a differentiable field of unit normals defined
on the whole surface. This map N : S → S2, that assigns to each point q of the surface its
corresponding normal vector ~N (q), is the so called Gauss map. As the map N goes from
S to S2, its differential at p goes from Tp(S) to TN(p)(S

2), and moreover, since the planes

Tp(S) and TN(p)(S
2) are parallel (both are perpendicular to the normal ~N at p), dpN can

be seen as a linear map on Tp(S) (an endomorphism dpN : Tp(S) → Tp(S)). A closer
look at dpN gives some intuition about its relation with the curvatures, detailed below.
Let C be a regular curve in S with C(0) = p, and consider the curve N ◦ C(t) = α(t),
this is the path drawn over S2 of the normals to S as we move along C(t). The vector
α′(0) = dpN(C ′(0)) is a vector in Tp(S) that measures the rate of change of the normal

vector ~N restricted to C at t = 0. Therefore, dp(N) measures how fast the normal ~N
gets away from ~N (p), in the considered direction. For curves (where there is only one
direction) this is the curvature, in surfaces this gives the linear map dpN.

The map dpN results self-adjoint, this allows us to define a quadratic form IIp :
Tp(S) → R called the Second fundamental form by IIp(~v) = −〈dpN(~v), ~v〉, which en-
compass the surface curvature information.

We will now define the curvatures of S at each point and link them with the second
fundamental form and the map dpN. Let us consider a point p ∈ S and a regular curve

C passing through it with normal ~n, let κ be the curvature of C at p and cos θ = 〈~n, ~N〉.
The number κn = κ cos θ is called the normal curvature of C at p.

Observe that κn is the projection of κ~n over ~N (see Figure 2.2). The sign of the
normal curvature then depends on the chosen orientation of S.

Figure 2.2: Surface S and the normal curvature for the curve C.
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Returning to IIp , if C is a regular curve parameterized by arc-length such that C(0) =
p and C ′(0) = ~v, then its normal curvature verifies κn = IIp(~v).

Therefore, κn does not depend on the particular curve C: all curves with the same
tangent line at p have the same normal curvature. With this result, we can speak about
the normal curvature at p along a certain direction and forget about the auxiliary curves
C.

Now that we have a normal curvature for each direction on Tp(S) we can concern
about the maximal and minimal values of κn over all directions. These values, κ1 and κ2,
the maximal and minimal curvatures respectively, are called the principal curvatures.
The corresponding principal directions, say e1 and e2, are orthogonal, and if we take
another direction making an angle θ with e1, then its normal curvature is κn = κ1 cos2 θ+
κ2 sin2 θ. Although this definition and the relationship between κn, κ1 and κ2 are very
illustrative2, it is not clear how to compute the principal curvatures in an efficient way.

Since dpN, the differential of the Gauss map, is self-adjoint, by virtue of the spectral
theorem it admits an orthonormal basis of eigenvectors e1, e2. These happen to be
the principal directions and, of course, its corresponding eigenvalues are the principal
curvatures κ1, κ2. Since the determinant and the trace of a linear map do not depend on
the chosen basis, we define then the Gaussian curvature K at p as the determinant of
dpN and the Mean curvature H at p as the negative half trace of dpN. More precisely:

K = κ1κ2

H =
κ1 + κ2

2

The last classic concept in this section is the concept of geodesic, which is related
to how the surface geometry changes the way of measuring distances. Given two points
p, q ∈ S, a path α over S of minimal length is called a geodesic curve and the length of
that curve is called the geodesic distance between p and q. On the plane, the shortest
path is the straight line, but in a surface the geodesic curve may be not unique.

2.1.2 Yet another curvature measure (Koenderink)

We have presented the principal curvatures κ1, κ2, and the Mean and Gaussian curvature
H, K, now we will add to these classical measures a couple more that capture some
structure, that will be helpful to describe the polyps’ geometry.

In order to characterize the polyp-like shapes, it is obvious that the measure should
not depend on the orientation nor the position, but it is also quite intuitive that it should
be invariant to homotheties, so it capture the shape itself. The curvatures presented
until now vary with the scale, for example two spheres with different radii have different
curvatures (principal, mean or Gaussian), so actually they do not show that the spheres
have essentially the same shape.

The descriptors defined next, have the property of decoupling the “shape” from the
“size” (or “how pronounced the shape is”). These are the so-called Shape Index and

2Euler was the first to work with these relations.
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Curvedness, defined in terms of the principal curvatures as follows [37]:

SI := − 2

π
arctan

(
κ1 + κ2

κ1 − κ2

)
,

R :=

√
κ2

1 + κ2
2

2
.

The factor − 2
π

in SI is to map all shapes to the [−1, 1] interval, and the 1
2

factor in
R is to normalize the scale such that the surface of the unit sphere has unit curvedness.3

Under this coordinate transformation, the (κ1, κ2) plane is transformed into the (SI,R)
plane, in a sort of a polar coordinate transformation. While the value of SI is scale-
invariant and measures the local shape of the surface, the value of R indicates how
pronounced it is. Figure 2.3 shows different shapes and their corresponding Shape
Index, for example the saddle point (opposite principal curvatures) has SI = 0, the rut
has SI = 0.5, the ridge has SI = −0.5 and the spherical cup and cap have SI = 1 and
SI = −1 respectively. Opposite values of SI correspond to the same shape with the
opposite normal direction. As we will see in Section 4.1.3, due to the chosen orientation
for our surface, Shape Index values close to −1 are of special interest for polyp detection.

Figure 2.3: Some shapes and their corresponding Shape Index values.

2.2 Image processing and surface motions

The topic list in this section is classic and well known, but it is still very delightful at the
same time, because of the elegance of the methods and results. A very concise summary

3Sometimes, an alternative measure C := 2
π ln(R) is used instead of R.
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is given in what follows. Although the focus is on the concrete tools applied along this
work, in some cases we point out some side comments and relations with other methods.

The tools presented here are the basis for various tasks of the Chapter 3. First we
introduce the level set representation of curves and surfaces and the Level Set Method
introduced by Sethian and Osher [48]. Then some particular concepts of geometric curve
and surface evolution are discussed with the goal of image smoothing. Finally a very
brief introduction to segmentation through active contours is given.

All these topics are covered in a great variety of books with a wide range of ap-
proaches and scopes. We highlight two with an overview of the field: [54, 44].

2.2.1 Images and Level Sets

Let us interpret an image as a real function u : U → R, with domain U ⊂ R2 or U ⊂ R3.
We will use a bold letter to name vectors, for example x = (x, y) or x = (x, y, z).

A very common representation of an image is through its lower level sets, defined as

Xλ = {x : u(x) ≥ λ}.

This representation has the property of being invariant to contrast changes4, and it
contains all the information of the image, in fact, the image can be reconstructed from
its level sets by

u(x) = sup{λ : x ∈ Xλ}.

Another description of an image, related to the level sets, is in terms of level lines
(or level surfaces in the 3D case) which are the topological boundaries of the connected
components of the level sets. As we deal with CT volumes in this thesis, we will work
directly with the 3D case, first recalling the Implicit Function Theorem.

Theorem 2.2.1. Let u : R3 → R be a C1 function in a neighborhood of p0 = (x0, y0, z0)
such that ∇u(p0) 6= 0, then there exists an open set U ⊂ R2, an open set V ⊂ R and a
C1 function ϕ : U → V such that

u(p) = 0⇔ z = u(x, y).

In other words, the set {p, u(p) = 0} can be locally described as the graph of
the function ϕ. We obtain a surface which we will call “level surface of u around p”.
Therefore, given a number λ ∈ R we can decompose u−1(λ) into a finite set of embedded
manifolds.

Luckily, if the function u is smooth enough, Sard’s theorem states that for almost
every λ ∈ R the set u−1(λ) is nonsingular, which means that ∇u(p) 6= 0 , ∀p ∈ u−1(λ).

More precisely, Sard’s theorem states the following.

4that is, if u is an image and v = g(u) a contrast changed version (g continuous and increasing),
then there is a 1-to-1 correspondence between the level sets of u and v, as it is obvious.
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Theorem 2.2.2. (Sard) If f : Rn → Rm ∈ Ck with k ≥ max(1, n −m + 1), and A is
the set of the points x at which the Jacobian matrix of f has rank r < m (i.e. the set
of critical points), then f(A) ⊂ Rm has zero Lebesgue measure.

We will make use of this representation from two slightly different viewpoints. On
the one hand, we will process an image in such a way that its level surfaces behave
according with some desirable properties. This is the viewpoint used in the smoothing
section (2.2.2). On the other hand, we will be interested in the motion of surfaces
themselves for segmentation, as discussed in the last section of this chapter, so we will
define an auxiliary function such that the surface of interest is a level set of the auxiliary
function.

In what follows we focus in evolving surfaces, meaning a family of surfaces St where
t parameterizes the “time”; these families obey certain Partial Differential Equations
(PDEs). Considering the flow St as level surfaces of a family of images ut, it is crucial
to relate the equations of the motion of both representations.

For instance, let S be a surface and suppose that we want to make it evolve according
to the following equation:

∂S(t)

∂t
= β ~NS , (2.1)

where ~NS is the unit normal to the surface and β is a function computed on S. Let
us consider that at each time t the surface St is the zero level set of the function
u : R+ × R3 → R (where the R+ is the time domain), and a local parameterization of
the surface ϕ : R+ × U → R3, U ⊂ R2, such that ϕ(t, ·) is a local parameterization of
the surface St. Therefore, the following equation is satisfied

u (t, ϕ(t,p)) = 0 ∀p ∈ U, t ∈ R+ .

Assuming regularity, by differentiating this equation with respect to time t, applying
the chain rule, we obtain

∂u

∂t
+

〈
∇u, ∂ϕ

∂t

〉
= 0 .

Here there is an abuse of notation, since ∇u stands for the gradient taken with respect
to the spatial variables, leaving aside the temporal variable t.

Recalling that the original motion of the surface was ∂ϕ
∂t

= β ~N , we can rewrite the
last equation, obtaining

∂u

∂t
+
〈
∇u, β ~N

〉
= 0 .

Finally, as the gradient of u is perpendicular to the level sets, we obtain the unit
normal by ~N = − ∇u

||∇u|| , where the sign is minus if u is negative inside the surface and
positive outside. Consequently,

∂u

∂t
−
〈
∇u, β ∇u

||∇u||

〉
= 0 ⇒ ∂u

∂t
= β

1

||∇u||
〈∇u,∇u〉
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Then, the corresponding evolution viewing St as the zero level sets of ut is

∂u

∂t
= β||∇u|| (2.2)

This means that when an image u evolves according to (2.2), its level sets evolve
according to (2.1).

When the goal is to make evolve a surface (or curve), this last trick of interpreting
the surface as a level set of a higher dimensional image and make evolve this image, is
known as the Level Set Method (LSM), developed by Sethian and Osher [48].

When dealing directly with the surface it is necessary to parameterize it and to
use a Lagrangian representation to compute the evolution. This implies keeping track
of the markers and redistributing the markers after the iterations as they can come
close together or far away during the evolution and to solve other numerical issues.
Additionally, when evolving a surface its topology can change (split or merge), so keeping
track of these changes with markers becomes a tedious work. One of the advantages of
the LSM is that these problems are automatically handled. The flow given by Equation
(2.2) corresponds to an Eulerian representation because it is written in terms of a fixed
reference frame, so classical numerical methods can be used to solve the PDE. On the
other hand, in the higher dimensional space topology changes are naturally handled by
the embedding (see Figure 2.4).

In all the motions described below the term β is a function of the curvatures. Hence,
in order to use the Level Set Method, it is necessary to compute the curvatures from
the image u in which the surface is embedded.

We end up this section presenting a different expression for the curvatures, whose
aim is clear from what was recently seen. We have already mentioned that, if we
have the surface S represented as the zero level set of a function u : R3 → R, i.e.
S = {(x, y, z) ∈ R3 : u(x, y, z) = 0)}, then the unit normal is

~N = − ∇u
||∇u||

.

It can be shown (see for example [60],[68]) that the mean curvature H and the
Gaussian curvature K can be computed as follows:

H = div

(
∇u
||∇u||

)
=

1

(u2
x + u2

y + u2
z)

3/2

[
(uyy + uzz)u

2
x + (uxx + uzz)u

2
y + (uxx + uyy)u

2
z

−2uxuyuxy − 2uxuzuxz − 2uyuzuyz
]
,

K =
1

(u2
x + u2

y + u2
z)

2
(u2

x(uyyuzz − u2
yz) + u2

y(uxxuzz − u2
xz) + u2

z(uxxuyy − u2
xy)

+2[uxuy(uxzuyz − uxyuzz) + uyuz(uxyuxz − uyzuxx) + uxuz(uxyuyz − uxzuyy)]) .
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Figure 2.4: Level Set Method: the embedding function at times t1 and t2, with their
corresponding iso-level sets. Note how topological changes are automatically handled.
Figure from [55].

Although this formulae are useful and necessary when solving PDEs with the Level
Set Method like the ones presented in the rest of this chapter, in certain cases some nu-
merical problems may appear, due to the fact that these curvatures involve second order
derivatives. In particular, the principal curvatures (which are necessary to compute the
shape index) are obtained by solving a second order equation, leading to

κ1,2 = H±
√
H2 −K ,

so very little errors in the estimation of H and K may became important errors in the
estimation of the principal curvatures. In order to overcome this difficulty we directly
compute the principal curvatures as follows [43]. Given a vector v, let Pv be the operator

that represents the projection onto the orthogonal complement of v, that is, Pv = I− vvT

|v|2 ,
let Hu be the Hessian matrix of the function u and consider the symmetric matrix

J =
1

|∇u|
P∇uHuP∇u . (2.3)

The orthogonal complement of ∇u is the tangent plane, where the second fundamental
form is defined. It is easy to see that ∇u is a eigenvector of J corresponding to the zero
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eigenvalue, due to the projection. It can be shown that the other two eigenvalues are
the principal curvatures and the corresponding eigenvectors are the principal directions.

This computation scheme leads to much more accurate estimation of the curvatures,
and therefore better estimations of the shape index. Both techniques (the direct formulae
and this latter one) yield very similar results for the mean curvature H. The important
difference is on the computation of the Gaussian curvature K, where the latter technique
leads to much more stable results. When the absolute value of the Gaussian curvature
K is small, sometimes the different estimations have different signs, leading to very
significant errors in the shape index estimation, since SI is very sensitive to the signs.

2.2.2 Image Diffusion and Curvature Surface Motions

We begin this section with the theory for the 2D case, and then we extend some results
(those that can be extended) to the 3D case, which is the one that corresponds to the
problem addressed in this work.

Possibly the most classic technique to smooth an image is by filtering it with a
Gaussian filter Gt with variance t, which gives the level of smoothing or scale. This is,
if u0 is the original image, the smoothed image is obtained by:

u(x, t) = (u0 ∗Gt)(x).

The theory of the image representation through these different smoothed versions is
called scale space.

A simple yet elegant result states that if u(x, t) is obtained via this Gaussian filtering,
then it satisfies the heat equation5

∂u(x, t)

∂t
= 4u(x, t) u(x, 0) = u0(x)

which is one of the most studied PDEs. An heuristic proof is straightforward: the
Gaussian function satisfies the heat equation, the PDE is linear and the operations
(derivatives and convolutions) are linear. The Gaussian function is then a fundamental
solution of the heat equation. This statement can be further sharpened, and under
certain regularity hypotheses, results about the existence, uniqueness and uniform con-
vergence of the heat equation solutions can be given [44].

The first comment is that the heat equation is not contrast invariant and it is
isotropic, that is, the diffusion is the same in all directions, independently on the image,
in particular it does not preserve edges. Therefore, we will study alternative motions to
improve these aspects.

The set of the level sets constitute a complete representation of an image. Thus, it
is important to study how the image level sets are affected by image diffusions.

Now, if we make evolve a curve C with parameterization (x(t), y(t)), according to
the mentioned heat equation, that is:

5Moreover, iterating the convolution with any symmetric kernel, not necessarily the Gaussian, with
variance tending to zero, asymptotically converges to the solution of the heat equation .
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∂x

∂t
=
∂2x

∂p2
,

∂y

∂t
=
∂2y

∂p2
,

then, although x(p, t), y(p, t) ∈ C∞ and this equation can be solved with a numeri-
cally stable technique, the smoothness of the coordinates does not imply the smoothness
of C, and moreover, the evolution depends on the chosen parameterization, it is not in-
trinsic.

However, if we use the arc-length parameterization instead, we obtain the set of
equations

∂x

∂t
=
∂2x

∂s2
,

∂y

∂t
=
∂2y

∂s2

that look similar to the classical heat equation, but is actually very different. An equiv-
alent and compact notation for this motion is

∂C
∂t

=
∂2C
∂s2

= κ ~N ,

where κ is the curvature and ~N the unit normal. This is a nonlinear equation, called
the intrinsic heat equation or mean curvature motion, and moves each point along the
normal direction, an amount proportional to the curvature at that point. Therefore, at
points where the curve is locally convex the curve moves inward, and at points locally
concave the curve moves outward; asymptotically the shape vanishes as a circle.

Figure 2.5: Curve with vectors indicating the term κ ~N .

We have just pointed out the relationship between the Gaussian filtering and the
heat equation. An analogous correspondence can be made between the intrinsic heat
equation and the median filter. A precise statement and demonstration can be found in
[44].

In certain applications, we may want these motions to be covariant with some geo-
metric transformations. As a part of a more general theory, we remark the invariance
under affine transformations preserving area or volume. The motion proposed indepen-
dently by Sapiro and Tannenbaum ([55], [56]) and Alvarez, Guichard, Lions and Morel
[1]

∂C
∂t

= κ1/3 ~N ,
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is invariant under the special affine group, and it is called affine intrinsic heat equation
or affine curve shortening.

For the 2D case (curves), results about the existence, uniqueness and regularity
of the solutions of the mean curvature motion and the affine version exist. However,
the general case of motions governed by a generic function of the curvature still have
unknown properties.

Let us come back to the 3D case, processing volumes and seeing how its level surfaces
evolve. In this case, as described in the previous section, two curvatures are needed to
describe the the local shape (for instance κ1 and κ2, or H and K), so the range of
possibilities is much wider, and the theory is still not completely understood.

The extension of the mean curvature motion is straightforward, and is given by the
equation

∂S
∂t

= H ~N , (2.4)

analogous to the 2D version.
This motion can be obtained from a variational formulation. Namely, if we want to

minimize the total area of a surface

A =

∫ ∫
da ,

then the corresponding gradient descent flow is the mean curvature motion (2.4).
Nevertheless, this surface MCM version does not behaves as well as for curves. Sev-

eral examples of topological changes of the surface can be found. For example, a dumb-
bell (two spheres joined by a cylinder, so it is homeomorphic to a sphere) may evolve
into two separates topological spheres [59], see Figure 2.6. However, if the cylinder is
thick enough then the surface is homeomorphic to a sphere during the whole evolution
process. On the other hand, a torus may evolve into a topological sphere.

The motion by Gaussian curvature

∂S
∂t

= K ~N

is the next motion that comes to one’s mind6, but it cannot be applied successfully
because at non-convex neighborhoods it goes unstable, as shown in Figure 2.7.

A suitable version of the motion by Gaussian curvature is the following:

∂S
∂t

= (K+)1/4 ~N where K+ = max(K, 0) . (2.5)

This motion is the analogous to the affine curve shortening, in the following sense: it
is the simplest which admits the affine group (all 3× 3 matrices with unit determinant,
combined with the translations) as its symmetry group. Caselles and Sbert [11] proved
that for this motion, the evolution of the dumbbell does not create singularities (unlike
the MCM), so the evolving surface is homeomorphic to a sphere during the evolution.
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Figure 2.6: Deformation of a dumbbell under motion by mean curvature. Note the
topology change. Figure from [16].

Figure 2.7: Deformation of a dumbbell under motion by gaussian curvature. Note how
the evolution goes unstable at the non-convex region. Figure from [16].

However, they also showed that a “bent dumbbell” (still homeomorphic to a sphere)
evolves into two separate topological spheres, see Figure 2.8.

The last curvature motion here presented is the one by minimal curvature

∂S
∂t

= κmin ~N .

6This motion was first proposed in [27] to model the wearing process of a convex stone on the beach.
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Figure 2.8: Deformation of a bent dumbbell under the curvature motion (2.5). Note the
changes in the topology. Figure from [11].

Caselles and Sbert [11] showed with experimental results that this evolution is the
only among those just described that preserves the topology of the bent dumbbell (see
Figure 2.9). Nevertheless, it is not true that this evolution preserves the topology for
every initial surface, a more sophisticated example of a surface that changes its topology
during the evolution by minimal curvature is also described in [11].

We remark that all these motions smooth the surface equally at convex and concave
shapes, what is clearly desirable in some applications, but it may not be optimal for our
problem of detecting a special type of shape. We will come back to this in Section 3.3.



2.2. IMAGE PROCESSING AND SURFACE MOTIONS 23

Figure 2.9: Deformation of a bent dumbbell under motion by minimal curvature. This
motion preserves the topology in this case. Figure from [11].

2.2.3 Variational formulation - Energy-based snakes

In the previous section we briefly described the fundamental PDE schemes used for
smoothing. In the current section we do the same with the segmentation problem,
which is roughly, in this case, to locate an object and its boundary (the object will be
the colon inside and the boundary the inner colon surface).

All the techniques described in this work seek to minimize a certain functional like

ES =

∫
S
L(S)da

designed in such a way that the minimum is obtained in the boundary of the object
to segment. This optimization problem can be solved by means of gradient descent,
resulting in a deforming surface evolving from the initial contour S0 toward the boundary
of the desired object. As we commented above, it is convenient to use the level set
method, so we define an equivalent energy defined for u:

Eu =

∫
Ω

L(x)δ(u)||∇u||dx

where Ω is the domain, x a generic coordinate vector in Ω and δ is the Dirac delta
function. Now the corresponding gradient descent of Eu can be computed with standard
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calculus of variations (see for example [54] [4]), obtaining an Eulerian flow for u instead
of S. At this point, the models can be proposed in the surface-energy form, or directly
in the level set formulation.

Let us begin with the first snake proposed. The classical snake model by Kass et
al. [34] was first introduced for curves, and for a parameterized curve C : [0, 1] → R2

(included in an image I) consists of

EC = α

∫ 1

0

|C ′(p)|2dp+ β

∫ 1

0

|C ′′(p)|2dp− λ
∫ 1

0

|∇I(C(p))|dp

with α, β, λ positive numbers. While the first two terms favor the smoothness of the
resulting curve, the latter attracts the curve toward the object to segment, and the
trade-off between these properties is given by the parameters α, β, λ.

This method has several drawbacks, for instance it is not intrinsic and it is very
unstable. The improvement by Caselles et al. [9], Geodesic Active Contours, can be
interpreted as finding a curve of minimal weighted length. It defines a new Riemannian
metric, and the problem is formulated as the minimization of a new length that takes
into account the image properties. The energy in this model is

EC =

∫
C
g(I)ds

where ds is the arc-length and g is an edge-detector function, a typical choice is g(I) =
1/(ε+ |∇I|2).

The 3D case is analogous [10], and it consists in finding the surface of minimal area
where, just like for the 2D case, the metric of the area is image-dependent:

AR =

∫
S
g(∇I)da

Computing the Euler-Lagrange equation leads to the flow

∂S(t)

∂t
=
(
g(I)H−∇g(I) · ~N

)
~N ,

whose Level Set formulation is

∂u

∂t
= g(I)|∇u|div

(
∇u
|∇u|

)
+∇g(I) · ∇u .

In both equations, the first term favors smoothness, while the second one attracts
the surface to the boundary of the object. Note that taking the function g constant,
the resulting evolution is the mean curvature motion.

Often, both in the 2D and 3D case, another force νg(I), with ν constant, is added,
resulting in the flow

∂u

∂t
= g(I)|∇u|div

(
∇u
|∇u|

)
+∇g(I) · ∇u+ νg(I)|∇u| .
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Unlike the smoothing flows presented in the previous section, where the way to use
them is to make evolve the original image a few iterations, in these kind of algorithms
the initial condition is an initial contour (actually an image with the initial contour as a
level set, usually a distance map to the contour), a sphere for example, and this surface
evolves all the way until convergence.

From this point several variants were proposed, adding or modifying terms. We will
mention just one direction among them, the Geodesic Active Regions by Paragios and
Deriche [50],[51] or the similar model by Chan and Vese: Active Contours Without Edges
[13]. In the Geodesic Active Regions, a probability model of the regions is assumed,
that is, the probability of a pixel of belonging to a given region, and a term regarding
this is added to the energy. The goal is then to minimize the energy

E = α

∫ 1

0

g (I(C1(s))) |C ′1(s)|ds+ (1− α)

∫
R1

log (p1(I(x, y))) dxdy

+ (1− α)

∫
R2

log (p2(I(x, y))) dxdy (2.6)

where C1(s) is the target arc-length parameterized curve that divides the image
domain into R1 and R2. The function g is an edge detector, and p1 and p2 are the
probabilities of belonging to R1 and R2 respectively. The first term is the same as
in the Geodesic Active Contours model, written slightly different, and the other two
terms measure the partition probability, according to the prior probability model for
the regions.

The level set formulation of this algorithm is as follows

∂u

∂t
= α(r2(I)− r1(I))|∇u|+ (1− α)

(
b(I)H−∇b(I) · ∇u

|∇u|

)
|∇u|

where r2 and r1 are the region attraction functions (based on the probabilities p1 and
p2) and b is the boundary attraction function (based on the function g).

This concludes the chapter, where we described all the basic tools used in what
follows. These concepts are strongly used in the next chapter, where we tackle the colon
segmentation problem.
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Chapter 3

Colon Segmentation

3.1 A challenging problem

In this chapter we focus on the colon segmentation problem from CT volumes. The
proposed solution is strongly based on the theory of surface evolution briefly summarized
in the previous chapter.

In practice, the CT-based colon segmentation problem suffers from several difficul-
ties. Among them we can remark the image resolution, specially taking into account
the polyp size that we want to detect. In addition, the presence of liquid, the interface
between air and liquid and specially the T-junction formed by air-tissue-liquid, make it
hard to obtain reasonable results, and therefore the simple approaches fail. Figure 3.1
shows a detailed view of a slice region, where the different sections can be distinguished
and the problem of the air-liquid interface (specially at the T-junction) is clearly evi-
denced. Figure 3.2 shows a slice and a detailed view of a small polyp which, in addition,
is submerged in liquid. Here it can be seen that this polyps is only 4 or 5 voxels wide
along its largest dimension.

In addition, there are some desirable properties of the resulting surface, that may
not be easy to achieve. For example, as we will compute curvatures for the polyp
characterization, the surface must be smooth enough, and it would be nice if the shape
of the polyps are enhanced and the slight variations get flattened.

On the other hand, there are a number of desirable properties of the whole process:
it should be as fast as possible, automatic, non-parametric and it should work well for
all the studies in the database.

The segmentation of the colon surface, which is critical in particular to compute
geometric features, is divided into two parts: a pre-processing stage for dealing with the
air-liquid composition of the colon volume, and a second stage that consists on smooth-
ing the pre-processed image and obtaining the final colon surface by thresholding the
smoothed volume. The overall procedure here presented is very simple and computa-
tionally efficient, leading to the state-of-the-art classification results later reported.

In what follows we first describe a preprocessing stage in order to deal with the air-
liquid-tissue interface problem, then we study different smoothing schemes of the kind
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Figure 3.1: CT image and zoom in the air-liquid-tissue interface region.

Figure 3.2: CT image and zoom in a polyp submerged in liquid.

presented in Section 2.2.2, and finally we describe two different approaches that proved
successful.

3.2 Classifying CT regions

As we just mentioned, one of the strongest difficulties concerning the segmentation of
the colon from abdominal CT volumes is the presence of liquid and its interfaces with air
and tissue. Figure 3.3 shows a CT slice and its pixel values over the highlighted vertical
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segment. At first sight there are three clearly distinguishable classes: the lowest gray
levels correspond to air, the highest levels correspond to liquid, and the middle gray
values correspond to tissue. Nevertheless, there are around 6 interface voxels between
air and liquid whose gray values, due to continuity, lie within the normal tissue range.
Therefore, a näıve approach based on gray values only, ignoring the physical nature
of the tissue and its environment, is not suitable for proper tissue classification and
segmentation.

Figure 3.3: CT slice and typical values for air, liquid and normal tissue.

The proposed approach addressing this issue consist on generating a probability map
P, that is, a 3D image with the same size of the CT volume (around 512 × 512 × 400
for our data), whose values are the (estimated) probability of the voxel of being inside
the colon. We will then process this map to estimate the interior colon wall.

We obtain P by computing for each voxel the three probabilities of belonging to each
of the three classes of interest (namely, air, liquid and interface, the union of these three
classes forms the inside of the colon), and then taking P as the maximum of these three
probabilities.

Since the gray value distributions of air (class w1) and liquid (class w2) are very
distinguishable and stable among the different studies, they can be empirically learned
by manually segmenting these two classes in a given CT study, and then constructing
the probability distribution functions p(x|w1) and p(x|w2) by standard kernel density
estimation [72]. From this, the distributions p(w1|x) and p(w2|x) can be computed,
assuming uniform class priors. The air and liquid probabilities for a voxel in the testing
CT are then easily computed by simply evaluating these estimated distributions on the
gray value of the CT voxel.

The challenging component of computing P is the computation of the interface
probability (class w3). Here we take advantage of the physics of the problem, and in
particular of the gravity and the position of the patient: the person is laid horizontally
so the interface between the liquid and the air is a plane parallel to the floor. The voxels
situated on the interface then have a large gradient in the z (vertical) direction, since the
values of air and liquid are on opposite ends. However, the transition is about 6 voxels
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wide for the standard data resolution used in this work, and the computations should
be done taking this into account. Additionally, if a given voxel belongs to the interface
layer, it is expected that at least half of the neighbor voxels at the same horizontal plane
also belong to the interface layer.

The implementation of these criteria is as follows. A cubic neighborhood around
each voxel x is considered, and for each one of the “columns” that result of fixing the x
and y coordinates, the probabilities of the upper voxels of being air and the lower voxels
of being liquid are accumulated. If the tested voxel belongs indeed to the interface layer,
then all these air and liquid probabilities will be high. The interface probability P (w3)
is then an increasing function of this accumulated measures. The algorithm in Figure
3.4 provides a pseudo-code that represents this procedure.

for each voxel (x,y,z) do
sum=0;
for i=−1 to 1 do

for j=−1 to 1 do
for k=1 to 2 do

sum += p(w1|(x+i,y+j,z+k));
sum += p(w2|(x+i,y+j,z-k));

end

end

end
p(w3|(x,y,z)) = sum/18;

end

Figure 3.4: Interface probability computation.

Now, let us comment a couple of things about the other interfaces, namely, air-tissue
and liquid-tissue, which are the most important ones if we want to delimit the colon
wall. First, the voxels of these interfaces are not confused with the air-liquid interface
computed by the algorithm presented above, because the value of the gradient in the z
direction is, at most, approximately half of gradient value in air-liquid voxels. Indeed,
the jump from air to liquid is around 1900 units, while the jump from air or liquid
to tissue is around 1000. On the other hand, the intensity value of these interface
voxels has mainly two contributions, the one of the tissue and the one of the air (or
liquid). This value is then somewhere in between 0 (air) and 1000 (normal tissue), for
example. Therefore, the air-liquid interface probability p(w3) is low because the gradient
value is low, and the liquid probability p(w2) is low because the distribution of liquid
voxel values is centered in 1800 approximately; so the maximum probability (between
p(w1), p(w2) and p(w3))is the corresponding to w1 (air) and the value of the probability
map will be P(x) = p(w1|x), as expected. The value of this probability depends on the
contributions of each region (air and tissue), varying from 1 (only air) to almost 0 (all
tissue). Therefore, the probability map P vanishes smoothly at the actual border of the
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colon.
The voxels on the T-junction (air-liquid-tissue interface) have high interface proba-

bility p(w3) because they have air above and liquid below. Nevertheless, there are two
factors that decrease this probability. The first one is due to the fact that, within the
considered neighborhood in algorithm 3.4, there are some normal tissue voxels, so the
accumulated variable sum is not as high as in the case of a “pure” air-liquid interface.
The second factor is due to the surface tension, that causes that the angle between the
wall and the liquid is not exactly a right angle, and therefore the hypothesis of horizon-
tal interface is slightly violated. With the contribution of these factors, the probability
p(w3) is lower than one, and vanishes smoothly at the T-junction.

After the computation of the probability map some spurious (isolated) voxels may
have high probability of being liquid (bones for example, or simply noise), so we clean the
probability map by keeping the connected components1 containing some chosen voxels
used as seeds. The seeds are automatically detected choosing the voxels with greatest
values of P (w3), since these high probabilities occur only at the true interface between air
and liquid. This way, the segmentation step is able to handle the lumen discontinuities
problem and obtain the multiple pieces of the colon that might be disconnected.

Figure 3.5 shows a slice of the original volume data and the same slice of the com-
puted probability map P.

Figure 3.5: CT slice and its corresponding slice on the probability map.

This way of preprocessing the volume leads to a better segmentation compared to
the given surfaces we started with, specially at the T-junction zone. Figure 3.6 shows
the detail of that zone and the improvement due to the proposed probability map. It can
be seen how the artifact produced by the interface, the “gutter” shape, is considerably
reduced. This improvement is critical, since if small oscillations occur along the “gutter”
(which is expectable given due to the resolution of the CT image) artifacts with a polyp-
like shape are produced, and this, of course, degrades the performance of the whole CAD
system.

1Actually, since the probability map is not binary, a (conservative) threshold of 0.6 is considered to
separate the connected components.



32 CHAPTER 3. COLON SEGMENTATION

Figure 3.6: Comparison of our segmentation (left) with the previously provided segmen-
tation. Note how the “gutter” effect is diminished in our segmentation.

3.3 Smoothing

In order to eliminate noise and to obtain a smoother surface after the segmentation, the
image should be processed. Part of the theory concerning this subject was presented in
Section 2.2.2. Here we study these techniques and propose some improvements for our
particular application.

One of the fundamental aspects that we look for in this smoothing process is the
preservation of the shape of the polyps, while obtaining a smooth enough surface to
reliably compute geometric features such as curvature. Of course, the ultimate goal is
to derive a method to process the surface that simplifies and improves the polyp/non-
polyp classification system.

At this point we have the previously computed probability map P, which will be
processed by a Partial Differential Equation of the form

∂u(x, t)

∂t
= β|∇u| , u(x, 0) = P(x) , (3.1)

where P is the initial condition. After making a few iterations of this PDE evolution,
an iso-level surface of the resulting 3D image u(x, T ) will be extracted, and that will
be the resulting colon surface. Since we are interested in a certain iso-level surface of
the volume, it will be useful to recall the relation that states how the iso-levels evolve
when the 3D image evolves according to (3.1). Namely, the basic equation of the Level
Set Method [48] states that if u(x, t) evolves according to (3.1), then its iso-levels (level
sets) satisfy

∂S
∂t

= β ~N , (3.2)

where S is any iso-level surface and ~N its unit normal.

Therefore, in what follows we study surface motions, in particular when the defor-
mation term β is a function of the principal curvatures κmax and κmin. In the actual
implementation, this term (and therefore the principal curvatures) have to be computed
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from the function u(x, t), a standard procedure in the implementation of curvature-
based surface motions [47]. We first review the classical motions by curvature and then
propose some variations used as part of our developed pipeline.

The classical mean curvature motion
∂S
∂t

= H ~N

has problems regarding topological changes, as we discussed in the previous chapter.
Nevertheless, making only a few iterations this problem does not affect our surface.
With very few iterations a very smooth surface is obtained, but the polyps are flattened
fast too, as it can be observed in Figure 3.7. However, if used carefully, it is a very good
alternative to more standard Gaussian filtering.

Figure 3.7: Mean Curvature Motion: original surface and the result after 2, 8, 15, 30 and
50 iterations. Note how both the surface (as desired) and potential polyps (undesired)
are smoothed and flattened.

We have already seen that the motion by Gaussian curvature has several problems
with surfaces containing non-convex parts, which is our case. Indeed, only a few itera-
tions are needed for the result to explode (decompose into disconnected parts), as shows
Figure 3.8.

Figure 3.8: Gaussian Curvature Motion: surface after 1, 3 and 4 iterations.

On the other hand, the affine motion

∂S
∂t

= (K+)1/4 ~N where K+ = max(K, 0) ,
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has a better behavior in general, in terms of topology preservation. However, when used
with only a few iterations, the results are comparable with the mean curvature motion.

Figure 3.9: Affine Gaussian Curvature Motion: original surface and the result after 2,
8, 15, 30 and 50 iterations.

The last classical motion presented in Section 2.2.2 is the motion by minimal curva-
ture κmin. Polyps have a curve of inflection points all around it, separating the upper
and lower sectiong of the polyp. Along this curve, the minimal curvature is κmin = 0,
and therefore this section of the polyp does not move (or moves very slowly), so intu-
itively under this motion the polyps should persist longer. In our particular application,
this evolution yields very good results in terms of both surface smoothing and polyp
enhancement (see Figure 3.10).

Figure 3.10: Motion by minimal curvature: original surface and the result after 2, 8, 15,
30 and 50 iterations.

In what follows we try to take advantage of the known properties of our shapes
of interest to propose motions that behave better in our application. Inspired in the
exponent 1/4 of the affine motions in dimension 3, and the best (in terms of polyp-shape
preservation) of the motions presented above, we first tested the evolution that obeys
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the equation
∂S
∂t

= κ
1/4
min

~N .

It turns out that the motion governed by this equation yields better results than the
ones we have just presented. Figure 3.11 shows the result after a few iterations, and
Figure 3.12 evidences the difference with a comparative image: the result of the motion
by κmin is in gray while the result of the motion by κ

1/4
min is shown in orange. It can

be seen that the polyp surface in the latter is above the polyp surface of the former,
and the surrounding zone is the other way around, showing that the evolution by κ

1/4
min

better enhances the polyp when compared with the motion by minimal curvature.

Figure 3.11: Evolution by κ
1/4
min: original surface and the result after 2, 8, 15, 30 and 50

iterations.

In order to further improve the smoothing process, we will characterize the polyps
shape and distinguish even more the evolution for those zones.

The next step is to include this information concerning the shape of the surface
in order to make potential polyps evolve differently than the rest of the colon surface.
One option is to start from the motions studied above and make slight modifications to
the functions to take into account the Koenderink curvature measures. Another option
is to propose a completely new function, being careful so that the resulting evolution
is stable. We tested some motions depending only on the shape index, but with no
better results than the motion by κ

1/4
min. However, may be worth a deeper study of these

motions.

On the other hand, we can try to modify the best motion so far (κ
1/4
min), in such

a way that the resulting motion further enhances the potential polyps. To achieve
this, we need to characterize the potentially polyp points and modify the deformation
function according to that. The shape index characterization is very precise, but the
computation of the shape index of the level surface from the embedding function u is
delicate. The technique described in Section 2.2.1 (the eigenvalues of the matrix in
equation (2.3)) gives accurate results, so using this curvature computation the shape
index characterization is precise.
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Figure 3.12: Comparison between evolutions. Motion by kmin in gray vs. motion by
k

1/4
min in orange, 15 iterations in both cases.

We now define a function that acts as a multiplying factor of the term κ
1/4
min, making

the surface evolve slower at the points of interest. One option is to choose this function
to depend on the shape index only, assigning low values to shape index near −1, and
values close to unity to other points. A smooth function g(SI) verifying these constraints
is shown in Figure 3.13.

The final motion then becomes

∂S
∂t

= g(SI)κ
1/4
min

~N .

This proposed evolution keeps all the advantages of the motion by κ
1/4
min and in

addition, the polyps are flattened slower, so at the end the obtained surface is smooth
and the polyps are still outstanding. The stopping time T was manually chosen at 15
iterations. This choice has to be made once for all, as the acquisition framework is kept
unchanged.

At this point, after choosing the appropriate diffusion, we have a smoothed probabil-
ity map u(x, T ) indicating the volume inside of the colon. At least two paths arise now
in order to obtain the colon surface: segment the smoothed probability map u(x, T ) with
a snake technique or directly threshold u(x, T ) with some criteria. These approaches
are discussed in the following sections.



3.4. COLON SURFACE EXTRACTION 37

Figure 3.13: Function g(SI) = 1
π

arctan ((SI − 0.75) · 10) + 1
2
, multiplying factor for

PDE curvature evolution.

3.4 Colon surface extraction

3.4.1 Thresholding P - Marching Cubes

The main advantage of this scheme is the simplicity and the speed. Basically, using the
Marching Cubes algorithm a certain iso-level surface is extracted from the probability
map.

The Marching Cubes [40] is a well-known algorithm that, given a volume and a value,
returns the level-surface of the given value with sub-voxel accuracy. In this application,
a value α ∈ [0, 1] is chosen, as the image is a probability map. The algorithm works
as follows. For each cube formed by eight contiguous voxels, it is determined how the
sought surface intersects the cube, this polygon (formed by triangles) is stored and the
algorithm proceed with another cube. The final surface is obtained by gluing these
triangles.

Given a cube, the vertices are grouped into two classes, those whose value is greater
and lower than the given threshold. Then, according to the resulting pattern of the
vertices grouping (which, up to rotations and inversions is one of the 15 possible), the
decision of where does the surface intersects the cube is taken from the table in 3.14. The
sub-voxel accuracy is obtained by interpolation. This is, given an edge where the surface
should cross, the exact location of the intersection is obtained by linear interpolation
along the edge.

The choice of the value α can be made by maximizing some criteria, in order to
obtain the best surface in a given sense, based on contrast for instance like the work by
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Figure 3.14: Marching cubes: the 15 possible configurations.

Meinhardt et al [42]. This optimization-oriented method was tested, but in our particu-
lar application all the consistent surfaces are very close to each other (see Figure 3.15),
and all of them are reasonable segmentations of the colon. Therefore, the computational
effort is not justified and we simply use a fixed value, extracting the iso-level surface for
α = 0.7. Note that this choice can be safely made once for all, since all the studies are
performed under very similar conditions. The result of this stage is then a triangulated
surface S representing the colon wall.

Figure 3.15: Different iso-level surfaces: values 0.5,0.6,0.7,0.8 and 0.9.



3.4. COLON SURFACE EXTRACTION 39

3.4.2 Surface evolution techniques - Geodesic Active Regions

Among the active contours methods that were reviewed in Section 2.2.3, the Geodesic
Active Regions is the surface evolution technique that is best suited for our problem.
Indeed, in addition to the surface regularity term of the snakes model and the image
gradient information added by the GAC method, GAR allows to incorporate information
about the colon interior and exterior regions. The main ideas of the Geodesic Active
Regions algorithm were presented in Section 2.2.3. Basically, there are three images to
choose: the region attraction functions ri and the boundary attraction function b. The
latter is chosen as the classical edge detector function 1

ε+|∇ũ|p , where ũ is an smoother
version of u and p ≥ 1. The other term is actually the difference between the region
functions r2 and r1. In Section 3.2 we described the computation of a probability map,
which complies with all the requirements for being the region function r2, indicating
the probability that a voxel belongs to the inside of the region to segment: the inside
of the colon. Although we do not have an analogous function r1 for the background,
the complement of r2 can be used, that is, r1(x) = 1 − r2(x). With this setting and
a reasonable set of parameters, the algorithm is able to correctly segment the colon
surface, starting from any initial contour.

These kind of methods are very useful when there is no precise idea of where the
object to segment is, so the boundary attraction terms forces the evolving surface to
converge to the object while keeping a certain degree of smoothness due to the regu-
larization terms. But in our case, the probability map is quite descriptive of the colon
volume, and the boundaries of these images (the original CT volume and the probability
map) are not sharp enough to make the attraction extremely accurate. So the boundary
attraction term is not crucial, and the smoothing terms are equivalent to those studied
in the previous section. Indeed, if we choose the particular function g ≡ 1, the resulting
flow is the mean curvature motion, which is one of the first diffusion techniques discussed
before. In practice, for these particular images, the value of the parameters needed to
obtain a smooth image are such that the polyps result very flattened. To illustrate
this fact, Figure 3.16 shows in orange the smoothest segmentation that can be obtained
with GAR, while not flattening too much the polyp in Figure 3.12. It is clear that
surface is too rough to compute curvatures and its derived geometrical features. Also,
it is worth to say that the final surface is obtained by applying the Marching Cubes,
in order to obtain the zero level set of the evolved function, so the difference between
the two schemes regarding the smoothness of the final surface relies on the differences
between the smoothed probability map and the level set function of the active contour
techniques. Taking into account these facts and, again, the search for speed and sim-
plicity, we decided to use the approach described in Section 3.4.1, namely to directly
threshold the regularized probability map and to obtain the colon inner surface with a
marching cubes procedure.
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Figure 3.16: Segmentation using the proposed method (left) and using GAR (right, in
orange).

3.5 Summary

In this section we give a brief description of the whole segmentation step. The input
is the 3D CT volume (around 512 × 512 × 400), and the first stage is to compute the
probability map P, which indicates the estimated probability that each voxel belongs
to the inside of the colon. This is achieved by computing probabilities of being air,
liquid or air-liquid interface voxels. The maximum of these probabilities is taken, and a
connectivity filter is used to get rid of the spurious sections with high probability. Then
this probability map P is processed with a PDE. Namely, P is the initial condition of
the following equation:

∂u(x, t)

∂t
= g(SI)κ

1/4
min|∇u| , u(x, 0) = P(x) .

After 15 iterations of this motion, a smoothed probability map u(x, T ) is obtained.
Finally, an iso-level surface of this 3D volume is extracted by using the marching cubes
algorithm, with a iso-level value of 0.7. We insist that these two parameters are the only
parameters involved in the whole segmentation stage, and can be safely chosen once for
all.
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Classification

So far we have addressed the segmentation part with the corresponding preprocessing
stage. In this chapter we describe the second fundamental block of the pipeline: the
classification stage, including the candidate patches detection and the feature analysis.
We also describe the class imbalance problem and how we dealt with it, and we analyze
the classifiers that were trained for polyp detection.

The input data for this part is the original CT volume and the segmented mesh
obtained with the technique described in the previous chapter. The goal is to output
the polyp zones with the fewest number of false positive as possible. Of course, the
major objective is not to miss true polyps.

Briefly, the whole process carried out in this chapter consist of three stages. The
first one is the detection of the regions (or patches) of the segmented surface S that are
candidates of being polyps, this includes the exact delineation of the region, which is
achieved by a multi-scale search (testing several sizes and keeping the most appropriate
one). In the second step, for each candidate patch several features are computed. Ge-
ometric features are computed from the surface S and texture features are computed
from the original 3D CT volume data. The majority of all these features take into ac-
count the information of the surrounding area of the candidate patch. In the final step,
a classifier takes as input these features and decides if the candidate patch is indeed
flagged as polyp or non-polyp.

A very brief and basic description of the classification framework is given in what
follows. A dataset composed of two classes is given, in our application the classes are
Polyp and Non-Polyp. The dataset contains instances, which are vectors x belonging
to one of the classes and whose entries are features. In short, the dataset D ⊂ Rn is
partitioned in classes D = A ∪ B with A ∩ B = φ. A classifier, after being trained,
decides to which class x belongs from the values of the features. Sometimes it is useful
to label the classes with +1 and −1 for mathematical purposes. A typical and very
simple classifier is shown in Figure 4.1.

If a particular instance x0 is used both for the training and testing of the classifier
the evaluation of the performance is not fair. In an ideal framework, with a large enough
dataset, one should divide the dataset into training and testing datasets. However, as
it is the case here, the number of instances in one or both classes is not large enough.

41
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Figure 4.1: Typical linear classifier.

Under these circumstances, the process is carried out by a scheme called cross validation:
the dataset is partitioned into n folds, then n−1 folds are used for training and the other
one for the testing. This procedure is repeated n times, rotating the testing fold, and
then a performance measure is taken from the n experiments. The described technique
is a particular case called n-fold cross validation, we use a slightly different variant,
explained in Section 5.1.3.

Several measures are defined in order to characterize the performance of the clas-
sifiers. The basic measures are the True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN), almost all the other measures are derived
from these ones. The TP are the true polyps correctly classified, while the FP are zones
that the classifier decides that they are polyps but they are not. Of course, the goal
is to have no FN (that is, all the polyps correctly detected) while keeping a reasonable
amount of FP. In this application, it makes no sense to use measures based on the TN,
because the amount of instances in the Non-Polyp class is dependent on the algorithm
(the instances to classify is the output of the candidate detection stage). The sensitivity,
however, is defined as TP

TP+FN
, so it depends on the number of true polyps only, and it

measures the percentage of polyps correctly detected. Therefore, we will evaluate and
compare the different schemes with the sensitivity and the number of False Positives
(actually, the number of FP per patient study).

Given a classifier, different operating points can be chosen, for example, sacrificing
the number of false positives for the sake of obtaining a high true positive rate. In
general, this variety of TP-FP relation can be achieved by moving a parameter, a decision
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threshold for instance. The most used graphic representation of the different operating
points is the ROC (Receiver Operating Characteristic) curve of a classifier. This graph
plots the true positive rate versus the false positive rate. There are two points that
trivially belongs to every ROC curve: (0, 0), which means that no true positives were
classified and all the negatives were correctly classified, this is achieved by classifying
every instance as negative. On the other hand, classifying every instance as positive
gives a true positive rate of 1, but also a false positive rate of 1. The ROC curve joining
these two points gives a performance measure of the classifier, and the operating point
in this curve is chosen according to the particular nature of the application.

Since the measures based on FN or TN should not be used to describe the perfor-
mance of a polyp CAD algorithm, as it was said, the false positives per study is the
common used quantity. In this sense, the analogous to the ROC curve is the FROC
curve, which plots the sensitivity or true positive rate versus the false positives per study
(usually the average over all the available studies).

4.1 Candidate detection and feature computation

4.1.1 Candidate detection and delineation

The first step is to define a set of candidate patches over the mesh S. Since the obtained
mesh has about a million points, it is completely unfeasible to consider them all, so
we take advantage of the particular geometry of the polyps to reduce the amount of
candidates to test. Let us consider the shape index as a function SI : S → [−1, 1], and
recall that the polyps have shape index values close to −1. Therefore, it is expected
that a region (patch) of the surface that corresponds to a polyp contains at least one
local minimum of the shape index function. The detection of the candidate patches
starts from this observation, and follows a multi-scale search. For each local minimum
x0 ∈ S of the function SI, several level sets of SI (P1 . . .Pn) around x0 are tested, and
the level set Pi that maximizes the distances between the SI histograms of the region
and its surrounding, described below, is the final considered candidate patch, which we
simply denote by P . A total of n = 7 level sets are tested, corresponding to the shape
index values from −0.8 to −0.5 with a −0.05 step. These different patches P1 . . .Pn
are illustrated in Figure 4.2. On the one hand, values of shape index around −1 are
expected in the central part of the polyp (if the acquisition and the segmentation are
reasonable). On the other hand, a shape index around −0.5 means a valley, which is
what we expect at the boundary of the polyp, in its joint with the normal tissue. See
Figure 4.3. Different polyps have different shapes and joints with the normal tissue, the
maximization that gives the final path intends to capture the polyp structure as good
as possible.

The description in Section 4.1.3 of the mentioned SI histograms is given for the final
chosen patch P , but the ring and histogram computations are made for all the level sets
Pi in order to select the most appropriate of them (the most appropriate scale). This
multi-scale delineation is one of the contributions of this work.
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Figure 4.2: Different patches P1 . . .Pn are tested, in order to determine the size that
best fits the polyp candidate region.

Figure 4.3: Shape Index values over the surface. Note how the values along the polyp
are concentrated around −1.

4.1.2 Intuition in context information

All the polyp detection methods reported in the literature try to detect or classify the
polyps from properties defined only within the candidate region, without considering
the data around the region. However, it is important to analyze the context in which
the candidate patch is located, not only because different sections of the colon present
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different characteristics, but also because polyps can be situated over different structures
such as folds or plain colonic wall. A good feature who includes the shape of the
neighborhood for example, can help in the discrimination between irregular folds and
polyps over folds. Besides that, the fact of looking for significant differences in the
gray level, as we detail in Section 4.1.4, tries to imitate the human eye behavior, which
highlights zones that contrast with their vicinity.

In this regard, most of the features described in this Section take into account the
local information of the area around the candidate patch. Polyps (actually all the candi-
date patches) are then characterized not only by their intrinsic geometry and structure,
but also by their relationship with the surrounding area.

This, in a certain sense, makes the measures independent from the particular phe-
nomena going around, in a context where the natural variations of the properties of the
colon tissue impact on the measures and make absolute thresholds nonsense.

4.1.3 Geometrical features

In this part we describe how a polyp should look like from a geometrical point of view,
and how to take advantage of this description in order to distinguish between Polyps
and Non-polyps. We will see that, although there are different types of polyps, classified
by their shapes and joint with the colon tissue, there are some geometrical properties in
common that allow us to characterize all of them in terms of the curvatures presented
in Section 2.1.2.

We recall that polyps can be classified into Flat, Sessile and Pedunculated. The
three of them are supported in a circular region, and are more or less pronounced. With
the chosen normal orientation, this implies values of shape index indicating a shape
like a spherical cap (roughly, values between −1 and −0.6). The size of the polyps
can cover a wide range of values, for example in the database where we obtained the
test cases there are polyps from 2mm to 50mm. Nevertheless, as the shape index is
scale-invariant, while the shape of the polyp is spherical-like, the shape index will lie
within the mentioned interval; the curvedness on the other side, is the one indicating
the “scale” and it will serve to distinguish between artifacts and the shapes with the
size we are looking for (that is, polyps larger than 3mm for example).

The different types of polyps have different joints with the colon wall: while sessile
and flat lesions have a smooth transition, pedunculated polyps are attached by a stalk.
This produces different shape index values along the border of the lesions, but the
multi-scale strategy is able to capture the whole polyp correctly.

In the spirit of including the context information as explained in Section 4.1.2, we
propose the measures described below, taken from regions defined as follows. We note
that in this section all the sets are defined over S, because the geometric measures are
made directly from the mesh surface.

Given a candidate patch P , a ring R around P is computed, in order to consider
geometrical measurements with respect to the area surrounding the patch. The ring is
calculated by dilating the patch P a certain geodesic distance, such that the areas of
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P and R are equal. The geodesic distance computation on the triangulated surface is
performed using the algorithm in [36].

This geodesic computation algorithm works, in short, as follows. Given a point p in
the mesh S, the geodesic distance to the other points in the mesh is computed. For the
neighbors of p (the points sharing an edge with p) the distance is simply the length of
the edge. The set of points where the distance is already computed (the Alive set) is
incremented at each step with the points one edge away of the Alive set (the Close set).
The computation for each one of these points is made considering the triangle that it
forms with the points of the Alive set, and then solving a trigonometric equation. We
refer to [36, 5] for more details.

Figure 4.4 shows a candidate patch (actually a true polyp), and its corresponding
ring.

Figure 4.4: Ring (in blue) surrounding a candidate polyp (in orange).

Histograms of the shape index values are then computed for the patch P and the
ring R, and two different distances between them are computed: the L1 distance and
the symmetric Kullback-Leibler divergence (see Figure 4.5). If the patch corresponds to
a polyp-like shape then the values of the histogram P will be concentrated around the
−1 extrema, on the other hand, the histogram R will be inclined to the other extreme
in case of a polyp on a normal colon wall (concave), or with tendency to values near
−0.5 if the polyp is on a fold. These two features give a measure of the geometric local
variation of the candidate patch P . We assume that there are no other polyps in R or
that they do not significantly affect the statistics on the ring.

Although these two are the most discriminative features, we also consider the fol-
lowing additional ones since they still help to discriminate some typical false positives:

• The mean value of the shape index over the patch P , which describes the shape
of the selected patch.
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Figure 4.5: Typical shape index histograms and distances between them.

• The area of the patch, since we want to detect polyps in a certain range of sizes.

• The growth rate of the areas at the multi-size stage, meaning the ratio between the
area of the chosen patch P = Pi and the area of the immediately smaller tested
patch Pi−1; this feature measures how fast the shape of the patch is changing, in
a context where it is difficult to quantize the variation of the shape.

• Finally the shape factor

SF =
4π · Area
Perimeter2

,

which measures the shape of the patch border, how efficiently the perimeter is
used in order to gain area,1 and it favors circle-like patches (like the polyp patch
in Figure 4.4), avoiding elongated patches (like the patches in folds, which are a
very common source of false positives).

We then end-up with a total of 6 geometric features for detecting candidate polyps,
namely: L1 and Kullback-Leibler distance between shape index histograms of patches
and corresponding rings, the mean shape index over P , the area of the candidate patch,
the growth rate of the areas and the shape factor.

4.1.4 Texture features

Having ended the geometrical description of the polyps with the corresponding features,
we move to the other type of properties that will feed the classification stage, these are
the texture and gray level features. In what follows in this section, all the values are
taken, of course, from the CT volume, because the gray levels (absorvance values) are
in the original CT image.

It is quite obvious that the geometric factors are very important and decisive. The
influence of the texture or gray level, on the contrary, may be less intuitive. Due to
the differences in biological activity of polyp cells, the gray-level in the polyps may
show differences with the normal tissue, as can be seen in Figure 4.6, and it can be

1The maximum value for the shape factor is 1 and its achieved only by the circle.
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very helpful for detecting polyps. This is in particular useful for flat or small polyps,
where the geometric information is limited. Besides the gray-level itself, the texture of
the lesion may look suspicious, so we also describe in this section the texture features
studied during the course of this work.

Figure 4.6: Gray level difference between polyp and normal tissue.

Some work has been done on the inclusion of texture features (computed inside the
candidate polyps only), in order to reduce false positives [73], but according to the
reported results, there is still a lot of room for improvement in texture features. In [73],
the authors propose to compute, for each voxel inside the candidate volume, the three
eigenvalues of its corresponding Hessian matrix, and they claim that the distribution
of these eigenvalues for polyps voxels differs from the distribution for non-polyp voxels.
We tested these proposed features, but we did not find them correlated with the class.

Here we propose both the use of new texture features and the inclusion of the infor-
mation on the candidate’s surrounding area, as described in Section 4.1.2.

In this regard, again, we first define a couple of sets. First, for each polyp candidate
P ⊂ S, a volume P is calculated, containing the patch P and a portion of the inner
tissue next to the patch. This volume P is intended to contain the polyp tissue, so just
voxels with gray-level within a certain range (avoiding air and liquid) are considered.
A second volume R surrounding P is calculated, in order to compare it with the polyp
candidate tissue. We expect R to contain normal tissue. R is computed by dilating the
volume P and avoiding the air and liquid voxels, this is illustrated in Figure 4.7.
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Figure 4.7: Volumes P and R for texture features computation.

Haralick features

One of the chosen features is the mean gray level, and the others are a subset of the
classical Haralick texture features [31], adapted to the 3D case. In the original paper
Haralick describes co-occurrence matrices for each one of the four direction of a 2D
image, namely, horizontal, vertical and the two diagonals. The row and column number
of these matrices index all the gray-level values, and the i, j entry of the matrix of a
given direction counts the number of times gray level values i and j have been neighbors
in that direction. The proposed features are then derived from these matrices, which
describes the spatial dependence of the gray levels of the image.

In the discrete 3D case there are more directions to consider2. We consider just
seven directions, namely (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1) and (1, 1, 1),
and the co-occurrence matrices for these angles are calculated with the voxels of P, on
the one hand, and with the voxels of R on the other hand.

For each of the seven directions, six features are computed. The notation will be:

• p(i, j): the normalized i, j entry of the co-occurrence matrix

• N : number of gray-levels

and the six features are the given by the following expressions:

• Entropy:

−
N∑
i=1

N∑
j=1

p(i, j) log p(i, j)

2Actually in the continuous case there are the same number of directions: uncountable infinity.
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• Energy or Angular Second Moment:

N∑
i=1

N∑
j=1

p(i, j)2

• Contrast:
N∑
i=1

N∑
j=1

(i− j)2p(i, j)

• sumMean:
1

2

N∑
i=1

N∑
j=1

(i+ j)p(i, j)

• Maximum probability:
max

i=1...N,j=1...N
p(i, j)

• Homogeneity:
N∑
i=1

N∑
j=1

p(i, j)

1 + |i− j|

All the seven features (gray-level plus six Haralick features) are averaged over the
seven directions, for each volume P and R, and the differences between the features over
the two volumes is considered (Figure 4.8). For the purpose of comparing the features,
those ones computed on P only are called absolute features, and the differences between
P and R are called differential features.

This approach for computing the texture features, measuring differences with the
surrounding area, leads to better discrimination than the features computed just for
volume P, as discussed further in Section 5.2.

4.1.5 Feature Selection

Among all the geometric and texture features considered here, some of them have better
discrimination power than others. Some of them, when included in the decision process,
may even deteriorate the overall performance of the classifier.This is the main reason
why a feature selection step is usually performed.

However, in general an exhaustive search is infeasible, because the number of subsets
of a set of n features is 2n, so heuristic methods are used to find a reasonable solution.
Typically, there are two kinds of algorithms: feature ranking and subset selection. The
former rank the features according to a given metric, so the features can be sorted. The
latter vary the subset (adding or deleting features) according to some heuristic, until
reaching an optimal classification performance in a given sense.

Both techniques, feature ranking and subset selection techniques, were applied here,
using the implementation from the software package Weka.
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Figure 4.8: Differential texture features.

For the feature ranking, three different single-attribute evaluators (methods to evalu-
ate the features individually) were used, namely, InfoGainEval, GainRatioAttributeEval
and ReliefFAttributeEval. The two first ones uses the concept of entropy, which is a
function originally introduced by Shannon [61] that measures the uncertainty or infor-
mation of a random variable. The entropy H of a discrete random variable X that takes
values in {x1 . . . xn} is defined as:

H(X) = −
n∑
i=1

p(xi) log(xi) .

The most known example is the entropy of a binary random variable with distribu-
tion (p, 1 − p) (Bernoulli). Figure 4.9 shows the entropy of this random variable, and
illustrates the fact that the uncertainty is maximum when the two results are equiprob-
able (p = 1/2), and minimum at the ends (p = 0 and p = 1), when only one result is
possible and therefore there is no uncertainty about the result. It can be also interpreted
as “how much information the result really contains”.

Furthermore, given two random variables X, Y , the conditional entropy H(X|Y ) is
defined as

H(X|Y ) =
∑
i,j

p(xi, yj) log

(
p(yj)

p(xi, yj)

)
,

and it measures the amount of uncertainty of X given that you know the value of
Y . Finally, the mutual information I(X;Y ) = H(X) − H(X|Y ) measures how much
information does Y give about X, or equivalently, how much does Y decreases the
uncertainty about X.

Back to the attribute evaluators, the InfoGainEval measures the information gain
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Figure 4.9: Entropy H of the distribution (p, 1− p).

of an attribute with respect to the class:

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute) .

The GainRatioAttributeEval is similar:

GainR(Class, Attribute) =
H(Class)−H(Class|Attribute)

H(Attribute)
.

The third attribute evaluation technique is the so-called ReliefFAttributeEval, which
for each instance x selects the nearest instance x+ of the same class and the nearest
instance x− of the opposite class. With this triplet, for each attribute a weight is
computed as wi = ||xi− x+

i ||2− ||xi− x−i ||2. This process is repeated a number of times
and these weights are updated accumulating wi. These weights are then used as the
relevance measure of each feature.

All these methods are quite unstable: the results (ranking or best subset) vary
significantly depending on the heuristic technique used to evaluate the attributes.

However, some general comments can be given. For example, all the rankings ob-
tained with these three different evaluators agree that the geometric features are better
ranked than the texture features. Another important comment is that the differen-
tial features are always better ranked than the absolute features, this result is further
confirmed with the evaluation in Section 5.2.

On the other hand, to select the best subset of features a wrapper approach was
used, which means that the performance of the classifier itself is used to measure the
discrimination power of the subset. Theoretically, this process should lead to the best
possible classification results. Nevertheless, because of time constraint reasons, we did
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not used our evaluation scheme in this wrapper procedure, but the built-in solution in
Weka which uses a performance metric different than ours.

The number of selected features in the resulting subsets varies from 8 to 11, de-
pending on the greedy search method. However, when we evaluated the performance
of these subsets in terms of sensitivity vs false positives, we found that using all 12
features yielded to better results. Indeed, in our setting we seek to minimize the false
positive rate under the constraint of 100% sensitivity. However the wrapper technique
implemented in Weka uses more standard performance measures (Area Under the ROC
Curve, Precision, Recall, F-score, etc).

4.2 The Class Imbalance problem

After the candidate detection with the multi-size approach, the number of true polyps
was much lower than the number of no-polyps patches, a relation on the order of 500 : 1,
which is a huge problem for the learning stage of the classifier. This situation is known
as class imbalance. In this section we briefly explain the problems encountered when
dealing with a class imbalance situation. Then we analyze three solutions and comment
on the correct way to use them.

When the dataset is highly imbalanced, the classifier tends to assign the instances
to the majority class. A numerical example with our numbers is quite illustrative. If
the classifier simply tries to minimize the number of missclasified instances, then the
simplest classifier, assigning the majority class always, reaches a 99.8% of well classified
instances (all the non-polyps patches). Nevertheless, this classifier misses all the true
polyps!

It is obvious that the cost for us to miss a true polyp is much higher than the cost
of labeling a non-polyp as a polyp. This can be represented by a cost matrix like(

0 N
1 0

)
where N � 1 is the cost of classifying a polyp as non-polyp, 1 is the cost of classifying
a non-polyp as polyp, and the cost of classifying correctly is zero.

To fix ideas, let us consider the case with two classes and one feature with Gaussian
distribution N (0, 1) and N (3, 1) for classes w1 and w2 respectively, as illustrated in
Figure 4.10. If the matrix cost is trivial, according to the Bayesian decision theory it
follows that the decision rule is to select the class w1 if the feature value is lower than
1.5 and the class w2 otherwise.

Now, if we consider a nontrivial cost matrix, say(
c11 c12

c21 c22

)
(4.1)

then it is easy to show that the optimal decision threshold moves and we decide w1 if

p(x|w1)

p(x|w2)
>
c12 − c22

c21 − c11
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Figure 4.10: Optimal decision rule for two classes with one feature with Gaussian dis-
tribution N (0, 1) and N (3, 1).

and w2 otherwise.
Although it is very simple to modify the threshold for this case, it is not so simple with

more sophisticated classifiers. The nontrivial cost matrix in the case of our application
and the highly imbalanced data are the problems we addressed with the techniques
described in what follows.

4.2.1 Meta Cost

The approach of Domingos [20] consists of combining several instances of the classifier
instead of stratification (modify the proportion of classes in the training data according
to the costs). This technique is called MetaCost and, in short, it forms different sets
from the training data by taking samples with replacement, then the base classifier is
trained with each of these sets. When classifying an instance, the probability to belong
to each class is estimated by the fraction of votes received from the group of classifiers,
then the instance is classified according to the matrix cost minimizing the conditional
risk3. Because of its working basis, this method does not work with “stable” classifiers
(those that produce similar models with slightly different training sets) like SVM or
Naive Bayes. Since we chose SVM as basis classifier, our results with MetaCost were
not the best.

3The conditional risk R(i|p) is the expected cost of predicting that p belongs to class i: R(i|p) =∑
j P (j|x)C(i, j) where P (j|x) is the probability of x belonging to class j and C(i, j) is the entry of

the matrix cost.
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4.2.2 Cost Sensitive Learner

This approach, unlike the MetaCost, tries to balance the classes before the learning
stage. The implementation we used from Weka simply takes as input the re-balance pa-
rameters and replicates instances of the minority class. More specifically, the algorithm
is set up by a cost matrix like the one in (4.1). Usually, the entries c11 and c22 are set to
zero, because there is no cost associated to correctly classify an instance. The effect of
the cost matrix is actually defined by the ratio between c12 and c21, so the cost matrix
can be represented, without loss of generality, as(

0 N
1 0

)
. (4.2)

With this cost matrix, the minority class (here the polyp class) is over-sampled
by replicating N times each instance.Notice that this technique can be applied also
in a setting where the classes are balanced, but the costs of missclasification are very
different. Therefore, the model trained with the new dataset is inherently less likely to
make expensive mistakes.

One of the advantages of this approach is that no assumptions are made about the
behavior of the classifiers (unlike the previous method) nor the distribution of the data
(unlike the next method).

4.2.3 SMOTE

The Synthetic Minority Over-sampling TEchnique (SMOTE) is a method to generate
artificial instances of the minority class, in order to get a balanced data to learn from.
The new artificial instances are created as a linear combination of the existing instances
of the minority class. More specifically, for each new synthetic instance to create, N
original instances are randomly selected, and the new artificial one is computed as a
convex combination of these N instances. The parameter N is configurable. Therefore,
there is an underlying assumption that the optimal partition in the feature space gives
convex sets, which may not be the case in several applications. Here is the basic usage:
testing with a cross-validation strategy, take the 9 training folds, apply SMOTE to them
and use the resulting data for train a classifier, then test it with the remaining fold. It
is worth pointing out that the synthetically increased data should be used only to train
the classifier and never to test it, because if so the results will be altered, as it can be
seen from the following experiment that we made.

We generated artificial data: two classes with five features with random values fol-
lowing a Gaussian distribution N (0, 1) for both classes (so actually there is only one
class). We then applied SMOTE to the whole data and classified it with Naive Bayes
using cross validation. Values of Area Under the ROC Curve of almost 0.8 were reached
when an area of 0.5 was expected, as the features were independent and identically
distributed.
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4.3 Classifiers

In this last section of the chapter we describe the different tested classification tech-
niques. All these algorithms are supervised, which means that a training data set is
used in the learning stage, producing a model or classifier. This model is then used
to classify the new instances. The way of splitting the data into training and testing
datasets is described in the next chapter, along with more specific details about the
election of some parameters.

4.3.1 Support vector machines (SVM)

In this section we describe the foundations of the SVM classifiers family [17]. The basic
idea is to represent the data in a space where it results more easily separable. We begin
by solving the hyperplane separation problem, and then we describe the mapping to the
higher dimensional feature space, where hopefully the data result linearly separable and
the optimal hyperplane is obtained by solving the mentioned problem. Further details,
proofs and more general results can be found in [57].

Let us first suppose that our data is linearly separable, that is, it exists a hyperplane
that separates the two classes. Moreover, let the features of the data x1 . . .xm belong
to a Hilbert space H, and its labels y1 . . . ym ∈ {−1,+1}.

Let us recall that a hyperplane can be written as:

{x ∈ H /〈w,x〉+ b = 0}

where w ∈ H is the normal vector and b ∈ R. Each hyperplane leads to a classifica-
tion or decision function, namely

fw,b : H → {−1,+1} (4.3)

fw,b(x) = sgn (〈w,x〉+ b) , (4.4)

Note that we can multiply both w and b by the same constant, getting the same
hyperplane. To avoid this ambiguity we restrict the hyperplanes to the canonical ones
with respect to the data x1 . . . xm, meaning that it is satisfied

min
i=1...m

|〈w,xi〉+ b| = 1 , (4.5)

so the closest point to the hyperplane has a distance of 1/||w||.
Among all hyperplanes separating the data, there exist a unique optimal hyperplane,

in the sense that it maximize the margin of separation between the data and the hy-
perplane. Given that the minimum distance of the data to the hyperplane is 1/||w||, in
order to maximize the margin of separation we have to minimize ||w||, keeping a correct
classification. This latter constraint can be achieved by asking y (〈w,x〉+ b) ≥ 0 for all
the training points. However, if that solution indeed exists, the canonicality equation
(4.5) implies that yi (〈w,xi〉+ b) ≥ 1. We then end up with the following optimization
problem:
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min
w∈H,b∈R

1

2
||w||2 , (4.6)

s.t. yi (〈w,xi〉+ b) ≥ 1 ∀i = 1 . . .m (4.7)

where the constraints (4.7) ensure the correct classification of all the data points and
the minimization of the objective function (4.6) ensures the optimality of the hyperplane
in terms of the margin of separation.

The Lagrangian associated to this optimization problem is obtained by introducing
the Lagrange multipliers αi ≥ 0

L(w, b, α) =
1

2
||w||2 −

m∑
i=1

αi (yi〈w,xi〉+ b− 1) (4.8)

From the optimality condition that the derivatives of L must vanish, it follows that

w =
m∑
i=1

αiyixi , (4.9)

m∑
i=1

αiyi = 0 . (4.10)

According to the Karush-Kuhn-Tucker theorem (see [57]), given a solution for (4.8),
that is, a saddle point (w̄, b̄, ᾱ):

L(w̄, b̄, α) ≤ L(w̄, b̄, ᾱ) ≤ L(w, b, ᾱ) , ∀w, b ∈ H × {−1,+1}, α ∈ [0,∞)m

then the KKT conditions are satisfied:

αi (yi〈w,xi〉+ b− 1) = 0 ∀i = 1 . . .m .

Among all the patterns, those xi for which αi > 0 are called Support Vectors, and
by virtue of the last equation, they lie exactly on the margin. The other patterns are
irrelevant in the construction of w since the corresponding multipliers αj are zero. Note
that this patterns are farther to the hyperplane, so the hyperplane is determined only
by its closest patterns (the support vectors), which is reasonable. This is illustrated in
Figure 4.11.

Substituting the conditions (4.9) and (4.10) into the Lagrangian (4.8), we obtain the
dual formulation of the optimization problem, the quadratic programming problem:

maxα∈R

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj〈xi, xj〉 , (4.11)

s.t. αi ≥ 0 ∀ i = 1 . . .m
m∑
i=1

αiyi = 0 .
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Figure 4.11: Support Vectors and margin.

However, it is reasonable to think that a separating hyperplane may not always
exists, and then the constraints (4.7) look very hard. The first idea to relax the problem
may be to find the hyperplane that leads to the minimal number of errors, but this
problem is NP-hard.

Cortes and Vapnik [17] proposed to relax the problem by introducing new variables
ξi ≥ 0, leading to the softer constraints

yi (〈w,xi〉+ b) ≥ 1− ξi ∀i = 1 . . .m . (4.12)

These constraints can be met for all the instances by making ξi large enough, so a
penalty term is added to the objective function. In its simplest form, this is known as
the C-SV classifier, and the formulation of the optimization problem is as follows:

min
w∈H,b∈R

1

2
||w||2 +

C

m

m∑
i=1

ξi , (4.13)

s.t. yi (〈w,xi〉+ b) ≥ 1− ξi ∀i = 1 . . .m (4.14)

ξi ≥ 0 ∀i = 1 . . .m

In this case, the solution w has the same form w =
∑m

i=1 αiyixi, and the non-
zero coefficients αi can only occur when the corresponding instance precisely meets
the constraint (4.14). The solution of problem (4.13) is found by solving a quadratic
programming problem very similar to (4.11).

Unfortunately, the case where the data is (or is close to be) linearly separable is not
very frequent. The trick to use the tools developed above is to map the data into a
higher dimensional space where, luckily, it results linearly separable. Let us formalize
these concepts. The original feature space is now called X , and the higher dimensional
feature space is H. In order to use all tools we have just described, H has to be a Hilbert
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space. The map Φ is then:

Φ : X → H
Φ(x) = x .

Very often, the dimension of the resulting feature space H is so large that it is ex-
tremely expensive even to compute Φ(x). However, if we carefully review the description
of the linearly separable case, we can observe that all the computations involve only dot
products between elements in H, and never vectors in H by themselves. Therefore,
taking into account this last observation, we can design the map Φ in such a way that
the computation of dot products 〈Φ(x),Φ(x′)〉 results computationally affordable. More
specifically, we employ representations Φ such that the dot product 〈Φ(x),Φ(x′)〉 corre-
sponds to a kernel k:

〈Φ(x),Φ(x′)〉 = k(x, x′)

which allow us to compute the dot product without having to explicitly compute the
map Φ.

Let us present some examples of the most used kernels, starting with the polynomial
kernel. Here Φ maps each x ∈ Rn to the vector x = Φ(x) whose entries are all the
possible d-th degree products of the entries of x, scaled by the number of number of
occurrences of each monomial. For example, for n = 2 and d = 2 we get:

Φ : R2 → H = R3

Φ(x1, x2) = (x2
1, x

2
2,
√

2x1x2)

It is easy to see that for the polynomial kernels, it holds

〈Φ(x),Φ(x′)〉 = 〈x, x′〉d .

The second example family is the one of the Radial Basis Function (RBF) kernels,
which are those that can be written in terms of a metric d(x, x′) on X , as

k(x, x′) = f(d(x, x′)) .

For example, the Gaussian kernel is

k(x, x′) = e−
||x−x′||2

2σ2 ,

and it is, with the polynomial kernel, one of the classic kernels used in pattern recogni-
tion.

Note that the map Φ is not needed for the computations, and therefore it does not
care if we ignore the explicit form of Φ. In the case of the Gaussian RBF kernel, the
feature space H is infinite-dimensional.

Figure 4.12 shows an example of how the embedding of the data on a higher di-
mensional space can simplify the desicion boundary. Given two classes, assume that
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Figure 4.12: Dataset mapped by polynomial kernel. Figure from [57].

the true optimal decision boundary is an ellipse. Then, under the mapping Φ(x1, x2) =
(x2

1, x
2
2,
√

2x1x2), this ellipse becomes a plane which, of course, separates the classes.
The classifying technique C-SVM, intensively used in this work, is obtained by apply-

ing this kernel trick to the hyperplane separation approach, specifically to the problem
C-SV in equation (4.13). The chosen kernel for the feature space change is the polyno-
mial kernel. An optimal choice of the parameters (C, d) is performed using grid-search.
More details about the parameters are provided in the next chapter.

4.3.2 Classification Trees + AdaBoost

A classification tree is a model that classifies a new instance based on the values of the
features, following a tree structure (Figure 4.13). Given the tree and the new instance,
starting from the root, at each node a decision is made according to the value of a
feature, descending trough the nodes until reaching a leaf. The leafs are labeled, and
the label of the reached leaf is the class predicted by the classifier. This classification
process, once the tree is constructed, is a simple sequence of decisions based on the
features values, so the model is very intuitive.

Given a training set, the problem of finding the optimal decision tree is NP-Complete,
so heuristic criteria are used to construct the tree. For example, the C4.5 [53] is an al-
gorithm used to construct desicion trees that starts with a node containing the complete
training set, and it splits the node according to the feature that better separates the
data, in the sense that the new nodes are as pure4 as possible. These criteria to choose
the better feature at each node is based on measuring the impurity with the Informa-
tion Gain (or Kullback-Leibler divergence), and keeping the feature that maximizes the

4A node is said to be pure if all the instances belong to the same class.
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Figure 4.13: Scheme of typical classification tree.

impurity decrease. More specifically, assuming only two classes w1 and w2, at each node
N the information impurity can be measured as

i(N) = −
2∑
j=1

P (wj) log2 P (wj)

where P (wj) ∈ [0, 1] is the proportion of instances of the wj class at node N . This is
the binary entropy of the distribution (P (w1), P (w2)), so it is minimum (zero) when all
the instances belong to a single class, it reaches its maximum (one) when the instances
are equally balanced, and it is symmetric. See Figure 4.14. Therefore, this is a measure
of how pure is the node.

Now, the feature to pick at node N is the one that maximize the impurity decrease:

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

where NL and NR are the nodes obtained by splitting the node N with the testing
feature, and PL is the proportion of instances in the left node NL.

Usually, the desicion trees tend to overfit the training data (and therefore they do
not generalize well to new data), so a pruning technique is often used to reduce this
effect.

These trees are generally unstable, in the sense that they can produce significant
different trees from slightly different training datasets. On the one hand, this is a
drawback from the robustness point of view, but on the other hand, some techniques
that take classifiers as input, require precisely this instability. This is the case, for
example, of the MetaCost algorithm used for the imbalance problem, or the AdaBoost,
commented below.
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Figure 4.14: Entropy H of the distribution (p, 1− p).

The AdaBoost (Adaptive Boosting) [28] is a technique to combine classifiers. One
may ask why is it convenient to combine multiple classifiers instead of choosing the
best classifier available. At least three reasons can be given in defense of the classifier
combination approach [39, 18].

• The first one is statistical. Suppose that we have several classifiers with good
performance over the training data set. These different classifiers may have very
different generalization properties, so by choosing one of them we may have a
considerable risk of picking a classifier with bad performance over other real data.
A more conservative option is to combine all of them, so this new classifier may
not be as good as the better available classifier, but we will reduce the risk of
choosing a bad classifier.

• The second reason is computational. Since some training algorithms follow a
greedy-like search, they may end up in different local optima. The combination of
these classifiers may lead to a better approximation of the best classifier.

• And finally the third reason is representational. It may be the case that the best
classifier does not lie in the classifier space where we are looking for (for example,
linear classifiers or trees). However, a combination of these classifiers may reach a
performance similar to the performance of the best classifier (for instance, we can
approximate any decision boundary with an ensemble of linear classifiers).

A simple numerical example throws some light on the practical side. If we have 9
independent classifiers with probability 0.8 of giving the correct class, then the classifier
obtained by majority vote over the 9 classifiers have an accuracy of 0.98.
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Back to the specific case of AdaBoost, the idea in this case is to train the classifiers
carefully and incrementally, and then combine them linearly. More specifically, given
a training dataset x1 . . .xm with labels y1 . . . ym, the first classifier is trained with a
subset of the dataset, sampled using a uniform distribution. The second classifier is
trained with another sample of the same training data but with an updated distribution
that assigns more likelihood to those instances that where incorrectly classified by the
first classifier. This way, the second classifier will pay more attention to the “difficult”
instances in the dataset. This process continue, updating the distribution taking into
account the classification errors of the previous step and training the new classifier with
the dataset sampled under this distribution, until training all the T classifiers. The final
classifier is

C(x) = sign

(
T∑
k=1

αkDk(x)

)

where Dk(x) ∈ {−1,+1} is the label assigned by the classifier k, and αk is a weight
factor computed at each step (along with the new dataset distribution), depending on
the classification error of the classifier k. The algorithm in Figure 4.15 is a pseudo-code
of the AdaBoost, more details of this algorithm can be found in [28, 39].

Given (x1, y1) . . . (xm, ym) ∈ Rn × {−1,+1};
Set the weights w1

i = 1
m

;
for k=1 to T do

Take a sample Sk from de dataset using distribution wk;
Train classifier Dk using Sk;
Compute weighted error at step k:

εk =
m∑
i=1

wki lk,i

where lk,i = 1 if Dk misclassifies the instance (xi, yi) and 0 otherwise Compute

βk =
εk

1− εk

Update the weights

wk+1
j =

wkj β
1−lk,i
k∑m

i=1w
k
i β

1−lk,i
k

end
Return D1 . . . DT

Figure 4.15: Training phase of AdaBoost.
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4.3.3 Other tested classifiers

Of course, we tested several classifiers in order to choose the best solution to our problem.
Among these classifiers, we will point out two of them.

The first one is the Näıve Bayes classifier, which is a very simple classifier. The
Näıve term is due to the fact that this classifier assumes independence of the features
(x1, . . . , xn). Under this assumption, is then easy to estimate the distributions p(x|y) as
p(x|y) =

∏n
i=1 p(xi|y). The estimation of p(x|y) is the basis of the Bayesian classifiers.

Given a new instance x the decision is taken as the maximum a posteriori (MAP), this
is

arg max
class c

p(y = c)p(x|y = c) .

This classifier is then very simple, it can easily work with a large number of features
and its performance may be good enough even when the independence assumption is
violated. Indeed, when we tested this classifier with our dataset, the performance was
close to (but not as good as) the obtained with SVM.

The second classifier in this section, the One-Class SVM, was tested as an alternative
solution to the class imbalance problem, in the following sense. Instead of considering
two classes with a great imbalance and trying to apply a classical binary classifier with
some previous step to balance the data, the idea is to consider only one class, whose
data is enough to train the classifier, and then classify the new instances as belonging
to the chosen class if the feature match with the model, or as outliers if they do not.
In the case of the application in this work, the polyps would be the outliers, and the
non-polyps the class for which the model is trained.



Chapter 5

Results and Conclusions

In this chapter we give details on the parameters selection, evaluation process, database
used, some implementation details, etc. Then we present the obtained numerical results
and compare them with the state-of-the-art results presented in the Section 1.5. Finally,
we give a qualitative discussion about the results, future work and conclusions.

5.1 Classification framework and details

5.1.1 Database used
A total of 31 cases of the WRAMC database [52] were used to test the proposed CAD
algorithm,1 with 49 polyps detected by optical colonoscopy, including two flat polyps.
Among these 49 polyps, 34 are larger than 6mm in size, and the other 15 are between
3mm and 6mm in size. Figure 5.1 shows the histogram of the polyps’ size.

Figure 5.1: Histogram of the polyps sizes.

This database contains around 800 studies (not all of them containing polyps), but
the information about the polyps location is very poor, and it is very hard to get
a precise location. We got access to some documents describing with more detail the
polyps information, so we could identify these polyps in our segmentation and determine

1Data provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Center, Walter Reed Army
Medical Center.
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their precise coordinates. Unfortunately we have only a few of these documents, and
they are no longer available on the web.

Patient preparation and other details about the study can be found in [52]. In
particular, the preparation process was standard, with oral administration of 90ml of
sodium phosphate and 10mg of bisacodyl (laxatives). Additionally, as part of the clear-
liquid diet, the patients consumed 500ml of barium for solid-stool tagging and 120ml
of diatrizoate meglumine and diatrizoate sodium for the opacification of luminal fluid.
A 4-channel or 8-channel CT scanner was used (GE LightSpeed or LightSpeed Ultra,
General Electric Medical Systems).

5.1.2 Implementation details

All the coding was done in C++ and compiled with gcc under GNU/Linux. The ITK
[33] libraries were used as basis to implement the majority of the image processing
algorithms, and the VTK [58] libraries were used for visualization and also for some
filter coding.

Among others, we implemented the Geodesic Active Regions algorithm, all the sur-
face motions by curvature, and the whole preprocessing stage in the segmentation (the
probability map computation). We also implemented all the code of the Chapter 4, with
the only exception of the geodesic distance computation, which was kindly provided by
Alberto Bartesaghi [5].

The software package Weka [30] was used for the classification and feature selection.
In particular we used the implementation of the following algorithms: SVM, C4.5 trees,
Näıve Bayes, AdaBoost, CostSensitive learning, MetaCost and SMOTE,

5.1.3 Evaluation scheme and parameters selection

As commented in Chapter 4, in order to make a fair evaluation of the system the
instances used for training should not be used for testing. A common scheme used in
virtual colonoscopy works, very similar to the n-folds cross validation, is the so-called
“leave-one-out” cross validation, which in this case means training with 30 studies and
testing with the remaining one.

The spirit of the evaluation was to achieve 100% sensitivity (if possible), with the
lowest false positive rate possible. Toward this aim, for each algorithm (classifiers and
methods for dealing with class imbalance problem) the parameters were chosen testing
all the possible combinations in a grid, and keeping the set that reaches the highest
sensitivity. At the same sensitivity, the parameters with the lowest false positive number
were preferred.

The number of iterations for the smoothing step (Section 3.3) can be set by choos-
ing the value that maximizes the overall performance of the system, as we have just
described. Alternatively, we can consider a sphere of the size of the resolution and com-
pute analytically the number of iterations that are needed to make it vanish. The idea
behind this procedure is to smooth the surface up to the resolution limit. These two
approaches led to the same result, 15 iterations, and therefore this is the chosen value for
the parameter. The other parameter involved in the segmentation step is the iso-level
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α for the marching cubes algorithm, whose value does not influence the segmentation
result as illustred in Figure 3.15.

After the grid-search over the three remaining parameters ((C, d) of SVM and the
cost of CostSensitive learning), we end up using CostSensitive learning with a cost
matrix: (

0 35
1 0

)
and C-SVM with C = 1 and Polynomial kernel with exponent 1.5.

5.2 Numerical results

The numerical results listed below were obtained by classifying with SVM using Cost
Sensitive learning with the best parameters (in the sense of the previous section), after
normalizing the data; Näıve Bayes performed similarly.

These values are comparable with the state-of-the-art results [73, 66], but our database
includes very small and therefore challenging polyps. A more precise comparison of re-
sults is not necessarily useful, since in general each work considers its own database.

When testing with all the polyps, a 100% sensitivity is achieved with an average of 2.2
false positives FPs per patient case. On the other hand, when testing our CAD pipeline
with the polyps greater than 6mm in size (34 in total, including two flat polyps), which
is the typical framework in the VC CAD literature, the results are further improved, a
100% sensitivity is achieved with just 0.8 FPs per study. Figure 5.2 shows the FROC
curve obtained using the whole database (polyps > 3mm in size) and Table 5.1 compares
the classification results according to the polyps size. Again, the work with such small,
as well as flat polyps, is unique to the framework here presented; see next.

Figure 5.2: FROC curve for the proposed system.
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Polyp sizes
> 3mm > 6mm

Sensitivity 100% 100%
FP per case 2.2 0.8

Table 5.1: Comparison of performance by polyp size.

Differential features importance

Table 5.2 shows the comparison between absolute and differential texture features.
The classification was performed using all the geometric features and either the abso-
lute texture features (computed just for V1), or the differential texture features, using
the standard leave-one-out strategy. The results show that, when combined with the
differential geometric features, differential texture features are significantly more dis-
criminative than the absolute ones. The FROC curve in Figure 5.3 extends the results
in Table 5.2 and compares the performance of the classifier when using differential or
absolute features.

Texture features
Absolute Differential

Sensitivity 96% 100%
FP per case 3.1 2.2

Table 5.2: Comparison of absolute and differential texture features, with polyps greater
than 3mm in size.

Figure 5.3: FROC curve comparing the performances with differential (in blue) and
absolute (in red) texture features.
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Segmentation comparison
To compare objectively our segmentation method with the previously provided seg-

mentation, we tested the results over the same dataset (10 cases). The best classification
results for each segmentation method are shown in Table 5.3, where it can be seen the
significant improvement of our segmentation scheme in terms of polyp detection.

Segmentation
Provided Our method

Sensitivity 100% 100%
FP per case 6.6 0.9

Table 5.3: Comparison of performance using different segmentations, for polyps greater
than 6mm in size.

On the other hand, the FROC curve in Figure 5.4 compares the performance of the
system with the different smoothing methods discussed in Chapter 3. It can be seen
that the proposed smoothing technique achieves better results than the others.

Figure 5.4: FROC curve comparing the performances using the different smoothing
methods. The curve for the proposed evolution is shown in blue, and the results for the
evolution by H and κmin are shown in red and black respectively.

Finally, Table 5.4 is the same that was presented when the prior work was discussed
(Chapter 1, Section 1.5), but with our results added. Once again, different databases
were used in different works so these comparisons might not be completely fair, but this
table shows that our algorithm is the only one capable to detect medium-size polyps
(> 6mm) with less than one false positive per study. In addition, our system detect
small polyps (> 3mm) with the lowest false positive rate.
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Technique # Polyps Size Sensitivity FP per study
Summers et al. [64] ≈ 30 > 10mm 89.3% 2.1
Summers et al. [64] ≈ 120 > 6mm 60% 8
Yoshida et al. [76] 12 > 5mm 100% 2
Paik et al. [49] 7 > 10mm 100% 7
Wang et al. [73] 61 > 4mm 100% 2.68
Hong et al. [32] ≈ 120 > 5mm 100% 3
Sundaram et al. [65] 20 > 10mm 100% 18
Sundaram et al. [65] 122 > 2mm 80% 24
van Wijk et al. [69] 57 > 6mm 95% 5
van Wijk et al. [69] 32 > 10mm 95% 4
Suzuki et al. [66] 28 > 5mm 100% 1.1
Bogoni et al. [7] 21 > 5mm 90% > 3
Taylor et al. [67] 32 > 6mm 81% 13
Proposed pipeline 34 > 6mm 100% 0.8
Proposed pipeline 49 > 3mm 100% 2.2

Table 5.4: Performance comparison of our method with the results reviewed in Chapter
1.

5.3 Discussion

5.3.1 Small polyps, big polyps, flat lesions

It is clear that both the small polyps and flat lesions are much more difficult to detect
than the other polyps. What is not clear is if the same kind of algorithm and features
are suitable for detecting all the range of polyp types and sizes. We showed that the
proposed combination of features, although it may not be optimal for every specific type
of lesion, is able to correctly detect all of them.

All the stages in the pipeline, specially the segmentation and the features, contribute
to the good classification results for the whole database. However, it would be interesting
to study which pre-processing techniques and features are better for each type and
size of polyps, and eventually propose different CAD systems for each class of polyp.
Nevertheless, the 100% sensitivity together with the 2.2 FP rate for polyps greater than
3mm in size is as remarkable as the 0.8 FP rate for polyps beyond 6mm in size.

Some examples of the classified polyps are shown in Figure 5.5.

5.3.2 Geometric and texture importance

Although the geometric features are the most discriminative ones, the texture features
still play a fundamental role in the classification. Adding the texture features to the
geometric ones, the sensitivity reaches 100%, and at the same time the false positives
rate decreases by 30%.
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Figure 5.5: Example of patches corresponding to well-classified polyps..
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Figure 5.6 shows a detected polyp, where the geometry is crucial, because the gray-
level does not present considerable local variations. This is specially true for polyps
located over tagged material. On the other hand, for the flat polyp in Figure 5.7, the
geometry is weakly discriminative (although the measure considering the ring enhances
the detectability), and the texture features lead to a correct classification.

Texture information is very important also because it is more robust to segmenta-
tion errors, as the texture features are computed integrating from the volumetric data
itself (once the local volumes have been considered). Moreover, the differential texture
features (the differences between P and R), outperform the absolute texture features
(just computed in P), as shown in Table 5.2.

Figure 5.6: Polyp with no texture information.

Figure 5.7: Polyp with texture information, but weak geometric information.
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5.3.3 Qualitative analysis of false positives

In addition to the number of false positives, it is very important to study how these FP
patches look like, since some of them can be quickly ruled out by the expert and some
can be avoided by improving some aspects of the segmentation step.

About half of the false positives are quite reasonable, in the sense that they are
(usually small) sections of the colon that are polyp-like shaped, Figure 5.8. This is
specially reasonable taking into account that we designed the system to also detect small
and flat polyps. On the other hand, about 20% of the FPs were in fold sections of the
wall (Figure 5.8) or on parts of the insufflation tube. All these patches are easily ruled
out by inspection. Another 20% of the FPs were caused by segmentation errors, this
number being significantly reduced thanks to the texture features as discussed above.

More examples of false positives are shown in Figure 5.9. There are two false positives
caused by segmentation errors. However, Figure 5.10 shows two false positives that
might look like segmentation errors, but the CT images show that the segmentation is
reasonable. The reason of these false positives may be fecal residues, or they might be
true polyps missed by the optical colonoscopy.

Figure 5.8: False positives: fold and patch similar to polyp.

5.4 Future work

There are not few directions to continue improving this work. In terms of the scope, this
thesis is focused on CT studies with a certain bowel preparation. It is well known that
the preparation is the most uncomfortable step for the vast majority of patients, and
therefore it is interesting to study how do the CAD algorithms perform with a different
bowel preparation, less favorable for the segmentation.

Even with the preparation process here presented, the segmentation may be im-
proved. We think that the major difference could be in the preprocessing stage, given
that the smoothing step seems to perform as good as it can.
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Figure 5.9: Examples of false positives.

The inclusion of new features may help the classification step. On the one hand,
there might be better measures for the characteristics that we want to describe. On
the other hand, specialized doctors may have other ideas about what to look for when
searching for polyps, and these ideas may lead to new features.

It would be very helpful to count with a larger database, with a proper labeling of
the polyps. More and better experiments would be possible, new problems and new
ideas would arise for sure.

Finally, the histologic information of the polyps is very important. With a large
database containing the histological pattern of each polyp (obtained from biopsy), it
might be possible to propose features and train machine learning algorithm to classify
the polyps according to its histology.
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Figure 5.10: False positives patches with their corresponding CT slice.

5.5 Conclusions

We introduced a complete pipeline for a Computer-Aided Detection algorithm that flags
candidate polyp regions. This CAD algorithm is completely automatic. All the stages
of the system were implemented producing state-of-the-art results.

The segmentation stage is simple and computationally efficient, it includes several
novelties and it produces high quality segmentations. Maybe the main novelty is the
smoothing PDE which enhances the polyps, leading to a better detection.

The new multi-scale approach for delineating the candidate patches allows to pre-
cisely delineate polyps.

The main novelties of the classification stage are in the consideration of the surround-
ing area for each candidate polyp (we compute differential features instead of absolute
ones), and the inclusion of the Haralick texture features.

As a consequence, the system is able to detect polyps greater than 3mm in size with
only 2.2 false positives per case. When looking for polyps greater than 6mm in size, our
system can achieve 100% sensitivity with less than one false positive per case. Although
tested with different datasets, these results are within the best in the field.



76 CHAPTER 5. RESULTS AND CONCLUSIONS



Bibliography

[1] L. Alvarez, F. Guichard, P. L. Lions, and J.-M. Morel. Axioms and Fundamental
Equations of Image Processing. 123:199–257, 1993.

[2] American Cancer Society. Colorectal cancer facts & figures 2008-2010,
http://www.cancer.org/research/cancerfactsfigures, 2010.

[3] A. J. Aschoff, A. S. Ernst, H.-J. Brambs, and M. S. Juchems. CT colonography:
an update. European Radiology, 18(3):429–37, Mar. 2008.

[4] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing: Par-
tial Differential Equations and the Calculus of Variations (Applied Mathematical
Sciences). Springer, 2nd edition, August 2006.

[5] A. Bartesaghi. Generation of weighted geodesic curves over triangulated domains.
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